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Abstract

The overlap number of a finite (d + 1)-uniform hypergraph

H is the largest constant c(H) ∈ (0, 1] such that no matter

how we map the vertices of H into Rd, there is a point

covered by at least a c(H)-fraction of the simplices induced

by the images of its hyperedges. In [18], motivated by the

search for an analogue of the notion of graph expansion

for higher dimensional simplicial complexes, it was asked

whether or not there exists a sequence {Hn}∞n=1 of arbitrarily

large (d+ 1)-uniform hypergraphs with bounded degree, for

which infn>1 c(Hn) > 0. Using both random methods and

explicit constructions, we answer this question positively by

constructing infinite families of (d+ 1)-uniform hypergraphs

with bounded degree such that their overlap numbers are

bounded from below by a positive constant c = c(d). We also

show that, for every d, the best value of the constant c = c(d)

that can be achieved by such a construction is asymptotically

equal to the limit of the overlap numbers of the complete

(d+1)-uniform hypergraphs with n vertices, as n→ ∞. For

the proof of the latter statement, we establish the following

geometric partitioning result of independent interest. For

any d and any ε > 0, there exists K = K(ε, d) > d + 1

satisfying the following condition. For any k > K, for any

point q ∈ Rd and for any finite Borel measure µ on Rd with

respect to which every hyperplane has measure 0, there is

a partition Rd = A1 ∪ . . . ∪ Ak into k measurable parts of

equal measure such that all but at most an ε-fraction of the

(d + 1)-tuples Ai1 , . . . , Aid+1 have the property that either

all simplices with one vertex in each Aij contain q or none

of these simplices contain q.
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1 Introduction

Let G = (V,E) be an n-vertex graph. Think of G as a 1-

dimensional simplicial complex, i.e., each edge is present

in G as an actual interval. Assume that for every subset

S ⊆ V of size
⌊
n
2

⌋
the number of edges joining S and

V r S is at least α|E|, for α ∈ (0, 1]. It follows that

for every f : V → R, if we extend f to be a linear

(or even just continuous) function defined also on the

edges of G, there must necessarily exist a point x ∈ R
such that |f−1(x)| > α|E|. Indeed, x can be chosen to

be a median of the set f(V ) ⊆ R. In other words, no

matter how we draw G on the line, its edges will heavily

overlap.

As illustrated by this simple example, the above

expander-like condition1 on G implies that all of its

embeddings in R satisfy a geometric overlap condition.

This condition naturally extends to higher-dimensional

simplicial complexes, and can thus serve as a potential

definition of a higher-dimensional analogue of edge

expansion2. Such investigations of high-dimensional

geometric analogues of edge expansion were initiated

in [18]. The present paper follows this approach.

In 1984, answering a question of Kárteszi, two

undergraduates at Eötvös University, Boros and Füredi

[8], proved the following theorem.

Theorem 1.1. ([8]) For every set P of n points in the

plane, there is a point (not necessarily in P ) that belongs

to at least
(
2
9 − o(1)

) (
n
3

)
closed triangles induced by the

elements of P .

The factor 2
9 in Theorem 1.1 is asymptotically tight, as

shown by Bukh, Matoušek and Nivasch in [10]. A short

and elegant “book proof” of Theorem 1.1 was given

by Bukh [9]. In Section 2, we present an alternative

“topological” argument.

The theorem of Boros and Füredi has been gener-

alized to higher dimensions. Bárány [4] proved that for

1It isn’t quite edge expansion since we do not care about

boundaries of small sets.
2To be precise, what we are detecting here is only that G

contains a large expander, rather than being an expander itself.
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every d ∈ N there exists a constant cd > 0 such that

given any set P of n points in Rd, one can always find

a point in at least cdn
d closed simplices whose vertices

belong to P . In fact, the following stronger statement

due to Pach [26] holds true.

Theorem 1.2. ([26]) Every set P of n points in Rd has

d+ 1 disjoint bc′dnc-element subsets, P1, . . . , Pd+1, such

that all closed simplices with one vertex from each Pi
have a point in common. Here c′d > 0 is a constant

depending only on the dimension d.

Recall that a hypergraph H = (V,E) consists of a

set V and a set E of non-empty subsets of V . The

elements of V are called vertices and the elements

of E are called hyperedges. H is d-uniform if every

hyperedge e ∈ E contains exactly d vertices. The degree

of a vertex v ∈ V in H is the number of hyperedges

containing v. To simplify the presentation, we introduce

the following terminology.

Definition 1. Given a (d + 1)-uniform hypergraph

H = (V,E), its overlap number c(H) is the largest

constant c ∈ (0, 1] such that for every embedding f :

V → Rd, there exists a point p ∈ Rd which belongs to

at least c|E| simplices whose vertex sets are hyperedges

of H, i.e., there exists a set of hyperedges S ⊆ E with

|S| > c|E| and p ∈
⋂
e∈S conv(f(e)) (where conv(A)

denotes the convex hull of A ⊆ Rd). An infinite fam-

ily H of (d + 1)-uniform hypergraphs is highly over-

lapping if there exists an absolute constant c > 0 such

that c(H) > c for every H ∈ H . An infinite family

of d-dimensional simplicial complexes is called highly

overlapping if the family of (d+ 1)-uniform hypergraphs

consisting of the vertex sets of their d-dimensional faces

(their d-skeletons) is highly overlapping 3.

