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Abstract [GKLO3] which shows that every tree which is doubling em-

We give combinatorial, geometric, and probabilistic chara€ds intoL, with distortion depending only upon the dou-
terizations of the distortion of tree metrics infg, spaces. Pling constant. _ _

This requires the development of new embedding tech- But even thg S|mple_and natur_al question of which tree
niques, as well as a method for proving distortion low&hetrics embed intd., with O(1) distortion has been left
bounds which is based on the wandering of Markov chai#@answered. Inthis paper, we give combinatorial, geometric,
in Banach spaces, and a new metric invariant weMatkov and probabilistic characterizations of the distortion of tree
convexity. Trees are thus the first non-trivial class of metrf®@€trics intoL,, spaces. Trees are thus the first non-trivial
spaces for which one can give a simple and complete cHafSS of metric spaces for which one can give a simple and
acterization of their distortion into a Hilbert space, up to urﬁ:pmplete characterization of their distortion into a Hilbert

versal constants. Our results also yield an efficient algorittfi@Ce, up to universal constants. See Section 2 for a detailed
for constructing such embeddings. discussion of our results, as well as an overview of the proof

techniques.

1 Introduction L :

. : . . 1.1 Preliminaries We recall that for a metric spa¢&’, d),
Geometric embeddings of discrete metric spaces, a tomc . ) .
- A ; . . “the parameter,(X) represents the least distortion with
originally studied in geometric analysis, became an inte; . . T i

. . , which X embeds into arl,, space, i.e. it is the minimum
gral part of theoretical computer science following the Pt i t(£) = |1fl[1i0 - |1~ |, over all bijectionsf : X —
oneering work of Linial, London, and Rabinovich [LLR95]- <>\ / = IlJ]Lip Lip OVET & bijec e

. . . . . L,,. If X embeds into a spadé with distortion D, we will

The use of metric embeddings and high-dimensional convéX _ _ )
geometry in approximation algorithms, especially for paray thatX’ D-embeds intd”, and sometimes writ& — Y’
tioning problems like cuts and clustering, has grown signiP denote this. For the purposes of the present abstract, we
icantly in recent years. We mention, for instance, the recéitl consider every tree metri€' to have an associated graph
works [ARV04, ANO4, KLMNO4, ALNO5, CGRO5, FHLO05, G(T) = (V, E) with an assignment of lengths to edges
ACMMO5, AMMNOS]. Furthermore, the study of various’ : £ — R,. We will require that|T'| = |V|, but this is
bi-Lipschitz invariants has frequently sparked exciting alg#4thout loss of generality [Gup01], as will be discussed in
rithmic progress. the full version. Forx,y € V, we letdr(z,y) be the length

In the present work, we focus on the problem of embegf the unique path from: to y in T". Finally, we sometimes
ding trees intoL, spaces fop > 1 (it is easy to see thatwrite A < B to meanA < O(B).
every tree embeds isometrically infg). This problem is _
well-studied (and well-understood) if one is concerned with Results and techniques
the worst-case distortion of trees in terms of their cardinalifyecall that our goal is to understand the distortion of tree
For ease of exposition, we focus on the case 2 for the metrics into Banach spaces; in particular, we would like
present time. In [Bou86], Bourgain shows that the completg understand what combinatorial and geometric properties
binary tree of height: (onn = 2* points) incurs distortion control the distortion of trees into Hilbert space and other
O(v/loglogn) for any embedding intd.; (see also the ac-spaces. To state our first result, we introduce the notion of
counts in [LS03, Mat99] for alternate proofs). Other papekgarkov convexity.
[LMS98, Mat99] have studied upper bounds on the distortion
in terms ofn. In particular, Matousek [Mat99] shows thaMarkov convexity, binary trees, and distortion.
Bourgain’s lower bound is the best-possible: Everpoint - )
tree metric embeds intd, with distortion O(y/loglogn). L€t {Xt}tzo be a Markov chain on a state spage
These works also exhibit similar tight bounds foralt> 1. Given an integek > 0 we denote by{ X;(k)}{2, the pro-

We also mention a result of Gupta, Krauthgamer, and Lé@ss which equalX’; for time¢ < k, and evolves indepen-
dently (with respect to the same transition probabilities) for



time¢ > k. Observe that fok < 0, X;(k) = X, for all In what follows we denote the complete unweighted
t>0. binary tree of height by B;. Given a metric spaceX, d),

) k € Nandc > 1, we denote
DEFINITION 2.1. Let (X, d) be a metric space ang > 0.

