
Mat104 Solutions to Problems on Complex Numbers from Old Exams

(1) Solve z5 = 6i. Let z = r(cos θ + i sin θ). Then z5 = r5(cos 5θ + i sin 5θ). This has modulus
r5 and argument 5θ. We want this to match the complex number 6i which has modulus 6
and infinitely many possible arguments, although all are of the form π/2, π/2± 2π, π/2±
4π, π/2 ± 6π, π/2 ± 8π, π/2 ± 10π, . . . . (We will see that we don’t really lose anything if
we drop the ± in our list of possible arguments for 6i.) So we choose

r5 = 6 and 5θ =
π

2
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2
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π

2
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2
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π

2
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π

2
+ 10π or . . .

In other words, in order to have z5 = 6i we should take z of the form r(cos θ + i sin θ)
where

r =
5
√

6 and θ =
π

10
or

π

10
+

2π

5
or

π

10
+

4π
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π

10
+

6π

5
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π

10
+

8π

5
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π

10
+

10π

5
or . . .

Notice that there are only really 5 choices for theta. The sixth choice θ = π/10 + 10π/5 =
π/10+2π gives the same complex number as the first choice, where we simply take θ = π/10.
So there are exactly 5 solutions to z5 = 6i corresponding to r = 5

√
6 and θ = π/10, π/10 +

2π/5, π/10 + 4π/5, π/10 + 6π/5 and π/10 + 8π/5.
If we sketch these complex numbers we would see that they all lie on the circle of radius

5
√

6 ≈ 1.43 and they are separated from each other by an angle of 2π/5.

(2) Find the real part of (cos 0.7 + i sin 0.7)53. This is the same as

(e0.7i)53 = e53·0.7i = e37.1i = cos(37.1) + i sin(37.1).

So the real part is simply cos(37.1).

(3) Find all complex numbers z in rectangular form such that (z − 1)4 = −1.
Solve w4 = −1 first and then z = w + 1. The complex number −1 has modulus 1

and argument of the form ±π,±3π,±5π,±7π, . . . . If w = r(cos θ + i sin θ) then w4 =
r4(cos 4θ + i sin 4θ). So

r4 = 1 and 4θ = ±π,±3π,±5π,±7π,±9π, . . .

So take r = 1 and θ =
π

4
or θ =

3π

4
or θ =

5π

4
or θ =

7π

4
. This is a complete list of the

four distinct fourth roots of −1. (The next choice of theta in the sequence is nothing new
since 9π/4 = π/4 + 2π which corresponds to the same complex number we get from taking
θ = π/4.)

So

w = cos θ + i sin θ where θ =
π

4
or

3π

4
or

5π

4
or

7π

4
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and since z = w + 1 we have

z =

(
1 +

√
2

2

)
+ i

√
2

2
from θ =

π

4
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z =

(
1−

√
2

2

)
+ i

√
2

2
from θ =

3π

4
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z =

(
1−

√
2

2

)
− i

√
2

2
from θ =

5π

4

or

z =

(
1 +

√
2

2

)
− i

√
2

2
from θ =

7π

4

(4) Write (
√

3 + i)50 in polar and in Cartesian form. First put
√

3 + i into polar form. Its
modulus is

|
√

3 + i| =
√

(
√

3)2 + 12 =
√

4 = 2.

Its argument θ must satisfy cos θ =

√
3

2
and sin θ =

1

2
. So θ =

π

6
. Thus in polar form we

have
(
√

3 + i)50 = (2eiπ/6)50 = 250 · e
50π
6

i.

This can be simplified since
50π

6
= 8π +

2π

6
. Thus

(
√

3 + i)50 = 250 · e
π
3
i = 250

(
cos

π

3
+ i sin

π

3

)
So this is our answer in polar form. In Cartesian form we have

(
√

3 + i)50 = 250

(
1

2
+ i

√
3

2

)
= 249 + 249

√
3i.

(5) Find all fifth roots of −32. As usual, let z = r(cos θ+i sin θ). Then z5 = r5(cos 5θ+i sin 5θ).
To match up with −32 which has modulus 32 = 25 and argument of the form π+2πk where
k can be any integer we take

r = 2 and θ =
π

5
,
3π

5
,
5π

5
,
7π

5
, or

9π

5

to get a complete list of the fifth roots of −32. (As usual, note that the next angle in
the sequence would be 11π/5 = π/5 + 2π and so gives the same complex number as does
choosing θ = π/5.)

(6) (a)
1

1 + i
+

1

1− i
=

1− i + 1 + i

(1 + i)(1− i)
=

2

1− i2
=

2

2
= 1 = 1 + 0i.

(b)

e2+iπ/3 = e2 · eiπ/3 = e2
(
cos

π

3
+ i sin

π

3

)
= e2

(
1

2
+ i

√
3

2

)
=

e2

2
+

√
3e2

2
i.
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(7) If z3 = 8i then z has modulus 3
√

8 = 2 and its argument θ will be one third of the argument
of 8i. In other words, we should choose

θ =
1

3

π

2
=

π

6
or

1

3

(π

2
+ 2π

)
= · · · = 5π

6
or

1

3

(π

2
+ 4π

)
= · · · = 3π

2

Thus if we denote the three cube roots by z1,z2 and z3 we get

z1 = 2eiπ/6 = 2

(√
3

2
+

1

2
i

)
=
√

3 + i

z2 = 2ei5π/6 = 2

(
−
√

3

2
+

1

2
i

)
= −

√
3 + i

z3 = 2ei3π/2 = 2(−i) = −2i.

