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Abstract

We give combinatorial, geometric, and probabilistic charac-
terizations of the distortion of tree metrics intoLp spaces.
This requires the development of new embedding tech-
niques, as well as a method for proving distortion lower
bounds which is based on the wandering of Markov chains
in Banach spaces, and a new metric invariant we callMarkov
convexity.Trees are thus the first non-trivial class of metric
spaces for which one can give a simple and complete char-
acterization of their distortion into a Hilbert space, up to uni-
versal constants. Our results also yield an efficient algorithm
for constructing such embeddings.

1 Introduction

Geometric embeddings of discrete metric spaces, a topic
originally studied in geometric analysis, became an inte-
gral part of theoretical computer science following the pi-
oneering work of Linial, London, and Rabinovich [LLR95].
The use of metric embeddings and high-dimensional convex
geometry in approximation algorithms, especially for parti-
tioning problems like cuts and clustering, has grown signif-
icantly in recent years. We mention, for instance, the recent
works [ARV04, AN04, KLMN04, ALN05, CGR05, FHL05,
ACMM05, AMMN05]. Furthermore, the study of various
bi-Lipschitz invariants has frequently sparked exciting algo-
rithmic progress.

In the present work, we focus on the problem of embed-
ding trees intoLp spaces forp > 1 (it is easy to see that
every tree embeds isometrically intoL1). This problem is
well-studied (and well-understood) if one is concerned with
the worst-case distortion of trees in terms of their cardinality.
For ease of exposition, we focus on the casep = 2 for the
present time. In [Bou86], Bourgain shows that the complete
binary tree of heightk (on n = 2k points) incurs distortion
Θ(
√

log log n) for any embedding intoL2 (see also the ac-
counts in [LS03, Mat99] for alternate proofs). Other papers
[LMS98, Mat99] have studied upper bounds on the distortion
in terms ofn. In particular, Matousek [Mat99] shows that
Bourgain’s lower bound is the best-possible: Everyn-point
tree metric embeds intoL2 with distortionO(

√
log log n).

These works also exhibit similar tight bounds for allp ≥ 1.
We also mention a result of Gupta, Krauthgamer, and Lee

[GKL03] which shows that every tree which is doubling em-
beds intoL2 with distortion depending only upon the dou-
bling constant.

But even the simple and natural question of which tree
metrics embed intoL2 with O(1) distortion has been left
unanswered. In this paper, we give combinatorial, geometric,
and probabilistic characterizations of the distortion of tree
metrics intoLp spaces. Trees are thus the first non-trivial
class of metric spaces for which one can give a simple and
complete characterization of their distortion into a Hilbert
space, up to universal constants. See Section 2 for a detailed
discussion of our results, as well as an overview of the proof
techniques.

1.1 Preliminaries We recall that for a metric space(X, d),
the parametercp(X) represents the least distortion with
which X embeds into anLp space, i.e. it is the minimum
of dist(f) = ||f ||Lip · ||f−1||Lip over all bijectionsf : X →
Lp. If X embeds into a spaceY with distortionD, we will

say thatX D-embeds intoY , and sometimes writeX
D
↪→ Y

to denote this. For the purposes of the present abstract, we
will consider every tree metricT to have an associated graph
G(T ) = (V,E) with an assignment of lengths to edges
` : E → R+. We will require that|T | = |V |, but this is
without loss of generality [Gup01], as will be discussed in
the full version. Forx, y ∈ V , we letdT (x, y) be the length
of the unique path fromx to y in T . Finally, we sometimes
write A <∼ B to meanA ≤ O(B).

2 Results and techniques

Recall that our goal is to understand the distortion of tree
metrics into Banach spaces; in particular, we would like
to understand what combinatorial and geometric properties
control the distortion of trees into Hilbert space and otherLp

spaces. To state our first result, we introduce the notion of
Markov convexity.

Markov convexity, binary trees, and distortion.

Let {Xt}∞t=0 be a Markov chain on a state spaceΩ.
Given an integerk ≥ 0 we denote by{X̃t(k)}∞t=0 the pro-
cess which equalsXt for time t ≤ k, and evolves indepen-
dently (with respect to the same transition probabilities) for



time t > k. Observe that fork < 0, X̃t(k) = Xt for all
t ≥ 0.

DEFINITION 2.1. Let (X, d) be a metric space andp > 0.
We shall say that(X, d) is Markovp-convexwith constantΠ
if for every Markov chain{Xt}∞t=0 on a state spaceΩ, and
everyf : Ω → X, we have for everym ∈ N,

m∑

k=0

2m∑
t=1

E
[
d

(
f (Xt) , f(X̃t(t− 2k))

)p]

2kp

≤ Πp
2m∑
t=1

E[d(f(Xt), f(Xt−1))p].

The lease constantΠ above is called the Markovp-convexity
constant ofX, and is denotedΠp(X). We shall say thatX
is Markovp-convex ifΠp(X) < ∞.

To understand this notion, recall that the chainsXt and
X̃t(t − 2k) run together for the firstt − 2k steps, and then
evolve independently for the remaining2k steps. Thus the
left hand side is measuring the sum, over many “scales”
k = 0, 1, 2, . . . of the average of thepth power of the
normalized “drift” of the chain inX with respect to scale
2k. We will say thatX hasnon-trivial Markov convexityif
X is Markovp-convex for somep < ∞. We note thatL2 is
Markov2-convex (see Section 4). More generally, the name
comes in part from the fact that ifX is ap-convex Banach
space, thenX is also Markovp-convex. In Bourgain’s paper
[Bou86], there is an implicit “non-linear” notion of uniform
convexity related to the presence of complete binary trees.
For the results in this paper, we require a more powerful
“Markov variant,” analogous to Ball’s notion of Markov type
[Bal92]. We defer a more detailed discussion to the full
version.