We shall say thatX, d) is Markov p-convexwith constantI PBx (c) = max {k EN: By <% X} )
if for every Markov chain{ X;}{2, on a state spac€, and
everyf : 1 — X, we have for evenn € N, THEOREM2.2. Let T be a finite weighted tree. Then for
- p everyc > 1,
o3 [ (£ (x0), f(Rutt = 24) '] 1
T 1 1 c 2
=5 25 Hoszr()} 2 5 (L)
2171
<11 Z]E[d(f(Xt), f(Xi=1))?]. Thus the ability of a tre€ to embed into Hilbert space
t=1 is controlled by the height of binary trees which embed into

The lease constailit above is called the Markgy-convexity T. We note that an appropriate version of the above theorem

constant ofX, and is denotedL,(X). We shall say thak holds for embeddings intb,, for anyl < p < co. The lower
is Markovp-convex iffL,,(X) < go bound follows immediately from Bourgain’s lower bound for
» .

binary trees [Bou86], so our contribution is contained in the
_ To understand this notion, recall that the chalsand upper bound, whose proof is a mix of combinatorial and
X (t — 2%) run together for the first — 2% steps, and thenanalytic techniques. In Section 3.1, we discussnotone
evolve independently for the remaini?§ steps. Thus the coloringsof trees. Given a graph-theoretic trée= (V, £),
left hand side is measuring the sum, over many “scales’monotone coloring is a map : £ — N such that every
k = 0,1,2,... of the average of theth power of the color classy™!(c), for ¢ € N, is @ monotone path it (i.e.
normalized “drift” of the chain inX with respect to scale a subset of some root-leaf path). These types of colorings
2% We will say thatX hasnon-trivial Markov convexityf have been used previously for embeddings of trees [LMS98,
X is Markovp-convex for some» < co. We note that, is Mat99, GKLO03], but in our case the construction must be
Markov 2-convex (see Section 4). More generally, the narségnificantly more delicate. For instance, in [LMS98, Mat99]
comes in part from the fact that i is a p-convex Banach the authors were only interested in colorings which minimize
space, therX is also Markowp-convex. In Bourgain’s paperthe number of colors used (in particular, such colorings
[Bou86], there is an implicit “non-linear” notion of uniformdepend only on the topology df, and do not take into
convexity related to the presence of complete binary tregscount edge lengths).
For the resglts in this paper, we requi_re a more power%t{rong colorings and weak prototypes.
“Markov variant,” analogous to Ball's notion of Markov type
[Bal92]. We defer a more detailed discussion to the full We say that a monotone coloringdsstrong if, for ev-
version. ery x,y € T, half the distance fromx to y is colored by
For two metric spacest and Y, we say thatX is classes of length at leaétir(x,y). Our proof proceeds in
finitely-representable iy if there exists a constart such the following manner. In Section 3.1, we give some proce-
that every finite subset oX C-embeds intdr". Let B, be dure for coloring the edges df. If the coloring fails to be
the infinite complete binary tree. For simplicity, we first statestrong, we recursively construct larger and larger binary
our results only fot.,. Our first theorem follows. trees insidel” until eventually we find an embedded binary
tree of heightQ2(log(1/6)). The coloring uses a“scale se-
THEOREM2.1. If T is a tree metric, then the followinglector” function, and a family{;} ez of weight functions
conditions are equivalent. (one for each scale) on connected subtreet.oThere are
éwo key difficulties. The first involves choosing the right
weight functions which allow the recursive reconstruction to
2. B is not finitely-representable i take place. The second involves handling all of the scales si-
multaneously. (In order to construct a good embedding, one
has to use the information that there are no large embedded
4. T has non-trivial Markov convexity. binary treesat every scalef the space.)
To finish the proof of the upper bound, we use the
We conjecture that (2) and (4) are equivalentday metric strong coloring to guide us in laying out the tree in.
spaceX . To understand what this theorem says for finite trée particular, in Section 3.1, we prove the following theo-
metrics, let us discuss a quantitative version (which will innem, which is based on a variation of Matousek’s argument
ply the above theorem by standard compactness argumeiit4at99].

1. T admits a bi-Lipschitz embedding into a Hilbert spac

3. T is Markov 2-convex.



THEOREM2.3. If T' admits a d-strong coloring, then This theorem is proved by building an appropriate
es(T) <O ( /10g(1/5))_ Markov chain on any givere, §)-weak tree.