Using this terminology, the Boros-Füredi theorem

states that the family of all finite complete 3-uniform

hypergraphs (or 2-skeletons of all complete simplicial

complexes) is highly overlapping. Bárány’s theorem

says that the same is true for the family of complete

(d+1)-uniform hypergraphs (or d-skeletons of complete

simplicial complexes). The fact that the family of all fi-

nite complete graphs (1-skeletons of complete simplicial

complexes) is highly overlapping (with c = 1/2) is triv-

ial, but its higher dimensional generalizations are much

more subtle.

3In [18] such simplicial complexes are called “polyhedra with

large cardinalities.”

It was a simple but very important graph-theoretic

discovery by Pinsker [27] and others that there exist

arbitrarily large edge expanders of bounded degree

[19]. As we have seen at the beginning of this paper,

expanders with a fixed rate of expansion are necessarily

highly overlapping. This fact motivated the question,

asked in [18], whether there exist infinite families of

higher dimensional simplicial complexes with bounded

degree that are highly overlapping. In other words, the

question of [18] for 2-dimensional simplicial complexes

asks whether a Boros-Füredi type theorem remains

true if instead of all triangles determined by n points

in the plane, we consider only “sparse” systems of

triangles. In particular, do there exist arbitrarily large

3-uniform hypergraphs H, in which every vertex belongs

to at most a constant number k of triples, and whose

overlap numbers are bounded from below by an absolute

positive constant?

In Section 3.1, we answer this question in the

affirmative, by proving the following result.

Theorem 1.3. For any ε > 0, there exists a positive

integer k = k(ε) satisfying the following condition.

There is an infinite sequence of 3-uniform hypergraphs

Hn with n vertices and n tending to infinity, each of

degree k, such that, for any embedding of the vertex set

V (Hn) in R2, there is a point belonging to at least a

( 2
9 −ε)-fraction of all closed triangles induced by images

of hyperedges of Hn. Here the constant 2
9 cannot be

improved.

We also generalize Theorem 1.3 to (d + 1)-uniform

hypergraphs with d > 2.

Theorem 1.4. For every integer d > 2, there exist pos-

itive constants cd and kd with the following property.

There is an infinite sequence of (d + 1)-uniform hyper-

graphs Hn with n vertices and n tending to infinity, each

of degree kd, such that, for any embedding of the vertex

set V (Hn) in Rd, there is a point in Rd that belongs to

at least a cd-fraction of all closed simplices induced by

images of hyperedges of Hn.

Among the most natural and powerful methods to

construct good expanders is the use of certain Cayley

graphs of finitely generated groups (see [22, 25, 14]), via

arguments related to Kazhdan’s property (T) (see [6]).

Such graphs yield explicit constructions of expanders

that have extremal spectral properties, namely Ra-

manujan graphs [22]. Being Cayley graphs of finitely

generated groups, these constructions can be viewed as

quotients of trees (Cayley graphs of free groups). It



is natural to study hypergraph versions of this type

of construction, based on quotients buildings (a type

of higher dimensional simplicial complexes that ex-

tends the notion of a tree [29]). In particular, a no-

tion of Ramanujan complex, which is a simplicial com-

plex with extremal spectral properties analogous to

Ramanujan graphs, was introduced and constructed

in [3, 11, 20, 24, 23, 28]. Here we show that such con-

structions can yield highly overlapping bounded degree

hypergraph families. Specifically, we show that for ev-

ery integer r > 2, for a large enough odd prime power

q, certain finite quotients of the building of PGLr(F ),

where F is a non-archimedian local field with residue

field of order q, are highly overlapping r-uniform hy-

pergraphs (with degree and overlap number depending

only q, r). Rather than defining the relevant notions in

this extended abstract, we refer to the full version of

this paper [17] for precise definitions and statements.

Instead, we state below the following concrete special

case of our result, which follows from our argument

in Section [17], in combination with a construction of

Lubotzky, Samuels and Vishne [23].

Theorem 1.5. For every odd prime p and every integer

r > 3 there exist k(p, r) ∈ N and c(p, r) > 0 with

the following property. For every m ∈ N, the finite

group G = PGLr(Fpm), where Fpm is the field of

cardinality pm, has a symmetric generating set S ⊆ G

of size bounded above by k(p, r), such that the following

holds. Consider the r-regular hypergraph H whose

vertex set is G and whose hyperedges are those r-tuples

{g1, . . . , gr} ⊆ G with gig
−1
j ∈ S for all distinct 1 6

i, j 6 r (i.e., H is the hypergraph consisting of all

cliques of size r in the Cayley graph induced by S). Then

there exist arbitrarily large integers m for which the

hypergraph H has overlap number at least c(p, r) > 0.

