FINAL MAT104 SPRING 2006

SOLUTIONS

Answers:

(1) $\ln \left|\sqrt{x^{2}+1}+x\right|-\frac{x}{\sqrt{x^{2}+1}}+C$
(2) $\frac{-\ln \left(1+(x+1)^{2}\right)}{x+1}+2 \tan ^{-1}(x+1)+C$
(3) It converges.
(4) a) It converges. b) It converges.
(5) It converges for $-1 \leq x<1$.
(6) -5
(7) $2^{49 / 2} e^{i \frac{17 \pi}{12}}$
(8) $y(x)=\frac{1}{2} e^{\tan x}+C e^{-\tan x}$
(9) $y(x)=C_{1} e^{x}+C_{2} e^{-2 x}+\frac{1}{10} e^{3 x}$
(10) $V=\frac{\pi^{2}}{\sqrt{3}}+\pi(\sqrt{3}-1)$
(11) $L=38$

Solutions:

(1) Evaluate

$$
\int \frac{x^{2}}{\left(1+x^{2}\right)^{3 / 2}} d x
$$

We use the trigonometric substitution $x=\tan \theta, d x=\sec ^{2} \theta d \theta$

$$
\begin{aligned}
\int \frac{x^{2}}{\left(1+x^{2}\right)^{3 / 2}} d x & =\int \frac{\tan ^{2} \theta \sec ^{2} \theta}{\sec ^{3} \theta} d \theta \\
& =\int \frac{\tan ^{2} \theta}{\sec \theta} d \theta \\
& =\int \frac{\sec ^{2} \theta-1}{\sec \theta} d \theta \\
& =\int \sec \theta d \theta-\int \cos \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|-\sin \theta+C
\end{aligned}
$$

We have $\sin \theta=\frac{x}{\sqrt{x^{2}+1}}$ and $\cos \theta=\frac{1}{\sqrt{x^{2}+1}}$. Rewriting the above result in terms of x we get

$$
\int \frac{x^{2}}{\left(1+x^{2}\right)^{3 / 2}} d x=\ln \left|\sqrt{x^{2}+1}+x\right|-\frac{x}{\sqrt{x^{2}+1}}+C .
$$

(2) Evaluate

$$
\int \frac{\ln \left(x^{2}+2 x+2\right)}{(x+1)^{2}} d x
$$

We first make the change of variable $y=x+1, d y=d x$ to get

$$
\int \frac{\ln \left(x^{2}+2 x+2\right)}{(x+1)^{2}} d x=\int \frac{\ln \left(y^{2}+1\right.}{y^{2}} d y .
$$

We then integrate by parts with $u=\ln \left(1+y^{2}\right), d u=\frac{2 y}{1+y^{2}} d y$ and $d v=\frac{1}{y^{2}} d y$, $v=\frac{-1}{y}$

$$
\begin{aligned}
\int \frac{\ln \left(y^{2}+1\right)}{y^{2}} d y & =\frac{-\ln \left(1+y^{2}\right)}{y}+\int \frac{2}{1+y^{2}} d y \\
& =\frac{-\ln \left(1+y^{2}\right)}{y}+2 \tan ^{-1} y+C
\end{aligned}
$$

Rewriting in terms of the variable x

$$
\int \frac{\ln \left(x^{2}+2 x+2\right)}{(x+1)^{2}} d x=\frac{-\ln \left(1+(x+1)^{2}\right)}{x+1}+2 \tan ^{-1}(x+1)+C
$$

(3) Does $\int_{2}^{\infty} \frac{\ln \left(e^{x}-2\right)}{x^{3}+1} d x$ converge or diverge ?

The only trouble spot is at ∞. We have $\ln \left(e^{x}-2\right) \sim x$ at $x \rightarrow \infty$ as

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}-2\right)}{x}=1
$$

using L'Hospital rule. Also $x^{3}+1 \sim x^{3}$ at infinity. Therefore the convergence or divergence of the integral is the same as for the following integral

$$
\int_{2}^{\infty} \frac{x}{x^{3}} d x=\int_{2}^{\infty} \frac{1}{x^{2}} d x
$$

By the p-test, this integral converges. Hence the above integral converges.
(4) a. Does $\sum_{n=0}^{\infty} \frac{3^{n}(n!)^{2}}{(2 n)!}$ converge or diverge ?

We use the ratio test

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{3^{n+1}((n+1)!)^{2}}{(2(n+1))!} \frac{(2 n)!}{3^{n}(n!)} \\
& =\lim _{n \rightarrow \infty} \frac{3(n+1)^{2}}{(2 n+2)(2 n+1)} \\
& =\lim _{n \rightarrow \infty} \frac{3 n^{2}+6 n+3}{4 n^{2}+6 n+2} \\
& =\frac{3}{4}<1
\end{aligned}
$$

By the ratio test the series converges.
b. Does $\sum_{n=1}^{\infty} \frac{e^{10 n}+n^{10}}{n^{n}}$ converge or diverge ?

