
NONLINEAR SPECTRAL CALCULUS AND SUPER-EXPANDERS

MANOR MENDEL AND ASSAF NAOR

Abstract. Nonlinear spectral gaps with respect to uniformly convex normed spaces are
shown to satisfy a spectral calculus inequality that establishes their decay along Cesàro aver-
ages. Nonlinear spectral gaps of graphs are also shown to behave sub-multiplicatively under
zigzag products. These results yield a combinatorial construction of super-expanders, i.e.,
a sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly
convex normed space.
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1. Introduction

Let A = (aij) be an n× n symmetric stochastic matrix and let

1 = λ1(A) > λ2(A) > · · · > λn(A) > −1

be its eigenvalues. The reciprocal of the spectral gap of A, i.e., the quantity 1
1−λ2(A)

, is the

smallest γ ∈ (0,∞] such that for every x1, . . . , xn ∈ R we have

1

n2

n∑
i=1

n∑
j=1

(xi − xj)2 6
γ

n

n∑
i=1

n∑
j=1

aij(xi − xj)2. (1)

By summing over the coordinates with respect to some orthonormal basis, a restatement
of (1) is that 1

1−λ2(A)
is the smallest γ ∈ (0,∞] such that for all x1, . . . , xn ∈ L2 we have

1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖2
2 6

γ

n

n∑
i=1

n∑
j=1

aij‖xi − xj‖2
2. (2)

It is natural to generalize (2) in several ways: one can replace the exponent 2 by some
other exponent p > 0 and, much more substantially, one can replace the Euclidean geometry
by some other metric space (X, dX). Such generalizations are standard practice in metric
geometry. For the sake of presentation, it is beneficial to take this generalization to even
greater extremes, as follows. Let X be an arbitrary set and let K : X × X → [0,∞) be a
symmetric function. Such functions are sometimes called kernels in the literature, and we
shall adopt this terminology here. Define the reciprocal spectral gap of A with respect to K,
denoted γ(A,K), to be the infimum over those γ ∈ (0,∞] such that for all x1, . . . , xn ∈ X
we have

1

n2

n∑
i=1

n∑
j=1

K(xi, xj) 6
γ

n

n∑
i=1

n∑
j=1

aijK(xi, xj). (3)

In what follows we will also call γ(A,K) the Poincaré constant of the matrix A with
respect to the kernel K. Readers are encouraged to focus on the geometrically meaningful
case when K is a power of some metric on X, though as will become clear presently, a
surprising amount of ground can be covered without any assumption on the kernel K.

For concreteness we restate the above discussion: the standard gap in the linear spectrum
of A corresponds to considering Poincaré constants with respect to Euclidean spaces (i.e.,
kernels which are squares of Euclidean metrics), but there is scope for a theory of nonlinear
spectral gaps when one considers inequalities such as (3) with respect to other geometries.
The purpose of this paper is to make progress towards such a theory, with emphasis on
possible extensions of spectral calculus to nonlinear (non-Euclidean) settings. We apply
our results on calculus for nonlinear spectral gaps to construct new strong types of expander
graphs, and to resolve a question of V. Lafforgue [29]. We obtain a combinatorial construction
of a remarkable type of bounded degree graphs whose shortest path metric is incompatible
with the geometry of any uniformly convex normed space in a very strong sense (i.e., coarse
non-embeddability). The existence of such graph families was first discovered by Lafforgue
via a tour de force algebraic construction [29] . Our work indicates that there is hope for a
useful and rich theory of nonlinear spectral gaps, beyond the sporadic (though often highly
nontrivial) examples that have been previously studied in the literature.
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1.1. Coarse non-embeddability. A sequence of metric spaces {(Xn, dXn)}∞n=1 is said to
embed coarsely (with the same moduli) into a metric space (Y, dY ) if there exist two non-
decreasing functions α, β : [0,∞) → [0,∞) such that limt→∞ α(t) = ∞, and there exist
mappings fn : Xn → Y , such that for all n ∈ N and x, y ∈ Xn we have

α (dXn(x, y)) 6 dY (fn(x), fn(y)) 6 β (dXn(x, y)) . (4)

(4) is a weak form of “metric faithfulness” of the mappings fn; a seemingly humble require-
ment that can be restated informally as “large distances map uniformly to large distances”.
Nevertheless, this weak notion of embedding (much weaker than, say, bi-Lipschitz embed-
dability) has beautiful applications in geometry and group theory; see [18, 71, 12, 68, 20]
and the references therein for examples of such applications.

Since coarse embeddability is a weak requirement, it is quite difficult to prove coarse non-
embeddability. Very few methods to establish such a result are known, among which is the
use of nonlinear spectral gaps, as pioneered by Gromov [19] (other such methods include
coarse notions of metric dimension [18], or the use of metric cotype [45]. These methods do
not seem to be applicable to the question that we study here). Gromov’s argument is simple:
fix d ∈ N and suppose that Xn = (Vn, En) are connected d-regular graphs and that dXn(·, ·)
is the shortest-path metric induced by Xn on Vn. Suppose also that there exist p, γ ∈ (0,∞)
such that for every n ∈ N and f : Vn → Y we have

1

|Vn|2
∑

(u,v)∈Vn×Vn

dY (f(u), f(v))p 6
γ

d|Vn|
∑

(x,y)∈En

dY (f(x), f(y))p. (5)

A combination of (4) and (5) yields the bound

1

|Vn|2
∑

(u,v)∈Vn×Vn

α (dXn(u, v))p 6 γβ(1)p.

But, since Xn is a bounded degree graph, at least half of the pairs of vertices (u, v) ∈ Vn×Vn
satisfy dXn(u, v) > cd log |Vn|, where cd ∈ (0,∞) depends on the degree d but not on n. Thus
α(cd log |Vn|)p 6 2γβ(1)p, and in particular if limn→∞ |Vn| = ∞ then we get a contradiction
to the assumption limt→∞ α(t) =∞. Observe in passing that this argument also shows that
the metric space (Xn, dXn) has bi-Lipschitz distortion Ω(log |Vn|) in Y ; such an argument
was first used by Linial, London and Rabinovich [35] (see also [41]) to show that Bourgain’s
embedding theorem [10] is asymptotically sharp.

Assumption (5) can be restated as saying that γ(An, d
p
Y ) 6 γ, where An is the normalized

adjacency matrix of Xn. This condition can be viewed to mean that the graphs {Xn}∞n=1

are “expanders” with respect to (Y, dY ). Note that if Y contains at least two points then (5)
implies that {Xn}∞n=1 are necessarily also expanders in the classical sense (see [21, 36] for
more on classical expanders).

A key goal in the coarse non-embeddability question is therefore to construct such {Xn}∞n=1

for which one can prove the inequality (5) for non-Hilbertian targets Y . This question has
been previously investigated by several authors. Matoušek [41] devised an extrapolation
method for Poincaré inequalities (see also the description of Matoušek’s argument in [6])
which establishes the validity of (5) for every expander when Y = Lp. Works of Ozawa [57]
and Pisier [60, 63] prove (5) for every expander if Y is Banach space which satisfies certain
geometric conditions (e.g. Y can be taken to be a Banach lattice of finite cotype; see [34]
for background on these notions). In [56, 53] additional results of this type are obtained.
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A normed space is called super-reflexive if it admits an equivalent norm which is uniformly
convex. Recall that a normed space (X, ‖ · ‖X) is uniformly convex if for every ε ∈ (0, 1)
there exists δ = δX(ε) > 0 such that for any two vectors x, y ∈ X with ‖x‖X = ‖y‖X = 1
and ‖x− y‖X > ε we have

∥∥x+y
2

∥∥
X
6 1− δ. The question whether there exists a sequence of

arbitrarily large regular graphs of bounded degree which do not admit a coarse embedding
into any super-reflexive normed space was posed by Kasparov and Yu in [27], and was solved
in the remarkable work of V. Lafforgue [29] on the strengthened version of property (T ) for
SL3(F) when F is a non-Archimedian local field (see also [3, 31]). Thus, for concreteness,
Lafforgue’s graphs can be obtained as Cayley graphs of finite quotients of co-compact lattices
in SL3(Qp), where p is a prime and Qp is the p-adic rationals. The potential validity of the
same property for finite quotients of SL3(Z) remains an intriguing open question [29].

Here we obtain a different solution of the Kasparov-Yu problem via a new approach that
uses the zigzag product of Reingold, Vadhan, and Wigderson [67], as well as a variety of
analytic and geometric arguments of independent interest. More specifically, we construct a
family of 3-regular graphs that satisfies (5) for every super-reflexive Banach space X (where
γ depends only on the geometry X); such graphs are called super-expanders.

Theorem 1.1 (Existence of super-expanders). There exists a sequence of 3-regular graphs
{Gn = (Vn, En)}∞n=1 such that limn→∞ |Vn| = ∞ and for every super-reflexive Banach space
(X, ‖ · ‖X) we have

sup
n∈N

γ
(
AGn , ‖ · ‖2

X

)
<∞,

where AGn is the normalized adjacency matrix of Gn.

As we explained earlier, the existence of super-expanders was previously proved by Laf-
forgue [29]. Theorem 1.1 yields a second construction of such graphs (no other examples are
currently known). Our proof of Theorem 1.1 is entirely different from Lafforgue’s approach:
it is based on a new systematic investigation of nonlinear spectral gaps and an elementary
procedure which starts with a given small graph and iteratively increases its size so as to
obtain the desired graph sequence. In fact, our study of nonlinear spectral gaps constitutes
the main contribution of this work, and the new solution of the Kasparov-Yu problem should
be viewed as an illustration of the applicability of our analytic and geometric results, which
will be described in detail presently.

We state at the outset that it is a major open question whether every expander graph
sequence satisfies (5) for every uniformly convex normed space X. It is also unknown whether
there exist graph families of bounded degree and logarithmic girth that do not admit a coarse
embedding into any super-reflexive normed space; this question is of particular interest in the
context of the potential application to the Novikov conjecture that was proposed by Kasparov
and Yu in [27], since it would allow one to apply Gromov’s random group construction [19]
with respect to actions on super-reflexive spaces.

Some geometric restriction on the target space X must be imposed in order for it to
admit a sequence of expanders. Indeed, the relation between nonlinear spectral gaps and
coarse non-embeddability, in conjunction with the fact that every finite metric space embeds
isometrically into `∞, shows that (for example) X = `∞ can never satisfy (5) for a family of
graphs of bounded degree and unbounded cardinality. We conjecture that for a normed space
X the existence of such a graph family is equivalent to having finite cotype, i.e., that there
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exists ε0 ∈ (0,∞) and n0 ∈ N such that any embedding of `n0
∞ into X incurs bi-Lipschitz

distortion at least 1 + ε0; see e.g. [42] for background on this notion.
Our approach can also be used (see Remark 4.4 below) to show that there exist bounded

degree graph sequences which do not admit a coarse embedding into any K-convex normed
space. A normed space X is K-convex1. if there exists ε0 > 0 and n0 ∈ N such that any
embedding of `n0

1 into X incurs distortion at least 1+ε0; see [61]. The question whether such
graph sequences exist was asked by Lafforgue [29]. Independently of our work, Lafforgue [30]
succeeded to modify his argument so as to prove the desired coarse non-embeddability into
K-convex spaces for his graph sequence as well.

1.2. Absolute spectral gaps. The parameter γ(A,K) will reappear later, but for several
purposes we need to first study a variant of it which corresponds to the absolute spectral
gap of a matrix. Define

λ(A)
def
= max

i∈{2,...,n}
|λi(A)|,

and call the quantity 1 − λ(A) the absolute spectral gap of A. Similarly to (2), the re-
ciprocal of the absolute spectral gap of A is the smallest γ+ ∈ (0,∞] such that for all
x1, . . . , xn, y1, . . . , yn ∈ L2 we have

1

n2

n∑
i=1

n∑
j=1

‖xi − yj‖2
2 6

γ+

n

n∑
i=1

n∑
j=1

aij‖xi − yj‖2
2. (6)

Analogously to (3), given a kernel K : X ×X → [0,∞) we can then define γ+(A,K) to be
the the infimum over those γ+ ∈ (0,∞] such that for all x1, . . . , xn, y1, . . . , yn ∈ X we have

1

n2

n∑
i=1

n∑
j=1

K(xi, yj) 6
γ+

n

n∑
i=1

n∑
j=1

aijK(xi, yj). (7)

Note that clearly γ+(A,K) > γ(A,K). Additional useful relations between γ(·, ·) and γ+(·, ·)
are discussed in Section 2.2.

1.3. A combinatorial approach to the existence of super-expanders. In what follows
we will often deal with finite non-oriented regular graphs, which will always be allowed to
have self loops and multiple edges (note that the shortest-path metric is not influenced
by multiple edges or self loops). When discussing a graph G = (V,E) it will always be
understood that V is a finite set and E is a multi-subset of the ordered pairs V × V , i.e.,
each ordered pair (u, v) ∈ V × V is allowed to appear in E multiple times2. We also always
impose the condition (u, v) ∈ E =⇒ (v, u) ∈ E, corresponding to the fact that G is not
oriented. For (u, v) ∈ V × V we denote by E(u, v) = E(v, u) the number of times that
(u, v) appears in E. Thus, the graph G is completely determined by the integer matrix
(E(u, v))(u,v)∈V×V . The degree of u ∈ V is degG(u) =

∑
v∈V E(u, v). Under this convention

each self loop contributes 1 to the degree of a vertex. For d ∈ N, a graph G = (V,E) is
d-regular if degG(u) = d for every u ∈ V . The normalized adjacency matrix of a d-regular

1K-convexity is also equivalent to X having Rademacher type strictly bigger than 1, see [49, 42]. The
K-convexity property is strictly weaker than super-reflexivity, see [22, 24, 23, 64]

2Formally, one can alternatively think of E as a subset of (V × V )× N, with the understanding that for
(u, v) ∈ V × V , if we write J = {j ∈ N : ((u, v), j) ∈ E} then {(u, v)} × J are the |J | “copies” of (u, v) that
appear in E. However, it will not be necessary to use such formal notation in what follows.
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graph G = (V,E), denoted AG, is defined as usual by letting its entry at (u, v) ∈ V × V be
equal to E(u, v)/d. When discussing Poincaré constants we will interchangeably identify G
with AG. Thus, for examples, we write λ(G) = λ(AG) and γ+(G,K) = γ+(AG, K).