By Theorem 1.3, the best value of the constant c2
in Theorem 1.4 is close to 2

9 , but in higher dimensions

d > 2, we do not have very good estimates for cd. Our

goal is to show, roughly speaking, that the best constant

in Theorem 1.4 is the same as the best constant in the

Boros-Füredi-Bárány theorem (Theorem 1.1). To state

this formally, it will be convenient to introduce some

notation. Let c(Kd+1
n ) be the overlap number of Kd+1

n ,

the complete (d+ 1)-uniform hypergraph on n vertices,

and set

c(d) = lim
n→∞

c
(
Kd+1
n

)
.

It is easy to show, via a straightforward point duplica-

tion argument, that the limit defining c(d) exists, and

the Boros-Füredi-Bárány theorem shows that c(d) > 0,

for every d.

One might suspect that if H is a (d + 1)-uniform

hypergraph without isolated vertices, then c(H) 6
c(d)+o(1), where the o(1) term goes to 0 as the number

of vertices of H tends to infinity. This is not the case.

Consider, for example, the (d+ 1)-hypergraph Hd+1
n on

n vertices, whose hyperedges are those sets of size d+ 1

that contain the first d vertices. In any general position

embedding of the vertices of Hd+1
n in Rd, any segment

joining a pair of points sufficiently close and on opposite

sides of the face consisting of the first d vertices stabs

all the simplices induced by the images of hyperedges of

Hd+1
n . Hence, c(Hd+1

n ) > 1/2. However, c(d) decays to

0 at least exponentially in d (see, e.g., [4, 10]). Despite

this example, we show that our suspicion is correct for

bounded degree hypergraphs.

Theorem 1.6. For any d, ∆ ∈ N, and ε > 0, there

is n(d,∆, ε) ∈ N such that every (d + 1)-uniform

hypergraph H on n > n(d,∆, ε) nonisolated vertices

with maximum degree ∆ satisfies c(H) 6 c(d) + ε.

In the other direction, we show that there are

regular (d + 1)-uniform hypergraphs H of bounded

degree such that c(H) is at least c(d)− ε for any given

ε > 0.

Theorem 1.7. For each d ∈ N and ε > 0, there

is r(d, ε) ∈ N such that for every r > r(d, ε) and

sufficiently large n which is a multiple of d+ 1, there is

a (d+ 1)-uniform, r-regular hypergraph H on n vertices

with c(H) > c(d)− ε.

The previous two theorems essentially show that c(d) is

the largest possible overlap number for bounded degree

hypergraphs with sufficiently many nonisolated vertices.

The proof of the last theorem is based on a geo-

metric partitioning result of independent interest. A

(d+ 1)-tuple of subsets S1, . . . , Sd+1 ⊆ Rd is said to be

homogeneous with respect to a point q ∈ Rd if either all

simplices with one vertex in each of the sets S1, . . . , Sd+1

contain q, or none of these simplices contain q.

Theorem 1.8. For a positive integer d and ε > 0, there

exists another positive integer K = K(ε, d) > d + 1

such that for any k > K the following statement is

true. For any point q ∈ Rd and for any finite Borel

measure µ on Rd with respect to which every hyperplane

has measure 0, there is a partition Rd = A1∪. . .∪Ak into

k measurable parts of equal measure such that all but at

most an ε-fraction of the (d + 1)-tuples Ai1 , . . . , Aid+1

are homogenous with respect to q.



An equipartition of a finite set is a partition of the

set into subsets whose sizes differ by at most one. A

discrete version of Theorem 1.8 is the following.

Corollary 1.1. Given a positive integer d and ε > 0,

there exists another positive integer K = K(ε, d) > d+1

such that for any k > K the following statement is

true. For any finite set P ⊆ Rd and for any point

q ∈ Rd, there is an equipartition P = P1 ∪ . . .∪Pk such

that all but at most an ε-fraction of the (d + 1)-tuples

Pi1 , . . . , Pid+1
are homogenous with respect to q.

Notice that due to Bárány’s result [4] that c(d) > 0,

by taking ε � c(d), Corollary 1.1 immediately implies

Theorem 1.2.

The rest of the paper is organized as follows. Sec-

tion 2 contains a detailed topological proof of the Boros-

Füredi theorem (Theorem 1.1), following the approach

in [18]. In the two subsections of Section 3, we present

randomized constructions for Theorems 1.3 and 1.4. In

the plane, these constructions are nearly optimal; their

overlap numbers are close to the value 2
9 . In Section 4,

we give a deterministic recipe how to turn certain fam-

ilies of explicitly given expander graphs into families

of highly overlapping (d + 1)-uniform hypergraphs. In

the full version of this paper [17] we give a criterion

which ensures that certain finite quotients of the build-

ing of PGLr(F ) are highly overlapping r-uniform hyper-

graphs; this criterion implies in particular Theorem 1.5.

Also in [17], we establish a Szemerédi-type theorem for

infinite hypergraphs with a measure on their vertex sets.

This is used in [17] for the proof of the geometric par-

tition result Theorem 1.8. The proofs of Theorem 1.7

and Theorem 1.6 are deferred to the full version [17].

