Final Exam Solutions - MAT 104

Problem 1 (8 points). Compute the following integrals:

(a) $\int \frac{x}{(1-x^2)^{3/2}} dx$

Solution:

$$\int \frac{x}{(1-x^2)^{3/2}} dx = -\frac{1}{2} \int (1-x^2)^{-3/2} (-2xdx)$$
$$= -\frac{1}{2} \times \frac{1}{-1/2} (1-x^2)^{-1/2} + C = \frac{1}{\sqrt{1-x^2}} + C.$$

(b)
$$\int x \ln(x+1) dx$$

Solution: We use integration by parts, taking $u = \ln(x+1)$ and dv = xdx. Then

$$\int x \ln(x+1) dx = \frac{1}{2} x^2 \ln(x+1) - \frac{1}{2} \int \frac{x^2}{x+1} dx$$
$$= \frac{1}{2} x^2 \ln(x+1) - \frac{1}{2} \int \left(x - 1 + \frac{1}{x+1}\right) dx$$
$$= \frac{1}{2} x^2 \ln(x+1) - \frac{1}{4} x^2 + \frac{1}{2} x - \frac{1}{2} \ln(x+1) + C.$$

Problem 2 (12 points). (a) Let R be the region bounded by the *x*-axis and the graph of $y = 1/(x^4+1)$ as x runs from 0 to ∞ . Find the volume of the solid of revolution obtained by revolving R about the *y*-axis.

Solution: We use the shell method. The radius of each shell is r = x, and the height is $h = y = 1/(x^4 + 1)$. Hence

Volume =
$$2\pi \int_0^\infty \frac{x}{x^4 + 1} dx = 2\pi \lim_{b \to \infty} \frac{1}{2} \int_0^b \frac{2xdx}{(x^2)^2 + 1}$$

= $\lim_{b \to \infty} \pi \arctan(x^2) \Big|_0^b = \frac{\pi^2}{2},$

since $\lim_{x\to\infty} \arctan x = \pi/2$.

(b) Calculate the area of the surface obtained by revolving the graph of $y = e^x$ between the points (0,1) and (1, e) around the x-axis.

Solution: We have to add the area of thin strips of width

$$ds = \sqrt{1 + (dy/dx)^2} = \sqrt{1 + e^{2x}}$$

and length $2\pi r = 2\pi e^x$. Then

Surface =
$$2\pi \int_0^1 e^x \sqrt{1 + e^{2x}} = 2\pi \int_1^e \sqrt{1 + u^2} du$$
,

where we have applied the change of variables $u = e^x$. To find the antiderivative of $\sqrt{1 + u^2}$, we apply the trigonometric substitution $u = \tan z$, so $du = \sec^2 z$, and hence

$$\int \sqrt{1+u^2} du = \int \sec z \sec^2 z dz = \int \sec^3 z dz.$$

We now integrate by parts with $u = \sec z$ and $dv = \sec^2 z dz$, to get

$$\int \sec^3 z dz = \sec z \tan z - \int \tan z \sec z \tan z dz$$
$$= \sec z \tan z - \int \tan^2 z \sec z dz$$
$$= \sec z \tan z - \int (\sec^2 z - 1) \sec z dz$$
$$= \sec z \tan z + \int \sec z dz - \int \sec^3 z dz.$$

Thus

$$\int \sec^3 z dz = \frac{1}{2} \left(\sec z \tan z + \int \sec z dz \right)$$
$$= \frac{1}{2} \sec z \tan z + \frac{1}{2} \ln|\tan z + \sec z| + C,$$

whence

$$\int \sqrt{1+u^2} du = \frac{1}{2}u\sqrt{1+u^2} + \frac{1}{2}\ln|u+\sqrt{1+u^2}| + C.$$

Therefore

Surface =
$$\pi \left(u\sqrt{1+u^2} + \ln |u+\sqrt{1+u^2}| \right) \Big|_1^e$$

= $\pi \left(e\sqrt{1+e^2} - \sqrt{2} + \ln \left| \frac{e+\sqrt{1+e^2}}{1+\sqrt{2}} \right| \right).$

Problem 3 (16 points). Determine whether the following integrals converge or diverge. Give your reasons.