The starting point of our work is an investigation of the behavior of the quantity γ+(G,K)
under certain graph products, the most important of which (for our purposes) is the zigzag
product of Reingold, Vadhan and Wigderson [67]. We argue below that such combinatorial
constructions are well-adapted to controlling the nonlinear quantity γ+(G,K). This crucial
fact allows us to use them in a perhaps unexpected geometric context.

1.3.1. The iterative strategy. Reingold, Vadhan and Wigderson [67] introduced the zigzag
product of graphs, and used it to produce a novel deterministic construction of expanders.
Fix n1, d1, d2 ∈ N. Let G1 be a graph with n1 vertices which is d1-regular and let G2 be a
graph with d1 vertices which is d2-regular. The zigzag product G1 z©G2 is a graph with n1d1

vertices and degree d2
2, for which the following fundamental theorem is proved in [67].

Theorem 1.2 (Reingold, Vadhan and Wigderson). There exists f : [0, 1] × [0, 1] → [0, 1]
satisfying

∀ t ∈ (0, 1), lim sup
s→0

f(s, t) < 1, (8)

such that for every n1, d1, d2 ∈ N, if G1 is a graph with n1 vertices which is d1-regular and
G2 is a graph with d2 vertices which is d2-regular then

λ(G1 z©G2) 6 f(λ(G1), λ(G2)). (9)

The definition of G1 z©G2 is recalled in Section 8. For the purpose of expander construc-
tions one does not need to know anything about the zigzag product other than that it has
n1d1 vertices and degree d2

2, and that it satisfies Theorem 1.2. Also, [67] contains explicit
algebraic expressions for functions f for which Theorem 1.2 holds true, but we do not need
to quote them here because they are irrelevant to the ensuing discussion.

In order to proceed it would be instructive to briefly recall how Reingold, Vadhan and
Wigderson used [67] Theorem 1.2 to construct expanders; see also the exposition in Sec-
tion 9.2 of [21].

Let H be a regular graph with n0 vertices and degree d0, such that λ(H) < 1. Such a
graph H will be called a base graph in what follows. From (8) we deduce that there exist
ε, δ ∈ (0, 1) such that

s ∈ (0, δ) =⇒ f(s, λ(H)) < 1− ε. (10)

Fix t0 ∈ N satisfying
max

{
λ(H)2t0 , (1− ε)t0

}
< δ. (11)

For a graph G = (V,E) and for t ∈ N, let Gt be the graph in which an edge between
u, v ∈ V is drawn for every walk in G of length t whose endpoints are u, v. Thus AGt = (AG)t,
and if G is d-regular then Gt is dt-regular.

Assume from now on that n0 = d2t0
0 . Define G1 = H2 and inductively

Gi+1 = Gt0
i z©H.

Then for all i ∈ N the graph Gi is well defined and has ni0 = d2it0
0 vertices and degree d2

0.
We claim that λ(Gi) 6 max{λ(H)2, 1 − ε} for all i ∈ N. Indeed, there is nothing to prove
for i = 1, and if the desired bound is true for i then (11) implies that λ(Gt0

i ) = λ(Gi)
t0 < δ,

which by (9) and (10) implies that λ(Gi+1) 6 f(λ(Gt0
i ), λ(H)) < 1− ε.
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Our strategy is to attempt to construct super-expanders via a similar iterative approach.
It turns out that obtaining a non-Euclidean version of Theorem 1.2 (which is the seemingly
most substantial ingredient of the construction of Reingold, Vadhan and Wigderson) is not
an obstacle here due to the following general result.

Theorem 1.3 (Zigzag sub-multiplicativity). Let G1 = (V1, E1) be an n1-vertex graph which
is d1-regular and let G2 = (V2, E2) be a d1-vertex graph which is d2-regular. Then every
kernel K : X ×X → [0,∞) satisfies

γ+ (G1 z©G2, K) 6 γ+(G1, K) · γ+(G2, K)2. (12)

In the special case X = R and K(x, y) = (x− y)2, Theorem 1.3 becomes

1

1− λ(G1 z©G2)
6

1

1− λ(G1)
· 1

(1− λ(G2))2
, (13)

implying Theorem 1.2. Note that the explicit bound on the function f of Theorem 1.2 that
follows from (13) coincides with the later bound of Reingold, Trevisan and Vadhan [66].
In [67] an improved bound for λ(G1 z©G2) is obtained which is better than the bound of [66]
(and hence also (13)), though this improvement in lower-order terms has not been used (so
far) in the literature. Theorem 1.3 shows that the fact that the zigzag product preserves
spectral gaps has nothing to do with the underlying Euclidean geometry (or linear algebra)
that was used in [67, 66]: this is a truly nonlinear phenomenon which holds in much greater
generality, and simply amounts to an iteration of the Poincaré inequality (7).

Due to Theorem 1.3 there is hope to carry out an iterative construction based on the zigzag
product in great generality. However, this cannot work for all kernels since general kernels
can fail to admit a sequence of bounded degree expanders. There are two major obstacles
that need to be overcome. The first obstacle is the existence of a base graph, which is
a substantial issue whose discussion is deferred to Section 1.3.4. The following subsection
describes the main obstacle to our nonlinear zigzag strategy.

1.3.2. The need for a calculus for nonlinear spectral gaps. In the above description of the
Reingold-Vadhan-Wigderson iteration we tacitly used the identity λ(At) = λ(A)t (t ∈ N) in
order to increase the spectral gap of Gi in each step of the iteration. While this identity is
a trivial corollary of spectral calculus, and was thus the “trivial part” of the construction
in [67], there is no reason to expect that γ+(At, K) decreases similarly with t for non-
Euclidean kernels K : X × X → [0,∞). To better grasp what is happening here let us
examine the asymptotic behavior of γ+(At, | · |2) as a function of t (here and in what follows
| · | denotes the absolute value on R).

γ+

(
At, | · |2

)
=

1

1− λ(At)
=

1

1− λ(A)t

=
1

1−
(

1− 1
γ+(A,|·|2)

)t � max

{
1,
γ+ (A, | · |2)

t

}
, (14)

where above, and in what follows, � denotes equivalence up to universal multiplicative
constants (we will also use the notation .,& to express the corresponding inequalities up to
universal constants). (14) means that raising a matrix to a large power t ∈ N corresponds
to decreasing its (real) Poincaré constant by a factor of t as long as it is possible to do so.
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For our strategy to work for other kernels K : X×X → [0,∞) we would like K to satisfy a
“spectral calculus” inequality of this type, i.e., an inequality which ensures that, if γ+(A,K)
is large, then γ+(At, K) is much smaller than γ+(A,K) for sufficiently large t ∈ N. This is,
in fact, not the case in general: in Section 9.2 we construct a metric space (X, dX) such that
for each n ∈ N there is a symmetric stochastic matrix An such that γ+(An, d

2
X) > n yet for

every t ∈ N there is n0 ∈ N such that for all n > n0 we have γ+(Atn, d
2
X) & γ+(An, d

2
X). The

question which metric spaces satisfy the desired nonlinear spectral calculus inequality thus
becomes a subtle issue which we believe is of fundamental importance, beyond the particular
application that we present here. A large part of the present paper is devoted to addressing
this question. We obtain rather satisfactory results which allow us to carry out a zigzag type
construction of super-expanders, though we are still quite far from a complete understanding
of the behavior of nonlinear spectral gaps under graph powers for non-Euclidean geometries.

1.3.3. Metric Markov cotype and spectral calculus. We will introduce a criterion for a metric
space (X, dX), which is a bi-Lipschitz invariant, and prove that it implies that for every
n,m ∈ N and every n × n symmetric stochastic matrix A the Cesàro averages 1

m

∑m−1
t=0 At

satisfy the following spectral calculus inequality.

γ+

(
1

m

m−1∑
t=0

At, d2
X

)
6 C(X) max

{
1,
γ+ (A, d2

X)

mε(X)

}
, (15)

where C(X), ε(X) ∈ (0,∞) depend only on the geometry of X but not on m,n and the
matrix A. The fact that we can only prove such an inequality for Cesàro averages rather
than powers does not create any difficulty in the ensuing argument, since Cesàro averages
are compatible with iterative graph constructions based on the zigzag product.

Note that Cesàro averages have the following combinatorial interpretation in the case of
graphs. Given an n-vertex d-regular graph G = (V,E) let Am(G) be the graph whose vertex
set is V and for every t ∈ {0, . . . ,m − 1} and u, v ∈ V we draw dm−1−t edges joining u, v
for every walk in G of length t which starts at u and terminates at v. With this definition
AAm(G) = 1

m

∑m−1
t=0 AtG, and Am(G) is mdm−1-regular. We will slightly abuse this notation

by also using the shorthand

Am(A)
def
=

1

m

m−1∑
t=0

At, (16)

when A is an n× n matrix.
In the important paper [4] K. Ball introduced a linear property of Banach spaces that he

called Markov cotype 2, and he indicated a two-step definition that could be used to extend
this notion to general metric spaces. Motivated by Ball’s ideas, we consider the following
variant of his definition.

Definition 1.4 (Metric Markov cotype). Fix p, q ∈ (0,∞). A metric space (X, dX) has
metric Markov cotype p with exponent q if there exists C ∈ (0,∞) such that for every
m,n ∈ N, every n × n symmetric stochastic matrix A = (aij), and every x1, . . . , xn ∈ X,
there exist y1, . . . , yn ∈ X satisfying

n∑
i=1

dX(xi, yi)
q +mq/p

n∑
i=1

n∑
j=1

aijdX(yi, yj)
q 6 Cq

n∑
i=1

n∑
j=1

Am(A)ijdX(xi, xj)
q. (17)
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The infimum over those C ∈ (0,∞) for which (17) holds true is denoted C
(q)
p (X, dX). When

q = p we drop the explicit mention of the exponent and simply say that if (17) holds true
with q = p then (X, dX) has metric Markov cotype p.

Remark 1.5. We refer to [51, Sec. 4.1] for an explanation of the background and geometric
intuition that motivates the (admittedly cumbersome) terminology of Definition 1.4. Briefly,
the term “cotype” indicates that this definition is intended to serve as a metric analog of
the important Banach space property Rademacher cotype (see [42]). Despite this fact, in the
the forthcoming paper [47] we show, using a clever idea of Kalton [25], that there exists a
Banach space with Rademacher cotype 2 that does not have metric Markov cotype p for any
p ∈ (0,∞). The term “Markov” in Definition 1.4 refers to the fact that the notion of metric
Markov cotype is intended to serve as a certain “dual” to Ball’s notion of Markov type [4],
which is a notion which is defined in terms of the geometric behavior of stationary reversible
Markov chains whose state space is a finite subset of X.

Remark 1.6. Ball’s original definition [4] of metric Markov cotype is seemingly different from
Definition 1.4, but in [47] we show that Definition 1.4 is equivalent to Ball’s definition. We
introduced Definition 1.4 since it directly implies Theorem 1.7 below.

The link between Definition 1.4 and the desired spectral calculus inequality (15) is con-
tained in the following theorem, which is proved in Section 3.

Theorem 1.7 (Metric Markov cotype implies nonlinear spectral calculus). Fix p, C ∈ (0,∞)
and suppose that a metric space (X, dX) satisfies

C(2)
p (X, dX) 6 C.

Then for every m,n ∈ N, every n× n symmetric stochastic matrix A satisfies

γ+

(
Am(A), d2

X

)
6 (45C)2 max

{
1,
γ+ (A, d2

X)

m2/p

}
.

In Section 6.3 we investigate the metric Markov cotype of super-reflexive Banach spaces,
obtaining the following result, whose proof is inspired by Ball’s insights in [4].

Theorem 1.8 (Metric Markov cotype for super-reflexive Banach spaces). Let (X, ‖ · ‖X) be
a super-reflexive Banach space. Then there exists p = p(X) ∈ [2,∞) such that

C(2)
p (X, ‖ · ‖X) <∞,

i.e., (X, ‖ · ‖X) has Metric Markov cotype p with exponent 2.

Remark 1.9. In our forthcoming paper [47] we compute the metric Markov cotype of ad-
ditional classes of metric spaces. In particular, we show that all CAT (0) metric spaces
(see [11]), and hence also all complete simply connected Riemannian manifolds with non-
negative sectional curvature, have Metric Markov cotype 2 with exponent 2.

By combining Theorem 1.7 and Theorem 1.8 we deduce the following result.