One might wonder whether the exponential quantitati\-}—éght characterizations of distortion

gap in Theorem 2.2 is necessary. Certainly the lower bound All the notions we have discussed so far are intimately
cannot be improved. Somewhat surprisingly, the uppeter-related for trees. Let*(T) > 0 be the largest for
bound is also best-possible as we show in Section 4.2. which T' admits ad-strong coloring. Combined with the

. oo . previous discussion, our most precise embedding theorem
THEOREM 2.4. '_I'here exists an infinite family of tree mGtéstablishes the following result. The proof of this result is
rics {Cy }neny With B¢, (¢) — oo asn — oo for every

deferred to the full version due to lack of space.
¢ > 1 and such that

¢(Cp) = 2 ( ‘ %(c)f =0 (Vioglog|Cu) -

c—1

THEOREMZ2.7. LetT be a tree metric, then

&2(T) = O(3(T)) = © (VIog(1/5°(T)) ) .
In other words, there are families of trees whose Eu-

clidean distortion (in terms of their size) is the worst pos- In other words, up to universal constanisstrong col-
sible, but which are very far from complete binary treeerings, combined with the embedding of Theorem 2.3 are
The height of the largest embedded binary tree is orilye optimal way to embed trees infg, and furthermore,
O(loglog|C,,|), so using Bourgain's lower bound as a blacMarkov 2-convexity inequalities provide the optimal lower
box would only yieldQ2(/log loglog |C,,|). We refer to the bounds. We state also the version fgy.

family {C,,} as “Cantor trees,” since every root-leaf path in _

C,, resembles a (finitary version of) the “middle-thirds” Canl HEOREM 2.8. For any tree metricl’,

tor set. This new lower bound is based on Markov convexity. Y .

In particular, sincdly(Ls) < 2v/2 (see Section 4), we have ep(T) =0(I1,(T)) =© (log 1(1/5 (T))> ;

the following.

whereq = 2for 1 < p < 2,andq = pforp > 2.
THEOREM2.5. For any metric spaceX, c3(X) >

QI (X)). The proof of Theorem 2.7 is similar in spirit to that of

In the full . di licati ¢ Mark Theorem 2.2. Using a more sophisticated family of weight
n the full version we discuss appiications of Mar OYunctions{pj}jeZ, we construct a coloring df'. If the col-

convexity to proving lower bounds for balls in the Cayle ring fails to bej-strong, then we find an embedded copy of

graphs of certain groups. In a number of cases, e.g. ?ne(Q(l),O(d))-weak prototype tree, and apply Theorem

lamplighter g_rqup over the cycle, this provides the fir .6. The problem is that, unlike complete binary trees, weak
k_nown r.‘°”‘t“‘"a' lower bound. More relevant to t.he PreS€Rlototypes can have a highly non-recursive structure (in par-
discussion, we prove lower bounds on the distortion 8

. . ular, subtrees of weak prototypes are not themselves weak
certain families of trees we calleak prototypes We say

that a t i | 5 K brotot ith hei htprototypes). This makes “recursive reconstruction” a more
ala tree metrid 1Is an (8’. _)-Wea protolype With €I jejicate process. Recall that the weight functigps} are
ratio R if the following conditions are satisfied.

defined on subtreefl of T'. To handle the non-recursive

1. Every non-leaf vertex of" has exactly two children. ~ nature of weak prototypes, the new weight functions look

. not only “down” the subtree but also use information “from
2. Every root-leaf path of " is (¢, §)-weak. above,” so to speak.

3. If his the length of the shortest root-leaf pathilirand ) ) )

k' is the length of the longest, thér/h < R. 3 Binary trees and distortion
L . LetT = (V, E) be afinite graph-theoretic tree with positive
Here, a path metric® is (¢, 4)-weak if at least ars- edge lengthg : E — (0, c0), and letdy be the induced path

fraction of the length of is composed of edges of Ierlgﬂ?netric onV. We also fix some arbitrary roote 7. We now
at mostd/l(P), wherel(P) is the length ofP. We then Iﬁ)roceed to the proof of Theorem 2.2
e

have the following theorem whose proof is deferred to t

full version. See Section 4.2 for a warmup. 3.1 Coloring based upper boundsA monotone patin T

THEOREM2.6. If T'is an (<, 5)-weak prototype with heightis @ connected subset (also callestgmentn what follows)

ratio R, then of some root-leaf path. By a@dge-coloring ofl’, we mean
a mapy : £ — Z. We say that the coloring imonotondf
II,(T) > < £ 1Og(1/5)> ) every color clasg~!(m), for m € Z, is a monotone path.
R Foru,v € V we let P(u,v) C FE denote the unique path



fromutow, and sefP(v) = P(v,r). Given an edge coloring Now let

X:E—Z,kex(E),andu,v € V, we write M 5
si(v) = » max<0,d;(v) — = dh(v)} )
¥ (u,v) = Z L(e). ; { ’ 2 hzz‘:
il and definef : V — ¢,(Z) by
X X . . My
We also sety (v) = £ (v, r). Finally, givenu,v € V we let flv) = Z[di(v)]1/p[8i(,u)](p71)/peki(v)'

lca(u,v) denote théeast common ancestof «w andv in T'. P

DEFINITION 3.1. ((-GOOD COLORING We say that a col- ~ We will break the proof into several claims.
oringy : £ — Z is e-good if it is monotone, and for everyc Ay 3.1 Forallv € Vandj € {1,...,
u,v € T, the unique path froma to v contains a monochro-
. . * 1 Moy
matic segment of Iength at Ie&stT_(u,v). We defme_ (1) si(v) > Zdj (0).
to be the largest for which’T" admits anc-good coloring. 4 £~
Jj=

mv}.