For two metric spacesX and Y , we say thatX is
finitely-representable inY if there exists a constantC such
that every finite subset ofX C-embeds intoY . Let B∞ be
the infinite complete binary tree. For simplicity, we first state
our results only forL2. Our first theorem follows.

THEOREM 2.1. If T is a tree metric, then the following
conditions are equivalent.

1. T admits a bi-Lipschitz embedding into a Hilbert space.

2. B∞ is not finitely-representable inT .

3. T is Markov 2-convex.

4. T has non-trivial Markov convexity.

We conjecture that (2) and (4) are equivalent foranymetric
spaceX. To understand what this theorem says for finite tree
metrics, let us discuss a quantitative version (which will im-
ply the above theorem by standard compactness arguments).

In what follows we denote the complete unweighted
binary tree of heightk by Bk. Given a metric space(X, d),
k ∈ N andc > 1, we denote

BX(c) = max
{

k ∈ N : Bk
c

↪→ X
}

.

THEOREM 2.2. Let T be a finite weighted tree. Then for
everyc > 1,

1
c

(log BT (c))
1
2 <∼ c2(T ) <∼

(
c

c− 1
·BT (c)

) 1
2

.

Thus the ability of a treeT to embed into Hilbert space
is controlled by the height of binary trees which embed into
T . We note that an appropriate version of the above theorem
holds for embeddings intoLp for any1 < p < ∞. The lower
bound follows immediately from Bourgain’s lower bound for
binary trees [Bou86], so our contribution is contained in the
upper bound, whose proof is a mix of combinatorial and
analytic techniques. In Section 3.1, we discussmonotone
coloringsof trees. Given a graph-theoretic treeT = (V, E),
a monotone coloring is a mapχ : E → N such that every
color classχ−1(c), for c ∈ N, is a monotone path inT (i.e.
a subset of some root-leaf path). These types of colorings
have been used previously for embeddings of trees [LMS98,
Mat99, GKL03], but in our case the construction must be
significantly more delicate. For instance, in [LMS98, Mat99]
the authors were only interested in colorings which minimize
the number of colors used (in particular, such colorings
depend only on the topology ofT , and do not take into
account edge lengths).

Strong colorings and weak prototypes.

We say that a monotone coloring isδ-strong if, for ev-
ery x, y ∈ T , half the distance fromx to y is colored by
classes of length at leastδ dT (x, y). Our proof proceeds in
the following manner. In Section 3.1, we give some proce-
dure for coloring the edges ofT . If the coloring fails to be
δ-strong, we recursively construct larger and larger binary
trees insideT until eventually we find an embedded binary
tree of heightΩ(log(1/δ)). The coloring uses a“scale se-
lector” function, and a family{µj}j∈Z of weight functions
(one for each scale) on connected subtrees ofT . There are
two key difficulties. The first involves choosing the right
weight functions which allow the recursive reconstruction to
take place. The second involves handling all of the scales si-
multaneously. (In order to construct a good embedding, one
has to use the information that there are no large embedded
binary treesat every scaleof the space.)

To finish the proof of the upper bound, we use theδ-
strong coloring to guide us in laying out the tree inL2.
In particular, in Section 3.1, we prove the following theo-
rem, which is based on a variation of Matousek’s argument
[Mat99].



THEOREM 2.3. If T admits a δ-strong coloring, then

c2(T ) ≤ O
(√

log(1/δ)
)

.

One might wonder whether the exponential quantitative
gap in Theorem 2.2 is necessary. Certainly the lower bound
cannot be improved. Somewhat surprisingly, the upper
bound is also best-possible as we show in Section 4.2.

THEOREM 2.4. There exists an infinite family of tree met-
rics {Cn}n∈N with BCn

(c) → ∞ as n → ∞ for every
c > 1 and such that

c2(Cn) = Ω
(

c

c− 1
BCn(c)

) 1
2

= Ω
(√

log log |Cn|
)

.

In other words, there are families of trees whose Eu-
clidean distortion (in terms of their size) is the worst pos-
sible, but which are very far from complete binary trees.
The height of the largest embedded binary tree is only
O(log log |Cn|), so using Bourgain’s lower bound as a black
box would only yieldΩ(

√
log log log |Cn|). We refer to the

family {Cn} as “Cantor trees,” since every root-leaf path in
Cn resembles a (finitary version of) the “middle-thirds” Can-
tor set. This new lower bound is based on Markov convexity.
In particular, sinceΠ2(L2) ≤ 2

√
2 (see Section 4), we have

the following.

THEOREM 2.5. For any metric spaceX, c2(X) ≥
Ω(Π2(X)).

In the full version we discuss applications of Markov
convexity to proving lower bounds for balls in the Cayley
graphs of certain groups. In a number of cases, e.g. the
lamplighter group over the cycle, this provides the first
known non-trivial lower bound. More relevant to the present
discussion, we prove lower bounds on the distortion of
certain families of trees we callweak prototypes. We say
that a tree metricT is an(ε, δ)-weak prototype with height
ratio R if the following conditions are satisfied.

1. Every non-leaf vertex ofT has exactly two children.

2. Every root-leaf path ofT is (ε, δ)-weak.

3. If h is the length of the shortest root-leaf path inT and
h′ is the length of the longest, thenh′/h ≤ R.

Here, a path metricP is (ε, δ)-weak if at least anε-
fraction of the length ofP is composed of edges of length
at mostδ`(P ), where`(P ) is the length ofP . We then
have the following theorem whose proof is deferred to the
full version. See Section 4.2 for a warmup.

THEOREM 2.6. If T is an(ε, δ)-weak prototype with height
ratio R, then

Π2(T ) ≥ Ω
(√

ε

R
log(1/δ)

)
.

This theorem is proved by building an appropriate
Markov chain on any given(ε, δ)-weak tree.

Tight characterizations of distortion

All the notions we have discussed so far are intimately
inter-related for trees. Letδ∗(T ) > 0 be the largestδ for
which T admits aδ-strong coloring. Combined with the
previous discussion, our most precise embedding theorem
establishes the following result. The proof of this result is
deferred to the full version due to lack of space.