We split the series in two: $\sum_{n} \frac{e^{10 n}}{n^{n}}+\sum_{n} \frac{n^{10}}{n^{n}}$. We use the root test on both. For the first, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{e^{10 n}}{n^{n}}\right)^{1 / n} & =\lim _{n \rightarrow \infty}\left(\frac{e^{10}}{n}\right) \\
& =0<1
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{n^{10}}{n^{n}}\right)^{1 / n} & =\lim _{n \rightarrow \infty}\left(\frac{\left(n^{1 / n}\right)^{10}}{n}\right) \\
& =0<1
\end{aligned}
$$

Therefore both series converge so the sum of the two converges.
(5) For what values of x does $\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{1 / 2}}$ converge?

We first look at the interval of absolute convergence. Setting $a_{n}=\left|\frac{x^{n}}{n(\ln n)^{1 / 2}}\right|$. we have

$$
\frac{a_{n+1}}{a_{n}}=|x| \frac{n(\ln n)^{1 / 2}}{(n+1)(\ln (n+1))^{1 / 2}}
$$

We take the limit of the ratio $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ as

$$
\begin{aligned}
\lim _{n \rightarrow \infty}|x| \frac{n(\ln n)^{1 / 2}}{(n+1)(\ln (n+1))^{1 / 2}} & =|x|\left(\lim _{n \rightarrow \infty} \frac{n}{n+1}\right)\left(\lim _{n \rightarrow \infty} \frac{\ln n}{\ln n+\ln (1+1 / n)}\right)^{1 / 2} \\
& =|x|
\end{aligned}
$$

where we have used $\ln (n+1)=\ln n+\ln (1+1 / n)$. The ratio test that the series converges for $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$. In our case we have that the series converges absolutely for $|x|<1$.

It remains to check the end point. If $x=-1$, the series reduces to $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{1 / 2}}$. This is an alternating series. Moreover, $\frac{1}{n(\ln n)^{1 / 2}}$ is decreasing and converges to 0 as $n \rightarrow \infty$. By the alternating test, it must converge.

If $x=1$, we get the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{1 / 2}}
$$

This is a series with positive terms. The form of the term in the series suggests the use of the integral test. The relevant integral is

$$
\int_{2}^{\infty} \frac{d x}{x(\ln x)^{1 / 2}}
$$

We make the change of variable $v=\ln x$ to get

$$
\int_{2}^{\infty} \frac{d x}{x(\ln x)^{1 / 2}}=\int_{\ln 2}^{\infty} \frac{d v}{v^{1 / 2}}=\infty
$$

By the integral test we conclude that the series diverges at $x=1$.
(6) Find

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}-\cos x-\sin 2 x}{\ln (1+x)-x}
$$

This a case $\frac{0}{0}$. We use Taylor series about $x=0$. We have $e^{2 x}=1+2 x+\frac{(2 x)^{2}}{2!}+\ldots$, $\cos x=1-\frac{x^{2}}{2!}+\ldots, \sin 2 x=2 x-\frac{8 x^{3}}{3!}+\ldots$ and

$$
\ln (1+x)=\int_{0}^{x} \frac{1}{1+y} d y=\int_{0}^{x}\left(1-y+y^{2}+\ldots\right) d y=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots
$$

using the sum of a geometric series. The x^{2}-terms will be the dominant terms in the numerator and the denominator. Inserting the series, we get

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{2 x}-\cos x-\sin 2 x}{\ln (1+x)-x} & =\lim _{x \rightarrow 0} \frac{\left(1+2 x+4 x^{2} / 2+\ldots\right)-\left(1-x^{2} / 2+\ldots\right)-(2 x-\ldots)}{\left(x-x^{2} / 2+\ldots\right)-x} \\
& =\lim _{x \rightarrow 0} \frac{5 x^{2} / 2+\ldots}{-x^{2} / 2+\ldots} \\
& =-5
\end{aligned}
$$

(7) Write $(1+i)^{15}(1+i \sqrt{3})^{17}$ in polar form with $r \geq$ and $0 \leq \theta<2 \pi$.

We first write each number in polar form. We have $1+i=\sqrt{2} e^{i \pi / 4}$ as $r=\sqrt{1+1}$ and $\tan \frac{\pi}{4}=\frac{1 / \sqrt{2}}{1 / \sqrt{2}}=1$. The same way $1+i \sqrt{3}=2 e^{i \pi / 3}$. It is now easy to take powers:

$$
\begin{aligned}
(1+i)^{15} & =2^{15 / 2} e^{i \frac{15 \pi}{4}}=2^{15 / 2} e^{i \frac{7 \pi}{4}} \\
(1+i \sqrt{3})^{17} & =2^{17} e^{i \frac{17 \pi}{3}}=2^{17} e^{i \frac{5 \pi}{3}}
\end{aligned}
$$