To gettighter control on the Euclidean distortion of tree®roof. This is where the fact that is a §-strong coloring
we also introduce the notion éfstrong colorings. comes in. Indeed,

My

DEFINITION 3.2. (0-STRONG COLORING We say that a 5§
coloring x : E — Z is é-strong if it is monotone, and for si(v) = Zmax 0,d;(v) — ) Zdh(v)
j=i h=i

everyu,v € T
dj(v) _ 1
Zgic((’uﬂv) : 1{Zz(u,v)2§dT(u,v)} > %dT(ufU)- Z 2 2 Z dj (U)
keZ j€{i,...,my } j=i

dj ()26 3212, dn(v)
In words, we demand that at least half of the shortest path
joining u andw is covered by color classes of length at leas LAIM 3.2, [|f]luip < [5log(3/8)]'/7.
ddr(u,v). As before, we defin® (T') to be the largest for Proof. We need to show that for every edge,v) € E,
whichT admits anj-strong coloring. |f(uw) — f(v)ll, < 10[log(1/8)]*/P. Assume thatv is
, ) ) further thanu from the root of 7. In this casek;(u) =
The notions of)-strong colorings and-good colorings k1 (), Ko, (0) = ko (0) @ndim, € {mu, ma + 1}
are related via the following simple lemma whose proof WE i, = m, + 1'then Wé” denote for the sake of simplicity

defer to the full version. dpn, (1) = $m, (u) = 0. With this notation we have that

LEMMA 3.1. Every weighted treel’ satisfiesé*(T) > £ (u) — f(v)IIZ —
273/5*(T)_

v

Moy

)] P (] D7 [ds ()] si(0)] D

p
The relation of strong colorings to bounds on distortior; ‘ -
is contained in the following theorem. =

my,—1
— D— P
THEOREM3.1. For every weighted tre@ = (V, E) and (Z di(v) ‘[Si(u)](p DIp— [sy(v)] P 1)/ > +
D Z 1, =1

‘ p

o (5t) | [ O ()= — (0] 7, )7

6*(T) Note that by our definitionss,,, (v) = d,, (u) and
Proof. We may assume that € [2, o), since ifp € [1,2) Sm, (v) = dm,(v). Letting

the required result follows by embeddidginto ¢, C L. (r—1)/ (r—1)/

Fix § < min{0*(T),1/2} and lety : E — Z be aj-strong Ci(u,v) = ‘[Si(“)} PP = [si(w)PTP
coloring. Let{es}rez be a system of orthonormal vectorsye have

ep(T) =

p

Forv € V we denote by(k; (v), ..., kn, (v)) the sequence
of color classes encountered on the path from the root 3D [ (w) = F@I} =
We shall denote byl;(v) the distance that the color class my 1
k;(v) contributes to the path from the rootoi.e. > di(0)Cilu,v) + |dm, () = din, (0)]7
=1
d;(v) > e). m,—1
c€P(v) < d;(v)Ci(u,v) + [dr(u,v)]P.

x(e)=k;(v) i=1



Observe thatforall € {1, ...,

Thus

(3.2) Ci(u,v)

si(v) —

(3.3)

[s4(u))"

my— 1}, s;(v) > s;(u).

P=U/P _ g (v)| P~ D/P

o lsilw = sl
B [si(v)] /P
where we used the elementary inequality— z* < yl z,

which is valid for ally > = > 0 anda € (0, 1).
Observe that for every< m,, — 1,

si(u) = maX{O dpm, (v

S dT(’lL,

v).

-3 }
max{Odm —deh }

Thus, combining (3.2) and (3.3) we see that

(3.4)

IN

IN

Obse

My —1

> o) [fss )~ s

i=1

My —1

i=1

ey 4l

ie{l,...,

si(u)

Aldr (u,v)]” -
i€q{1,..

m,—1} 8i
#si(v)

dl(’U)
2 ()’

my—1}

si(u)#s;(v)
where in the last line we used Claim 3.1.

rve that for

k z;
Yict mreb Ao S

0

>

i€{1,...
si(u)#si(v)

(3.5)

IN

Let i be the smallest integer ifi, .. .,
s;(v). Then by the definition of;(-),

si(u) #

f;m Tk % — log(xl + ..

di(v)

1} S di(v)

every r,...,
Zl TitotTe dt
i=k

Tk > 0,

Tip1+-txe t+1

+ i + 1). Thus

di(v)/dpm, (v)

ze{l..;nvl} (Z

si(u)#si(v)

1 1 + ;
BT, )

mu

T (), (0)) + 1

>

ie{l,...,m,—1}
si(u)#si(v)

ST

di(v)

m, — 1} such that

dy(u) =dy(v)

Figure 1. A schematic description of the locationwofnd
v in the treeT’. The bold segment corresponds to the color
classk;(u) = k;j(v).