For the sake of clarity of the presentation, in the

rest of this paper, we systematically omit floor and

ceiling signs whenever they are not crucial. We shall also

assume throughout that all embeddings of hypergraphs

into Rd are such that the vertices are mapped to points

in general position. Even though the corresponding

statements for degenerate embeddings will then follow

from standard limiting arguments, it is convenient to

make this assumption in order to not deal explicitly with

such degeneracies in each of the proofs.

Relevance to theoretical computer science. We

are not aware of any direct algorithmic application

of our results. However, the combinatorial structures

investigated in this paper are intimately related to, and

may have an impact on, several important areas of

theoretical computer science, in the spirit of the well

established applications of expander graphs.

In the context of computational geometry, the prob-

lems studied here are closely related to questions of cen-

tral interest. Bounding the complexity of many classical

geometric algorithms for range searching [13], comput-

ing higher order Voronoi diagrams [2], line fitting [31],

etc., reduces to the investigation of the following ex-

tremal problem raised by Erdős, Lovász, Simmons, and

Strauss [16] forty years ago. What is the maximum

number of so-called k-sets determined by a set P of

n points in Rd+1, that is, the maximum number of k-

element subsets Q ⊆ P that can be separated from

P r Q by a hyperplane? The first nontrivial upper

bound, nd+1−εd for a suitable εd > 0, was established by

Lovász [21] for d = 1, by Bárány, Füredi and Lovász [5]

for d = 2, and by Živaljević and Vrećica [32] for larger

values of d. See [7] for the best known general result of

this type, and see [30] for an example of an application

of k-sets to computer graphics. These bounds are based

on various versions of the Colored Tverberg Theorem:

For any r and d, there is a constant nr,d such that, given

any d + 1 point sets, P1, . . . , Pd1 in Rd, each of size at

least nr,d, we can always find r simplices, each of which

contains precisely one vertex from every Pi, such that

they share an interior point. In other words, no matter

how we embed the vertices of a large balanced complete

(d + 1)-partite (d + 1)-uniform hypergraph in d-space,

there always exists a point in Rd, which is covered by

the image of many hyperedges.

2 A topological proof of the Boros-Füredi

theorem

We will prove a somewhat stronger statement. Given a

set P of n points in the plane, a ray (closed half-line) is

said to be exposed if it has nonempty intersection with

fewer than n2/9 segments connecting point pairs in P .

The set of all segments connecting two elements of P

forms a complete geometric graph K(P ) on the vertex

set P , and we refer to these segments as the edges of

K(P ).

Proposition 2.1. Given a set P of n points in the

plane, one can always find a point q not necessarily in

P such that no ray emanating from q is exposed.

Suppose that such a point q does not belong to P .

For each p ∈ P , ray emanating from q in the direction

opposite to p intersects at least n2/9 edges of K(P ).

Each such edge, together with p, spans a triangle that

contains q. Every triangle is counted at most three

times, therefore the total number of triangles containing

q is at least n(n2/9)/3 = n3/27. If q belongs to P , the



number of (closed) triangles containing q is larger than

n3/27.

Thus, it is sufficient to prove Proposition 2.1. Sup-

pose for a contradiction that for each point q of the

plane, there is an exposed ray emanating from q. Let D

denote a large disk around the origin O, which contains

all elements of P , and let S1 denote the boundary of

D. For σ ∈ R2 r {O}, we denote by ray(q, σ) the ray

emanating from q in the direction parallel to
−→
Oσ.

Notice that for any two exposed rays, ray(q, σ) and

ray(q, τ), emanating from the same point, one of the

two closed regions bounded by them contains fewer

than n/3 points of P . Otherwise, one of the regions

has x points of P with n/3 6 x 6 2n/3, and the

two boundary rays together would intersect at least

x(n − x) > (n/3)(2n/3) = 2n2/9 edges, which implies

at least one of them was not exposed.

Let I denote the set of all pairs (q, %) ∈ D×S1, for

which ray(q, %) is exposed or belongs to the closed region

bounded by two exposed rays, ray(q, σ) and ray(q, τ),

that contains fewer than n/3 points of P .

Claim 1. The set I has the following properties:

(a) I is an open subset of D × S1,

(b) (%, %) ∈ I for all % ∈ S1,

(c) for every q ∈ D, the set Iq
def
= {% ∈ S1 : (q, %) ∈ I}

is a nonempty proper subinterval of S1.

Proof. Parts (a) and (b) directly follow from the defini-

tion. It is also clear, by our contrapositive assumption,

that Iq is a nonempty interval for every q ∈ D.

We have to show only that Iq 6= S1. To see this,

let ray(q, %) be an exposed ray emanating from q, and

let %′ ∈ S1 be a direction such that both closed regions

bounded by ray(q, %) and ray(q, %′) contain at least n/2

points of P .