THEOREM 2.7. LetT be a tree metric, then

c2(T ) = Θ(Π2(T )) = Θ
(√

log(1/δ∗(T ))
)

.

In other words, up to universal constants,δ-strong col-
orings, combined with the embedding of Theorem 2.3 are
the optimal way to embed trees intoL2, and furthermore,
Markov 2-convexity inequalities provide the optimal lower
bounds. We state also the version forLp.

THEOREM 2.8. For any tree metricT ,

cp(T ) = Θ(Πq(T )) = Θ
(
log1/q(1/δ∗(T ))

)
,

whereq = 2 for 1 < p ≤ 2, andq = p for p ≥ 2.

The proof of Theorem 2.7 is similar in spirit to that of
Theorem 2.2. Using a more sophisticated family of weight
functions{ρj}j∈Z, we construct a coloring ofT . If the col-
oring fails to beδ-strong, then we find an embedded copy of
some(Ω(1), O(δ))-weak prototype tree, and apply Theorem
2.6. The problem is that, unlike complete binary trees, weak
prototypes can have a highly non-recursive structure (in par-
ticular, subtrees of weak prototypes are not themselves weak
prototypes). This makes “recursive reconstruction” a more
delicate process. Recall that the weight functions{ρj} are
defined on subtreesH of T . To handle the non-recursive
nature of weak prototypes, the new weight functions look
not only “down” the subtree but also use information “from
above,” so to speak.

3 Binary trees and distortion

Let T = (V, E) be afinite graph-theoretic tree with positive
edge lengths̀ : E → (0,∞), and letdT be the induced path
metric onV . We also fix some arbitrary rootr ∈ T . We now
proceed to the proof of Theorem 2.2.

3.1 Coloring based upper boundsA monotone pathin T
is a connected subset (also called asegmentin what follows)
of some root-leaf path. By anedge-coloring ofT , we mean
a mapχ : E → Z. We say that the coloring ismonotoneif
every color classχ−1(m), for m ∈ Z, is a monotone path.
For u, v ∈ V we let P (u, v) ⊆ E denote the unique path



from u to v, and setP (v) = P (v, r). Given an edge coloring
χ : E → Z, k ∈ χ(E), andu, v ∈ V , we write

`χ
k (u, v) :=

∑

e∈P (u,v)
χ(e)=k

`(e).

We also set̀χ
k (v) = `χ

k (v, r). Finally, givenu, v ∈ V we let
lca(u, v) denote theleast common ancestorof u andv in T .

DEFINITION 3.1. (ε-GOOD COLORING) We say that a col-
oring χ : E → Z is ε-good if it is monotone, and for every
u, v ∈ T , the unique path fromu to v contains a monochro-
matic segment of length at leastεdT (u, v). We defineε∗(T )
to be the largestε for whichT admits anε-good coloring.

To get tighter control on the Euclidean distortion of trees
we also introduce the notion ofδ-strong colorings.

DEFINITION 3.2. (δ-STRONG COLORING) We say that a
coloring χ : E → Z is δ-strong if it is monotone, and for
everyu, v ∈ T

∑

k∈Z
`χ
k (u, v) · 1{`χ

k (u,v)≥δdT (u,v)} ≥ 1
2dT (u, v).

In words, we demand that at least half of the shortest path
joining u andv is covered by color classes of length at least
δdT (u, v). As before, we defineδ∗(T ) to be the largestδ for
whichT admits anδ-strong coloring.

The notions ofδ-strong colorings andε-good colorings
are related via the following simple lemma whose proof we
defer to the full version.

LEMMA 3.1. Every weighted treeT satisfiesδ∗(T ) ≥
2−3/ε∗(T ).

The relation of strong colorings to bounds on distortion
is contained in the following theorem.

THEOREM 3.1. For every weighted treeT = (V, E) and
p ≥ 1,

cp(T ) <∼
[
log

(
1

δ∗(T )

)]min{ 1
p , 1

2}
.

Proof. We may assume thatp ∈ [2,∞), since ifp ∈ [1, 2)
the required result follows by embeddingT into `2 ⊆ Lp.
Fix δ < min{δ∗(T ), 1/2} and letχ : E → Z be aδ-strong
coloring. Let{ek}k∈Z be a system of orthonormal vectors.
For v ∈ V we denote by(k1(v), . . . , kmv (v)) the sequence
of color classes encountered on the path from the root tov.
We shall denote bydj(v) the distance that the color class
kj(v) contributes to the path from the root tov, i.e.

dj(v) =
∑

e∈P (v)
χ(e)=kj(v)

`(e).

Now let

si(v) =
mv∑

j=i

max

{
0, dj(v)− δ

2

j∑

h=i

dh(v)

}
,

and definef : V → `p(Z) by

f(v) =
mv∑

i=1

[di(v)]1/p[si(v)](p−1)/peki(v).

We will break the proof into several claims.

CLAIM 3.1. For all v ∈ V andj ∈ {1, . . . ,mv},

si(v) ≥ 1
4

mv∑

j=i

dj(v).

Proof. This is where the fact thatχ is a δ-strong coloring
comes in. Indeed,

si(v) =
mv∑

j=i

max

{
0, dj(v)− δ

2

j∑

h=i

dh(v)

}

≥
∑

j∈{i,...,mv}
dj(v)≥δ

∑mv
h=i dh(v)

dj(v)
2

≥ 1
4

mv∑

j=i

dj(v).

CLAIM 3.2. ‖f‖Lip ≤ [5 log(3/δ)]1/p.