Corollary 1.10 (Nonlinear spectral calculus for super-reflexive Banach spaces). For every
super-reflexive Banach space (X, ‖ · ‖X) there exist ε(X), C(X) ∈ (0,∞) such that for every
m,n ∈ N and every n× n symmetric stochastic matrix A we have

γ+

(
Am(A), ‖ · ‖2

X

)
6 C(X) max

{
1,
γ+ (A, ‖ · ‖2

X)

mε(X)

}
.
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Remark 1.11. In Theorem 6.7 below we present a different approach to proving nonlinear
spectral calculus inequalities in the setting of super-reflexive Banach spaces. This approach,
which is based on bounding the norm of a certain linear operator, has the advantage that
it establishes the decay of the Poincaré constant of the power Am rather than the Cesàro
average Am(A). While this result is of independent geometric interest, the form of the
decay inequality that we are able to obtain has the disadvantage that we do not see how
to use it to construct super-expanders. Moreover, we do not know how to obtain sub-
multiplicativity estimates for such norm bounds under zigzag products and other graph
products such as the tensor product and replacement product (see Section 1.3.5 below).
The approach based on metric Markov cotype also has the advantage of being applicable to
other classes of (non-Banach) metric spaces, in addition to its usefulness for the Lipschitz
extension problem [4, 47].

1.3.4. The base graph. In order to construct super-expanders using Theorem 1.3 and Corol-
lary 1.10 one must start the inductive procedure with an appropriate “base graph”. This is
a nontrivial issue that raises analytic challenges which are interesting in their own right.

It is most natural to perform our construction of base graphs in the context of K-convex
Banach spaces, which, as we recalled earlier, is a class of spaces that is strictly larger than
the class of super-reflexive spaces. The result thus obtained, proved in Section 7 using the
preparatory work in Section 5.2 and part of Section 6, reads as follows.

Lemma 1.12 (Existence of base graphs for K-convex spaces). There exists a strictly in-
creasing sequence of integers {mn}∞n=1 ⊆ N satisfying

∀n ∈ N, 2n/10 6 mn 6 2n, (18)

with the following properties. For every δ ∈ (0, 1] there is n0(δ) ∈ N and a sequence of
regular graphs {Hn(δ)}∞n=n0(δ) such that

• |V (Hn(δ))| = mn for every integer n > n0(δ).
• For every n ∈ [n0(δ),∞) ∩ N the degree of Hn(δ), denoted dn(δ), satisfies

dn(δ) 6 e(logmn)1−δ . (19)

• For every K-convex Banach space (X, ‖ · ‖X) we have γ+(Hn(δ), ‖ · ‖2
X) <∞ for all

δ ∈ (0, 1) and n ∈ N ∩ [n0(δ),∞). Moreover, there exists δ0(X) ∈ (0, 1) such that

∀ δ ∈ (0, δ0(X)], ∀n ∈ [n0(δ),∞) ∩ N, γ+(Hn(δ), ‖ · ‖2
X) 6 93. (20)

The bound 93 in (20) is nothing more than an artifact of our proof and it does not play
a special role in what follows: all that we will need for the purpose of constructing super-
expanders is to ensure that

sup
δ∈(0,δ0(X)]

sup
n∈[n0(δ),∞)∩N

γ+(Hn(δ), ‖ · ‖2
X) <∞, (21)

i.e., for our purposes the upper bound on γ+(Hn(δ), ‖ · ‖2
X) can be allowed to depend on X.

Moreover, in the ensuing arguments we can make do with a degree bound that is weaker
than (19): all we need is that

∀ δ ∈ (0, 1), lim
n→∞

log dn(δ)

logmn

= 0. (22)
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However, we do not see how to prove the weaker requirements (21), (22) in a substantially
simpler way than our proof of the stronger requirements (19), (20).

The starting point of our approach to construct base graphs is the “hypercube quotient
argument” of [28], although in order to apply such ideas in our context we significantly modify
this construction, and apply deep methods of Pisier [61, 62]. A key analytic challenge that
arises here is to bound the norm of the inverse of the hypercube Laplacian on the vector-
valued tail space, i.e., the space of all functions taking values in a Banach space X whose
Fourier expansion is supported on Walsh functions corresponding to large sets. If X is a
Hilbert space then the desired estimate is an immediate consequence of orthogonality, but
even whenX is an Lp(µ) space the corresponding inequalities are not known. P.-A. Meyer [48]
previously obtained Lp bounds for the inverse of the Laplacian on the (real-valued) tail space,
but such bounds are insufficient for our purposes. In order to overcome this difficulty, in
Section 5 we obtain decay estimates for the heat semigroup on the tail space of functions
taking values in a K-convex Banach space. We then use (in Section 7) the heat semigroup
to construct a new (more complicated) hypercube quotient by a linear code which can serve
as the base graph of Lemma 1.12.

The bounds on the norm of the heat semigroup on the vector valued tail space (and
the corresponding bounds on the norm of the inverse of the Laplacian) that are proved
in Section 5 are sufficient for the purpose of proving Lemma 1.12, but we conjecture that
they are suboptimal. Section 5 contains analytic questions along these lines whose positive
solution would yield a simplification of our construction of the base graph (see Remark 7.5).

With all the ingredients in place (Theorem 1.3, Corollary 1.10, Lemma 1.12), the actual
iterative construction of super-expanders in performed in Section 4. Since we need to con-
struct a single sequence of bounded degree graphs that has a nonlinear spectral gap with
respect to all super-reflexive Banach spaces, our implementation of the zigzag strategy is
significantly more involved than the zigzag iteration of Reingold, Vadhan and Wigderson
(recall Section 1.3.1). This implementation itself may be of independent interest.

1.3.5. Sub-multiplicativity theorems for graph products. Theorem 1.3 is a special case of a
a larger family of sub-multiplicativity estimates for nonlinear spectral gaps with respect to
certain graph products. The literature contains several combinatorial procedures to com-
bine two graphs, and it turns out that such constructions are often highly compatible with
nonlinear Poincaré inequalities. In Section 8 we further investigate this theme.

The main results of Section 8 are collected in the following theorem (the relevant termi-
nology is discussed immediately after its statement). Item (II) below is nothing more than
a restatement of Theorem 1.3.

Theorem 1.13. Fix m,n, n1, d1, d2 ∈ N. Suppose that K : X × X → [0,∞) is a kernel
and (Y, dY ) is a metric space. Suppose also that G1 = (V1, E1) is a d1-regular graph with n1

vertices and G2 = (V2, E2) is a d2-regular graph with d1 vertices. Then,

(I) If A = (aij) is an m × m symmetric stochastic matrix and B = (bij) is an n × n
symmetric stochastic matrix then the tensor product A⊗B satisfies

γ+(A⊗B,K) 6 γ+(A,K) · γ+(B,K). (23)

(II) The zigzag product G1 z©G2 satisfies

γ+ (G1 z©G2, K) 6 γ+(G1, K) · γ+(G2, K)2. (24)
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(III) The derandomized square G1 s©G2 satisfies

γ+ (G1 s©G2, K) 6 γ+

(
G2

1, K
)
· γ+(G2, K). (25)

(IV) The replacement product G1 r©G2 satisfies

γ+

(
G1 r©G2, d

2
Y

)
6 3(d2 + 1) · γ+

(
G1, d

2
Y

)
· γ+

(
G2, d

2
Y

)2
. (26)

(V) The balanced replacement product G1 b©G2 satisfies

γ+

(
G1 b©G2, d

2
Y

)
6 6 · γ+

(
G1, d

2
Y

)
· γ+

(
G2, d

2
Y

)2
. (27)

Since the (mn) × (mn) matrix A ⊗ B = (aijbk`) satisfies λ(A ⊗ B) = max{λ(A), λ(B)},
in the Euclidean case, i.e., K : R× R→ [0,∞) is given by K(x, y) = (x− y)2, the product
in the right hand side of (23) can be replaced by a maximum. Lemma 8.2 below contains a
similar improvement of (23) under additional assumptions on the kernel K.

The definitions of the graph products G1 z©G2, G1 s©G2, G1 r©G2, G1 b©G2 are recalled in
Section 8. The replacement product G1 r©G2, which is a (d2 + 1)-regular graph with n1d1

vertices, was introduced by Gromov in [17], where he applied it iteratively to hypercubes of
logarithmically decreasing size so as to obtain a constant degree graph which has sufficiently
good expansion for his (geometric) application. In [17] Gromov bounded λ(G1 r©G2) from
above by an expression involving only λ(G1), λ(G2), d2. Such a bound was also obtained by
Reingold, Vadhan and Wigderson in [67]. We shall use (26) in the proof of Theorem 1.1.

The breakthrough of Reingold, Vadhan and Wigderson [67] introduced the zigzag product,
which can be used to construct constant degree expanders; the fact that (24) holds true for
general kernels K, while (26) assumes that dY is a metric and incurs a multiplicative loss of
3(d2 + 1) can be viewed as an indication why the zigzag product is a more basic operation
than the replacement product.

The balanced replacement product G1 b©G2, which is a 2d2-regular graph with n1d1 ver-
tices, was introduced by Reingold, Vadhan and Wigderson [67], who bounded λ(G1 b©G2)
from above by an expression involving only λ(G1), λ(G2).

The derandomized square G1 s©G2, which is a d1d2-regular graph with n1 vertices, was
introduced by Rozenman and Vadhan in [69], where they bounded λ(G1 s©G2) from above
by an expression involving only λ(G1), λ(G2). This operation is of a different nature: it aims
to create a graph that has spectral properties similar to the square G2

1, but with significantly
fewer edges. In [67, 69] tensor products and derandomized squaring were used to improve
the computational efficiency of zigzag constructions. The general bounds (23) and (25) can
be used to improve the efficiency of our constructions in a similar manner, but we will not
explicitly discuss computational efficiency issues in this paper (this, however, is relevant to
our forthcoming paper [46], where our construction is used for an algorithmic purpose).

2. Preliminary results on nonlinear spectral gaps

The purpose of this section is to record some simple and elementary preliminary facts
about nonlinear spectral gaps that will be used throughout this article. One can skip this
section on first reading and refer back to it only when the facts presented here are used in
the subsequent sections.
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2.1. The trivial bound for general graphs. For κ ∈ [0,∞) a kernel ρ : X ×X → [0,∞)
is called a 2κ-quasi-semimetric if ρ(x, x) = 0 for every x ∈ X and

∀x, y, z ∈ X, ρ(x, y) 6 2κ (ρ(x, z) + ρ(z, y)) . (28)

The key examples of 2κ-quasi-semimetrics are of the form ρ = dpX , where dX : X×X → [0,∞)
is a semimetric and p ∈ [1,∞), in which case κ = p − 1 (in fact, all quasi-semimetrics are
obtained in this way; see [26, Sec. 2] and [38, 58]).

Lemma 2.1. Fix n, d ∈ N and κ ∈ [0,∞). Let G = (V,E) be a d-regular connected graph
with n vertices. Then for every 2κ-quasi-semimetric ρ : X ×X → [0,∞) we have

γ(G, ρ) 6 2κ−1dnκ+1. (29)

If in addition G is not a bipartite graph then

γ+(G, ρ) 6 22κdnκ+1. (30)

Proof. For every x, y ∈ V choose distinct {ux,y0 = x, ux,y1 , . . . , ux,ymx,y−1, u
x,y
mx,y = y} ⊆ V such

that (ux,yi , ux,yi−1) ∈ E for every i ∈ {1, . . . ,mx,y}, and (ux,yi , ux,yi−1) 6= (ux,yj , ux,yj−1) for distinct
i, j ∈ {1, . . . ,mx,y}. Fixing f : V → X, a straightforward inductive application of (28) yields

ρ(f(x), f(y)) 6 (2mx,y)
κ

mx,y∑
i=1

ρ
(
f
(
ux,yi−1

)
, f (ux,yi )

)
6 (2n)κ

mx,y∑
i=1

ρ
(
f
(
ux,yi−1

)
, f (ux,yi )

)
.

Thus

1

n2

∑
(x,y)∈V×V

ρ(f(x), f(y)) 6
(2n)κ

n2

∑
(x,y)∈V×V

mx,y∑
i=1

ρ
(
f
(
ux,yi−1

)
, f (ux,yi )

)
6

(2n)κ
(
n
2

)
n2

∑
(a,b)∈E

ρ(f(a), f(b)) 6
(2n)κnd

2
· 1

nd

∑
(a,b)∈E

ρ(f(a), f(b)).

This proves (29). To prove (30) suppose that G is connected but not bipartite. Then for
every x, y ∈ V there exists a path of odd length joining x and y whose total length is at most
2n and in which each edge is repeated at most once (indeed, being non-bipartite, G contains
an odd cycle c; the desired path can be found by considering the shortest paths joining x
and y with c). Let {wx,y0 = x,wx,y1 , . . . , wx,ym−1, w

x,y
2`x,y+1 = y} ⊆ V be such a path. For every

f, g : V → X we have∑
(x,y)∈V×V

ρ(f(x), g(y)) 6
∑

(x,y)∈V×V

(4`x,y + 2)κ

(
ρ (f (wx,y0 ) , g (wx,y1 ))

+

`x,y∑
i=1

(
ρ
(
g
(
wx,y2i−1

)
, f (wx,y2i )

)
+ ρ

(
f (wx,y2i ) , g

(
wx,y2i+1

))))
6 (4n)κ · n2

∑
(a,b)∈E

ρ(f(a), g(b)),

implying (30). �
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Remark 2.2. For n ∈ N let Cn denote the n-cycle and let C◦n denote the n-cycle with self
loops (thus C◦n is a 3-regular graph). It follows from Lemma 2.1 that γ(Cn, ρ) . (2n)κ+1

and γ+(C◦n, ρ) . (4n)κ+1 for every 2κ-quasi-semimetric. If (X, dX) is a metric space and
p ∈ [1,∞) then one can refine the above arguments using the symmetry of the circle to get
the improved bound

γ+(C◦n, d
p
X) .