We claim that %′ 6∈ Iq. Otherwise, we can select

two exposed rays, ray(q, σ) and ray(q, τ), such that

ray(q, %′) belongs to the closed region bounded by them

which contains fewer than n/3 points. The three rays,

ray(q, %), ray(q, σ), and ray(q, τ), cut the plane into

three closed regions, and it is easy to see that each of

them must contain fewer than n/3 points, which is a

contradiction. Indeed, if e.g. the region bounded by

ray(q, %) and ray(q, σ) that does not contain ray(q, τ)

had at least n/3 points, then by the discussion above

the closure of its complement had fewer than n/3 points,

contradicting our assumption that both closed regions

bounded ray(q, %) and ray(q, %′) contain at least n/2

points.

Now we can obtain the desired contradiction, thus

completing the proof of Proposition 2.1, by applying to

J
def
= (D× S1) r I the following version of the Brouwer

fixed point theorem.

Lemma 2.1. Let J be a closed subset of D × S1 with

the property that for every q ∈ D we have that Jq
def
=

{% ∈ S1 : (q, %) ∈ J} is a nonempty proper (closed)

subinterval of S1. Then (%, %) ∈ J , for some % ∈ S1.

To see why Lemma 2.1 holds true, assume for con-

tradiction that (%, %) /∈ J , for all % ∈ S1. Write

JS
def
= J ∩ (S1 × S1), and let Proj1, P roj2 : JS → S1

denote the projections onto the first and second coordi-

nates, respectively. The fibers of Proj1 are nonempty

proper closed intervals, and therefore Proj1 induces a

bijection between π1(JS) and π1(S1) = Z. But, the con-

trapositive assumption implies that Proj1 and Proj2
are homotopic, and therefore Proj2 also induces a bi-

jection between π1(JS) and π1(S1). This is a contradic-

tion since Proj2 extends to J , and π1(J) = 0 since J is

fibered over D with fibers equal to intervals.

Lemma 2.1 contradicts part (b) of Claim 1. �

3 Sparse constructions using the probabilistic

method

In this section, we prove Theorems 1.3 and 1.4 using the

probabilistic method. Our planar construction is nearly

optimal, but in higher dimensions the overlap numbers

of our hypergraphs will be far from maximal. We note

that our proofs use a non-uniformly random choice

of (d + 1)-uniform hypergraphs of degree kd, which is

designed especially for our purposes. Nevertheless, the

argument in Section ??, which uses Theorem 1.8, shows

that assuming the degree r satisfies a large enough lower

bound depending on d (which is inferior to the bound

on kd obtained in this section), for a hypergraph H

chosen uniformly at random among all (d+ 1)-uniform

hypergraphs of degree r, with high probability c(H) will

be bounded below by a positive constant depending only

on d (which is also inferior to the bound on cd obtained

in this section).

3.1 Highly overlapping triple systems—Proof

of Theorem 1.3 The outline of the proof of Theo-

rem 1.3 is the following. We first pick t randomly

and independently selected partitions of the set [n] =

{1, 2, . . . , n} into parts of equal size b. We define Hn to

be the 3-uniform hypergraph with vertex set [n], con-

sisting of all triples that lie in the same part in at least

one of the t partitions. Finally, we will show that Hn



meets the requirements of Theorem 1.3.

We need the following simple technical lemma. A

key ingredient that is used in the proof is the Chernoff

bound for negatively associated random variables (see,

e.g., [15]). It implies that if A1, . . . , An are n mutually

negatively correlated events in an arbitrary probability

space such that Ai has probability pi, then the proba-

bility that the number of Ai which occur exceeds the

expected number p1 + · · · + pn by at least a is at most

e−2a
2/n.

Lemma 3.1. Suppose that δ > 0, and let b = δ−3, β =

2e−2δ
2b, r = 4β−2b, t = rδ−1. If n is a sufficiently large

multiple of b, then there exist t partitions P1, . . . ,Pt
of [n], each consisting of n/b parts of size b, with the

following two properties:

1. any two parts of size b in different partitions have

at most two elements in common,

2. for every subset S ⊆ [n], there are fewer than r

partitions Pi for which at least βn/b parts contain

at least
(
|S|
n + δ

)
b elements of S.

Proof. We verify that t randomly selected partitions of

[n] into parts of equal size b almost surely have the

desired properties. Fix a set S ⊆ [n], and consider a

random partition P of [n] into parts I1, . . . , In/b of size

b. For any 1 6 i 6 n/b, let Ai denote the event that

|Ii ∩ S| >
(
|S|
n + δ

)
b. For any 1 6 j 6 b, let Ai,j

denote the event that the jth element of Ii is in S. The

events Ai,1, . . . , Ai,b are mutually negatively correlated

and each of them has probability |S|/n. Thus, by

Chernoff’s bound [15], we have

Pr[Ai] 6 e
−2(δb)2/b = e−2δ

2b =
β

2
.

Let X denote the event that at least βn/b of the events

A1, . . . , An/b occur. Since the events A1, . . . , An/b are

also mutually negatively correlated and each has prob-

ability at most β/2, we can again apply the Chernoff

bound [15] to obtain

Pr[X] 6 e−2(
βn
2b )

2/(n/b) = e−
1
2β

2n/b.

Take t independent random partitions of [n],

P1, . . . ,Pt, each consisting of n/b parts of size b. The

probability that a given pair of parts of size b have at

least 3 elements in common is at most
(
b
3

) (
b
n

)3
6 b6

6n3 .

