Mat104 Solutions to Problems on Complex Numbers from Old Exams

(1) Solve $z^{5}=6 i$. Let $z=r(\cos \theta+i \sin \theta)$. Then $z^{5}=r^{5}(\cos 5 \theta+i \sin 5 \theta)$. This has modulus r^{5} and argument 5θ. We want this to match the complex number $6 i$ which has modulus 6 and infinitely many possible arguments, although all are of the form $\pi / 2, \pi / 2 \pm 2 \pi, \pi / 2 \pm$ $4 \pi, \pi / 2 \pm 6 \pi, \pi / 2 \pm 8 \pi, \pi / 2 \pm 10 \pi, \ldots$. (We will see that we don't really lose anything if we drop the \pm in our list of possible arguments for $6 i$.) So we choose
$r^{5}=6 \quad$ and $\quad 5 \theta=\frac{\pi}{2}$ or $\frac{\pi}{2}+2 \pi$ or $\frac{\pi}{2}+4 \pi$ or $\frac{\pi}{2}+6 \pi$ or $\frac{\pi}{2}+8 \pi$ or $\frac{\pi}{2}+10 \pi$ or \ldots
In other words, in order to have $z^{5}=6 i$ we should take z of the form $r(\cos \theta+i \sin \theta)$ where
$r=\sqrt[5]{6}$ and $\quad \theta=\frac{\pi}{10}$ or $\frac{\pi}{10}+\frac{2 \pi}{5}$ or $\frac{\pi}{10}+\frac{4 \pi}{5}$ or $\frac{\pi}{10}+\frac{6 \pi}{5}$ or $\frac{\pi}{10}+\frac{8 \pi}{5}$ or $\frac{\pi}{10}+\frac{10 \pi}{5}$ or \ldots
Notice that there are only really 5 choices for theta. The sixth choice $\theta=\pi / 10+10 \pi / 5=$ $\pi / 10+2 \pi$ gives the same complex number as the first choice, where we simply take $\theta=\pi / 10$. So there are exactly 5 solutions to $z^{5}=6 i$ corresponding to $r=\sqrt[5]{6}$ and $\theta=\pi / 10, \pi / 10+$ $2 \pi / 5, \pi / 10+4 \pi / 5, \pi / 10+6 \pi / 5$ and $\pi / 10+8 \pi / 5$.

If we sketch these complex numbers we would see that they all lie on the circle of radius $\sqrt[5]{6} \approx 1.43$ and they are separated from each other by an angle of $2 \pi / 5$.
(2) Find the real part of $(\cos 0.7+i \sin 0.7)^{53}$. This is the same as

$$
\left(e^{0.7 i}\right)^{53}=e^{53 \cdot 0.7 i}=e^{37.1 i}=\cos (37.1)+i \sin (37.1) .
$$

So the real part is simply $\cos (37.1)$.
(3) Find all complex numbers z in rectangular form such that $(z-1)^{4}=-1$.

Solve $w^{4}=-1$ first and then $z=w+1$. The complex number -1 has modulus 1 and argument of the form $\pm \pi, \pm 3 \pi, \pm 5 \pi, \pm 7 \pi, \ldots$. If $w=r(\cos \theta+i \sin \theta)$ then $w^{4}=$ $r^{4}(\cos 4 \theta+i \sin 4 \theta)$. So

$$
r^{4}=1 \quad \text { and } \quad 4 \theta= \pm \pi, \pm 3 \pi, \pm 5 \pi, \pm 7 \pi, \pm 9 \pi, \ldots
$$

So take $r=1$ and $\theta=\frac{\pi}{4}$ or $\theta=\frac{3 \pi}{4}$ or $\theta=\frac{5 \pi}{4}$ or $\theta=\frac{7 \pi}{4}$. This is a complete list of the four distinct fourth roots of -1 . (The next choice of theta in the sequence is nothing new since $9 \pi / 4=\pi / 4+2 \pi$ which corresponds to the same complex number we get from taking $\theta=\pi / 4$.)