(n+ 1)p

p2p
. (31)

We omit the proof of (31) since the improved dependence on p is not used in the ensuing
discussion.

2.2. γ versus γ+. By taking f = g in the definition of γ+(·, ·) one immediately sees that
γ(A,K) 6 γ+(A,K) for every kernel K : X ×X → [0,∞) and every symmetric stochastic
matrix A. Here we investigate additional relations between these quantities.

Lemma 2.3. Fix κ ∈ [0,∞) and let ρ : X × X → [0,∞) be a 2κ-quasi-semimetric. Then
for every symmetric stochastic matrix A we have

2

2κ+1 + 1
γ (( 0 A

A 0 ) , ρ) 6 γ+ (A, ρ) 6 2γ (( 0 A
A 0 ) , ρ) . (32)

Proof. Fix f, g : {1, . . . , n} → X and define h : {1, . . . , 2n} → X by

h(i)
def
=

{
f(i) if i ∈ {1, . . . , n},
g(i− n) if i ∈ {n+ 1, . . . , 2n}.

Suppose that A = (aij) is an n× n symmetric stochastic matrix. Then

1

n2

n∑
i=1

n∑
j=1

ρ(f(i), g(j)) =
1

n2

n∑
i=1

n∑
j=1

ρ(h(i), h(j + n)) 6
1

2n2

2n∑
i=1

2n∑
j=1

ρ(h(i), h(j))

6
2γ (( 0 A

A 0 ) , ρ)

2n

2n∑
i=1

2n∑
j=1

( 0 A
A 0 )ij ρ(h(i), h(j)) =

2γ (( 0 A
A 0 ) , ρ)

n

n∑
i=1

n∑
j=1

aijρ(f(i), g(j)).

This proves the rightmost inequality in (32). Note that for this inequality the quasimetric
inequality (28) was not used, and therefore ρ can be an arbitrarily kernel.

To prove the leftmost inequality in (32) we argue as follows. Fix h : {1, . . . , 2n} → X and
define f, g : {1, . . . , n} → X by f(i) = h(i) and g(i) = h(i + n) for every i ∈ {1, . . . , n}.
Then

n∑
i=1

n∑
j=1

ρ(h(i), h(j)) 6
1

n

n∑
i=1

n∑
j=1

n∑
`=1

2κ (ρ(h(i), h(`+ n)) + ρ(h(j), h(`+ n)))

= 2κ+1

n∑
i=1

n∑
j=1

ρ(f(i), g(j)). (33)
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Similarly,

n∑
i=1

n∑
j=1

ρ(h(i+ n), h(j + n)) 6
1

n

n∑
i=1

n∑
j=1

n∑
`=1

2κ (ρ(h(i+ n), h(`)) + ρ(h(j + n), h(`)))

= 2κ+1

n∑
i=1

n∑
j=1

ρ(f(i), g(j)). (34)

Hence,

1

(2n)2

2n∑
i=1

2n∑
j=1

ρ(h(i), h(j))

=
1

(2n)2

n∑
i=1

n∑
j=1

ρ(h(i), h(j)) +
1

(2n)2

n∑
i=1

n∑
j=1

ρ(h(i+ n), h(j + n))

+
1

(2n)2

n∑
i=1

n∑
j=1

ρ(h(i), h(j + n)) +
1

(2n)2

n∑
i=1

n∑
j=1

ρ(h(i+ n), h(j))

(33)∧(34)

6
2κ+1 + 1

2n2

n∑
i=1

n∑
j=1

ρ(f(i), g(j))

6
(2κ+1 + 1)γ+(A, ρ)

2n

n∑
i=1

n∑
j=1

aijρ(f(i), g(j))

=
(2κ+1 + 1)γ+(A, ρ)

2
· 1

2n

2n∑
i=1

2n∑
j=1

( 0 A
A 0 )ij ρ(h(i), h(j)),

which is precisely the leftmost inequality in (32). �

Lemma 2.4. Fix κ ∈ [0,∞) and let ρ : X × X → [0,∞) be a 2κ-quasi-semimetric. Then
for every symmetric stochastic matrix A we have

γ
((

0 Am(A)
Am(A) 0

)
, ρ
)
6
(
2κ+2 + 1

)
γ (Am ( 0 A

A 0 ) , ρ) . (35)

Proof. Suppose that A = (aij) is an n × n symmetric stochastic matrix. It suffices to show
that for every h : {1, . . . , 2n} → X and every m ∈ N we have

2n∑
i=1

2n∑
j=1

Am ( 0 A
A 0 )ij ρ(h(i), h(j)) 6

(
2κ+2 + 1

) 2n∑
i=1

2n∑
j=1

(
0 Am(A)

Am(A) 0

)
ij
ρ(h(i), h(j)). (36)

For simplicity of notation write B = (bij)
def
= ( 0 A

A 0 ) . Then

Am(B) =
1

m
I +

1

m

b(m−1)/4c∑
s=1

B4s +
1

m

b(m−3)/4c∑
s=0

B2(2s+1) +
1

m

b(m−2)/2c∑
s=0

B2s+1. (37)

Observe that

t ∈ 2N− 1 =⇒ ( 0 A
A 0 )

t
=
(

0 At

At 0

)
.
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Hence,

1

m

b(m−2)/2c∑
s=0

B2s+1 =

(
0 1

m

∑b(m−2)/2c
s=0 A2s+1

1
m

∑b(m−2)/2c
s=0 A2s+1 0

)
. (38)

For every s ∈ N, using the fact that B2s−1 and B2s+1 are symmetric and stochastic, we have

2n∑
i=1

2n∑
j=1

(
B4s
)
ij
ρ(h(i), h(j))

6
2n∑
i=1

2n∑
j=1

(
2n∑
`=1

(
B2s−1

)
i`

(
B2s+1

)
`j

2κ (ρ(h(i), h(`)) + ρ(h(`), h(j)))

)

= 2κ
2n∑
a=1

2n∑
b=1

(
0 A2s−1+A2s+1

A2s−1+A2s+1 0

)
ab
ρ(h(a), h(b)). (39)

Similarly, for every s ∈ N ∪ {0},
2n∑
i=1

2n∑
j=1

(
B2(2s+1)

)
ij
ρ(h(i), h(j)) 6 2κ+1

2n∑
a=1

2n∑
b=1

(
0 A2s+1

A2s+1 0

)
ab
ρ(h(a), h(b)). (40)

It follows from (37), (38), (39) and (40) that

2n∑
i=1

2n∑
j=1

Am(B)ijρ(h(i), h(j)) 6
2n∑
i=1

2n∑
j=1

( 0 C
C 0 )ij ρ(h(i), h(j)), (41)

where

C
def
=

1

m
I +

2κ

m

b(m−1)/4c∑
s=1

(
A2s−1 + A2s+1

)
+

2κ+1

m

b(m−3)/4c∑
s=0

A2s+1 +
1

m

b(m−2)/2c∑
s=0

A2s+1.

To deduce (36) from (41) it remains to observe that

∀ i, j ∈ {1, . . . , n}, Cij 6
(
2κ+2 + 1

)
Am(A)ij. �

The following two lemmas are intended to indicate that if one is only interested in the
existence of super-expanders (rather than estimating the nonlinear spectral gap of a specific
graph of interest) then the distinction between γ(·, ·) and γ+(·, ·) is not very significant.

Lemma 2.5. Fix n, d ∈ N and let G = (V,W,E) be a d-regular bipartite graph such that
|V | = |W | = n. Then there exists a 2d-regular graph H = (V, F ) for which every kernel
K : X ×X → [0,∞) satisfies γ+(H,K) 6 2γ(G,K).

Proof. Fix an arbitrary bijection σ : V → W . The new edges F on the vertex set V are
given by

∀(u, v) ∈ V × V, F (u, v)
def
= E(u, σ(v)) + E(σ(u), v).

Thus (V, F ) is a 2d-regular graph.
Given f, g : V → X define φ1, φ2 : V ∪W → X by

φ1(x)
def
=

{
f(x) if x ∈ V,
g (σ−1(x)) if x ∈ W, and φ2(x)

def
=

{
g(x) if x ∈ V,
f (σ−1(x)) if x ∈ W.
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Then,

1

n2

∑
(u,v)∈V×V

K(f(u), g(v))

6
1

(2n)2

∑
(x,y)∈(V ∪W )×(V ∪W )

(K(φ1(x), φ1(y)) +K(φ2(x), φ2(y)))

6
γ(G,K)

2nd

∑
(x,y)∈(V×W )∪(W×V )

E(x, y) (K(φ1(x), φ1(y)) +K(φ2(x), φ2(y)))

=
γ(G,K)

nd

∑
(u,v)∈V×V

(E(u, σ(v)) + E(σ(u), v))K(f(u), g(v))

=
2γ(G,K)

n · (2d)

∑
(u,v)∈F

K(f(u), g(v)). �

Lemma 2.6. Fix n, d ∈ N and let G = (V,E) be a d-regular graph with |V | = 2n. Then
there exists a 4d-regular graph G′ = (V ′, E ′) with |V ′| = n such that for every κ ∈ (0,∞) and
every ρ : X ×X → [0,∞) which is a 2κ-quasi-semimetric we have γ+(G′, ρ) 6 2κ+2γ(G, ρ).

Proof. Write V = V ′ ∪ V ′′, where V ′, V ′′ ⊆ V are disjoint subsets of cardinality n, and fix
an arbitrary bijection σ : V ′ → V ′′. We first define a bipartite graph H = (V ′, V ′′, F ) by

∀(x, y) ∈ V ′ × V ′′, F (x, y)
def
= E(x, y) + E

(
x, σ−1(y)

)
+ d1{y=σ(x)}, (42)

where F is extended to V ′′ × V ′ by imposing symmetry. This makes H be a 2d-regular
bipartite graph. We shall now estimate γ(H, ρ). For every f : V → X we have

1

(2n)2

∑
(u,v)∈V×V

ρ(f(u), f(v)) 6
γ(G, ρ)

2nd

 ∑
(u,v)∈(V ′×V ′′)∪(V ′′×V ′)

E(u, v)ρ(f(u), f(v))

+
∑

(u,v)∈V ′×V ′
E(u, v)ρ(f(u), f(v)) +

∑
(u,v)∈V ′′×V ′′

E(u, v)ρ(f(u), f(v))

 . (43)

Now, using the fact that ρ is a 2κ-quasi-semimetric we have∑
(u,v)∈V ′×V ′

E(u, v)ρ(f(u), f(v)) 6
∑

(u,v)∈V ′×V ′
2κE(u, v) (ρ(f(u), f(σ(v))) + ρ(f(σ(v)), f(v)))

= 2κ
∑

(x,y)∈V ′×V ′′
E
(
x, σ−1(y)

)
ρ(f(x), f(y)) + 2κd

∑
z∈V ′

ρ(f(σ(z)), f(z)). (44)

Similarly,∑
(u,v)∈V ′′×V ′′

E(u, v)ρ(f(u), f(v))

6 2κ
∑

(x,y)∈V ′′×V ′
E(x, σ(y))ρ(f(x), f(y)) + 2κd

∑
z∈V ′

ρ(f(z), f(σ(z))). (45)
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Recalling (42), we conclude from (43), (44) and (45) that

1

(2n)2

∑
(u,v)∈(V ′∪V ′′)×(V ′∪V ′′)

ρ(f(u), f(v)) 6
2κ+1γ(G, ρ)

(2n) · (2d)

∑
(x,y)∈F

ρ(f(x), f(y)).

Hence γ(H, ρ) 6 2κ+1γ(G, ρ). The desired assertion now follows from Lemma 2.5. �

2.3. Edge completion. In the ensuing arguments we will sometimes add edges to a graph
in order to ensure that it has certain desirable properties, but we will at the same time want
to control the Poincaré constants of the resulting denser graph. The following very easy facts
will be useful for this purpose.

Lemma 2.7. Fix n, d1, d2 ∈ N. Let G1 = (V,E1) and G2 = (V,E2) be two n-vertex graphs
on the same vertex set with E2 ⊇ E1. Suppose that G1 is d1-regular and G2 is d2-regular.
Then for every kernel K : X ×X → [0,∞) we have

max

{
γ(G2, K)

γ(G1, K)
,
γ+(G2, K)

γ+(G1, K)

}
6
d2

d1

.

Proof. One just has to note that for every f, g : V → X we have

1

nd2

∑
(x,y)∈E2

K(f(x), g(y)) >
1

nd2

∑
(x,y)∈E1

K(f(x), g(y)) =
d1

d2

· 1

nd1

∑
(x,y)∈E1

K(f(x), g(y)). �

Definition 2.8 (Edge completion). Fix two integers D > d > 2. Let G = (V,E) be a
d-regular graph. The D-edge completion of G, denoted CD(G), is defined as a graph on the
same vertex set V , with edges E(CD(G)) ⊇ E defined as follows. Write D = md+ r, where
m ∈ N and r ∈ {0, . . . , d− 1}. Then E(CD(G)) is obtained from E by duplicating each edge
m times and adding r self loops to each vertex in V , i.e.,

∀(x, y) ∈ V × V, E(CD(G))(x, y)
def
= mE(x, y) + r1{x=y}. (46)

This definition makes CD(G) be a D-regular graph.

