(1) (a) The region S bounded by $y=\sec x$ and the x-axis for $-\pi / 4 \leq x \leq \pi / 4$ is rotated around the x-axis. Find the volume of the resulting solid.
(b) The region R bounded by the parabolas $y^{2}=x$ and $y^{2}=2 x-6$ is rotated about the x-axis. Find the volume of the resulting solid.
(2) Find the arc length of the of the curve given by $x=e^{2 t} \sin 2 t, y=e^{2 t} \cos 2 t$ for $0 \leq t \leq 1$.
(3) The region enclosed between the curve $y=e^{-x}$ and the lines $x=1$ and $x=2$ is rotated around the x-axis. Find the volume of the resulting solid of revolution and the surface area of the boundary of this solid.
(4) Let R be the region above the x-axis, to the right of the y-axis, and below the circle of radius 1 and center $(1,1)$. Find the area of R. Find the volume of the solid S obtained by rotating the region R around the x-axis. Find the surface area of this solid S.
(5) Let R be the region bounded by the lines $y=0, y=1, x=2-y$, and the curve $x=\sqrt{y}$.
(a) Find the area of the region R.
(b) Find the volume when the region R is revolved about the line $y=1$.
(c) Find the volume when the region R is revolved about the y-axis.
(6) Let γ be the parametrized curve given by

$$
(x, y)=(1-\sin t, 2+\cos t), \quad \text { where } t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

(a) Find the equation of the line tangent to the curve γ at the point $(1,3)$.
(b) Find the surface area produced when the curve γ is revolved about the line $y=2$.
(7) The region above the curve $y=x^{2}-6 x+8$ and below the x-axis is revolved around the line $x=1$. Find the volume of the resulting solid.
(8) Find the arc length of the curve given by

$$
y=\frac{x^{2}}{2}-\frac{\ln x}{4}
$$

for x in the interval $[2,3]$. (Hint: the quantity under the square root can be rewritten as a perfect square.)
(9) Let R be the region bounded by $y=x+x^{2}, x=1, x=2$, and the x-axis. Consider the solid formed by revolving R about
(a) the y-axis
(b) the line $x=3$
(c) the x-axis

In each case express the volume of the solid as a definite integral, but do not evaluate the integrals.
(10) Consider the curve given in parametric equations by

$$
x=t \cos t \quad y=t \sin t
$$

Find a formula for the slope $d y / d x$ of the curve at the point corresponding to t, and find the tangent line to the curve at the point $t=\pi / 2$.
(11) Consider the region R under the curve $y=e^{x^{2}}$ and above the interval $0 \leq x \leq 1$. Find the volume of the solid obtained by revolving the region R around the y-axis. Also, express as a definite integral the volume of the solid obtained by revolving the region R around the x-axis (but do not attempt to evaluate this integral).
(12) Consider the curve given in parametric equations by

$$
x=e^{t} \quad y=e^{2 t}+1 \quad \text { for } 0 \leq t \leq 1
$$

Find the surface area of the surface obtained by rotating this curve around the y-axis.
(13) The region between $y=x^{1 / 3}$, the x-axis, and the line $x=1$ is revolved around (a) the x-axis, (b) the y-axis. Find the volume in each case.
(14) Find the arc length of

$$
y=\cosh x \quad\left(\text { in other words, of } y=\frac{e^{x}+e^{-x}}{2}\right)
$$

as x runs from 0 to 1 .
(15) Consider the curve given by the parametric equations

$$
x=t \quad y=t^{2} \quad \text { for } 0 \leq t \leq 1 .
$$

(a) Compute the volume of the solid obtained by revolving the region bounded by the curve, the y-axis, and $y=1$ around the y-axis.
(b) Compute the area of the surface of this solid.
(16) The region under the arch of the cycloid

$$
x=a \theta-a \sin \theta \quad y=a-a \cos \theta \quad 0 \leq \theta \leq 2 \pi
$$

is revolved around the x-axis. Find the volume of the solid of revolution produced.
(17) Find the area of the surface generated by revolving the parabolic arc $y=x^{2}$ for $0 \leq x \leq 1$ about the y-axis.