Since there are
(
tn/b
2

)
such pairs, by linearity of expecta-

tion, the probability that there is a pair sharing at least

3 elements is at most
(
tn/b
2

)
b6

6n3 <
t2b4

12n . Hence, by our

choice of parameters, almost surely condition (1) will be

satisfied.

For a fixed S ⊆ [n], the probability that for at least

r of the partitions P1, . . . ,Pt, at least βn/b of the b-

element subsets of the partition have at least
(
|S|
n + δ

)
b

elements in S is at most(
t

r

)
(Pr[X])r 6

(
t

r

)
e−r

1
2β

2n/b =

(
t

r

)
e−2n 6 e−n.

The number of subsets S of [n] is 2n. Hence, by linearity

of expectation, the expected number of subsets S with

property (2) is o(1). We conclude that there are t such

partitions with the desired properties.

Let δ = ε/50 and k = t
(
b−1
2

)
. Consider the

3-uniform hypergraph Hn with V (Hn) = [n], the

hyperedges of which are those triples that lie in the

same part in at least one (hence, precisely one) of

the partitions P1, . . . ,Pt meeting the requirements of

Lemma 3.1. Clearly, in Hn, each vertex belongs to

k = t
(
b−1
2

)
hyperedges.

The proof of Theorem 1.3 can now be completed by

adapting the idea of Bukh [9]. Consider an embedding

of the vertices of Hn in the plane. We shall use the

following lemma of Ceder [12]:

Lemma 3.2. (Ceder [12]) Assume that n is divisible

by 6. Given any set of n points in the plane, there

are three concurrent lines that divide the plane into

6 angular regions, each containing roughly the same

number of points. More precisely, there are disjoint n
6 -

element point sets S1, . . . , S6 such that Si is contained

in the closure of region i.

We shall assume throughout the n is divisible by 6. Let

S1, . . . , S6 be the sets from Lemma 3.2, and let p denote

the intersection point of the three lines from Lemma 3.2.

By a simple case analysis, Bukh [9] showed that, for

every choice of six points, one from each Si, at least 8

of the
(
6
3

)
= 20 triangles induced by them contain p.

Let I ⊆ [n] be a b-element set such that |I ∩ Si| 6
( |Si|n + δ)b = (1 + 6δ) b6 , for 1 6 i 6 6. Obviously, we

have

|I ∩ Si| > b− 5(1 + 6δ)
b

6
> (1− 30δ)

b

6
,

for every i. Each of the

6∏
i=1

|I ∩ Si| > (1− 30δ)6
(
b

6

)6

6-element sets with one vertex from each I ∩Si induces

at least 8 triangles that contain point p. Each of these



triangles belongs to at most (1+6δ)3( b6 )3 such 6-element

sets. Thus, there are at least

8
(1− 30δ)6

(
b
6

)6
(1 + 6δ)3( b6 )3

>
1

27
(1−200δ)b3 > (1−200δ)

2

9

(
b

3

)
triangles induced by three vertices in I which contain p.

According to part 2 of Lemma 3.1, for every i,

1 6 i 6 6, fewer than r partitions Pj have the property

that at least β nb of their parts contain at least (1+6δ) b6
elements of Si. Hence, the total number of b-element

parts I in all t partitions, for which |I ∩Si| > (1 + 6δ) b6
for some i, 1 6 i 6 6, is smaller than

6r
n

b
+ 6tβ

n

b
= 6δt

n

b
+ 6βt

n

b
6 10δt

n

b
.

It follows that the fraction of the tnb
(
b
3

)
hyperedges of

Hn that contain point p in this embedding is at least

(1− 10δ)(1− 200δ)
2

9
> (1− 210δ)

2

9
>

2

9
− ε,

which completes the proof of Theorem 1.3. �

3.2 Higher dimensions—Proof of Theorem 1.4

As in the proof of Theorem 1.3, we establish Theo-

rem 1.4 using Lemma 3.1. We may assume that c′d =

1/m with m an integer, where c′d is the constant in The-

orem 1.2, and let n be a multiple of m. Set δ = 1
2m(m−1)

and apply Lemma 3.1. Consider now the (d+1)-uniform

hypergraph Hn with V (Hn) = [n], the hyperedges of

which are those (d+1)-element sets that lie in the same

part in at least one (hence, precisely one) of the par-

titions P1, . . . ,Pt meeting the requirements of Lemma

3.1. Clearly, in Hn, each vertex belongs to kd = t
(
b−1
d

)
hyperedges.

Consider now any embedding of V (Hn) into Rd, and

let P denote the image of V (Hn). By Theorem 1.2, one

can find disjoint c′dn-element subsets P1, P2, . . . , Pd+1 ⊆
P and a point q such that picking one element from

each subset Pi, their convex hull always contains q. We

extend this to a partition P = P1∪ . . .∪Pm into subsets

of size n/m by picking the Pi for d+ 1 < i 6 m of size

n/m arbitrarily.