Lemma 2.9. Fix two integers D > d > 2 and let G = (V,E) be a d-regular graph. Then for
every kernel K : X ×X → [0,∞) we have

max

{
γ(CD(G), K)

γ(G,K)
,
γ+(CD(G), K)

γ+(G,K)

}
6 2. (47)

Proof. Write |V | = n and D = md + r, where m ∈ N and r ∈ {0, . . . , d − 1}. For every
f, g : V → X we have

1

nD

∑
(x,y)∈E(CD(G))

K(f(x), g(y))
(46)
=

1

nd

∑
(x,y)∈V×V

mdE(x, y) + rd1{x=y}

md+ r
K(f(x), g(y))

>
1

nd

∑
(x,y)∈V×V

m

m+ 1
E(x, y)K(f(x), g(y)) >

1

2
· 1

nd

∑
(x,y)∈E

K(f(x), g(y)). �
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3. Metric Markov cotype implies nonlinear spectral calculus

Our goal here is to prove Theorem 1.7. We start with an analogous statement that treats
the parameter γ(·, ·) rather than γ+(·, ·).
Lemma 3.1 (Metric Markov cotype implies the decay of γ). Fix C, ε ∈ (0,∞), q ∈ [1,∞),
m,n ∈ N and an n × n symmetric stochastic matrix A = (aij). Suppose that (X, dX) is a
metric space such that for every x1, . . . , xn ∈ X there exist y1, . . . , yn ∈ X satisfying

n∑
i=1

dX(xi, yi)
q +mε

n∑
i=1

n∑
j=1

aijdX(yi, yj)
q 6 Cq

n∑
i=1

n∑
j=1

Am(A)ijdX(xi, xj)
q. (48)

Then

γ (Am(A), dqX) 6 (3C)q max

{
1,
γ (A, dqX)

mε

}
. (49)

Proof. Write B = (bij) = Am(A). If γ(B, dqX) 6 (3C)q then (49) holds true, so we may
assume from now on that γ(B, dqX) > (3C)q. Fix

(3C)q < γ < γ(B, dqX). (50)

By the definition of γ(B, dqX) there exist x1, . . . , xn ∈ X such that

1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
q >

γ

n

n∑
i=1

n∑
j=1

bijdX(xi, xj)
q. (51)

Let y1, . . . , yn ∈ X satisfy (48). By the triangle inequality, for every i, j ∈ {1, . . . , n} we have

dX(xi, xj)
q 6 3q−1 (dX(xi, yi)

q + dX(yi, yj)
q + dX(yj, xj)

q) . (52)

By averaging (52) we get the following estimate.

1

n2

n∑
i=1

n∑
j=1

dX(yi, yj)
q >

1

3q−1n2

n∑
i=1

n∑
j=1

dX(xi, xj)
q − 2

n

n∑
i=1

dX(xi, yi)
q

(51)
>

γ

3q−1n

n∑
i=1

n∑
j=1

bijdX(xi, xj)
q − 2

n

n∑
i=1

dX(xi, yi)
q

(48)

>
3γmε

(3C)qn

n∑
i=1

n∑
j=1

aijdX(yi, yj)
q +

(
3γ

(3C)qn
− 2

n

) n∑
i=1

dX(xi, yi)
q

(50)

>
3γmε

(3C)qn

n∑
i=1

n∑
j=1

aijdX(yi, yj)
q. (53)

At the same time, by the definition of γ(A, dqX) we have

1

n2

n∑
i=1

n∑
j=1

dX(yi, yj)
q 6

γ(A, dqX)

n

n∑
i=1

n∑
j=1

aijdX(yi, yj)
q. (54)

By contrasting (54) with (53) and letting γ ↗ γ(B, dpX) we deduce that

γ (Am(A), dqX) = γ(B, dqX) 6 3q−1Cq γ(A, dqX)

mε
. �

19



The special case q = 2 of the following theorem implies Theorem 1.7.

Theorem 3.2 (Metric Markov cotype implies the decay of γ+). Fix C, ε ∈ (0,∞), q ∈ [1,∞),
m,n ∈ N and an n × n symmetric stochastic matrix A = (aij). Suppose that (X, dX) is a
metric space such that for every x1, . . . , x2n ∈ X there exist y1, . . . , y2n ∈ X satisfying

2n∑
i=1

dX(xi, yi)
q +mε

2n∑
i=1

2n∑
j=1

( 0 A
A 0 )ij dX(yi, yj)

q 6 Cq

2n∑
i=1

2n∑
j=1

Am ( 0 A
A 0 )ij dX(xi, xj)

q. (55)

Then

γ+ (Am(A), dqX) 6 (45C)q max

{
1,
γ+ (A, dqX)

mε

}
. (56)

Proof. By Lemma 2.3 and Lemma 2.4 we have

γ+ (Am(A), dqX)
(32)

6 2γ
((

0 Am(A)
Am(A) 0

)
, dqX

) (35)

6 2
(
2q+1 + 1

)
γ (Am ( 0 A

A 0 ) , dqX) . (57)

At the same time, an application of Lemma 3.1 and Lemma 2.3 yields the estimate

γ (Am ( 0 A
A 0 ) , dqX) 6 (3C)q max

{
1,
γ (( 0 A

A 0 ) , dqX)

mε

}
(32)

6 (3C)q max

{
1,

2q + 1

2
· γ+ (A, dqX)

mε

}
. (58)

The desired estimate (56) is a consequence of (57) and (58). �

4. An iterative construction of super-expanders

Our goal here is to prove the existence of super-expanders as stated in Theorem 1.1,
assuming the validity of Lemma 1.12, Corollary 1.10 and Theorem 1.13. These ingredients
will then be proved in the subsequent sections.

In order to elucidate the ensuing construction, we phrase it in the setting of abstract ker-
nels, though readers are encouraged to keep in mind that it will be used in the geometrically
meaningful case of super-reflexive Banach spaces.

Lemma 4.1 (Initial zigzag iteration). Fix d,m, t ∈ N satisfying

td2(t−1) 6 m, (59)

and fix a d-regular graph G0 = (V,E) with |V | = m. Then for every j ∈ N there exists a
regular graph F t

j = (V t
j , E

t
j) of degree d2 and with |V t

j | = mj such that the following holds
true. If K : X ×X → [0,∞) is a kernel such that γ+(G0, K) <∞ then also γ+(F t

j , K) <∞
for all j ∈ N. Moreover, suppose that C, γ ∈ [1,∞) and ε ∈ (0, 1) satisfy

t >
(
2Cγ2

)1/ε
, (60)

and that the kernel K is such that every finite regular graph G satisfies the nonlinear spectral
calculus inequality

γ+(At(G), K) 6 C max

{
1,
γ+(G,K)

tε

}
. (61)

Suppose furthermore that
γ+(G0, K) 6 γ. (62)
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Then

sup
j∈N

γ+(F t
j , K) 6 2Cγ2.

Proof. Set F t
1

def
= Cd2(G0), where we recall the definition of the edge completion operation

as discussed in Section 2.3. Thus F t
1 has m vertices and degree d2. Assume inductively

that we defined F t
j to be a regular graph with mj vertices and degree d2. Then the Cesàro

average At(F
t
j ) has mj vertices and degree td2(t−1) (recall the discussion preceding (16)). It

follows from (59) that the degree of At(F
t
j ) is at most m, so we can form the edge completion

Cm(At(F
t
j )), which has degree m, and we can therefore form the zigzag product

F t
j+1

def
=
(
Cm(At(F

t
j ))
)

z©G0. (63)

Thus F t
j+1 has mj+1 vertices and degree d2, completing the inductive construction. Using

Theorem 1.3 and Lemma 2.9, it follows inductively that if K : X ×X → [0,∞) is a kernel
such that γ+(G0, K) <∞ then also γ+(F t

j , K) <∞ for all j ∈ N.
Assuming the validity of (62), by Lemma 2.9 we have

γ+(F t
1, K) = γ+ (Cd2(G0), K)

(47)

6 2γ+(G0, K)
(62)

6 2γ.

We claim that for every j ∈ N,

γ+(F t
j , K) 6 2Cγ2. (64)

Assuming the validity of (64) for some j ∈ N, by Theorem 1.3 we have

γ+(F t
j+1, K)

(12)∧(63)

6 γ+

(
Cm(At(F

t
j ))
)
γ+(G0, K)2

(47)∧(62)

6 2γ+

(
At(F

t
j ), K

)
γ2

(61)

6 2Cγ2 max

{
1,
γ+(F t

j , K)

tε

}
(64)

6 2Cγ2 max

{
1,

2Cγ2

tε

}
(60)

6 2Cγ2. �

Corollary 4.2 (Intermediate construction for super-reflexive Banach spaces). For every
k ∈ N there exist regular graphs {Fj(k)}∞j=1 and integers {dk}∞k=1, {nj(k)}j,k∈N ⊆ N, where
{nj(k)}∞j=1 is a strictly increasing sequence, such that Fj(k) has degree dk and nj(k) vertices,
and the following condition holds true. For every super-reflexive Banach space (X, ‖ · ‖X),

∀ j, k ∈ N, γ+

(
Fj(k), ‖ · ‖2

X

)
<∞,

and moreover there exists k(X) ∈ N such that

sup
j,k∈N
k>k(X)

γ+

(
Fj(k), ‖ · ‖2

X

)
6 k(X).

Proof. We shall use here the notation of Lemma 1.12. For every k ∈ N choose an integer
n(k) > n0(1/k) (recall that n0(1/k) was introduced in Lemma 1.12) such that

ke2(k−1)(logmn(k))
1− 1

k

6 mn(k). (65)

By (19), it follows from (65) that dn(k)(1/k), i.e., the degree of the graph Hn(k)(1/k), satisfies

kd
2(k−1)
n(k) 6 mn(k) = |V (Hn(k)(1/k))|,
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where here, and in what follows, V (G) denotes the set of vertices of a graph G. We can
therefore apply Lemma 4.1 with the parameters t = k, d = dn(k)(1/k), m = mn(k) and
G0 = Hn(k)(1/k). Letting {Fj(k)}∞j=1 denote the resulting sequence of graphs, we define

dk
def
=
(
dn(k)(1/k)

)2
and nj(k)

def
=
(
mn(k)

)j
.

If (X, ‖ · ‖X) is a super-reflexive Banach space then it is in particular K-convex (see [61]).
Recalling the parameter δ0(X) of Lemma 1.12, we have

k >
1

δ0(X)
=⇒ γ+

(
Hn(k)(1/k), ‖ · ‖2

X

)
6 93.

It also follows from Corollary 1.10 that there exists C(X) ∈ [1,∞) and ε(X) ∈ (0, 1) for
which every finite regular graph G satisfies

∀ t ∈ N, γ+

(
At(G), ‖ · ‖2

X

)
6 C(X) max

{
1,
γ+ (G, ‖ · ‖2

X)

tε(X)

}
. (66)

We may therefore apply Lemma 4.1 with C = C(X), ε = ε(X) and γ = 93 to deduce that if
we define

k(X)
def
=

⌈
max

{
1

δ0(X)
,
(
2C(X) · 93

)1/ε(X)
, 2C(X) · 96

}⌉
,

then for every j ∈ N,

k > k(X) =⇒ sup
j∈N

γ+

(
Fj(k), ‖ · ‖2

X

)
6 2C(X) · 96 6 k(X). �

Corollary 4.2 provides a sequence of expanders with respect to a fixed super-reflexive
Banach space (X, ‖ · ‖X), but since the sequence of degrees {dk}∞k=1 may be unbounded (this
is indeed the case in our construction), we still do not have one sequence of bounded degree
regular graphs that are expanders with respect to every super-reflexive Banach space. This
is achieved in the following crucial lemma.

Lemma 4.3 (Main zigzag iteration). Let {dk}∞k=1 be a sequence of integers and for each
k ∈ N let {nj(k)}∞j=1 be a strictly increasing sequence of integers. For every j, k ∈ N let
Fj(k) be a regular graph of degree dk with nj(k) vertices. Suppose that K is a family of
kernels such that

∀K ∈ K , ∀ j, k ∈ N, γ+(Fj(k), K) <∞. (67)

Suppose also that the following two conditions hold true.

• For every K ∈ K there exists k1(K) ∈ N such that

sup
j,k∈N

k>k1(K)

γ+(Fj(k), K) 6 k1(K). (68)

• For every K ∈ K there exists k2(K) ∈ N such that every regular graph G satisfies
the following spectral calculus inequality.

∀ t ∈ N, γ+ (At(G), K) 6 k2(K) max

{
1,
γ+(G,K)

t1/k2(K)

}
. (69)
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Then there exists d ∈ N and a sequence of d-regular graphs {Hi}∞i=1 with

lim
i→∞
|V (Hi)| =∞

and
∀K ∈ K , sup

j∈N
γ+(Hj, K) <∞. (70)

Proof. In what follows, for every k ∈ N it will be convenient to introduce the notation

Mk
def
=
(
2k3
)k
. (71)

With this, define

j(k)
def
= min

{
j ∈ N : nj(k) > 2d2

1 +Mk+1d
2(Mk+1−1)
k+1

}
, (72)

and

Wk
def
= Fj(k)(k). (73)

We will next define for every k ∈ N an integer `(k) ∈ N ∪ {0} and a sequence of regular

graphs W 0
k ,W

1
k , . . . ,W

`(k)
k , along with an auxiliary integer sequence {hi(k)}`(k)

i=0 ⊆ N. Set

W 0
k

def
= Wk and h0(k)

def
= k. (74)

Define `(1) = 0. For every integer k > 1 set

h1(k)
def
= min

{
h ∈ N : nj(h)(h) > dh0(k)

}
. (75)

Observe that necessarily h1(k) < h0(k) = k. Indeed, if h1(k) > k then

dk
(75)
> nj(k−1)(k − 1)

(72)
> Mkd

2(Mk−1)
k

(71)

> dk,

a contradiction. By the definition of h1(k) we know that nj(h1(k))(h1(k)) > dh0(k), so we
may form the edge completion Cnj(h1(k))(h1(k)) (W 0

k ). Since the number of vertices of Wh1(k) is

nj(h1(k))(h1(k)), which is the same as the degree of Cnj(h1(k))(h1(k)) (W 0
k ), we can define

W 1
k

def
= AMh1(k)

(
Cnj(h1(k))(h1(k))

(
W 0
k

)
z©Wh1(k)

)
.