It follows that

log 1+ %(’U) Z dz(’U) <

ie{l,...,my—1}
si(u)#si(v)

log (1 ngz(:j; )) < log (1+§).

Plugging this bound into (3.5), and using (3.4) and (3.1), we
get that

1/p
170~ sl < [0 (142) +1) " dr(uro)
< [5log(3/0)]'" - dr(u,v).
Our final claim bound4 f = ||Lip-

CLaiM 3.3. The embedding f is invertible, and
1f~HLip < 48.

Proof. Fix u,v € V, u # v, and letj be the integer satis-
fying ki(u) = ki(v),...,k;(u) = k;(v) andkjiq(u) #
kj+1(’U). It follows that dl(u) = dl('l}), e ,dj,l(u) =
d;—1(v), and we may assume without loss of generality that
d;(u) > d;(v). With this notation (see Figure 3.1 below),

do(u,0) = dy(w) — d(0) + 3 dilw) + S div).
=741 1=5+1
(3.6)



On the other hand, observe that

[ f(u) = f(o)ll5 > o 5 o
P ) si(u) = Z max {O, di(u) — = Z dh(u)}
)} 7L )77 = [y )] 75, () | = =
- - N d(u
(3.7) Z di(u)[si(u)]P~t + Z d; (v)[s;(0)]P~. 2 (1 B 2) d;(w),
A A and similarly
Using Claim 3.1 we see that 5 me,
N 50 < (1-3) a0+ Y )
@8 Y diwlsiw P
i=j+1 . } . < (1 B g) d;(v) + dj(u) > dg(v)_
Lo .
Z i:jz_;ldi(u) (}; dh(u)) Thus lettingCy = (1 — g)""”/”,
. /d*“”'“dm"‘“) gy [ ()75 (u)] 0D/ — [d ()]s (0)| 0D/
ot =741 dig1(u)+dm, (u) dj(U) _ dj(v) (p=1)/p
o /dj+1<u)+...dm<u) o > Co |dj(u) —dj(v) - (1 t (25)dj(v)>
oo d;(u) — d;(v)
> it a0 (1+ G )]

= —- Zd ) b-D/p | _
i ( S = (1-3) 5o M- )

Similarly, S dj(u) —d;(v)
- 4 )
p
X d()) h d the fact that < 1. Using (3.7) and th
_ ( j+1 where we use e fac < 3. Using (3.7) and the
39 Y di@[s@)F > Py bounds (3.8) and (3.9), it follows that

i=j+1
: fw) = f)l5
We now consider two cases. ” ( ) ( )”p

P P
. . (). me di(u)) + Z’i d;(v
Case 1. M < Z:ZUJ.H d;(v). In this case, > [dj(u) d](v)]P+ (Zz_]+1 ( )) (Z iy da( ))

using (3.6) we see that 4r par—1

. . » N (d5 () = d5(0) + X725 dilw) + X ())p
[dr(u,v)]P < 3P ( Z di(u) + Z di(v)) - ' pdp - 3p—1

i=j+1 i=j+1 > . P
, R A )
< 3p.op-1 Z di(u) | + Z d;(v) Claim 3.3, together with Claim 3.2, concludes the proof of
i=j+1 i=j+1 Theorem 3.1.

p—1 ap op—1 _ P
<pd 372 f(w) = £ ()l 3.2 Relating coloring bounds to the containment of

ge binary trees The following theorem, in conjunction

th Theorem 3.1 and lemma 3.1, implies Theorem 2.2. We
recall that*(T) is the largest value > 0 such thafl” admits
dr(u,v) ane-good coloring.

1F () = f0)lp 2 =5

where in the last inequality we plugged the bounds (3.
and (3.9) into (3.7). Thus we get that

THEOREM3.2. For every weighted tre§ = (V,E) and

. everyc > 1,
as required. c—1 1

<%T(C) >

Case 2. 4lodiC) ~ 2 di(v). In this case we ~ 250c eX(T)




Proof. We start by introducing some notation. For a vertdargest)M, at scalegj, and color the remaining edges incident
v € V we denote by#(v) the set of all children ofv with v by arbitrary distinct new colors.
in T. Givenu € ¥(v) we denote byl}, = (V,,E,) This definition clearly results in a monotone coloring
the subtree rooted at. We also letF,, denote the tree y. To motivate this somewhat complicated construction, we
F, = (V, U{v},E, U{(v,u)}), i.e. F, is T, plus the shall now prove some of the crucial propertiesyoand g
“incoming” edge(v, u). which will be used later.