(a)
$$\int_0^\infty \frac{dx}{\sqrt{x+x^3}}$$

Solution: Converges. We write

$$\int_{0}^{\infty} \frac{dx}{\sqrt{x} + x^{3}} = \int_{0}^{1} \frac{dx}{\sqrt{x} + x^{3}} + \int_{1}^{\infty} \frac{dx}{\sqrt{x} + x^{3}}$$

The first integral converges since $\frac{1}{\sqrt{x} + x^3} \leq \frac{1}{\sqrt{x}}$ and $\int_0^1 \frac{dx}{\sqrt{x}}$ converges (*p*-test). Likewise, the second integral converges since $\frac{1}{\sqrt{x} + x^3} \leq \frac{1}{x^3}$ and $\int_1^\infty \frac{dx}{x^3}$ converges (*p*-test, at ∞).

(b)
$$\int_0^1 \frac{\tan\sqrt{x}}{x+x^2} dx$$

Solution: Converges. We have that, for small x, $\tan \sqrt{x} \sim \sqrt{x}$, so $\frac{\tan \sqrt{x}}{x + x^2} \sim \frac{\sqrt{x}}{x + x^2} \sim \frac{1}{\sqrt{x}}$, since x^2 is much smaller than x if x is small. The conclusion follows since $\int_0^1 \frac{dx}{\sqrt{x}}$ converges (*p*-test).

(c)
$$\int_0^1 \frac{\ln(1+x)}{x^3} dx$$

Solution: Diverges. For small x, $\ln(1+x) \sim x$, so $\frac{\ln(1+x)}{x^3} \sim \frac{1}{x^2}$, and $\int_0^1 \frac{1}{x^2}$ diverges (*p*-test).

(d)
$$\int_{1}^{\infty} \frac{dx}{x \ln x}$$

Solution: Diverges. We have that

$$\int_1^\infty \frac{dx}{x \ln x} = \int_1^2 \frac{dx}{x \ln x} + \int_2^\infty \frac{dx}{x \ln x},$$

and both of these two integrals diverge, since $\int \frac{dx}{x \ln x} = \ln \ln x$ and none of the limits $\lim_{x \to 1} \ln \ln x$ and $\lim_{x \to \infty} \ln \ln x$ exist. \Box

Problem 4 (16 points). Determine whether the following series converge or diverge. Give your reasons.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2}{\sqrt{n^5 + 1}}$$

Solution: Diverges. We have, for large n, $\frac{n^2}{\sqrt{n^5+1}} \sim \frac{1}{n^{1/2}}$, and $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$ diverges.

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n n^2}{n^3 + 1}$$

Solution: Converges conditionally. $\frac{n^2}{n^3+1}$ decreases to zero, so the series converges by the alternating series test. It doesn't converge absolutely since $\left|\frac{(-1)^n n^2}{n^3+1}\right| \sim \frac{1}{n}$, and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

(c)
$$\sum_{n=0}^{\infty} \frac{n^2 \cdot 3^n}{n!}$$

Solution: Converges. Let $a_n = \frac{n^2 \cdot 3^n}{n!}$. We have $\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)^2 \cdot 3^{n+1}}{(n+1)!}}{\frac{n^2 \cdot 3^n}{n!}} = \frac{3(n+1)}{n^2} \to 0 < 1,$

so the series converges by the ratio test.

(d)
$$\sum_{n=0}^{\infty} \left(\frac{n+1}{n+3}\right)^{n^2}$$

Solution: Converges. Let $a_n = \left(\frac{n+1}{n+3}\right)^{n^2}$. Then

$$(a_n)^{1/n} = \left(\frac{n+1}{n+3}\right)^n = \left(1 - \frac{2}{n+3}\right)^n \to e^{-2} < 1,$$

so the series converges by the root test.

Problem 5 (12 points). Let $f(x) = \sum_{n=0}^{\infty} \frac{1}{n+2} \left(\frac{x-2}{3}\right)^n$.

(a) For what values of x does the series converge?