So

$$
w=\cos \theta+i \sin \theta \quad \text { where } \theta=\frac{\pi}{4} \text { or } \frac{3 \pi}{4} \text { or } \frac{5 \pi}{4} \text { or } \frac{7 \pi}{4}
$$

and since $z=w+1$ we have

$$
z=\left(1+\frac{\sqrt{2}}{2}\right)+i \frac{\sqrt{2}}{2} \quad \text { from } \theta=\frac{\pi}{4}
$$

or
$z=\left(1-\frac{\sqrt{2}}{2}\right)+i \frac{\sqrt{2}}{2} \quad$ from $\theta=\frac{3 \pi}{4}$
or

$$
z=\left(1-\frac{\sqrt{2}}{2}\right)-i \frac{\sqrt{2}}{2} \quad \text { from } \theta=\frac{5 \pi}{4}
$$

or

$$
z=\left(1+\frac{\sqrt{2}}{2}\right)-i \frac{\sqrt{2}}{2} \quad \text { from } \theta=\frac{7 \pi}{4}
$$

(4) Write $(\sqrt{3}+i)^{50}$ in polar and in Cartesian form. First put $\sqrt{3}+i$ into polar form. Its modulus is

$$
|\sqrt{3}+i|=\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{4}=2
$$

Its argument θ must satisfy $\cos \theta=\frac{\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$. So $\theta=\frac{\pi}{6}$. Thus in polar form we have

$$
(\sqrt{3}+i)^{50}=\left(2 e^{i \pi / 6}\right)^{50}=2^{50} \cdot e^{\frac{50 \pi}{6} i}
$$

This can be simplified since $\frac{50 \pi}{6}=8 \pi+\frac{2 \pi}{6}$. Thus

$$
(\sqrt{3}+i)^{50}=2^{50} \cdot e^{\frac{\pi}{3} i}=2^{50}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
$$

So this is our answer in polar form. In Cartesian form we have

$$
(\sqrt{3}+i)^{50}=2^{50}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=2^{49}+2^{49} \sqrt{3} i .
$$

(5) Find all fifth roots of -32 . As usual, let $z=r(\cos \theta+i \sin \theta)$. Then $z^{5}=r^{5}(\cos 5 \theta+i \sin 5 \theta)$. To match up with -32 which has modulus $32=2^{5}$ and argument of the form $\pi+2 \pi k$ where k can be any integer we take

$$
r=2 \quad \text { and } \quad \theta=\frac{\pi}{5}, \frac{3 \pi}{5}, \frac{5 \pi}{5}, \frac{7 \pi}{5}, \text { or } \frac{9 \pi}{5}
$$

to get a complete list of the fifth roots of -32 . (As usual, note that the next angle in the sequence would be $11 \pi / 5=\pi / 5+2 \pi$ and so gives the same complex number as does choosing $\theta=\pi / 5$.)
(6) (a)

$$
\frac{1}{1+i}+\frac{1}{1-i}=\frac{1-i+1+i}{(1+i)(1-i)}=\frac{2}{1-i^{2}}=\frac{2}{2}=1=1+0 i .
$$

(b)

$$
e^{2+i \pi / 3}=e^{2} \cdot e^{i \pi / 3}=e^{2}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=e^{2}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=\frac{e^{2}}{2}+\frac{\sqrt{3} e^{2}}{2} i .
$$

(7) If $z^{3}=8 i$ then z has modulus $\sqrt[3]{8}=2$ and its argument θ will be one third of the argument of $8 i$. In other words, we should choose

$$
\theta=\frac{1}{3} \frac{\pi}{2}=\frac{\pi}{6} \text { or } \frac{1}{3}\left(\frac{\pi}{2}+2 \pi\right)=\cdots=\frac{5 \pi}{6} \text { or } \frac{1}{3}\left(\frac{\pi}{2}+4 \pi\right)=\cdots=\frac{3 \pi}{2}
$$

Thus if we denote the three cube roots by z_{1}, z_{2} and z_{3} we get

$$
\begin{array}{r}
z_{1}=2 e^{i \pi / 6}=2\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)=\sqrt{3}+i \\
z_{2}=2 e^{i 5 \pi / 6}=2\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)=-\sqrt{3}+i \\
z_{3}=2 e^{i 3 \pi / 2}=2(-i)=-2 i .
\end{array}
$$

