Mat104 Solutions to Problems on Complex Numbers from Old Exams

(1) Solve 2° = 6i. Let z = r(cosf +isinf). Then z° = r°(cos 50 + isin 560). This has modulus
r® and argument 50. We want this to match the complex number 67 which has modulus 6
and infinitely many possible arguments, although all are of the form 7 /2, 7/2 + 27, 7/2 +
Ar, w2 £ 6m, /2 £ 8, /2 £ 107,.... (We will see that we don’t really lose anything if
we drop the £ in our list of possible arguments for 6i.) So we choose

r°=6 and 59:g0rg+27r0rg+47rorg+67rorg+87rorg+107ror

In other words, in order to have 2° = 6i we should take z of the form r(cos @ + i sin 6)
where

T_\5/6 and 9_1Or1+2—ﬂ—0r1—|—4—ﬂ-0r1—|—6—ﬂ—0r1+8_7rorl+w_7ror
N 10 10 5 10 5 10 5 10 5 10 5 7

Notice that there are only really 5 choices for theta. The sixth choice § = 7/10 + 107/5 =
7 /10427 gives the same complex number as the first choice, where we simply take § = 7/10.
So there are exactly 5 solutions to 2° = 6i corresponding to r = v/6 and 6 = 7/10,7/10 +
27/5,7/10 + 4w /5, 7/10 + 67 /5 and 7/10 4 87 /5.

If we sketch these complex numbers we would see that they all lie on the circle of radius
v/6 =~ 1.43 and they are separated from each other by an angle of 27/5.

(2) Find the real part of (cos0.7 +isin0.7)%%. This is the same as
(0738 = B30T = 3T — ¢0g(37.1) + i sin(37.1).
So the real part is simply cos(37.1).

(3) Find all complex numbers z in rectangular form such that (z — 1)* = —1.
Solve w* = —1 first and then z = w + 1. The complex number —1 has modulus 1
and argument of the form 4+, £3m 45, +7x,.... If w = r(cosf + isinf) then w? =
r*(cos46 + isin46). So

r*=1 and 460 = +r,+31, £5r, 77, 497, ...

Sotake r = 1 and § =  or § = ?% or § = %r or = %T This is a complete list of the

four distinct fourth roots of —1. (The next choice of theta in the sequence is nothing new
since 97/4 = 7w /4 + 27 which corresponds to the same complex number we get from taking
0 =m/4.)
S0
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w=cosf +isinf where 0 = % or Zﬂ or IW or Zﬁ
1



and since z = w + 1 we have

2 2
z = (1—1—\/7_) +i\/7_ from@:%
or
2 2
z = 1—£ +i£ flromé’:g—7T
2 2 4
or
z = 1—£ —z'@ from 0 = 2~
2 2 4
or
V2 V2 i
z = (1—{—7 —27 from@-z
(4) Write (v/3 4+ 9)*° in polar and in Cartesian form. First put v/3 4 i into polar form. Its
modulus is
V34| =/ (V3)2+12=V4=2
3 1
[ts argument 6 must satisfy cosf = - and sinf = 7 So 0 = % Thus in polar form we
have

5071'7;

(\/§+ i)50 _ (26i7r/6)50 — 950, 75t

2
This can be simplified since 50% =8 + % Thus

u@+4fozzw.£¢zzw(aﬁg+w$ng)

So this is our answer in polar form. In Cartesian form we have

1
<\/§+ ,L')50 — 250 <§ 4 Z?) — 249 + 249\/§7;.

(5) Find all fifth roots of —32. As usual, let z = r(cos#+isinf). Then 2° = r°(cos 50+ sin 50).
To match up with —32 which has modulus 32 = 25 and argument of the form 7+ 27k where
k can be any integer we take

r=2 and 6=

to get a complete list of the fifth roots of —32. (As usual, note that the next angle in
the sequence would be 117/5 = 7/5 + 27 and so gives the same complex number as does
choosing 6 = 7/5.)

(6) (a) , ,
1 1—2+1+42 2

2
- =S =1=1+0i
1+ 1-i Q19— 1-2 2 o

(b)
. . 1 3 2 3 2
eI/ — 2L oim/3 — o2 (cos%#—isinz) =’ (— +2£> =<4 Ve i.
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(7) If 2% = 8i then z has modulus v/8 = 2 and its argument @ will be one third of the argument
of 8. In other words, we should choose

0 Im =« 1<7T+2> T 1<7r+4> 3T
=-——=—-or-|=+21)=---=—or - (-+47) == —
32 6 3\2 6 3\2

Thus if we denote the three cube roots by 21,2z, and 23 we get

‘ 3 1
ZI—ze”/G_2<§+§z‘> = V3+i

| 1
2 = 2657/6 = 9 (_\/_g + —2') — V34

2 2
23 = 2e7/2 = 2(—i) = —2i.