Solution: By the ratio test, the power series converges for $\left|\frac{x-2}{3}\right| < 1$, i. e. -1 < x < 5. For x = -1, we obtain the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+2}$, which converges by the alternating series test. For x = 5, we obtain $\sum_{n=0}^{\infty} \frac{1}{n+2}$, which diverges. Therefore the series converges for $-1 \le x < 5$.

(b) Find $f^{(50)}(2)$.

Solution: Let
$$a_n = \frac{1}{(n+2)3^n}$$
. Thus $f(x) = \sum_{n=0}^{\infty} a_n (x-2)^n$. There-
fore $f^{(50)}(2) = 50! \cdot a_n = \frac{50!}{52 \cdot 3^{50}}$.

Problem 6 (12 points).

(a) Use Taylor series to compute $\lim_{x \to 0} \frac{(e^x - 1 - x)^2 \cos x}{x(\sin x - x)}$.

Solution: The first few terms of the Taylor series of each of e^x , $\sin x$, and $\cos x$ are $1 + x + x^2/2$, $x - x^3/6$, and $1 - x^2/2$, respectively. Hence

$$\lim_{x \to 0} \frac{(e^x - 1 - x)^2 \cos x}{x(\sin x - x)} = \lim_{x \to 0} \frac{(x^2/2)^2(1 - x^2/2)}{x(-x^3/6)} = \frac{-6}{4} = -\frac{3}{2}.$$

(b) Find the Taylor series of $F(x) = \int_0^\infty \frac{dt}{1+t^4} dt$. For what values of x does it converge?

Solution: Since $\frac{1}{1+t^4} = \sum_{n=0}^{\infty} (-t^4)^n$ (geometric series), and the fact that power series can be integrated "term by term" within its interval of convergence (|t| < 1 in this case), we have that

$$F(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+1}}{4n+1},$$

for |x| < 1. The series also converges for x = 1 by the alternating series test.

Problem 7 (12 points). For the questions below express your answers in the form a + ib, where a and b are real numbers. Simplify your expressions for a and b.

(a) Simplify $\left(\frac{7+i}{3+4i}\right)^{43}$.

Solution: First,

$$\frac{7+i}{3+4i} = \frac{(7+i)(3-4i)}{3^2+4^2} = \frac{25-25i}{25} = 1-i = \sqrt{2}e^{-\frac{\pi}{4}i}.$$

Thus

$$\left(\frac{7+i}{3+4i}\right)^{43} = 2^{\frac{43}{2}}e^{-\frac{43\pi}{4}i} = 2^{\frac{43}{2}}\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = -2^{21} - 2^{21}i.$$

(b) Solve $z^4 = -8iz$.

Solution: This is a four-degree polynomial equation, so it has four solutions. One is $z_1 = 0$, and the other three are the solutions of $z^3 = -8i = 8e^{-\frac{\pi}{2}i}$. These are

$$z_{2} = 2e^{-\frac{\pi}{6}i} = 2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = \sqrt{3} - i;$$

$$z_{3} = 2e^{\left(-\frac{\pi}{6} + \frac{2\pi}{3}\right)i} = 2e^{\frac{\pi}{2}i} = 2i; \text{ and}$$

$$z_{4} = 2e^{\left(-\frac{\pi}{6} + \frac{4\pi}{3}\right)i} = 2e^{\frac{7\pi}{6}i} = -\sqrt{3} - i.$$

Problem 8 (12 points). Find all real solutions to the following differential equations.

(a) y'' + 2y' + 10y = 0

Solution: The solutions of the quadratic equation $\lambda^2 + 2\lambda + 10 = 0$ are $\frac{-2 \pm \sqrt{4-40}}{2} = -1 \pm 3i$. Hence, the solutions of the equation are $y = C_1 e^{-x} \cos 3x + C_2 e^{-x} \sin 3x$.

(b) 2y'' + y' - 3y = 0

Solution: The solutions of the quadratic equation $2\lambda^2 + \lambda - 3 = 0$ are 1 and -3/2. Thus, the solutions of the equation are

$$y = C_1 e^x + C_2 e^{-\frac{3}{2}x}.$$