Proof. We need to show that for every edge(u, v) ∈ E,
‖f(u) − f(v)‖p ≤ 10[log(1/δ)]1/p. Assume thatv is
further thanu from the root ofT . In this casek1(u) =
k1(v), . . . , kmu(u) = kmu(v) and mv ∈ {mu,mu + 1}.
If mv = mu + 1 then we denote for the sake of simplicity
dmv (u) = smv (u) = 0. With this notation we have that

‖f(u)− f(v)‖p
p =

mv∑

i=1

∣∣∣[di(u)]1/p[si(u)](p−1)/p − [di(v)]1/p[si(v)](p−1)/p
∣∣∣
p

=

(
mv−1∑

i=1

di(v)
∣∣∣[si(u)](p−1)/p − [si(v)](p−1)/p

∣∣∣
p
)

+

∣∣∣[dmv (u)]1/p[smv (u)](p−1)/p − [dmv (v)]1/p[smv (v)](p−1)/p
∣∣∣
p

.

Note that by our definitions,smv (u) = dmv (u) and
smv (v) = dmv (v). Letting

Ci(u, v) =
∣∣∣[si(u)](p−1)/p − [si(v)](p−1)/p

∣∣∣
p

,

we have

‖f(u)− f(v)‖p
p =(3.1)

mv−1∑

i=1

di(v)Ci(u, v) + |dmv (u)− dmv (v)|p

≤
mv−1∑

i=1

di(v)Ci(u, v) + [dT (u, v)]p.



Observe that for alli ∈ {1, . . . ,mv−1}, si(v) ≥ si(u).
Thus

Ci(u, v) =
∣∣∣[si(u)](p−1)/p − [si(v)](p−1)/p

∣∣∣(3.2)

≤ |si(u)− si(v)|
[si(v)]1/p

,

where we used the elementary inequalityyα − xα ≤ y−x
y1−α ,

which is valid for ally ≥ x > 0 andα ∈ (0, 1).
Observe that for everyi ≤ mv − 1,

si(v)− si(u) = max

{
0, dmv

(v)− δ

2

mv∑

h=i

dh(v)

}

− max

{
0, dmv

(u)− δ

2

mv∑

h=i

dh(u)

}

≤ dT (u, v).(3.3)

Thus, combining (3.2) and (3.3) we see that

mv−1∑

i=1

di(v)
∣∣∣[si(u)](p−1)/p − [si(v)](p−1)/p

∣∣∣
p

(3.4)

≤
mv−1∑

i=1

di(v) · |si(u)− si(v)|p
si(v)

≤ [dT (u, v)]p ·
∑

i∈{1,...,mv−1}
si(u)6=si(v)

di(v)
si(v)

≤ 4[dT (u, v)]p ·
∑

i∈{1,...,mv−1}
si(u)6=si(v)

di(v)∑mv

j=i dj(v)
,

where in the last line we used Claim 3.1.
Observe that for every x1, . . . , xk > 0,∑k

i=1
xi

xi+xi+1+···+xk+1 ≤ ∑1
i=k

∫ xi+···+xk

xi+1+···+xk

dt
t+1 =∫ x1+···+xk

0
dt

t+1 = log(x1 + · · ·+ xk + 1). Thus

∑

i∈{1,...,mv−1}
si(u) 6=si(v)

di(v)∑mv

j=i dj(v)

=
∑

i∈{1,...,mv−1}
si(u) 6=si(v)

di(v)/dmv (v)(∑mv−1
j=i dj(v)/dmv (v)

)
+ 1

≤ log


1 +

1
dmv (v)

∑

i∈{1,...,mv−1}
si(u)6=si(v)

di(v)


 .(3.5)

Let i be the smallest integer in{1, . . . ,mv − 1} such that
si(u) 6= si(v). Then by the definition ofsi(·),

dmv (v) >
δ

2

mv∑

h=i

dh(v).

u

v

)(vd j

)(ud j

)()( 11 vdud ====

)(vd
vm

)(ud
um

Figure 1: A schematic description of the location ofu and
v in the treeT . The bold segment corresponds to the color
classkj(u) = kj(v).

It follows that

log


1 +

1
dmv (v)

∑

i∈{1,...,mv−1}
si(u) 6=si(v)

di(v)


 ≤

log
(

1 +
∑mv

h=i dh(v)
dmv (v)

)
≤ log

(
1 +

2
δ

)
.

Plugging this bound into (3.5), and using (3.4) and (3.1), we
get that

‖f(u)− f(v)‖p ≤
[
4 log

(
1 +

2
δ

)
+ 1

]1/p

dT (u, v)

≤ [5 log(3/δ)]1/p · dT (u, v).

Our final claim bounds‖f−1‖Lip.

CLAIM 3.3. The embedding f is invertible, and
‖f−1‖Lip ≤ 48.

Proof. Fix u, v ∈ V , u 6= v, and letj be the integer satis-
fying k1(u) = k1(v), . . . , kj(u) = kj(v) andkj+1(u) 6=
kj+1(v). It follows that d1(u) = d1(v), . . . , dj−1(u) =
dj−1(v), and we may assume without loss of generality that
dj(u) ≥ dj(v). With this notation (see Figure 3.1 below),

dT (u, v) = dj(u)− dj(v) +
mu∑

i=j+1

di(u) +
mv∑

i=j+1

di(v).

(3.6)



On the other hand,

‖f(u)− f(v)‖p
p ≥∣∣∣[dj(u)]1/p[sj(u)](p−1)/p − [dj(v)]1/p[sj(v)](p−1)/p

∣∣∣
p

+
mu∑

i=j+1

di(u)[si(u)]p−1 +
mv∑

i=j+1

di(v)[si(v)]p−1.(3.7)

Using Claim 3.1 we see that

mu∑

i=j+1

di(u)[si(u)]p−1(3.8)

≥ 1
4p−1

mu∑

i=j+1

di(u)

(
mu∑

h=i

dh(u)

)p−1

≥ 1
4p−1

mu∑

i=j+1

∫ di(u)+···dmu (u)

di+1(u)+···dmu (u)

tp−1dt

=
1

4p−1

∫ dj+1(u)+···dmu (u)

0

tp−1dt

=
1

p4p−1
·



mu∑

i=j+1

di(u)




p

.