(8) $1+i$ has modulus $\sqrt{2}$ and argument $\pi / 4, \pi / 4+2 \pi, \pi / 4+4 \pi, \ldots$. So z will have modulus r so that $r^{5}=\sqrt{2}$, that is $r=\sqrt[10]{2}$. The argument θ of z will be one fifth of the argument of $1+i$, so the five fifth roots will correspond to $\theta=\pi / 20, \pi / 20+2 \pi / 5, \pi / 20+4 \pi / 5, \pi / 20+6 \pi / 5$ and $\pi / 20+8 \pi / 5$.
(9) The imaginary part is $1 / 2$ since

$$
\frac{2+i}{3-i}=\frac{2+i}{3-i} \frac{3+i}{3+i}=\frac{6+5 i+i^{2}}{9-i^{2}}=\frac{5+5 i}{10}=\frac{1}{2}+\frac{1}{2} i
$$

(10) Since $1-i$ has argument $-\pi / 4$ and modulus $\sqrt{2}$ we know that

$$
(1-i)^{1999}=\left(\sqrt{2} e^{-i \pi / 4}\right)^{1999}=(\sqrt{2})^{1999} e^{-i(1999 \pi / 4)} .
$$

But $1999 \pi / 4=499 \pi+3 \pi / 4=498 \pi+7 \pi / 4$ and so $-1999 \pi / 4=-498 \pi-7 \pi / 4=-500 \pi+$ $\pi / 4$. Therefore $(1-i)^{1999}$ is a complex number in the first quadrant, with argument $\pi / 4$.
(11) $e^{i z}=3 i$. Let $z=a+i b$. Then $i z=a i-b$. So $e^{i z}=e^{-b} e^{a i}$. Thus $e^{i z}$ will have modulus e^{-b} and argument a. On the other hand, $3 i$ has modulus 3 and argument $\pi / 2+2 \pi k$, where k can be any integer. So there will be infinitely many solutions, but we must choose a and b so that $e^{-b}=3$ and $a=\pi / 2+2 \pi k$ with k an integer. So

$$
z=\left(\frac{\pi}{2}+2 \pi k\right)-i \ln 3, \quad \text { where } k \in \mathbb{Z}
$$

(12) Write $(1-i)^{100}$ as $a+i b$ where a and b are real.

The complex number $1-i$ has modulus $\sqrt{2}$ and argument $-\pi / 4$. That is

$$
\begin{aligned}
1-i & =\sqrt{2}(\cos (-\pi / 4)+i \sin (-\pi / 4)) \\
\Longrightarrow(1-i)^{100} & =(\sqrt{2})^{100}(\cos (-100 \pi / 4)+i \sin (-100 \pi / 4)) \\
& =2^{50}(\cos (-25 \pi)+i \sin (-25 \pi)) \\
& =2^{50}(\cos (-\pi)+i \sin (-\pi))=2^{50}(-1+0 i)=-2^{50}
\end{aligned}
$$

(13) The real part of $e^{(5+12 i) x}$ where x is real is $e^{5 x} \cos 12 x$ since

$$
e^{(5+12 i) x}=e^{5 x} e^{12 i x}=e^{5 x}(\cos 12 x+i \sin 12 x)
$$

(14) $z^{6}=8$ where $z=r(\cos \theta+i \sin \theta)$. As usual, $r^{6}=8$ and θ is one sixth of the argument of the complex number 8 , that is θ is one sixth of an integer multiple of 2π. Thus

$$
r=\left(2^{3}\right)^{1 / 6}=2^{1 / 2}=\sqrt{2} \text { and } \theta=0, \frac{2 \pi}{6}, \frac{4 \pi}{6}, \frac{6 \pi}{6}, \frac{8 \pi}{6}, \frac{10 \pi}{6}, \ldots
$$

In other words we get the 6 distinct sixth roots of 8 if $z=r(\cos \theta+i \sin \theta)$ where

$$
r=\sqrt{2} \text { and } \theta=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3} \text { or } \frac{5 \pi}{3}
$$