Recall thatB, = (Vi, Ey) is the complete binary tree
of heightk. Letr, be the root ofB;, and define an auxiliary CLAIM 3.4. Let P be any monotone path iif’, and let
tree My, by My = (Vi U {ms}, Ex U {(my, r)}) Gi.e. M, (b1,b2,...,bn) be the sequence of breakpoints alofy
is Bj, with an extra incoming edge). Given a connecteydered down the tree (i.e. in increasing distance from the
subtreeH of T rooted atry;, we shall say thaff admits 00t). Assume that € Z satisfies for every € {2,...,m},
a copy ofM,, at scalej if there exits a one to one mappinggc(bia bi-1) < 47, and assume also thatr(bi,b,n) >

f: M, — H such that S0¢ . 47, Then there exists a subsequence of the indices
1<iy <ip <-++ < i, < msuchthat
1. f(mk) =Ty 1

2. | fllip < 24 - 49 and || fHLip < &F (thus in .
particulardist(f) < c). 2. Foreverys € {1,...,k}, g(b;,) = j.

9 j
We definey; (H) to be the largest valule € N for which H 3. Foreverys € {L,....k — 1} we have;= - 4 <

admits a copy oM}, at scalej, or u;(H) = —1 if no suchk dr (b, bi) < 25 4.
exists. . .
We shall now define a function: V — ZU {0} and a Proof. We shzlilshow that if € {1,. ,m} is such that
coloring : E — Z. These mappings will be constructed b§7 (bi: bm) > 5~ then there emstssn index {1,...,m}
induction as follows. We start by settingr) = co. Assume With g(b) = j anddr(b;,b;) < 47*". Assuming this fact
inductively that the construction is done so that wheneJ8F the moment, we conclude the proof as follows. Let
v € V is such thay(v) is defined, ifu is a vertex on the path be the smallest mtegflr ife, ..., m} such thaty(b;,) = j.
P(v) theng(u) has already been defined, and for every edg88ndr (bi,, b1) < 4. Assuming we defined, < i, <

. 9c¢ ] H
e € E incident withv, x(e) is defined. - <, if dp(bi,, bm) < 25 - 47 we stop the construction,

Letv € V be a vertex closest to the roptfor which and otherwise we Ie‘ibeﬂl‘:‘; smallest integer bigger than
g(v) hasn't yet been defined. Then, by our assumption, f}fCN thatdr (b, bi,) > =7 - 47. Sincedr (be-1,b;,) <
everye € P(v), y(e) has been defined, and for every vertex—1 * 4/, we know thatdr(b;,b;,) < 37 - 47 + 4.
u other tharv lying on the pathP(v), g(u) has been defined.Thus dy (by, by,) > dr(bs,, b)) — 252 - 49 — 47 > ¥
Let 3, (v) € V denote the set dfreakpointsof x in P(v), (because we are assuming tha{b;_, b,,) < 9e . 49). So,
i.e. the set of vertices oFf(v) for which the incoming and there exists, ., € {1,...,m} such thatg(b:H) = j and
outgoing edges have distinct colors (for convenience, in Whﬁl(bml ,b) < 49+1. Since by constructioﬁT(bt, b)) >
follows we shall also consider the rooias a breakpoint of dets -4 > 47+ we deduce that,,; > i, and ‘

x). We define ¢

9
9(v) = max {j € Z: Vu € y(v), dr(u,v) > 4mmoI ] T

4 < dp(b,biy) = dr(biyy,, b)) < dr(biy i)

9c
< ; i) <
Having defined;(v) we choose one of its children € € (v) S drlbis b) +dr(be, bi) < c—1

for which

49,

This construction terminates aftersteps, in which case we

have that
o) (Fw) = max o) (Fy).
tg(v) (Fuw) nax g ) (F) .

Letting v be the father ofv on the pathP(v), we set dr(by, b) = dr (b1, i) + ZdT(biS’bis+l) + dr (b, bn)

x(v,w) = x(u,v), and we assign arbitrary new (i.e. which s=1
haven't been used before) distinct colors to each of the < V4 (k-1)- 9¢ 474 9c 47
edges{(v, 2) }.ew(v)\ {w) - IN Other words, given the “scale” c—1 c—1

j = g(v) we order the children of according to the size Sinced;
of the copy ofM;, which they admit beneath them at scale _ _ _
j. We then continue coloring with the colg(u, v) the path It remains to show that if € {1,...,m} is such that

P(v) along the edge joining and its child which admits the dr(b;, b,,) > 4’;1 then there exists € {1,...,m} with

(by,bm) > 2% .47, this implies the required result.