The degree of W 1
k equals

Mh1(k)d
2(Mh1(k)

−1)
h1(k) .

Assume inductively that k, i > 1 and we have already defined the graph W i−1
k and the

integer hi−1(k), such that the degree of W i−1
k equals

Mhi−1(k)d
2(Mhi−1(k)

−1)
hi−1(k) . (76)

If hi−1(k) = 1 then conclude the construction, setting `(k) = i− 1. If hi−1(k) > 1 then we
proceed by defining

hi(k)
def
= min

{
h ∈ N : nj(h)(h) >Mhi−1(k)d

2(Mhi−1(k)
−1)

hi−1(k)

}
. (77)

Observe that
hi(k) < hi−1(k). (78)
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Indeed, if hi(k) > hi−1(k) then

Mhi−1(k)d
2(Mhi−1(k)

−1)
hi−1(k)

(77)
> nj(hi−1(k)−1)(hi−1(k)− 1)

(72)
> 2d2

1 +Mhi−1(k)d
2(Mhi−1(k)

−1)

hi−1(k) ,

a contradiction. Since the degree of W i−1
k is given in (76), which by (77) is at most

nj(hi(k))(hi(k)), we may form the edge completion Cnj(hi(k))(hi(k))

(
W i−1
k

)
. The degree of the

resulting graph is nj(hi(k))(hi(k)), which, by (73), equals the number of vertices of Whi(k). We
can therefore define

W i
k

def
= AMhi(k)

(
Cnj(hi(k))(hi(k))

(
W i−1
k

)
z©Whi(k)

)
. (79)

The degree of W i
k equals Mhi(k)d

2(Mhi(k)
−1)

hi(k) , thus completing the inductive step.

Due to (78) the above procedure must eventually terminate, and by definition h`(k)(k) = 1.
Since h0(k) = k, it follows that

∀ k ∈ N, `(k) 6 k. (80)

We define
Hk

def
= W

`(k)
k .

The degree of Hk equals d
def
= 2d2

1 for all k ∈ N. Also, by construction we have

|V (Hk)| =
∣∣∣V (W `(k)

k

)∣∣∣ > ∣∣∣V (W `(k)−1
k

)∣∣∣ > . . . >
∣∣V (W 0

k

)∣∣ (74)∧(73)
= nj(k)(k)

(72)

> Mk+1.

Thus limk→∞ |V (Hk)| =∞. It remains to prove that for every kernel K ∈ K we have

sup
k∈N

γ+(Hk, K) <∞. (81)

To prove (81) we start with the following crucial estimate, which holds for every k ∈ N
and i ∈ {1, . . . , `(k)}.

γ+

(
W i
k, K

) (69)∧(79)

6 k2(K) max

1,
γ+

(
Cnj(hi(k))(hi(k))

(
W i−1
k

)
z©Whi(k), K

)
M

1/k2(K)
hi(k)


(12)∧(47)∧(73)

6 k2(K) max

{
1,

2γ+

(
W i−1
k , K

)
γ+

(
Fj(hi(k))(hi(k)), K

)2

M
1/k2(K)
hi(k)

}
. (82)

In particular, it follows from (82) that the following crude estimate holds true.

γ+

(
W i
k, K

)
6 2k2(K)γ+

(
W i−1
k , K

)
γ+

(
Fj(hi(k))(hi(k)), K

)2
. (83)

A recursive application of (83) yields the estimate

γ+(Hk, K) = γ+

(
W

`(k)
k , K

)
6 (2k2(K))`(k)γ+

(
W 0
k , K

) `(k)∏
i=1

γ+

(
Fj(hi(k))(hi(k)), K

)2
.

Due to the finiteness assumption (67), it follows that

∀ k ∈ N, γ+(Hk, K) <∞. (84)

In order to prove (81) we will need to apply (82) more carefully. To this end set

k3(K)
def
= max {k1(K), k2(K)} , (85)
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and fix k > k3(K). We will now prove by induction on i ∈ {0, . . . , `(k)} that

hi(k) > k3(K) =⇒ γ+

(
W i
k, K

)
6 k3(K). (86)

If i = 0 then h0(k) = k > k3(K) > k1(K), so by our assumption (68),

γ+

(
W 0
k , K

) (74)∧(73)
= γ+

(
Fj(k)(k), K

) (68)

6 k1(K) 6 k3(K).

Assume inductively that i ∈ {1, . . . , `(k)} satisfies

hi(k) > k3(K). (87)

By (78) and the inductive hypothesis we therefore have

γ+

(
W i−1
k , K

)
6 k3(K). (88)

Hence,

γ+

(
W i
k, K

) (82)∧(87)∧(68)∧(88)

6 k2(K) max

{
1,

2k3(K)k1(K)2

M
1/k2(K)
hi(k)

}
(85)∧(87)

6 k3(K) max

{
1,

2k3(K)3

M
1/k3(K)
k3(K)

}
(71)
= k3(K).

This completes the inductive proof of (86).
Define

i0(k)
def
= max {i ∈ {0, . . . , `(k)− 1} : hi(k) > k3(K)} . (89)

Note that since h0(k) = k, the maximum in (89) is well defined. By (86) we have

γ+

(
W

i0(k)
k , K

)
6 k3(K). (90)

A recursive application of (83), combined with (90), yields the estimate

γ+(Hk, K) 6 k3(K)

`(k)∏
i=i0(k)+1

(
2k2(K)γ+

(
Fj(hi(k))(hi(k)), K

)2
)
. (91)

By (89), for every i ∈ {i0(k) + 1, . . . , `(k)} we have hi(k) 6 k3(K). Due to the strict
monotonicity appearing in (78), it follows that the number of terms in the product appearing
in (91) is at most k3(K), and therefore

γ+(Hk, K) 6 k3(K) (2k2(K))k3(K)

k3(K)∏
r=1

γ+

(
Fj(r)(r), K

)2
. (92)

We have proved that (92) holds true for every integer k > k3(K). Note that the upper bound
in (92) is independent of k, so in combination with (84) this completes the proof of (81). �

Proof of Theorem 1.1. Lemma 4.3 applies when K consists of all K : X × X → [0,∞) of
the form K(x, y) = ‖x−y‖2

X , where (X, ‖ ·‖X) ranges over all super-reflexive Banach spaces.
Indeed, hypotheses (67) and (68) of Lemma 4.3 are nothing more than the assertions of
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Corollary 4.2. Hypothesis (69) of Lemma 4.3 holds true as well since, by Corollary 1.10,
every super-reflexive Banach space (X, ‖ · ‖X) satisfies (66), so we may take

k2(X)
def
= max

{
C(X),

1

ε(X)

}
.

Let d ∈ N and {Hi}∞i=1 be the output of Lemma 4.3. Recalling the notation of Remark 2.2,
C◦d denotes the cycle of length d with self loops, and C9 denotes the cycle of length 9 without
self loops. For each i ∈ N, since Hi is d-regular, we may form the zigzag product Hi z©C◦d ,
which is a 9-regular graph with d|V (Hi)| vertices. We can therefore consider the graph

H∗i
def
= (Hi z©C◦d) r©C9.

Thus {H∗i }∞i=1 are 3-regular graphs with limi→∞ |V (H∗i )| =∞. By Theorem 1.3 and part (IV)
of Theorem 1.13, for every super-reflexive Banach space (X, ‖ · ‖X) we have

γ+

(
H∗i , ‖ · ‖2

X

)
6 9γ+

(
Hi, ‖ · ‖2

X

)
γ+

(
C◦d , ‖ · ‖2

X

)2
γ+

(
C9, ‖ · ‖2

X

)2
.

By Lemma 2.1 we have γ+ (C◦d , ‖ · ‖2
X) 6 12d2 and γ+ (C9, ‖ · ‖2

X) 6 648 (since C9 is not
bipartite). Therefore γ+ (H∗i , ‖ · ‖2

X) . d4γ+ (Hi, ‖ · ‖2
X), so due to (70) the graphs {H∗i }∞i=1

satisfy the conclusion of Theorem 1.1. �

Remark 4.4. V. Lafforgue asked [29] whether there exists a sequence of bounded degree
graphs {Gk}∞k=1 that does not admit a coarse embedding (with the same moduli) into any
K-convex Banach space. A positive answer to this question follows from our methods.
Independently of our work, Lafforgue [30] managed to solve this problem as well, so we
only sketch the argument. An inspection of Lafforgue’s proof in [29] shows that his method
produces regular graphs {Hj(k)}j,k∈N such that for each k ∈ N the graphs {Hj(k)}j∈N have
degree dk, their cardinalities are unbounded, and for every K-convex Banach space (X, ‖·‖X)
there is some k ∈ N for which supj∈N γ+(Hj(k), ‖ ·‖2

X) <∞. The problem is that the degrees
{dk}k∈N are unbounded, but this can be overcome as above by applying the zigzag product
with a cycle with self loops. Indeed, define Gj(k) = Hj(k) z©C◦dk . Then Gj(k) is 9-regular,

and as argued in the proof of Theorem 1.1, we still have supj∈N γ+(Gj(k), ‖ · ‖2
X) < ∞. To

get a single sequence of graphs that does not admit a coarse embedding into any K-convex
Banach space, fix a bijection ψ = (a, b) : N → N × N, and define Gm = Ga(m)(b(m)). The
graphs Gm all have degree 9. If X is K-convex then choose k ∈ N as above. If we let mj ∈ N
be such that ψ(mj) = (j, k) then we have shown that the graphs {Gmj}∞j=1 are arbitrarily

large, have bounded degree, and satisfy supj∈N γ+(Gmj , ‖ ·‖2
X) <∞. The argument that was

presented in Section 1.1 implies that {Gm}∞m=1 do not embed coarsely into X.

5. The heat semigroup on the tail space

This section contains estimates that will be crucially used in the proof of Lemma 1.12,
in addition to geometric results and open questions of independent interest. We start the
discussion by recalling some basic definitions, and setting some (mostly standard) notation
on vector-valued Fourier analysis. Let (X, ‖ ·‖X) be a Banach space. We assume throughout
that X is a Banach space over the complex scalars, though, by a standard complexification
argument, our results hold also for Banach spaces over R.
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Given a measure space (Ω, µ) and p ∈ [1,∞), we denote as usual by Lp(µ,X) the space
of all measurable f : Ω→ X satisfying

‖f‖Lp(µ,X)
def
=

(∫
Ω

‖f‖pXdµ
)1/p

<∞.

When X = C we use the standard notation Lp(µ) = Lp(µ,C). When Ω is a finite set we
denote by Lp(Ω, X) the space Lp(µ,X), where µ is the normalized counting measure on Ω.

For n ∈ N and A ⊆ {1, . . . , n}, the Walsh function WA : Fn2 → {−1, 1} is defined by

WA(x)
def
= (−1)

∑
j∈A xj .

Any f : Fn2 → X has the expansion

f =
∑

A⊆{1,...,n}

f̂(A)WA,

where

f̂(A)
def
=

1

2n

∑
x∈Fn2

f(x)WA(x) ∈ X.

For ϕ : Fn2 → C and f : Fn2 → X, the convolution ϕ ∗ f : Fn2 → X is defined as usual by

ϕ ∗ f(x)
def
=

1

2n

∑
w∈Fn2

ϕ(x− w)f(w) =
∑

A⊆{1,...,n}

ϕ̂(A)f̂(A)WA(x).

For k ∈ {1, . . . , n} and p ∈ [1,∞] we let L>kp (Fn2 , X) denote the subspace of Lp(Fn2 , X)

consisting of those f : Fn2 → X that satisfy f̂(A) = 0 for all A ⊆ {1, . . . , n} with |A| < k.
Let e1, . . . , en be the standard basis of Fn2 . For j ∈ {1, . . . , n} define ∂jf : Fn2 → X by

∂jf(x)
def
=
f(x)− f(x+ ej)

2
.

Thus
∂jf =

∑
A⊆{1,...,n}

j∈A

f̂(A)WA,

and

∆f
def
=

n∑
j=1

∂jf =
∑

A⊆{1,...,n}

|A|f̂(A)WA.

For every z ∈ C we then have

ez∆f =
∑

A⊆{1,...,n}

ez|A|f̂(A)WA = Rz ∗ f, (93)

where

Rz(x)
def
=

n∏
j=1

(1 + ez(−1)xj) = (1− ez)‖x‖1 (1 + ez)n−‖x‖1 , (94)

and we identify Fn2 with {0, 1}n ⊆ Rn. Hence, for every x ∈ Fn2 we have

ez∆f(x) =
∑
w∈Fn2

(
1− ez

2

)‖x−w‖1 (1 + ez

2

)n−‖x−w‖1
f(w). (95)
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In particular,

∀x, y ∈ Fn2 , (ez∆δx)(y) =

(
1− ez

2

)‖x−y‖1 (1 + ez

2

)n−‖x−y‖1
, (96)

where δx(w)
def
= 1{x=w} is the Kronecker delta.