(15) Summing this series is very similar to the problem of computing the sum $\sum_{n=0}^{\infty} \frac{\cos n \theta}{n!}$, worked out in detail as Example 4 on page 669 of Stein \& Barcellos. In this case

$$
\sum_{n=0}^{\infty}\left(\frac{\cos n \theta}{n!}+i \frac{\sin n \theta}{n!}\right)=\sum_{n=0}^{\infty} \frac{e^{i n \theta}}{n!}=\sum_{n=0}^{\infty} \frac{\left(e^{i \theta}\right)^{n}}{n!}
$$

Since $\sum_{n=0}^{\infty} \frac{\cos n \theta}{n!}$ and $\sum_{n=0}^{\infty} \frac{\sin n \theta}{n!}$ both converge we can break this up as

$$
\sum_{n=0}^{\infty}\left(\frac{\cos n \theta}{n!}+i \frac{\sin n \theta}{n!}\right)=\sum_{n=0}^{\infty} \frac{\cos n \theta}{n!}+i \sum_{n=0}^{\infty} \frac{\sin n \theta}{n!}
$$

From this we can conclude that $\sum_{n=0}^{\infty} \frac{\sin n \theta}{n!}$ is just the imaginary part of $\sum_{n=0}^{\infty} \frac{\left(e^{i \theta}\right)^{n}}{n!}$.
Since $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ for any complex number z we have

$$
\sum_{n=0}^{\infty} \frac{\left(e^{i \theta}\right)^{n}}{n!}=e^{e^{i \theta}}=e^{\cos \theta+i \sin \theta}=e^{\cos \theta} \cdot e^{i \sin \theta}=e^{\cos \theta} \cdot(\cos (\sin \theta)+i \sin (\sin \theta))
$$

Taking the imaginary part we get

$$
\sum_{n=0}^{\infty} \frac{\sin n \theta}{n!}=e^{\cos \theta} \sin (\sin \theta)
$$

(16) $\sum_{0}^{\infty} \frac{\cos (n \theta)}{2^{n}}$ is the real part of a complex geometric series since

$$
\left(e^{i \theta}\right)^{n}=e^{i n \theta}=\cos n \theta+i \sin n \theta \text { and }\left(\frac{e^{i \theta}}{2}\right)^{n}=\frac{\cos n \theta}{2^{n}}+i \frac{\sin n \theta}{2^{n}}
$$

Both $\sum_{0}^{\infty} \frac{\cos (n \theta)}{2^{n}}$ and $\sum_{0}^{\infty} \frac{\sin (n \theta)}{2^{n}}$ converge absolutely by comparison to the real geometric series $\sum \frac{1}{2^{n}}$. The same arguments we used for ordinary geometric series tell us that $\sum_{0}^{\infty} r^{n}$ converges to $1 /(1-r)$ whenever $|r|<1$, even if r is complex.

So $\sum_{0}^{\infty}\left(\frac{e^{i \theta}}{2}\right)^{n}$ converges to $1 /\left(1-e^{i \theta} / 2\right)$ and all we have to do is find the real part of this complex number.

$$
\begin{aligned}
\frac{1}{1-e^{i \theta} / 2} & =\frac{1}{1-\left(\frac{\cos \theta}{2}+i \frac{\sin \theta}{2}\right)} \\
& =\frac{2}{(2-\cos \theta)-i \sin \theta} \\
& =\frac{2}{(2-\cos \theta)-i \sin \theta} \cdot\left(\frac{(2-\cos \theta)+i \sin \theta}{(2-\cos \theta)+i \sin \theta}\right) \\
& =\frac{4-2 \cos \theta+2 i \sin \theta}{4-4 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta} \\
& =\frac{4-2 \cos \theta+2 i \sin \theta}{5-4 \cos \theta}
\end{aligned}
$$

Conclusion:

$$
\sum_{0}^{\infty} \frac{\cos n \theta}{2^{n}}=\frac{4-2 \cos \theta}{5-4 \cos \theta} \text { and } \sum_{0}^{\infty} \frac{\sin n \theta}{2^{n}}=\frac{2 \sin \theta}{5-4 \cos \theta}
$$

