Final Exam Solutions - MAT 104

Problem 1 (8 points). Compute the following integrals:
(a) $\int \frac{x}{\left(1-x^{2}\right)^{3 / 2}} d x$

Solution:

$$
\begin{aligned}
\int \frac{x}{\left(1-x^{2}\right)^{3 / 2}} d x & =-\frac{1}{2} \int\left(1-x^{2}\right)^{-3 / 2}(-2 x d x) \\
& =-\frac{1}{2} \times \frac{1}{-1 / 2}\left(1-x^{2}\right)^{-1 / 2}+C=\frac{1}{\sqrt{1-x^{2}}}+C
\end{aligned}
$$

(b) $\int x \ln (x+1) d x$

Solution: We use integration by parts, taking $u=\ln (x+1)$ and $d v=$ $x d x$. Then

$$
\begin{aligned}
\int x \ln (x+1) d x & =\frac{1}{2} x^{2} \ln (x+1)-\frac{1}{2} \int \frac{x^{2}}{x+1} d x \\
& =\frac{1}{2} x^{2} \ln (x+1)-\frac{1}{2} \int\left(x-1+\frac{1}{x+1}\right) d x \\
& =\frac{1}{2} x^{2} \ln (x+1)-\frac{1}{4} x^{2}+\frac{1}{2} x-\frac{1}{2} \ln (x+1)+C .
\end{aligned}
$$

Problem 2 (12 points). (a) Let R be the region bounded by the x-axis and the graph of $y=1 /\left(x^{4}+1\right)$ as x runs from 0 to ∞. Find the volume of the solid of revolution obtained by revolving R about the y-axis.

Solution: We use the shell method. The radius of each shell is $r=x$, and the height is $h=y=1 /\left(x^{4}+1\right)$. Hence

$$
\begin{aligned}
\text { Volume } & =2 \pi \int_{0}^{\infty} \frac{x}{x^{4}+1} d x=2 \pi \lim _{b \rightarrow \infty} \frac{1}{2} \int_{0}^{b} \frac{2 x d x}{\left(x^{2}\right)^{2}+1} \\
& =\left.\lim _{b \rightarrow \infty} \pi \arctan \left(x^{2}\right)\right|_{0} ^{b}=\frac{\pi^{2}}{2}
\end{aligned}
$$

since $\lim _{x \rightarrow \infty} \arctan x=\pi / 2$.
(b) Calculate the area of the surface obtained by revolving the graph of $y=e^{x}$ between the points $(0,1)$ and $(1, e)$ around the x-axis.

Solution: We have to add the area of thin strips of width

$$
d s=\sqrt{1+(d y / d x)^{2}}=\sqrt{1+e^{2 x}}
$$

and length $2 \pi r=2 \pi e^{x}$. Then

$$
\text { Surface }=2 \pi \int_{0}^{1} e^{x} \sqrt{1+e^{2 x}}=2 \pi \int_{1}^{e} \sqrt{1+u^{2}} d u
$$

where we have applied the change of variables $u=e^{x}$. To find the antiderivative of $\sqrt{1+u^{2}}$, we apply the trigonometric substitution $u=$ $\tan z$, so $d u=\sec ^{2} z$, and hence

$$
\int \sqrt{1+u^{2}} d u=\int \sec z \sec ^{2} z d z=\int \sec ^{3} z d z
$$

We now integrate by parts with $u=\sec z$ and $d v=\sec ^{2} z d z$, to get

$$
\begin{aligned}
\int \sec ^{3} z d z & =\sec z \tan z-\int \tan z \sec z \tan z d z \\
& =\sec z \tan z-\int \tan ^{2} z \sec z d z \\
& =\sec z \tan z-\int\left(\sec ^{2} z-1\right) \sec z d z \\
& =\sec z \tan z+\int \sec z d z-\int \sec ^{3} z d z
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int \sec ^{3} z d z & =\frac{1}{2}\left(\sec z \tan z+\int \sec z d z\right) \\
& =\frac{1}{2} \sec z \tan z+\frac{1}{2} \ln |\tan z+\sec z|+C
\end{aligned}
$$

whence

$$
\int \sqrt{1+u^{2}} d u=\frac{1}{2} u \sqrt{1+u^{2}}+\frac{1}{2} \ln \left|u+\sqrt{1+u^{2}}\right|+C .
$$

Therefore

$$
\begin{aligned}
\text { Surface } & =\left.\pi\left(u \sqrt{1+u^{2}}+\ln \left|u+\sqrt{1+u^{2}}\right|\right)\right|_{1} ^{e} \\
& =\pi\left(e \sqrt{1+e^{2}}-\sqrt{2}+\ln \left|\frac{e+\sqrt{1+e^{2}}}{1+\sqrt{2}}\right|\right)
\end{aligned}
$$