Given n ∈ N and f : Fn2 → X, the Rademacher projection [43] of f is defined by

Rad(f)
def
=

n∑
j=1

f̂({j})W{j}.

The K-convexity constant of X is defined [43] by

K(X)
def
= sup

n∈N
‖Rad‖L2(Fn2 ,X)→L2(Fn2 ,X) .

If K(X) <∞ then X is said to be K-convex. Pisier’s deep K-convexity theorem [61] asserts
that X is K-convex if and only if it does not contain copies of {`n1}∞n=1 with distortion
arbitrarily close to 1, i.e., for all n ∈ N we have

inf
T∈L (`n1 ,X)

‖T‖`n1→X · ‖T
−1‖T (`n1 )→`n1 = 1,

where L (`n1 , X) denotes the space of linear operators T : `n1 → X (and we use the convention
‖T−1‖T (`n1 )→`n1 =∞ if T is not injective).

Our main result in this section is the following theorem.

Theorem 5.1 (Decay of the heat semigroup on the tail space). For every K, p ∈ (1,∞)
there are A(K, p) ∈ (0, 1) and B(K, p), C(K, p) ∈ (2,∞) such that for every K-convex
Banach (X, ‖ · ‖X) with K(X) 6 K, every k, n ∈ N and every t ∈ (0,∞),∥∥e−t∆∥∥

L>k
p (Fn2 ,X)→L>k

p (Fn2 ,X)
6 C(K, p)e−A(K,p)kmin{t,tB(K,p)}. (97)

The fact that Theorem 5.1 assumes that X is K-convex is not an artifact of our proof: we
have, in fact, the following converse statement.

Theorem 5.2. Let X be a Banach space (X, ‖ · ‖X) for which exist k ∈ N, p ∈ (1,∞) and
t ∈ (0,∞) such that

sup
n∈N

∥∥e−t∆∥∥
L>k
p (Fn2 ,X)→L>k

p (Fn2 ,X)
< 1. (98)

Then X is K-convex.

Remark 5.3. We conjecture that any K-convex Banach space satisfies (98) for every k ∈ N,
p ∈ (1,∞) and t ∈ (0,∞). Theorem 5.1 implies (98) if k or t are large enough, but, due to
the factor C(K, p) in (97), it does not imply (98) in its entirety. The factor C(K, p) in (97)
does not have impact on the application of Theorem 5.1 that we present here; see Section 7.

5.1. Warmup: the tail space of scalar valued functions. Before passing to the proofs
of Theorem 5.1 and Theorem 5.2, we address separately the classical scalar case X = C, since
it already exhibits interesting open questions. The problem was studied by P.-A. Meyer [48]
who proved Lemma 5.4 below. We include its proof here since it is not stated explicitly in this
way in [48], and moreover Meyer studies this problem with Fn2 replaced by Rn equipped with
the standard Gaussian measure (the proof in the discrete setting does not require anything
new. We warn the reader that the proof in [48] contains an inaccurate duality argument).
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Lemma 5.4 (P.-A. Meyer). For every p ∈ [2,∞) there exists cp ∈ (0,∞) such that for every
k ∈ N, every tail space function f ∈ L>kp (Fn2 ) and every time t ∈ (0,∞),∥∥e−t∆f∥∥

Lp(Fn2 )
6 e−cpkmin{t,t2} ‖f‖Lp(Fn2 ) . (99)

Hence,

‖∆f‖Lp(Fn2 ) & cp
√
k · ‖f‖Lp(Fn2 ). (100)

Proof. The estimate (100) follows immediately from (99) as follows.

‖f‖Lp(Fn2 ) =

∥∥∥∥∫ ∞
0

e−t∆∆fdt

∥∥∥∥
Lp(Fn2 )

6
∫ ∞

0

∥∥e−t∆∆f
∥∥
Lp(Fn2 )

dt

(99)

6

(∫ 1

0

e−cpkt
2

dt+

∫ ∞
1

e−cpktdt

)
‖∆f‖Lp(Fn2 ) .

‖∆f‖Lp(Fn2 )

cp
√
k

.

To prove (99), we may assume that ‖f‖Lp(Fn2 ) = 1. Since p > 2, it follows that∥∥e−t∆f∥∥
L2(Fn2 )

6 e−kt‖f‖L2(Fn2 ) 6 e−kt‖f‖Lp(Fn2 ) = e−kt. (101)

By classical hypercontractivity estimates [8, 7], if we define

q
def
= 1 + e2t(p− 1). (102)

then ∥∥e−t∆f∥∥
Lq(Fn2 )

6 ‖f‖Lp(Fn2 ) = 1. (103)

Since p ∈ [2, q] we may consider θ ∈ [0, 1] given by

1

p
=
θ

2
+

1− θ
q

. (104)

Now,∥∥e−t∆f∥∥
Lp(Fn2 )

6
∥∥e−t∆f∥∥θ

L2(Fn2 )
·
∥∥e−t∆f∥∥1−θ

Lq(Fn2 )

(101)∧(103)

6 e−ktθ
(102)∧(104)

= exp

(
−2(p− 1)kt(e2t − 1)

p (e2t(p− 1)− 1)

)
. (105)

By choosing cp appropriately, the desired estimate (99) is a consequence (105). �

Remark 5.5. For the purpose of the geometric applications that are contained in the present
paper we need to understand the vector-valued analogue of Lemma 5.4, i.e., Theorem 5.1.
Nevertheless, The following interesting questions seem to be open for scalar-valued functions.

(1) Can one prove Lemma 5.4 also when p ∈ (1, 2)? Note that while ∆ and e−t∆ are
self-adjoint operators, one needs to understand the dual norm on L>kp (Fn2 ,R)∗ in order
to use duality here.

(2) What is the correct asymptotic dependence on k in (100)? Specifically, can (100) be
improved to

‖∆f‖p &p k‖f‖p? (106)

(3) As a potential way to prove (106), can one improve (99) to

f ∈ L>kp (Fn2 ) =⇒ ∀t ∈ (0,∞),
∥∥e−t∆f∥∥

Lp(Fn2 )
6 e−cpkt‖f‖Lp(Fn2 )? (107)
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As some evidence for (107), P. Cattiaux proved (private communication) the case k = 1,
p = 4 of (107) when the heat semigroup on Fn2 is replaced by the Ornstein-Uhlenbeck
semigroup on Rn. Specifically, let γn be the standard Gaussian measure on Rn and consider
the Ornstein-Uhlenbeck operator L = ∆−x·∇. Cattiaux proved that there exists a universal
constant c ∈ (0,∞) such that for every f ∈ L4(γn,R) and every t ∈ (0,∞),∫

Rn
fdγn = 0 =⇒

∥∥e−tLf∥∥
L4(γn)

6 e−ct‖f‖L4(γn). (108)

We shall now present a sketch of Cattiaux’s proof of (108). By differentiating at t = 0,
integrating by parts, and using the semigroup property, one sees that (108) is equivalent to
the following assertion.∫

Rn
fdγn = 0 =⇒

∫
Rn
f 4dγn .

∫
Rn
f 2‖∇f‖2

2dγn. (109)

The Gaussian Poincaré inequality (see [9, 32]) applied to f 2 implies that∫
Rn
f 4dγn −

(∫
Rn
f 2dγn

)2

.
∫
Rn
f 2 ‖∇f‖2

2 dγn.

The desired inequality (109) would therefore follow from∫
Rn
fdγn = 0 =⇒

(∫
Rn
f 2dγn

)2

.
∫
Rn
f 2 ‖∇f‖2

2 dγn. (110)

Fix M ∈ (0,∞) that will be determined later. Define φM : R→ R by

φM(x)
def
=


0 if |x| 6M,
2(x−M) if x ∈ [M, 2M ],
2(x+M) if x ∈ [−2M,−M ],
x if |x| > 2M.

(111)

Since |φ′| 6 2, an application of the Gaussian Poincaré inequality to φ◦f yields the estimate∫
Rn

(φ ◦ f)2dγn −
(∫

Rn
φ ◦ fdγn

)2 (111)

.
∫
{|f |>M}

‖∇f‖2
2 dγn. (112)

Now, ∫
Rn

(φ ◦ f)2dγn
(111)

>
∫
{|f |>2M}

f 2dγn >
∫
Rn
f 2dγn − 4M2. (113)

Also, ∫
{|f |>M}

‖∇f‖2
2 dγn 6

1

M2

∫
Rn
f 2‖∇f‖2

2dγn. (114)

If in addition
∫
Rn fdγn = 0 then∣∣∣∣∫

Rn
φ ◦ fdγn

∣∣∣∣ =

∣∣∣∣∫
Rn

(φ ◦ f − f)dγn

∣∣∣∣ (111)
=

∣∣∣∣∫
{|f |62M}

(φ ◦ f − f)dγn

∣∣∣∣ 6 4M. (115)

Hence, by (112), (113), (114) and (115),∫
Rn
fdγn = 0 =⇒

∫
Rn
f 2dγn .M2 +

1

M2

∫
Rn
f 2‖∇f‖2

2dγn. (116)
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The optimal choice of M in (116) is

M =

(∫
Rn
f 2‖∇f‖2

2dγn

)1/4

,

yielding the desired inequality (110). It would be interesting to generalize the above argument
so as to extend (108) to the setting of functions in all the Hermite tail spaces {L>kp (γn,R)}k∈N
(i.e., functions whose Hermite coefficients of degree less than k vanish).

5.2. Proof of Theorem 5.1. For every m ∈ {1, . . . , n} consider the level-m Rademacher
projection given by

Radm(f)
def
=

∑
A⊆{1,...,n}
|A|=m

f̂(A)WA.

Thus Rad1 = Rad and for every z ∈ C we have

ez∆ =
n∑

m=0

ezmRadm.

We shall use the following deep theorem of Pisier [61].

Theorem 5.6 (Pisier). For every K, p ∈ (1,∞) there exist φ = φ(K, p) ∈ (0, π/4) and
M = M(K, p) ∈ (2,∞) such that for every Banach space X satisfying K(X) 6 K, n ∈ N
and z ∈ C, we have

| arg z| 6 φ =⇒
∥∥e−z∆∥∥

Lp(Fn2 ,X)→Lp(Fn2 ,X)
6M. (117)

One can give explicit bounds on M,φ in terms of p and K; see [42]. We will require the
following standard corollary of Theorem 5.6. Define

a =
π

tanφ
,

so that all the points in the open segment joining a− iπ and a+ iπ have argument at most
φ. Then

‖Radm‖Lp(Fn2 ,X)→Lp(Fn2 ,X) 6Meam. (118)

Indeed,

1

2π

∫ π

−π
eimte−(a+it)∆dt =

1

2π

∫ π

−π
eimt

n∑
k=0

e−(a+it)kRadkdt = e−maRadm.

Now (118) is deduced by convexity as follows.

‖Radm‖Lp(Fn2 ,X)→Lp(Fn2 ,X) 6
ema

2π

∫ π

−π

∥∥e−(a+it)∆
∥∥
Lp(Fn2 ,X)→Lp(Fn2 ,X)

dt 6Mema.

It follows that

<z > 2a =⇒
∥∥e−z∆∥∥

L>k
p (Fn2 ,X)→L>k

p (Fn2 ,X)
6

M

1− e−a e
−k<z/2 6

M

1− e−a e
−ka. (119)
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Indeed,

∥∥e−z∆∥∥
L>k
p (Fn2 ,X)→L>k

p (Fn2 ,X)
=

∥∥∥∥∥
n∑

m=k

e−zmRadm

∥∥∥∥∥
L>k
p (Fn2 ,X)→L>k

p (Fn2 ,X)

(118)

6
n∑

m=k

e−m<zMeam 6M
n∑

m=k

e−m<z/2 =
M

1− e−<z/2 e
−k<z/2 6

M

1− e−a e
−k<z/2.

The ensuing argument is a quantitative variant of the proof of the main theorem of Pisier
in [62]. Let

r
def
= 2
√
a2 + π2,

and define

V
def
= {z ∈ C : |z| 6 r ∧ | arg z| 6 φ} .

The set V ⊆ C is depicted in Figure 1.

0 a

a+ iπ

a− iπ

2a

φ

V0

V1

V0

V
<

=
2a+ i2π

2a− i2π

Figure 1. The sector V ⊆ C.

Denote

V0
def
= {x± ix tanφ : x ∈ [0, 2a)} ,

and

V1
def
=
{
reiθ : |θ| 6 φ

}
,

so that we have the disjoint union ∂V = V0 ∪ V1.
Fix t ∈ (0, 2a). Let µt be the harmonic measure corresponding to V and t, i.e., µt is the

Borel probability measure on ∂V such that for every bounded analytic function f : V → C
we have

f(t) =

∫
∂V

f(z)dµt(z). (120)

We refer to [16] for more information on this topic and the ensuing discussion. For con-
creteness, it suffices to recall here that for every Borel set E ⊆ ∂V the number µt(E) is the
probability that the standard 2-dimensional Brownian motion starting at t exits V at E.
Equivalently, by conformal invariance, µt is the push-forward of the normalized Lebesgue
measure on the unit circle S1 under the Riemann mapping from the unit disk to V which
takes the origin to t.
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Denote

θt
def
= µt(V1),

and write
µt = (1− θt)µ0

t + θtµ
1
t , (121)

where µ0
t , µ

1
t are probability measures on V0, V1, respectively. We will use the following bound

on θt, whose proof is standard.