where we have used $\frac{15 \pi}{4}=2 \pi+\frac{7 \pi}{4}$ and $\frac{17 \pi}{3}=4 \pi+\frac{5 \pi}{3}$. It remains to take the product of both numbers

$$
(1+i)^{15}(1+i \sqrt{3})^{17}=\left(2^{15 / 2} e^{i \frac{7 \pi}{4}}\right)\left(2^{17} e^{i \frac{5 \pi}{3}}\right)=2^{49 / 2} e^{i \frac{41 \pi}{12}}=2^{49 / 2} e^{i \frac{17 \pi}{12}}
$$

as $\frac{41 \pi}{12}=2 \pi+\frac{17 \pi}{12}$.
(8) Find all real solutions to the differential equations $\cos ^{2} x \frac{d y}{d x}+y=e^{\tan x}$.

This is a first-order linear equation. We divide by $\cos ^{2} x$ to get the usual form $\frac{d y}{d x}+\frac{1}{\cos ^{2} x} y=\frac{1}{\cos ^{2} x} e^{\tan x}$. Recall that $1 / \cos ^{2} x=\sec ^{2} x$. By the form of the equation, the integrating factor is given by $e^{P(x)}$ where

$$
P(x)=\int \sec ^{2} x d x=\tan x .
$$

Multiplying the equation by the integrating factor $e^{\tan x}$ and using the product rule yields

$$
\frac{d}{d x}\left(e^{\tan x} y\right)=\sec ^{2} x e^{2 \tan x}
$$

Integration on both sides gives

$$
e^{\tan x} y=\int \sec ^{2} x e^{2 \tan x} d x=\frac{1}{2} e^{2 \tan x}+C
$$

where we have used the change of variable $u=2 \tan x$. We get the final answer by dividing by $e^{\tan x}$
(9) Find all real solutions to the differential equations $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=e^{3 x}$.

The general solution is given by $y(x)=y_{h}(x)+y_{p}(x)$ where y_{h} is the solution to the homogeneous equation and y_{p} is the particular solution to the nonhomogeneous equation.

We first find the solution to the homogeneous equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0$. The characteristic polynomial of the equation is $r^{2}+r-2$. It has roots $r_{1}=1$ and $r_{2}=-2$. Therefore we have

$$
y_{h}(x)=C_{1} e^{x}+C_{2} e^{-2 x} .
$$

To find y_{p}, we guess from the equation that it should be of the form $y_{p}(x)=A e^{3 x}$ for some real constant A. To find A, we insert our guess in the equation to get

$$
(9 A+3 A-2 A) e^{3 x}=e^{3 x} .
$$

Dividing by $e^{3 x}$, we conclude that $A=1 / 10$ for our guess to satisfy the equation. Therefore, the general solution to the equation is

$$
y(x)=C_{1} e^{x}+C_{2} e^{-2 x}+\frac{1}{10} e^{3 x} .
$$

(10) Find the volume of the solid obtained by revolving the region under the curve $y=\cos x$ and above the x-axis for $0 \leq x \leq \pi / 3$ about the line $x=-1$.

We use the shell method. The shells have radius $x+1$ and height $\cos x$. Therefore the volume is given by

$$
\begin{aligned}
V & =\int_{0}^{\pi / 3} 2 \pi(x+1) \cos x d x \\
& =2 \pi \int_{0}^{\pi / 3} x \cos x d x+2 \pi \int_{0}^{\pi / 3} \cos x d x \\
& =\left.2 \pi(x \sin x+\cos x)\right|_{0} ^{\pi / 3}+\left.2 \pi(\sin x)\right|_{0} ^{\pi / 3} \\
& =2 \pi\left(\frac{\pi}{3} \frac{\sqrt{3}}{2}+\frac{1}{2}-1\right)+2 \pi \frac{\sqrt{3}}{2} \\
& =\frac{\pi^{2}}{\sqrt{3}}+\pi(\sqrt{3}-1)
\end{aligned}
$$

(11) Find the length of the curve given in the parametric form by

$$
\left\{\begin{array}{l}
x(t)=2\left(t^{2}-1\right)^{3 / 2} \\
y(t)=3 t^{2}
\end{array}\right.
$$

where $2 \leq t \leq 3$.
The length of the curve is given by the integral

$$
L=\int_{2}^{3} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

We have $\frac{d x}{d t}=6 t\left(t^{2}-1\right)^{1 / 2}$ and $\frac{d y}{d t}=6 t$. The integral becomes

$$
\begin{aligned}
L=\int_{2}^{3} \sqrt{36 t^{2}\left(t^{2}-1\right)+36 t^{2}} d t=6 \int_{2}^{3} \sqrt{t^{4}} d t & =6 \int_{2}^{3} t^{2} d t \\
& =\left.6\left(\frac{t^{3}}{3}\right)\right|_{2} ^{3}=38
\end{aligned}
$$