Problem 3 (16 points). Determine whether the following integrals converge or diverge. Give your reasons.
(a) $\int_{0}^{\infty} \frac{d x}{\sqrt{x}+x^{3}}$

Solution: Converges. We write

$$
\int_{0}^{\infty} \frac{d x}{\sqrt{x}+x^{3}}=\int_{0}^{1} \frac{d x}{\sqrt{x}+x^{3}}+\int_{1}^{\infty} \frac{d x}{\sqrt{x}+x^{3}}
$$

The first integral converges since $\frac{1}{\sqrt{x}+x^{3}} \leq \frac{1}{\sqrt{x}}$ and $\int_{0}^{1} \frac{d x}{\sqrt{x}}$ converges (p-test). Likewise, the second integral converges since $\frac{1}{\sqrt{x}+x^{3}} \leq \frac{1}{x^{3}}$ and $\int_{1}^{\infty} \frac{d x}{x^{3}}$ converges (p-test, at ∞).
(b) $\int_{0}^{1} \frac{\tan \sqrt{x}}{x+x^{2}} d x$

Solution: Converges. We have that, for small $x, \tan \sqrt{x} \sim \sqrt{x}$, so $\frac{\tan \sqrt{x}}{x+x^{2}} \sim \frac{\sqrt{x}}{x+x^{2}} \sim \frac{1}{\sqrt{x}}$, since x^{2} is much smaller than x if x is small. The conclusion follows since $\int_{0}^{1} \frac{d x}{\sqrt{x}}$ converges (p-test).
(c) $\int_{0}^{1} \frac{\ln (1+x)}{x^{3}} d x$

Solution: Diverges. For small $x, \ln (1+x) \sim x$, so $\frac{\ln (1+x)}{x^{3}} \sim \frac{1}{x^{2}}$, and $\int_{0}^{1} \frac{1}{x^{2}}$ diverges (p-test).
(d) $\int_{1}^{\infty} \frac{d x}{x \ln x}$

Solution: Diverges. We have that

$$
\int_{1}^{\infty} \frac{d x}{x \ln x}=\int_{1}^{2} \frac{d x}{x \ln x}+\int_{2}^{\infty} \frac{d x}{x \ln x}
$$

and both of these two integrals diverge, since $\int \frac{d x}{x \ln x}=\ln \ln x$ and none of the limits $\lim _{x \rightarrow 1} \ln \ln x$ and $\lim _{x \rightarrow \infty} \ln \ln x$ exist.

Problem 4 (16 points). Determine whether the following series converge or diverge. Give your reasons.
(a) $\sum_{n=0}^{\infty} \frac{n^{2}}{\sqrt{n^{5}+1}}$

Solution: Diverges. We have, for large $n, \frac{n^{2}}{\sqrt{n^{5}+1}} \sim \frac{1}{n^{1 / 2}}$, and $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ diverges.
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} n^{2}}{n^{3}+1}$

Solution: Converges conditionally. $\frac{n^{2}}{n^{3}+1}$ decreases to zero, so the series converges by the alternating series test. It doesn't converge absolutely since $\left|\frac{(-1)^{n} n^{2}}{n^{3}+1}\right| \sim \frac{1}{n}$, and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
(c) $\sum_{n=0}^{\infty} \frac{n^{2} \cdot 3^{n}}{n!}$

Solution: Converges. Let $a_{n}=\frac{n^{2} \cdot 3^{n}}{n!}$. We have

$$
\frac{a_{n+1}}{a_{n}}=\frac{\frac{(n+1)^{2} \cdot 3^{n+1}}{(n+1)!}}{\frac{n^{2} \cdot 3^{n}}{n!}}=\frac{3(n+1)}{n^{2}} \rightarrow 0<1,
$$

so the series converges by the ratio test.
(d) $\sum_{n=0}^{\infty}\left(\frac{n+1}{n+3}\right)^{n^{2}}$

Solution: Converges. Let $a_{n}=\left(\frac{n+1}{n+3}\right)^{n^{2}}$. Then

$$
\left(a_{n}\right)^{1 / n}=\left(\frac{n+1}{n+3}\right)^{n}=\left(1-\frac{2}{n+3}\right)^{n} \rightarrow e^{-2}<1,
$$

so the series converges by the root test.