Similarly,

mv∑

i=j+1

di(v)[si(v)]p−1 ≥

(∑mv

i=j+1 di(v)
)p

p 4p−1
(3.9)

We now consider two cases.

Case 1. dj(u)−dj(v)
2 ≤ ∑mv

i=j+1 di(v). In this case,
using (3.6) we see that

[dT (u, v)]p ≤ 3p




mu∑

i=j+1

di(u) +
mv∑

i=j+1

di(v)




p

≤ 3p · 2p−1







mu∑

i=j+1

di(u)




p

+




mv∑

i=j+1

di(v)




p


≤ p4p−1 · 3p · 2p−1‖f(u)− f(v)‖p
p,

where in the last inequality we plugged the bounds (3.8)
and (3.9) into (3.7). Thus we get that

‖f(u)− f(v)‖p ≥ dT (u, v)
48

,

as required.

Case 2. dj(u)−dj(v)
2 >

∑mv

i=j+1 di(v). In this case we

observe that

sj(u) =
mu∑

i=j

max



0, di(u)− δ

2

i∑

h=j

dh(u)





≥
(

1− δ

2

)
dj(u),

and similarly

sj(v) ≤
(

1− δ

2

)
dj(v) +

mv∑

i=j+1

di(v)

≤
(

1− δ

2

)
dj(v) +

dj(u)− dj(v)
2

.

Thus lettingC0 =
(
1− δ

2

)(p−1)/p
,

[dj(u)]1/p[sj(u)](p−1)/p − [dj(v)]1/p[sj(v)](p−1)/p

≥ C0

[
dj(u)− dj(v) ·

(
1 +

dj(u)− dj(v)
(2− δ)dj(v)

)(p−1)/p
]

≥ C0

[
dj(u)− dj(v) ·

(
1 +

dj(u)− dj(v)
(2− δ)dj(v)

)]

=
(

1− δ

2

)(p−1)/p

· 1− δ

2− δ
· [dj(u)− dj(v)]

≥ dj(u)− dj(v)
4

,

where we used the fact thatδ ≤ 1
2 . Using (3.7) and the

bounds (3.8) and (3.9), it follows that

‖f(u)− f(v)‖p
p

≥ [dj(u)−dj(v)]p

4p
+

(∑mu

i=j+1 di(u)
)p

+
(∑mv

i=j+1 di(v)
)p

p4p−1

≥

(
dj(u)− dj(v) +

∑mu

i=j+1 di(u) +
∑mv

i=j+1 di(v)
)p

p4p · 3p−1

≥ 1
24p

· [dT (u, v)]p.

Claim 3.3, together with Claim 3.2, concludes the proof of
Theorem 3.1.

3.2 Relating coloring bounds to the containment of
large binary trees The following theorem, in conjunction
with Theorem 3.1 and lemma 3.1, implies Theorem 2.2. We
recall thatε∗(T ) is the largest valueε > 0 such thatT admits
anε-good coloring.

THEOREM 3.2. For every weighted treeT = (V, E) and
everyc > 1,

BT (c) ≥ c− 1
250c

· 1
ε∗(T )

.



Proof. We start by introducing some notation. For a vertex
v ∈ V we denote byC (v) the set of all children ofv
in T . Given u ∈ C (v) we denote byTu = (Vu, Eu)
the subtree rooted atu. We also letFu denote the tree
Fu = (Vu ∪ {v}, Eu ∪ {(v, u)}), i.e. Fu is Tu plus the
“incoming” edge(v, u).

Recall thatBk = (Vk, Ek) is the complete binary tree
of heightk. Let rk be the root ofBk, and define an auxiliary
treeMk by Mk = (Vk ∪ {mk}, Ek ∪ {(mk, rk)}) (i.e. Mk

is Bk with an extra incoming edge). Given a connected
subtreeH of T rooted atrH , we shall say thatH admits
a copy ofMk at scalej if there exits a one to one mapping
f : Mk → H such that

1. f(mk) = rH

2. ‖f‖Lip ≤ 9c
c−1 · 4j and ‖f−1‖Lip ≤ c−1

9·4j (thus in
particulardist(f) ≤ c).

We defineµj(H) to be the largest valuek ∈ N for whichH
admits a copy ofMk at scalej, or µj(H) = −1 if no suchk
exists.

We shall now define a functiong : V → Z∪ {∞} and a
coloringχ : E → Z. These mappings will be constructed by
induction as follows. We start by settingg(r) = ∞. Assume
inductively that the construction is done so that whenever
v ∈ V is such thatg(v) is defined, ifu is a vertex on the path
P (v) theng(u) has already been defined, and for every edge
e ∈ E incident withv, χ(e) is defined.

Let v ∈ V be a vertex closest to the rootr for which
g(v) hasn’t yet been defined. Then, by our assumption, for
everye ∈ P (v), χ(e) has been defined, and for every vertex
u other thanv lying on the pathP (v), g(u) has been defined.
Let βχ(v) ⊆ V denote the set ofbreakpointsof χ in P (v),
i.e. the set of vertices onP (v) for which the incoming and
outgoing edges have distinct colors (for convenience, in what
follows we shall also consider the rootr as a breakpoint of
χ). We define

g(v) = max
{

j ∈ Z : ∀u ∈ βχ(v), dT (u, v) ≥ 4min{g(u),j}
}

Having definedg(v) we choose one of its childrenw ∈ C (v)
for which

µg(v)(Fw) = max
z∈C (v)

µg(v)(Fz).

Letting u be the father ofv on the pathP (v), we set
χ(v, w) = χ(u, v), and we assign arbitrary new (i.e. which
haven’t been used before) distinct colors to each of the
edges{(v, z)}z∈C (v)\{w}. In other words, given the “scale”
j = g(v) we order the children ofv according to the size
of the copy ofMk which they admit beneath them at scale
j. We then continue coloring with the colorχ(u, v) the path
P (v) along the edge joiningv and its child which admits the

largestMk at scalej, and color the remaining edges incident
with v by arbitrary distinct new colors.

