## Mat104 Problems on Complex Numbers From Old Exams

(1) Find all solutions of $z^{5}=6 i$.
(2) Find the real part of $(\cos 0.7+i \sin 0.7)^{53}$.
(3) Find all complex numbers $z$, in Cartesian (rectangular) form such that $(z-1)^{4}=-1$.
(4) Write $(\sqrt{3}+i)^{50}$ in polar and in Cartesian form.
(5) Find all fifth roots of -32 .
(6) Write the following in Cartesian form $a+i b$ where $a$ and $b$ are real and simplified as much as possible:
(a) $\frac{1}{1+i}+\frac{1}{1-i}$
(b) $e^{2+i \pi / 3}$
(7) Write all solutions of $z^{3}=8 i$ in polar and Cartesian form, simplified as much as possible.
(8) Find all complex solutions of the equation $z^{5}=1+i$.
(9) Find the imaginary part of $\frac{2+i}{3-i}$.
(10) Find the angle between 0 and $2 \pi$ that is an argument of $(1-i)^{1999}$.
(11) Find all $z$ such that $e^{i z}=3 i$.
(12) Write $(1-i)^{100}$ as $a+i b$ with $a$ and $b$ real numbers and simplify your answer.
(13) Find the real part of $e^{(5+12 i) x}$ where $x$ is real, and simplify your answer.
(14) Find all solutions to $z^{6}=8$ and plot them in the complex plane.
(15) Evaluate $\sum_{n=0}^{\infty} \frac{\sin n \theta}{n!}$.
(16) For what $\theta$ does $\sum_{n=0}^{\infty} \frac{\cos n \theta}{2^{n}}$ converge? If it converges, what does it converge to?