Let I ⊆ [n] be a b-element set such that for all

1 6 i 6 m,

|I ∩ Pi| 6
(
|Pi|
n

+ δ

)
b =

(
1 +

1

2(m− 1)

)
b

m
.

Obviously, we have

|I ∩ Pi| > b− (m− 1)

(
1 +

1

2(m− 1)

)
b

m
=

b

2m
,

for every 1 6 i 6 m. Each of the

d+1∏
i=1

|I ∩ Pi| >
(

b

2m

)d+1

(d + 1)-element sets with one vertex from each I ∩
P1, . . . , I ∩ Pd+1 induces a closed simplex containing

point q. Hence, the fraction of (d + 1)-element subsets

of I which induce a closed simplex that contains point

q is at least(
b

2m

)d+1(
b

d+ 1

)−1
> (d+ 1)!

(
c′d
2

)d+1

.

According to part (2) of Lemma 3.1, for every

1 6 i 6 m, fewer than r partitions Pj have the property

that at least β nb of their parts contain at least ( |Pi|n +δ)b

elements of Pi. Hence, the total number of b-element

parts I in all t partitions, for which |I ∩Pi| > ( |Pi|n +δ)b

for some 1 6 i 6 m, is smaller than

mr
n

b
+mtβ

n

b
= mδt

n

b
+mβt

n

b
6

3

4
· t · n

b
.

Hence, the fraction of the tnb
(
b

d+1

)
hyperedges of Hn

that contain the point q in this embedding is at least

1
4 (d+ 1)!

(
c′d
2

)d+1

. �

4 Deterministic constructions using expander

graphs

In the next two subsections, we present determinis-

tic constructions based on expander graphs, to provide

alternative proofs of Theorem 1.3 and Theorem 1.4.

These proofs yield significantly better bounds on k(ε)

and kd in Theorem 1.3 and Theorem 1.4, respectively.

As in the previous section, the proof gives a nearly op-

timal bound in the plane, but not in higher dimension.

4.1 Highly overlapping triple systems—second

proof of Theorem 1.3 Fix integers k, n ∈ N, with n

divisible by 6, and let G = ({1, . . . , n}, E) be a k-regular

graph on the vertex set {1, . . . , n}. Let k = λ1 > λ2 >
· · · > λn be the eigenvalues of the adjacency matrix of

G in decreasing order, and write λ = maxi∈{2,...,n} |λi|.
For any S, T ⊆ {1, . . . , n} let E(S, T ) denote the number

of ordered pairs (i, j) ∈ S × T such that ij ∈ E.

The expander mixing lemma (see Corollary 9.2.5 in [1])

states that

(4.1)

∣∣∣∣E(S, T )− k|S| · |T |
n

∣∣∣∣ 6 λ√|S| · |T |.
For every i ∈ {1, . . . , n} let NG(i)

def
= {j ∈

{1, . . . , n} : ij ∈ E} denote its neighborhood in G.



Define a hypergraph H on the vertex set {1, . . . , n} by

letting E(H) consist of those triples {i, j, `} for which

there exists r ∈ {1, . . . , n} such that ir, jr, `r ∈ E, i.e.,

i, j, ` ∈ NG(r). Assume from now on that the graph G is

quadrilateral-free. This implies that the hyperedges in

H corresponding to three vertices i, j, ` ∈ NG(r) cannot

arise from neighborhoods of vertices of G other than r

itself. Hence the 3-uniform hypergraph corresponding

to H is k
(
k−1
2

)
-regular and |E(H)| =

(
k
3

)
n.

Fix ε, δ ∈ (0, 1). Let {Pi}6i=1 be a partition of

{1, . . . , n} such that |Pj | = n
6 for all 1 6 j 6 6. Write

Aj =

{
i ∈ {1, . . . , n} : |NG(i) ∩ Pj | <

(1− δ)k
6

}
.

Then, by definition, we have E(Aj , Pj) < |Aj | (1−δ)k6 .

An application of (4.1) yields the inequality:

(4.2) |Aj |
(1− δ)k

6
>
k|Aj | · |Pj |

n
− λ
√
|Aj | · |Pj |

=
k|Aj |

6
− λ
√
n|Aj |

6
,

which simplifies to

|Aj | 6
6λ2n

δ2k2
.

Thus, if we define

(4.3) A =

{
i ∈ {1, . . . , n} : |NG(i) ∩ Pj | >

(1− δ)k
6

∀j ∈ {1, . . . , 6}

}
,

then

(4.4) A > n−
6∑
j=1

|Aj | > n
(

1− 36λ2

δ2k2

)
.

We shall assume from now on that 36λ2

δ2k2 < 1. We also

note that for every i ∈ A and j ∈ {1, . . . , 6} we have

(4.5) |NG(i) ∩ Pj | 6 k −
∑

r∈{1,...,6}r{j}

|NG(i) ∩ Pr|

6 k − 5
(1− δ)k

6
=

(1 + 5δ)k

6
.

Let x1, . . . , xn ∈ R2 be an embedding of {1, . . . , n}
in the plane. Let S1, . . . , S6 be a partition of

{x1, . . . , xn}, as in the first proof of Theorem 1.3,

which corresponds to the three concurrent lines from

Lemma 3.2, whose common intersection point is p ∈ R2.

