Mathematics 104 Spring Term 2006 Final Examination May 18, 2006

1. Evaluate
$$\int \frac{x^2}{(1+x^2)^{3/2}} \, dx.$$

2. Evaluate
$$\int \frac{\ln(x^2 + 2x + 2)}{(x+1)^2} dx.$$

- 3. Does $\int_{2}^{\infty} \frac{\ln(e^x 2)}{x^3 + 1} dx$ converge or diverge? Give your reasons.
- 4. (a) Does $\sum_{n=0}^{\infty} \frac{3^n (n!)^2}{(2n)!}$ converge or diverge? Give your reasons.
- (b) Does $\sum_{n=1}^{\infty} \frac{e^{10n} + n^{10}}{n^n}$ converge or diverge? Give your reasons.
- 5. For what values of x does $\sum_{n=2}^{\infty} \frac{x^n}{n(\ln n)^{\frac{1}{2}}}$ converge? Give your reasons.
- 6. Find $\lim_{x\to 0} \frac{e^{2x} \cos x \sin 2x}{\ln(1+x) x}$. Show your work.
- 7. Write $(1+i)^{15}(1+i\sqrt{3})^{17}$ in polar form $re^{i\theta}$ with $r \ge 0$ and $0 \le \theta < 2\pi$.
- 8. Find all real solutions to the differential equation $\cos^2 x \frac{dy}{dx} + y = e^{\tan x}$. Show your work.
- 9. Find all real solutions to the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2y = e^{3x}$. Show your work.

10. Find the volume of the solid obtained by revolving the region under the curve $y = \cos x$ and above the x-axis, for $0 \le x \le \pi/3$, about the line x = -1. Show your work.

11. Find the length of the curve given in parametric form by

$$\begin{cases} x = 2(t^2 - 1)^{3/2} \\ y = 3t^2 \end{cases}$$

where $2 \leq t \leq 3$.