This definition clearly results in a monotone coloring
χ. To motivate this somewhat complicated construction, we
shall now prove some of the crucial properties ofχ andg
which will be used later.

CLAIM 3.4. Let P be any monotone path inT , and let
(b1, b2, . . . , bm) be the sequence of breakpoints alongP
ordered down the tree (i.e. in increasing distance from the
root). Assume thatj ∈ Z satisfies for everyi ∈ {2, . . . , m},
dT (bi, bi−1) ≤ 4j , and assume also thatdT (b1, bm) ≥
30c
c−1 · 4j . Then there exists a subsequence of the indices
1 ≤ i1 < i2 < · · · < ik ≤ m such that

1. k ≥ c−1
20c·4j · dT (b1, bm).

2. For everys ∈ {1, . . . , k}, g(bis
) = j.

3. For everys ∈ {1, . . . , k − 1} we have 9
c−1 · 4j ≤

dT (bis+1 , bis
) ≤ 9c

c−1 · 4j .

Proof. We shall show that ifi ∈ {1, . . . , m} is such that
dT (bi, bm) > 4j+1

3 then there exists an indext ∈ {1, . . . , m}
with g(bt) = j anddT (bt, bi) ≤ 4j+1. Assuming this fact
for the moment, we conclude the proof as follows. Leti1
be the smallest integer in{2, . . . , m} such thatg(bi1) = j.
ThendT (bi1 , b1) ≤ 4j+1. Assuming we definedi1 < i2 <
· · · < is, if dT (bis , bm) ≤ 9c

c−1 · 4j we stop the construction,
and otherwise we lett be the smallest integer bigger thanis
such thatdT (bt, bis) ≥ 4c+5

c−1 · 4j . SincedT (bt−1, bis) <
4c+5
c−1 · 4j , we know thatdT (bt, bis) < 4c+5

c−1 · 4j + 4j .

ThusdT (bt, bm) > dT (bis , bm) − 4c+5
c−1 · 4j − 4j > 4j+1

3

(because we are assuming thatdT (bis , bm) < 9c
c−1 · 4j). So,

there existsis+1 ∈ {1, . . . , m} such thatg(bis+1) = j and
dT (bis+1 , bt) ≤ 4j+1. Since by constructiondT (bt, bis) ≥
4c+5
c−1 · 4j > 4j+1 we deduce thatis+1 > is and

9
c− 1

· 4j ≤ dT (bt, bis)− dT (bis+1 , bt) ≤ dT (bis+1 , bis)

≤ dT (bis+1 , bt) + dT (bt, bis) ≤
9c

c− 1
· 4j .

This construction terminates afterk steps, in which case we
have that

dT (b1, bm) = dT (b1, bi1) +
k−1∑
s=1

dT (bis , bis+1) + dT (bik
, bm)

≤ 4j+1 + (k − 1) · 9c

c− 1
· 4j +

9c

c− 1
· 4j .

SincedT (b1, bm) ≥ 30c
c−1 ·4j , this implies the required result.

It remains to show that ifi ∈ {1, . . . , m} is such that
dT (bi, bm) > 4j+1

3 then there existst ∈ {1, . . . , m} with



g(bt) = j anddT (bt, bi) ≤ 4j+1. We first claim that for
everyi ∈ {1, . . . ,m} there is a breakpointw ∈ βχ(bi) with

g(w) ≥ j anddT (w, bi) < 4j+1

3 . Indeed, ifg(bi) ≥ j then
there is nothing to prove, so assume thatg(bi) < j. By the
definition of g there exists a breakpointw1 ∈ βχ(bi) such
that

4min{g(w1),g(bi)} ≤ dT (w1, bi) < 4min{g(w1),g(bi)+1}.

Thus necessarilyg(w1) ≥ g(bi) + 1 and dT (w1, bi) <
4g(bi)+1 < 4j . If g(bi) + 1 ≥ j then we are done by taking
w = w1. Otherwise, continuing in this manner we find a
breakpointw2 ∈ βχ(w1) ⊆ βχ(bi) with g(w2) ≥ g(w1) +
1 ≥ g(bi) + 2 anddT (w2, w1) < 4g(w1)+1. This procedure
terminates when we find a sequencebi = w0, w1, w2, . . . , wt

with g(wt) ≥ j, g(wt−1) < j, and for every0 ≤ s ≤ t− 1,
g(ws+1) ≥ g(ws) + 1 anddT (ws+1, ws) < 4g(ws)+1. Thus

dT (bi, wt) =
t−1∑
s=0

dT (ws+1, ws)

<

t−1∑
s=0

4g(ws)+1

j∑
s=−∞

4s =
4j+1

3
.

Now, assume thatdT (bi, bm) > 4j+1

3 . Let s be the

largest integer in{i+1, . . . , m} such thatdT (bs, bi) ≤ 4j+1

3
(such an integers exists sincedT (bi, bi+1) ≤ 4j). Then
4j+1

3 < dT (bs+1, bi) ≤ 4j+1

3 +4j . By the previous argument
there is a break pointw ∈ βχ(bs+1) with g(w) ≥ j and

dT (w, bs+1) < 4j+1

3 . This implies thatw = bt for some

t ∈ {i + 1, . . . , s + 1}, anddT (bi, bt) ≤ 4j+1

3 + 4j .

We proved that as long asbi satisfiesdT (bi, bm) > 4j+1

3 ,
there are1 ≤ t ≤ i ≤ s ≤ m such thatg(bs) ≥ j, g(bt) ≥ j,
anddT (bt, bi) ≤ 4j+1

3 , dT (bs, bi) ≤ 4j+1

3 + 4j . Thus, by the
definition ofg,

4min{g(bs),g(bt)} ≤ dT (bs, bt) ≤ 2 · 4j+1

3
+ 4j < 4j+1.