Problem 5 (12 points). Let $f(x)=\sum_{n=0}^{\infty} \frac{1}{n+2}\left(\frac{x-2}{3}\right)^{n}$.
(a) For what values of x does the series converge?

Solution: By the ratio test, the power series converges for $\left|\frac{x-2}{3}\right|<1$, i. e. $-1<x<5$. For $x=-1$, we obtain the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+2}$, which converges by the alternating series test. For $x=5$, we obtain $\sum_{n=0}^{\infty} \frac{1}{n+2}$, which diverges. Therefore the series converges for $-1 \leq x<5$.
(b) Find $f^{(50)}(2)$.

Solution: Let $a_{n}=\frac{1}{(n+2) 3^{n}}$. Thus $f(x)=\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$. Therefore $f^{(50)}(2)=50!\cdot a_{n}=\frac{50!}{52 \cdot 3^{50}}$.

Problem 6 (12 points).

(a) Use Taylor series to compute $\lim _{x \rightarrow 0} \frac{\left(e^{x}-1-x\right)^{2} \cos x}{x(\sin x-x)}$.

Solution: The first few terms of the Taylor series of each of $e^{x}, \sin x$, and $\cos x$ are $1+x+x^{2} / 2, x-x^{3} / 6$, and $1-x^{2} / 2$, respectively. Hence

$$
\lim _{x \rightarrow 0} \frac{\left(e^{x}-1-x\right)^{2} \cos x}{x(\sin x-x)}=\lim _{x \rightarrow 0} \frac{\left(x^{2} / 2\right)^{2}\left(1-x^{2} / 2\right)}{x\left(-x^{3} / 6\right)}=\frac{-6}{4}=-\frac{3}{2} .
$$

(b) Find the Taylor series of $F(x)=\int_{0}^{\infty} \frac{d t}{1+t^{4}} d t$. For what values of x does it converge?

Solution: Since $\frac{1}{1+t^{4}}=\sum_{n=0}^{\infty}\left(-t^{4}\right)^{n}$ (geometric series), and the fact that power series can be integrated "term by term" within its interval of convergence ($|t|<1$ in this case), we have that

$$
F(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{4 n+1},
$$

for $|x|<1$. The series also converges for $x=1$ by the alternating series test.

Problem 7 (12 points). For the questions below express your answers in the form $a+i b$, where a and b are real numbers. Simplify your expressions for a and b.
(a) Simplify $\left(\frac{7+i}{3+4 i}\right)^{43}$.

Solution: First,

$$
\frac{7+i}{3+4 i}=\frac{(7+i)(3-4 i)}{3^{2}+4^{2}}=\frac{25-25 i}{25}=1-i=\sqrt{2} e^{-\frac{\pi}{4} i} .
$$

Thus

$$
\left(\frac{7+i}{3+4 i}\right)^{43}=2^{\frac{43}{2}} e^{-\frac{43 \pi}{4} i}=2^{\frac{43}{2}}\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)=-2^{21}-2^{21} i .
$$

(b) Solve $z^{4}=-8 i z$.

Solution: This is a four-degree polynomial equation, so it has four solutions. One is $z_{1}=0$, and the other three are the solutions of $z^{3}=-8 i=8 e^{-\frac{\pi}{2} i}$. These are

$$
\begin{aligned}
& z_{2}=2 e^{-\frac{\pi}{6} i}=2\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)=\sqrt{3}-i ; \\
& z_{3}=2 e^{\left(-\frac{\pi}{6}+\frac{2 \pi}{3}\right) i}=2 e^{\frac{\pi}{2} i}=2 i ; \text { and } \\
& z_{4}=2 e^{\left(-\frac{\pi}{6}+\frac{4 \pi}{3}\right) i}=2 e^{\frac{7 \pi}{6} i}=-\sqrt{3}-i .
\end{aligned}
$$

Problem 8 (12 points). Find all real solutions to the following differential equations.
(a) $y^{\prime \prime}+2 y^{\prime}+10 y=0$

Solution: The solutions of the quadratic equation $\lambda^{2}+2 \lambda+10=0$ are $\frac{-2 \pm \sqrt{4-40}}{2}=-1 \pm 3 i$. Hence, the solutions of the equation are

$$
y=C_{1} e^{-x} \cos 3 x+C_{2} e^{-x} \sin 3 x .
$$

(b) $2 y^{\prime \prime}+y^{\prime}-3 y=0$

Solution: The solutions of the quadratic equation $2 \lambda^{2}+\lambda-3=0$ are 1 and $-3 / 2$. Thus, the solutions of the equation are

$$
y=C_{1} e^{x}+C_{2} e^{-\frac{3}{2} x} .
$$