g(by) = janddp (b, b;) < 47FL. We first claim that for
everyi € {1,...,m} there is a breakpoint € j, (b;) with

g(w) > j anddr(w,b;) < £, Indeed, ifg(b;) > j then
there is nothing to prove, so assume thét) < j. By the
definition of g there exists a breakpoint; € 3,(b;) such
that

gmin{g(w1),9(b:)} < dp(wy,b;) < gmin{g(w1),g(bi)+1}

Thus necessarilyy(wy) > g(b;) + 1 and dp(w1,b;) <
49D+ < 47 1f g(b;) + 1 > j then we are done by taking
w = w;. Otherwise, continuing in this manner we find a
breakpointw, € 3, (w1) C By (b;) with g(w2) > g(w1) +
1> g(b;) + 2 anddy (wo, w;) < 49(w1)+1, This procedure
terminates when we find a sequenge- wq, wy, wa, . . . , Wy
with g(w;) > 4, g(wi—1) < 7, and foreverny) < s <t —1,

g(wei1) > glws) + 1 anddy (w1, ws) < 4901, Thus Figure 2: A schematic description of the gluing procedure in
the inductive step. Becausgwas a breakpoint it must have

dr(by,wy) = tzf dr(Wys1,ws) two copies ofM;,_; _; at scalej below it.
s=0
< §4g(ws)+1 EJ: 45 — 4”1. eD < 47 < 4eD. This choice implies tha_tT(bil, bit1) < 47
~ Rt 3 anddy (b1, by) > (1 —26)D > 1522 .49 > 30 . 45 By
_ Claim 3.4 there is an integér> (“=UU-20D > el 1,9
Now, assume thadlr(b;,b,,) > ‘“3“. Let s be the (using the upper bound o) and a sequence of breakpoints
largest integer if{i + 1,....,m} such thatly (b, b)) < 42~ S1,---, s On the pathP(u, v) (ordered down the tree) such
(such an integes exists sinceds(b;, bir1) < 47). Then thgatg(Sl) = = g(sk) =J and fori € {1,...,k — 1},
41; < dp(bsy1,bi) < 4j;1 +47. By the previous argumentc—1 A < dr(siysipn) < 754

The proof of Theorem 3.2 will be complete once we
49+ . B show that#r(c) > k — 2. Fori € {1,...,k} lett; be the
dr(w,bsy1) < —. This implies thaét:fﬂ_ bi for SOMe g of 4, along the pathP(u, v). We will prove by reverse
te{i+1,...,s+ 1}, anddr (b, b) < “5—+4.  inductiononi € {1,...,k — 1} thatu;(F,) > k —i — 1,
We proved that as long assatisfiesir (b;, by, ) > %, implying the required result. The base case is true, i.e.
thereard <t <i < s < msuchthay(bs) > 7,9(b;) > 7, #j(F(tx—1) > 0,since the paifs,_1, sx) constitutes a copy

there is a break poinv € By (bs41) with g(w) > j and

J

anddr(by, b;) < 22, dp(bs, b;) < 2= + 47, Thus, by the Of Mo at scale.
definition of g, Assuming thatu;(F,) > k — i — 1 we shall prove
_ that ui; (Fy,_,) > k —i. Sinces; was a breakpoint, the
2. 49+ construction ofy implies that there must be a chilfiof s;,

gmindg(be).9(be)} < (b, by) < 447 < gIHL,

other thant;, for which y;(Fy) > p;(Fy,) > k —i— 1.
, . . , Thus, there exist one to one mappingy’ : My_;_ 1 — T
It follows that eitherg(bs) = j or g(b:) = 7, as required. such thatf (my_;_1) = f'(mu_i_1) = $5, f(My_s_1) C

/ / 9¢c j
To conclude the proof of Theorem 3.2 we may assurhe  (Mi—i-1) S Fi, ”{_HIUP’ 1/ iy < =5 - 47, and

thate*(T) < £=L, since otherwise the assertion of Thed:/ ' llLip, [[(/) ™! lLip < §77. Thinking of M;._; as two
rem 3.2 is trivial. FixSzl > ¢ > *(T)). By the definition of disjoint copies ofM;_;_y, joined at the rootrny,—;, we
*(T), the coloringy constructed above is netgood. Thus, May gluef and f” to an embedding of M},; by setting
there exist two vertices, v € V such that the pat®(u, v) J(mx—i) = si-1. S'”Cec%_ A < dr(si; siy) < 25,
does not contain a monochromatic segment of length at |hé results in an embedding at scglef M;; into Fy,_,,
edr(u, v). We may assume without loss of generality that @S required (see Figure 3.2).