It follows that eitherg(bs) = j or g(bt) = j, as required.

To conclude the proof of Theorem 3.2 we may assume
that ε∗(T ) < c−1

240c , since otherwise the assertion of Theo-
rem 3.2 is trivial. Fixc−1

240c > ε > ε∗(T ). By the definition of
ε∗(T ), the coloringχ constructed above is notε-good. Thus,
there exist two verticesu, v ∈ V such that the pathP (u, v)
does not contain a monochromatic segment of length at least
εdT (u, v). We may assume without loss of generality thatu
is an ancestor ofv, and let(b1, b2, . . . , bm) be the sequence
of breakpoints along this path, enumerated down the tree (i.e.
fromu to v, not necessarily includingu or v). DenotingD =
dT (u, v) we have thatdT (u, b1), dT (v, bm), dT (bi, bi+1) ≤
εD for all i ∈ {1, . . . ,m − 1}. Fix j ∈ Z such that

u

v

1is −

1it −

is

it
it ′

Figure 2: A schematic description of the gluing procedure in
the inductive step. Becausesi was a breakpoint it must have
two copies ofMk−i−1 at scalej below it.

εD ≤ 4j ≤ 4εD. This choice implies thatdT (bi, bi+1) ≤ 4j

anddT (b1, bm) ≥ (1 − 2ε)D ≥ 1−2ε
4ε · 4j ≥ 30c

c−1 · 4j . By

Claim 3.4 there is an integerk ≥ (c−1)(1−2ε)D
20c·4j ≥ c−1

250c · 1ε +2
(using the upper bound onε) and a sequence of breakpoints
s1, . . . , sk on the pathP (u, v) (ordered down the tree) such
thatg(s1) = · · · = g(sk) = j and fori ∈ {1, . . . , k − 1},

9
c−1 · 4j ≤ dT (si, si+1) ≤ 9c

c−1 · 4j .
The proof of Theorem 3.2 will be complete once we

show thatBT (c) ≥ k − 2. For i ∈ {1, . . . , k} let ti be the
child of si along the pathP (u, v). We will prove by reverse
induction oni ∈ {1, . . . , k − 1} thatµj(Fti) ≥ k − i − 1,
implying the required result. The base case is true, i.e.
µj(F (tk−1) ≥ 0, since the pair(sk−1, sk) constitutes a copy
of M0 at scalej.

Assuming thatµj(Fti) ≥ k − i − 1 we shall prove
that µj(Fti−1) ≥ k − i. Sincesi was a breakpoint, the
construction ofχ implies that there must be a childt′i of si,
other thanti, for which µj(Ft′i) ≥ µj(Fti) ≥ k − i − 1.
Thus, there exist one to one mappingsf, f ′ : Mk−i−1 → T
such thatf(mk−i−1) = f ′(mk−i−1) = si, f(Mk−i−1) ⊆
Fti , f ′(Mk−i−1) ⊆ Ft′i , ‖f‖Lip, ‖f ′‖Lip ≤ 9c

c−1 · 4j , and
‖f−1‖Lip, ‖(f ′)−1‖Lip ≤ c−1

9·4j . Thinking of Mk−i as two
disjoint copies ofMk−i−1, joined at the rootmk−i, we
may gluef andf ′ to an embeddingf of Mk−i by setting
f(mk−i) = si−1. Since 9

c−1 · 4j ≤ dT (si, si+1) ≤ 9c
c−1 · 4j ,

this results in an embedding at scalej of Mk−i into Fti−1 ,
as required (see Figure 3.2).

4 Markov convexity and distortion

We start by showing that Hilbert space is Markov2-convex.
This has essentially been proved by Bourgain in [Bou86],
and the following proof is a rephrasing of Bourgain’s argu-



ment.

LEMMA 4.1. For every m ≥ 0 and every collection of
pointsy0, y1, . . . , y2m ∈ L2,

2m∑

i=1

‖yi − yi−1‖22 =
‖y2m − y0‖22

2m
+

m∑

k=1

1
2k

2m−k∑

j=1

‖yj2k − 2y(2j−1)2k−1 + y(j−1)2k‖22

Proof. Clearly since all the distances are squared, we may
assume thaty0, y1, . . . , y2m ∈ R. This can be proved by
induction onm, however, we will prove this using Parseval’s
identity. LetM = 2m. Consider the Haar orthonormal basis
of RM which is defined by the following vectors: For any
1 ≤ k ≤ m and any1 ≤ j ≤ 2m−k let I(k ; j) denote the
set of indices{(j − 1)2k, . . . , j2k} and define

ψI(k ; j)(i) =

{
1

2k/2 , (j − 1)2k < i ≤ (2j − 1)2k−1 ;
− 1

2k/2 , (2j − 1)2k−1 < i ≤ j2k.

Together with the vectorψ1 = 1√
M

(1, . . . , 1) this gives

2M orthonormal vectors inRM . Now let z ∈ RM by
zi = yi − yi−1, so LHS of the lemma becomes

∑M
i=1 z2

i

which by Parseval’s identity is

〈z, z〉 = 〈z, ψ1〉2 +
m∑

k=1

2m−k∑

j=1

〈z, ψI(k ; j)〉2 ,

which can easily be seen to be the RHS of the lemma.

THEOREM 4.1. Hilbert space is Markov2-convex. In fact,
Π2(L2) ≤ 2

√
2.

Proof. First, we can obviously apply Lemma 4.1 to the sets
of vectorsyj , . . . , y2m for j = 0, 1, 2, . . . , 2m. Summing
these inequalities yields

m∑

k=1

2−2k
2m∑

t=2k

‖yt − 2yt−2k−1 + yt−2k‖22

≤ 4
2m∑

i=1

‖yi − yi−1‖22.