(8) 1+i has modulus
√

2 and argument π/4, π/4+2π, π/4+4π, . . . . So z will have modulus r so
that r5 =

√
2, that is r = 10

√
2. The argument θ of z will be one fifth of the argument of 1+i,

so the five fifth roots will correspond to θ = π/20, π/20 + 2π/5, π/20 + 4π/5, π/20 + 6π/5
and π/20 + 8π/5.

(9) The imaginary part is 1/2 since

2 + i

3− i
=

2 + i

3− i

3 + i

3 + i
=

6 + 5i + i2

9− i2
=

5 + 5i

10
=

1

2
+

1

2
i

(10) Since 1− i has argument −π/4 and modulus
√

2 we know that

(1− i)1999 =
(√

2e−iπ/4
)1999

= (
√

2)1999e−i(1999π/4).

But 1999π/4 = 499π +3π/4 = 498π +7π/4 and so −1999π/4 = −498π− 7π/4 = −500π +
π/4. Therefore (1− i)1999 is a complex number in the first quadrant, with argument π/4.

(11) eiz = 3i. Let z = a + ib. Then iz = ai− b. So eiz = e−beai. Thus eiz will have modulus e−b

and argument a. On the other hand, 3i has modulus 3 and argument π/2 + 2πk, where k
can be any integer. So there will be infinitely many solutions, but we must choose a and b
so that e−b = 3 and a = π/2 + 2πk with k an integer. So

z =
(π

2
+ 2πk

)
− i ln 3, where k ∈ Z.

(12) Write (1− i)100 as a + ib where a and b are real.
The complex number 1− i has modulus

√
2 and argument −π/4. That is

1− i =
√

2(cos(−π/4) + i sin(−π/4))

=⇒ (1− i)100 = (
√

2)100(cos(−100π/4) + i sin(−100π/4))

= 250(cos(−25π) + i sin(−25π))

= 250(cos(−π) + i sin(−π)) = 250(−1 + 0i) = −250



4

(13) The real part of e(5+12i)x where x is real is e5x cos 12x since

e(5+12i)x = e5xe12ix = e5x(cos 12x + i sin 12x).

(14) z6 = 8 where z = r(cos θ + i sin θ). As usual, r6 = 8 and θ is one sixth of the argument of
the complex number 8, that is θ is one sixth of an integer multiple of 2π. Thus

r = (23)1/6 = 21/2 =
√

2 and θ = 0,
2π

6
,
4π

6
,
6π

6
,
8π

6
,
10π

6
, . . . .

In other words we get the 6 distinct sixth roots of 8 if z = r(cos θ + i sin θ) where

r =
√

2 and θ = 0,
π

3
,
2π

3
, π,

4π

3
or

5π

3

(15) Summing this series is very similar to the problem of computing the sum
∞∑

n=0

cos nθ

n!
, worked

out in detail as Example 4 on page 669 of Stein & Barcellos. In this case
∞∑

n=0

(
cos nθ

n!
+ i

sin nθ

n!

)
=

∞∑
n=0

einθ

n!
=

∞∑
n=0

(eiθ)n

n!

Since
∞∑

n=0

cos nθ

n!
and

∞∑
n=0

sin nθ

n!
both converge we can break this up as

∞∑
n=0

(
cos nθ

n!
+ i

sin nθ

n!

)
=

∞∑
n=0

cos nθ

n!
+ i

∞∑
n=0

sin nθ

n!

From this we can conclude that
∞∑

n=0

sin nθ

n!
is just the imaginary part of

∞∑
n=0

(eiθ)n

n!
.

Since ez =
∞∑

n=0

zn

n!
for any complex number z we have

∞∑
n=0

(eiθ)n

n!
= eeiθ

= ecos θ+i sin θ = ecos θ · ei sin θ = ecos θ · (cos(sin θ) + i sin(sin θ))

Taking the imaginary part we get
∞∑

n=0

sin nθ

n!
= ecos θ sin(sin θ)

(16)
∞∑
0

cos(nθ)

2n
is the real part of a complex geometric series since

(eiθ)n = einθ = cos nθ + i sin nθ and

(
eiθ

2

)n

=
cos nθ

2n
+ i

sin nθ

2n

Both
∞∑
0

cos(nθ)

2n
and

∞∑
0

sin(nθ)

2n
converge absolutely by comparison to the real geometric

series
∑ 1

2n
. The same arguments we used for ordinary geometric series tell us that

∑∞
0 rn

converges to 1/(1− r) whenever |r| < 1, even if r is complex.
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So
∞∑
0

(
eiθ

2

)n

converges to 1/(1− eiθ/2) and all we have to do is find the real part of

this complex number.

1

1− eiθ/2
=

1

1−
(

cos θ

2
+ i

sin θ

2

)

=
2

(2− cos θ)− i sin θ

=
2

(2− cos θ)− i sin θ
·
(

(2− cos θ) + i sin θ

(2− cos θ) + i sin θ

)

=
4− 2 cos θ + 2i sin θ

4− 4 cos θ + cos2 θ + sin2 θ

=
4− 2 cos θ + 2i sin θ

5− 4 cos θ

Conclusion:
∞∑
0

cos nθ

2n
=

4− 2 cos θ

5− 4 cos θ
and

∞∑
0

sin nθ

2n
=

2 sin θ

5− 4 cos θ


