Mat104 Solutions to Problems from Old Exams
 Geometric Series, Sequences and L'Hôpital's Rule

(1) Since $e^{n x}=\left(e^{x}\right)^{n}$ this is a geometric series with $r=e^{x}$. It converges absolutely, provided $\left|e^{x}\right|<1$, that is for $x \in(-\infty, 0)$. In that case, it will converge to $\frac{1}{1-e^{x}}$.
(2) This is a geometric series with $a=(-2 / 3)^{4}$ and $r=-2 / 3$. Therefore it converges to $\frac{(-2 / 3)^{4}}{1+2 / 3}=\frac{16}{135}$.
(3) Here we combine several geometric series:
$\sum_{n=0}^{\infty} \frac{2^{n}}{5^{n}}=\frac{1}{1-2 / 5}=5 / 3 \quad \sum_{n=0}^{\infty} \frac{3^{n+1}}{5^{n}}=\frac{3}{1-3 / 5}=15 / 2 \quad \sum_{n=0}^{\infty} \frac{4^{n+2}}{5^{n}}=\frac{16}{1-4 / 5}=80$
the series we are given will converge to $5 / 3+15 / 2+80=\ldots$.
(4) Answer: $2+1 / 2-3 / 8=17 / 8$ (similar to problems 1-3 above)
(5) Answer: $8 / 3+2=14 / 3$. (similar to problems 1-3 above)
(6) As $n \rightarrow \infty$, both the numerator and the denominator go to infinity. Thus we can use L'Hôpital's Rule:

$$
\lim _{n \rightarrow \infty} \frac{\ln \left(n^{2}+n\right)}{\ln \left(n^{2}-n\right)}=\lim _{n \rightarrow \infty} \frac{\frac{2 n+1}{n^{2}+n}}{\frac{2 n-1}{n^{2}-n}}=\lim _{n \rightarrow \infty} \frac{2 n+1}{2 n-1} \cdot \frac{n^{2}-n}{n^{2}+n}=1
$$

since the leading term on top and bottom is now $2 n^{3}$.
(7) This limit will be 0 . If we apply L'Hôpital's Rule repeatedly we end up with $\frac{18}{24 n}$ which goes to 0 as n goes to infinity.
(8) This limit exists and equals -1 . (Recall $\arctan n$ goes to $\pi / 2$ as n goes to infinity.)
(9) Since $(1+1 / n)^{n}$ goes to e as n goes to infinity, this will go to e^{2}.
(10) (a) The numerator goes to e and the denominator goes to ∞. So the quotient will go to 0 as n goes to ∞.
(b) An $\frac{\infty}{\infty}$ form so use L'Hôpital's Rule to show that the limit is $1 / 2$.