(8) 1+ has modulus v/2 and argument 7/4, 7/4+2m, 7/4+4m, . ... So z will have modulus 7 so
that > = /2, that is 7 = V/2. The argument @ of z will be one fifth of the argument of 1+4,
so the five fifth roots will correspond to 6 = /20, 7/20 + 27/5,7/20 + 47 /5,7 /20 + 67 /5
and 7/20 + 87 /5.

(9) The imaginary part is 1/2 since
241 241341 6—|—5i+i2_5—|—5i 1+1,

= = —= = - —1

3—1 3—13+1 9 — 4?2 10 2

(10) Since 1 — i has argument —7/4 and modulus v/2 we know that
(1— @')1999 — <\/§e—iw/4>1999 _ <\/§)19996—i(19997r/4)‘

But 19997/4 = 4997 + 37 /4 = 4987 + 77 /4 and so —19997 /4 = —4987 — 7w /4 = —5007 +
7/4. Therefore (1 — )% is a complex number in the first quadrant, with argument 7 /4.

(11) € = 3i. Let z = a+1ib. Then iz = ai —b. So € = e~%*. Thus e** will have modulus e=°

and argument a. On the other hand, 3¢ has modulus 3 and argument 7/2 + 27k, where k
can be any integer. So there will be infinitely many solutions, but we must choose a and b
so that e™® = 3 and @ = /2 + 27k with k an integer. So

7= <g+27rk;> _iln3, where k€ Z.

(12) Write (1 —¢)' as a + ib where a and b are real.
The complex number 1 — i has modulus v/2 and argument — /4. That is

1—i = +/2(cos(—m/4) +isin(—x/4))
— (1= = (/2)'(cos(—1007/4) + i sin(—1007/4))
= 29(cos(—257) + i sin(—257))

= 2%(cos(—m) +isin(—m)) = 2°9(—=1 + 0i) = —2°°



(13) The real part of e+12)% where x is real is € cos 127 since

12T — 5Tl — o520 197 + i sin 121).

(14) 25 = 8 where z = r(cosf +isinf). As usual, 76 = 8 and 6 is one sixth of the argument of
the complex number 8, that is  is one sixth of an integer multiple of 27. Thus

2r 4m 6m 8m 107
20 =22 =2and 0 =0,—", —, —, — ——,....
=2) V2an 67666 6
In other words we get the 6 distinct sixth roots of 8 if z = r(cos + isin ) where

T 2’ 47 5T
r = \/_an O3 3 ,30r—3

cos nt
(15) Summing this series is very similar to the problem of computing the sum Z _n , worked
n!

n=0
out in detail as Example 4 on page 669 of Stein & Barcellos. In this case

=, [cosnf  sinnd et L ()
Z( n! T n! ):Zn' :Z n!

oS n@ . sinné
Since Z and Z ‘ both converge we can break this up as
n!

n=0
(e e} .
cosnf  sinn# cos nb sin nH
z( i) 5y
n=0 n=0
o . o ;
sin n# ey
From this we can conclude that Z is just the imaginary part of Z (<7) :
n! n!
= n=0
(0.9} Zn
Since e* = Z — for any complex number z we have
n!
n=0

& (6i9)n 0 o o

§ : ' — ¢ = ecose—&—zsme — 6cos49 . ezsme — 6cos@ . (COS(Sine) + isin(sin&))
n:

n=0

Taking the imaginary part we get

. sinnf
E = % sin(sin §)

n!
n=0

is the real part of a complex geometric series since

> cos(nd
(16) >
0
e\ " _cosnf  sinnf
o on

()" = ™ = cosnf + isinnd and (7 +1
cos(nh) s
Both Z ") and Z in(n converge absolutely by comparison to the real geometric

series Z on The same arguments we used for ordinary geometric series tell us that > ;" r

converges to 1/(1 — r) whenever |r| < 1, even if 7 is complex.
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So Z (;) converges to 1/(1 — ¢ /2) and all we have to do is find the real part of

this complex number.
1 1

1—eif/2 1_(COS(9+,SiI10)

(2 —cosf) —isinf

2 ((2—0030)+isin«9)

(2 —cosf) —isinf \ (2 — cosf) +isinf

4 —2cosf + 2isind
4 — 4cos + cos? + sin? 0

4 —2cosf 4 2isinf
5 —4cosf

Conclusion:
o0 o0

Zcosn0_4—2cos9 andzsinné_ 2sin 0
o 5_4cosh o 5—4cosf