Let {Xt}∞t=0 be a Markov chain on a state spaceΩ, and
takef : Ω → L2. By the above inequality

4
2m∑

t=2k

E‖f(Xt)− f(Xt−1)‖22 ≥

m∑

k=1

2−2k
2m∑
t=1

E‖f(Xt)−2f(Xt−2k−1)+f(Xt−2k)‖22

Observe that for every two i.i.d. random vectors
Z, Z ′ ∈ L2, and every constanta ∈ L2, E‖Z − Z ′‖22 ≤
2E‖Z − a‖22. Thus, using the fact that conditioned on
X = (X0, . . . , Xt−2k−1) the random vectorsf(Xt) and
f(X̃t(t− 2k−1)) are i.i.d., we see that

E‖f(Xt)− f(X̃t(t− 2k−1))‖22
= E

(
E

(
‖f(Xt)− f(X̃t(t− 2k−1))‖22

∣∣∣X
))

≤ 2E‖f(Xt)− 2f(Xt−2k−1) + f(X(t−2k)‖22.

The proof is complete.

4.1 Lower bounds First, we show how Markov convexity
can be used to prove Bourgain’s theorem for binary trees.

LEMMA 4.2. Let (X, d) be a Markov p-convex metric
space. For everyk ∈ N, denote bycX(Bm) the distortion
required to embedBm into X, then

cX(Bm) ≥ m1/p

Πp(X)
.

Proof. Let {Xt}∞t=0 be the forward random walk onBm

(which goes left/right each with probability 1/2), starting
from the root. And assume thatf : Bm → X is bi-Lipschitz.
Then

2m∑

i=1

E[d(f(Xi), f(Xi−1))]p ≤ 2m‖f‖p
Lip.(4.10)

Moreover, in the forward random walk, after splitting at time
r with probability at least12 two independent walks will
accumulate distance which is at least twice the number of
steps. Thus

m∑

k=1

2m∑
t=1

E
[
d

(
f (Xt) , f

(
X̃t

(
t− 2k

)))p]

2kp

≥ 1
‖f−1‖p

Lip

m∑

k=1

2m∑
t=1

1
2kp

· 1
2
· 2(k+1)p

≥ m2m

‖f−1‖p
Lip

.(4.11)

Combining (4.10) and (4.11) with the definition of Markov
p-convexity yields the required result.

4.2 The Cantor trees By anunweighted spherically sym-
metric tree(SST), we mean a finite graph theoretic treeT
with root r ∈ T which satisfies the following property: Let
v ∈ T be any internal node with childrenx, y and letTx, Ty

be the subtrees rooted atx andy; then there is a graph iso-
morphism fromTx to Ty which mapsx to y. In words, all



subtrees under a common parent node are isomorphic. We
will consider only SSTs where every internal node has one
or two children. In this case, the treeT is completely spec-
ified by (1) the number of nodes on a root leaf path, and (2)
the subset of those nodes which have two children (i.e. the
places along the path where the tree branches).

We first define a sequence of (graph-theoretic) pathsPi

for i = 0, 1, 2, . . .. We will set`i = `(Pi) to be the length
of pathPi, and we will have for eachPi a branching subset
Si ⊆ Pi. We defineP0 as a single node andS0 = P0.
Inductively, definePi+1 as follows: We glue end-to-end a
copy of Pi, then a path of length2i, then another copy
of Pi, where gluing two pathsP and Q together means
identifying the last node ofP with the first node ofQ. Thus
`i = 2`i−1 + 2i = i · 2i. Furthermore, we defineSi+1 as
the set of all nodes inPi+1 which came from some setSi

(i.e. those nodes which are in one of the two copies ofPi

and correspond to a node ofSi). ThusSi is precisely the set
of nodes which originate fromP0, and |Si| = 2i. Having
defined the pairs(Si, Pi), we now pass to the induced SST
Ci (as discussed earlier). We leave the following claim as an
exercise to the interested reader. Details will appear in the
full version.

CLAIM 4.1. BCi(c) ≤ O( c−1
c i).

THEOREM 4.2. Π2(Ci) ≥ Ω(
√

i), hence

c2(Ci) = Ω(
√

i)

= Ω
(

c

c− 1
BCi(c)

) 1
2

= Ω
(√

log log |Ci|
)

.

Proof. (sketch) Recall that̀i = i · 2i is the height ofCi,
and define{Xt}∞t=0 to be the forward random walk starting
from the root (which walks steadily down the tree, and upon
reaching a vertex with two children decides to go left/right
each with probability half), with the leaves as absorbing
states. Letm = blog2 `ic, and note thatm = Θ(i). In
order to estimateΠ2(Ck) from below, we need a bound on

sums of the form
∑2m

t=1 2−2k E
[
d

(
Xt, X̃t(t− 2k)

)2
]

.

Observe that ifXt encounters a branch point between
time t − 2k−1 and timet − 2k, then the chainsXt and
X̃t(t − 2k) will, with probability at least 1

2 , drift apart
for 2k−1 steps, accruing distance at least2k. We claim
that this occurs for at least anΩ(k/i) fraction of the times
t ∈ {1, 2, . . . , 2m}. Assuming this is true, the above sum is
at leastΩ(2mk/i). Since

∑m
k=1 Ω(2mk/i) ≥ Ω(i · 2m), and∑2m

t=1 E[d(Xt, Xt−1)2] ≤ 2m, we conclude thatΠ2(Ci) ≥
Ω(
√

i).
To verify the claim, it suffices to compute the amount

of length ofPi taken up by segments of length at least2k

which contain no branch points (i.e. points ofSi). The

total length is2i + 2 · 2i−1 + 4 · 2i−2 + . . . + 2i−k2k =
(k − i) · 2i = k−i

i `(Pi). It follows that anΩ(k/i) fraction
of Pi is composed of nodes for which there is a branch point
within distance2k−1.
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