We shall use the above reasoning (and notation) for the

partition P1, . . . , P6 of {1, . . . , n} given by Pj = {i ∈
{1, . . . , n} : xi ∈ Si}.

Fix i ∈ A, where A is as in (4.3). For every

(j1, . . . , j6) ∈
∏6
r=1(NG(i) ∩ Pr) at least 8 of the 20

triangles induced by the points {xj1 , . . . , xj6} contain

p. By the definition of A, there are at least
(

(1−δ)k
6

)6
such 6-tuples, while, using (4.5), each of these triangles

that contains p belongs to at most
(

(1+5δ)k
6

)3
such

6-tuples. Observe also that by the definition of H,

since all of these triangles correspond to neighbors of i,

their corresponding triples of indices belong to E(H),

and since G is quadrilateral-free, they cannot arise

from the above reasoning with i replaced by any other

vertex. Thus, the number of triangles that are images

of hyperedges of H and contain p is at least

(4.6)

8 ·

(
(1−δ)k

6

)6
(

(1+5δ)k
6

)3 · |A| (4.4)> (1− δ)6k3

27(1 + 5δ)3
n

(
1− 36λ2

δ2k2

)

=

(
1−O

(
δ +

λ2

δ2k2
+

1

k

))
· 2

9

(
k

3

)
n.

For arbitrarily large n, we can choose the graph

G so that it is quadrilateral-free and λ 6 2
√
k (e.g.,

Ramanujan graphs work—see [22, 19]). By choosing

δ � ε and k � 1
ε3 in (4.6), we get that p is in at

least
(
2
9 − ε

)
|E(H)| of the triangles in that are images

of hyperedges of H. Note that the degree of H is

O(k3) = O
(

1
ε9

)
. This proves Theorem 1.3 with the

bound k(ε) = O
(

1
ε9

)
. �

4.2 Higher dimensions—second proof of Theo-

rem 1.4 Here we shall use a variant of the construc-

tion in Section 4.1, to give an alternative proof of The-

orem 1.4. We use the notation from Section 4.1, and

we assume that k > d. Fix n vectors x1, . . . , xn ∈ Rd.
Define a set of d-dimensional simplices H ′ whose ver-

tices are in {x1, . . . , xn} by taking the simplex whose

vertices are the distinct vectors {xj1 , xj2 , . . . , xjd+1
} if

and only if we have j1j2, j2j3, . . . jdjd+1 ∈ E. In other

words, the simplices in H ′ correspond to non-returning

walks of length d in G. Thus, |H ′| 6 kdn.

Let P1, . . . , Pd+1 ⊆ {x1, . . . , xn} be the disjoint

subsets from Theorem 1.2, i.e., |Pi| > c′dn, and all

the closed simplices with one vertex in each of the sets

{P1, . . . , Pd+1} have a point in common. Set Qi =

{j ∈ {1, . . . , n} : xj ∈ Pi}. Define Q̃d+1 = Qd+1 and



inductively for i ∈ {2, . . . , d+ 1},

Q̃i−1 =
{
j ∈ Qi−1 : ∃` ∈ Q̃i j` ∈ E

}
.

By definition, there are no edges between Qi−1 r Q̃i−1
and Q̃i. It follows from (4.1) that

k

n

∣∣∣Qi−1 r Q̃i−1

∣∣∣ · ∣∣∣Q̃i∣∣∣ 6 λ√∣∣∣Qi−1 r Q̃i−1

∣∣∣ · ∣∣∣Q̃i∣∣∣.
Thus, we have

λ2n2

k2
>
(
|Qi−1| −

∣∣∣Q̃i−1∣∣∣) ∣∣∣Q̃i∣∣∣ > (c′dn− ∣∣∣Q̃i−1∣∣∣) ∣∣∣Q̃i∣∣∣ ,
or

(4.7)
∣∣∣Q̃i−1∣∣∣ > c′dn− λ2n2

k2
∣∣∣Q̃i∣∣∣ .

Assuming that λ 6 c′d
2 k, inequality (4.7) implies by

induction that for all i ∈ {1, . . . , d+ 1} we have∣∣∣Q̃i−1∣∣∣ > c′d
2
n

(for i = d+ 1 this follows from our assumption, arising

from Theorem 1.2, on the cardinality of Pd+1). Thus,∣∣∣Q̃1

∣∣∣ > c′d
2 n, and by construction any point j ∈ Q̃1 can

be completed to a walk in G of length d whose ith vertex

is in Qi. Each such walk corresponds to a simplex in

H ′, and by Theorem 1.2, all of these simplices have a

common point. Thus, the number of simplices in H ′

which have a common point is at least
c′d
2 n >

c′d
2kd
|H ′|.

Since there exist arbitrarily large graphs G with λ 6 c′d
2 k

and k 6 kd (e.g., for Ramanujan graphs we can take

kd � 1
(c′d)

2 ), this completes our deterministic proof of

Theorem 1.4. �
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