is an ancestor of, and let(by, bo, . . ., b,,) be the sequence . ) )

of breakpoints along this path, enumerated down the tree (f-e. Markov convexity and distortion

fromwu to v, not necessarily including or v). DenotingD = We start by showing that Hilbert space is Mark&xeonvex.
dr(u,v) we have thatiz(u, by), dr (v, by),dr(b;, bi+1) < This has essentially been proved by Bourgain in [Bou86],
eD foralli € {1,...,m — 1}. Fix j € Z such that and the following proof is a rephrasing of Bourgain’s argu-




ment. Observe that for every two i.i.d. random vectors
Z,7' € Lo, and every constant € Lo, E||Z — Z'||3 <
LEMMA 4.1. For everym > 0 and every collection of 9|z — 4|2, Thus, using the fact that conditioned on
pointsyo, Y1, - - -, yam € Lo, X = (Xo,...,X;_ox—1) the random vectorg(X;) and
gm F(X(t —2%1)) arei.i.d., we see that

ZHy, L2 = M+ B
= 2m Ellf(X:) — f(X (t—Qk_l))H%

z L - SRR E)

Z 1Yok — 2Y(2j—1)26-1 + Yj—1)2r |2

=2 = < 2E||f(X:) - 2f<Xt 2-1) + [ (Xoon) 1
Proof. Clearly since all the distances are squared, we malye proof is complete.
assume thatyg, y1,...,y2» € R. This can be proved by

induction onm, however, we will prove this using Parseval'd.1 Lower bounds First, we show how Markov convexity
identity. LetM = 2™. Consider the Haar orthonormal basisan be used to prove Bourgain’s theorem for binary trees.
of RM which is defined by the following vectors: For any

1<k<mandanyl <j < 2™ *letI(k; j) denote the LEMMA 4.2. Let (X,d) be a Markov p-convex metric

set of indices((j — 1)2%, ..., 2"} and define space. For every: € N, denote byx (B,,) the distortion
required to embed,,, into X, then

) . (G-D2k<i< (25— 1)2k T
Yres () = {Qk/zl - k S mt/P
’ —=is, (25 —1)2F 1 <4 < 52k, B.)> _
k72 (25 ) > CX( m) Z H,,(X)
. o o
Together with the vectot), = \/M(l" 1) this gives Proof. Let {X;}{°, be the forward random walk of,,

2" orthonormal vectors ilR™. Now let 2 € RM b32/ (which goes left/right each with probability 1/2), starting
% = yi — yi—1, SO LHS of the lemma becomé§;”, 2? from the root. And assume that: B,, — X is bi-Lipschitz.

which by Parseval’s identity is Then
m 2mk
(z,2) = (2, 01)2 + ) > {2,010, ) (4.10) Z]E FX))P < 27| fII2,.
k=1 j=1

which can easily be seen to be the RHS of the lemma.  Moreover, in the forward random walk, after splitting at time

r with probability at Ieast1 two independent walks will
THEOREM4.1. Hilbert space is Marko@-convex. In fact, accumulate distance which is at least twice the number of
M2(L2) < 2V2. steps. Thus

Proof. First, we can obviously apply Lemma 4.1 to the sets . ~ )\ P
of vectorsy;,...,yom for j = 0,1,2,...,2™. Summing iiE[ ( (Xt)’f(Xt (t_2 ))) }

these inequalities yields Pt 9kp
m 2m m 2m ( .
- k1
ZQ 2 Z e = 2ye o1 + yr_or|l3 = /- 1||P ZZ 2k-p
k=1 t=2k Lip =1 t=1
m 277L
2 (4.11) >

N Hf 1||L1p.

< 42 i — yiall3-
=1
Combining (4.10) and (4.11) with the definition of Markov
Let {X;}2°, be a Markov chain on a state spd¢eand p-convexity yields the required result.
takef : 2 — L,. By the above inequality

gm 4.2 The Cantor trees By anunweighted spherically sym-
4 Z E|f(X:) — f(Xee1)|2 > m_etric tree(SST), we mean a finite grap_h theoretic tfEe
with rootr € T which satisfies the following property: Let
m gm v € T be any internal node with childrery y and letT},, T;,

22N R F(X)—2F(Xs or ) (X or)12 be the subtrees rooted atandy; then there is a graph iso-
Z Z 17(X0) =2 (Xozea) 4 (Ke-20)llz morphism fromT, to T,, which mapsz to . In words, all

t=2Fk

k=1 t=1



subtrees under a common parent node are isomorphic. téfal length is2? + 2 - 20=1 4+ 4. 2072 4 2i7kok —
will consider only SSTs where every internal node has ofle— i) - 2¢ = £=1¢(P;). It follows that anQ(k/i) fraction
or two children. In this case, the tr@eéis completely spec- of P; is composed of nodes for which there is a branch point
ified by (1) the number of nodes on a root leaf path, and (®)thin distance2*—1.
the subset of those nodes which have two children (i.e. the
places along the path where the tree branches).

We first define a sequence of (graph-theoretic) p&thsReferences
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