Lemma 5.7. For every t ∈ (0, 2a) we have

θt >
1

2

(
t

r

) π
2φ

. (122)

Proof. This is an exercise in conformal invariance. Let D = {z ∈ C : |z| 6 1} denote the
unit disk centered at the origin, and let D+ denote the intersection of D with the right half
plane {z ∈ C : <z > 0}. The mapping h1 : V → D+ given by

h1(z)
def
=
(z
r

) π
2φ

is a conformal equivalence between V and D+. Let Q+ = {x + iy : x, y ∈ [0,∞)} denote
the positive quadrant. The Möbius transformation h2 : D+ → Q+ given by

h2(z)
def
= −i · z + i

z − i
is a conformal equivalence between D+ and Q+. The mapping h3(z)

def
= z2 is a conformal

equivalence between Q+ and the upper half-plane H+ = {z ∈ C : =(z) > 0}. Finally, the
Möbius transformation

h4(z)
def
=
z − i
z + i

is a conformal equivalence between H+ and D. By composing these mappings, we obtain the
following conformal equivalence between V and D.

F (z)
def
= (h4 ◦ h3 ◦ h2 ◦ h1)(z) =

−
((

z
r

) π
2φ + i

)2

− i
((

z
r

) π
2φ − i

)2

−
((

z
r

) π
2φ + i

)2

+ i
((

z
r

) π
2φ − i

)2 .

Therefore, the mapping G : V → D given by

G(z)
def
=

F (z)− F (t)

1− F (t)F (z)

is a conformal equivalence between V and D with G(t) = 0.
By conformal invariance, θt is the length of the arc G(V1) ⊆ ∂D = S1, divided by 2π.

Writing s = h1(t) = (t/r)π/(2φ) ∈ (0, 1), we have

G(2a+ i2π) =
−4s(s2 − 1)− i ((s2 − 1)2 − 4s2)

(s2 + 1)2
,

and

G(2a− i2π) =
4s(s2 − 1)− i ((s2 − 1)2 − 4s2)

(s2 + 1)2
.
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It follows that if s >
√

2− 1 then θt > 1
2
, and if s <

√
2− 1 then

θt =
1

π
arcsin

(
4s(1− s2)

(s2 + 1)2

)
>
s

2
, (123)

where the rightmost inequality in (123) follows from elementary calculus. �

Lemma 5.8. For every ε ∈ (0, 1) there exists a bounded analytic function Ψt
ε : V → C

satisfying

• Ψt
ε(t) = 1,

• |Ψt
ε(z)| = ε for every z ∈ V0,

• |Ψt
ε(z)| = 1

ε(1−θt)/θt
for every z ∈ V1.

Proof. The proof is the same as the proof of Claim 2 in [62]. We sketch it briefly for the
sake of completeness. Consider the strip S = {z ∈ C : <(z) ∈ [0, 1]} and for j ∈ {0, 1} let
Sj = {z ∈ C : <(z) = j}. As explained in [62, Claim 1], there exists a conformal equivalence

h : V → S such that h(t) = θt, h(V0) = S0 and h(V1) = S1. Now define Ψε(z)
def
= ε

1−h(z)
θt . �

Proof of Theorem 5.1. Take t ∈ (0,∞). If t > 2a then by (119) we have∥∥e−t∆∥∥
L>k
p (Fn2 ,X)→L>k

p (Fn2 ,X)
6

M

1− e−a e
−kt/2. (124)

Suppose therefore that t ∈ (0, 2a). Fix ε ∈ (0, 1) that will be determined later, and let Ψt
ε

be the function from Lemma 5.8. Then

e−t∆ = Ψt
ε(t)e

−t∆ (120)
=

∫
∂V

Ψt
ε(z)e−z∆dµt(z)

(121)
= (1− θt)

∫
V0

Ψt
ε(z)e−z∆dµ0

t (z) + θt

∫
V1

Ψt
ε(z)e−z∆dµ1

t (z). (125)

Hence, using (125) in combination with Lemma 5.8, Theorem 5.6 and (119), we deduce that

∥∥e−t∆∥∥
L>k
p (Fn2 ,X)→L>k

p (Fn2 ,X)
6 (1− θt)εM +

θt
ε(1−θt)/θt

· Me−ka

1− e−a
(122)

6 εM +
Me−ka

1− e−a ·
1

ε2(r/t)π/(2φ)−1
. (126)

We now choose

ε = exp

(
−1

2

(
t

r

) π
2φ

ka

)
,

in which case (126) completes the proof of Theorem 5.1, with B(K, p) = π
2φ

. �

5.3. Proof of Theorem 5.2. The elementary computation contained in Lemma 5.9 below
will be useful in ensuing considerations.

Lemma 5.9. Define fn : Fn2 → L1(Fn2 ) by

fn(x)(y) = 2n1{x=y} − 1. (127)
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Then fn ∈ L>1
p (Fn2 , L1(Fn2 )), yet for every t ∈ (0,∞) we have

lim
n→∞

∥∥e−t∆fn∥∥Lp(Fn2 ,L1(Fn2 ))

‖fn‖Lp(Fn2 ,L1(Fn2 ))

= 1, (128)

where the limit in (128) is uniform in p ∈ [1,∞).

Proof. By definition
∑

x∈Fn2
fn(x) = 0, i.e., fn ∈ L>1

p (Fn2 , L1(Fn2 )). Observe that

‖fn‖Lp(Fn2 ,L1(Fn2 )) = 2

(
1− 1

2n

)
, (129)

and note also that for every x, y ∈ Fn2 we have

fn(x)(y) =
n∏
i=1

(
1 + (−1)xi+yi

)
− 1 =

∑
A⊆{1,...,n}

A 6=∅

WA(x)WA(y). (130)

It follows from (95) that for every x ∈ Fn2 we have

∥∥e−t∆fn∥∥L1(Fn2 )
=

1

2n

∑
y∈Fn2

∣∣∣∣∣∣
∑
w∈Fn2

(
1− et

2

)‖x−w‖1 (1 + et

2

)n−‖x−w‖1
fn(w)(y)

∣∣∣∣∣∣
(127)
=

1

2n

∑
y∈Fn2

∣∣∣∣∣2n
(

1− et
2

)‖x−y‖1 (1 + et

2

)n−‖x−y‖1
− 1

∣∣∣∣∣ .
Hence, ∥∥e−t∆fn∥∥Lp(Fn2 ,L1(Fn2 ))

=
n∑

m=0

(
n

m

) ∣∣∣∣∣
(

1− e−t
2

)m(
1 + e−t

2

)n−m
− 1

2n

∣∣∣∣∣ . (131)

Let U1, . . . , Un be i.i.d. random variables such that Pr[U1 = 0] = Pr[U1 = 1] = 1
2
. By the

Central Limit Theorem,

1 = lim
n→∞

Pr

[
n∑
j=1

Uj ∈
(

1

2
n− n2/3,

1

2
n+ n2/3

)]

= lim
n→∞

∑
m∈( 1

2
n−n2/3, 1

2
n+n2/3)∩N

(
n

m

)
1

2n
. (132)

Similarly, if V1, . . . , Vn are i.i.d. random variables such that Pr[V1 = 1] = (1 − e−t)/2 and
Pr[V1 = 0] = (1 + e−t)/2, then by the Central Limit Theorem,

1 = lim
n→∞

Pr

[
n∑
j=1

Vj ∈
(

1− e−t
2

n− n2/3,
1− e−t

2
n+ n2/3

)]

= lim
n→∞

∑
m∈
(

1−e−t
2

n−n2/3, 1−e
−t

2
n+n2/3

)
∩N

(
n

m

)(
1− e−t

2

)m(
1 + e−t

2

)n−m
. (133)
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Fix ε ∈ (0, 1). It follows from (132), (133) that for n large enough we have∑
m∈( 1

2
n−n2/3, 1

2
n+n2/3)∩N

(
n

m

)
1

2n
> 1− ε

2
, (134)

and ∑
m∈
(

1−e−t
2

n−n2/3, 1−e
−t

2
n+n2/3

)
∩N

(
n

m

)(
1− e−t

2

)m(
1 + e−t

2

)n−m
> 1− ε

2
. (135)

Moreover, by choosing n to be large enough we can ensure that(
1

2
n− n2/3,

1

2
n+ n2/3

)
∩
(

1− e−t
2

n− n2/3,
1− e−t

2
n+ n2/3

)
= ∅. (136)

Since

m ∈
(

1

2
n− n2/3,

1

2
n+ n2/3

)
=⇒(

1− e−t
2

)m(
1 + e−t

2

)n−m
<

1

2n
(
1− e−2t

)n/2(1 + e−t

1− e−t
)n2/3

,

if n is large enough then

m ∈
(

1

2
n− n2/3,

1

2
n+ n2/3

)
=⇒

(
1− e−t

2

)m(
1 + e−t

2

)n−m
<

ε

2n+1
. (137)

Moreover, because t > 0 we have h((1−e−t)/2) > 1
2
, where h(s)

def
= ss(1−s)1−s for s ∈ [0, 1].

Noting that

m ∈
(

1− e−t
2

n− n2/3,
1− e−t

2
n+ n2/3

)
=⇒(

1− e−t
2

)m(
1 + e−t

2

)n−m
>

(
h

(
1− e−t

2

))n(
1− e−t
1 + e−t

)n2/3

,

we see that if n is large enough then

m ∈
(

1− e−t
2

n− n2/3,
1− e−t

2
n+ n2/3

)
=⇒ 1

2n
<
ε

2

(
1− e−t

2

)m(
1 + e−t

2

)n−m
. (138)

Consequently, if we choose n so as to ensure the validity of (134), (135), (136), (137), (138),
then recalling (129) we see that∥∥e−t∆fn∥∥Lp(Fn2 ,L1(Fn2 ))

> 2
(

1− ε

2

)2 (129)

> (1− ε)‖fn‖Lp(Fn2 ,L1(Fn2 )). �

Proof of Theorem 5.2. Suppose that there exists δ ∈ (0, 1), k ∈ N, p ∈ (1,∞) and t ∈ (0,∞)
such that

∀n ∈ N,
∥∥e−t∆∥∥

L>k
p (Fn2 ,X)→L>k

p (Fn2 ,X)
< 1− δ. (139)
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For n ∈ N, identify Fkn2 with the k-fold product of Fn2 . Define F : Fkn2 → L1(Fkn2 ) by

F (x1, . . . , xk)(y1, . . . , yk)
def
=

k∏
i=1

fn(xi)(yi), (140)

where fn ∈ L>1
p (Fn2 , L1(Fn2 )) is given in (127). Then F ∈ L>kp (Fkn2 , L1(Fkn2 )). For every

injective linear operator T : L1(Fkn2 )→ X we have T ◦ F ∈ L>kp (Fkn2 , X), and therefore

1− δ
(139)
>

∥∥e−t∆(T ◦ F )
∥∥
Lp(Fkn2 ,X)

‖T ◦ F‖Lp(Fkn2 ,X)

>
1

‖T‖ · ‖T−1‖ ·
∥∥e−t∆F∥∥

Lp(Fkn2 ,L1(Fkn2 ))

‖F‖Lp(Fkn2 ,L1(Fkn2 ))

(140)
=

1

‖T‖ · ‖T−1‖ ·
(∥∥e−t∆fn∥∥Lp(Fn2 ,L1(Fn2 ))

‖fn‖Lp(Fn2 ,L1(Fn2 ))

)k

−−−→
n→∞

1

‖T‖ · ‖T−1‖ , (141)

where in the last step of (141) we used Lemma 5.9. It follows that

sup
m∈N

inf
S∈L (`m1 ,X)

‖S‖ · ‖S−1‖ > 1

1− δ .

By Pisier’s K-convexity theorem [61] we conclude that X must be K-convex. �

5.4. Inverting the Laplacian on the vector-valued tail space. Here we discuss lower
bounds on the restriction of ∆ to the tail space. Such bounds can potentially yield a sim-
plification of our construction of the base graph; see Remarks 5.12 and 7.5 below.

Theorem 5.10. For every K, p ∈ (1,∞) there exist δ = δ(K, p), c = c(K, p) ∈ (0, 1)
such that if X is a K-convex Banach space with K(X) 6 K then for every n ∈ N and
k ∈ {1, . . . , n},

f ∈ L>kp (Fn2 , X) =⇒ ‖∆f‖Lp(Fn2 ,X) > ckδ · ‖f‖Lp(Fn2 ,X). (142)

Proof. The estimate (142) is deduced from Theorem 5.1 as follows. If f ∈ L>kp (Fn2 , X) then

‖f‖Lp(Fn2 ,X) =

∥∥∥∥∫ ∞
0

e−t∆∆fdt

∥∥∥∥
Lp(Fn2 ,X)

(97)

6 C

(∫ 1

0

e−Akt
B

dt+

∫ ∞
1

e−Aktdt

)
‖∆f‖Lp(Fn2 ,X)

6 C

(
Γ(1/B)

(Ak)1/B
+
e−Ak

Ak

)
‖∆f‖Lp(Fn2 ,X) .

CB

A1/B
· 1

k1/B
‖∆f‖Lp(Fn2 ,X). �

We also have the following converse to Theorem 5.10.

Theorem 5.11. If X is a Banach space such that for some p,K ∈ (0,∞) and k ∈ N we
have

lim
n→∞

inf
f∈L>k

p (Fn2 ,X)
f 6=0

‖∆f‖Lp(Fn2 ,X)

‖f‖Lp(Fn2 ,X)

> 0, (143)

then X is K-convex.

Proof. For f ∈ Lp(Fn2 , X) define

∆−1f =
∑

A⊆{1,...,n}
A 6=∅

1

|A| f̂(A)WA.
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In [54, Thm. 5] it was shown that if X is not K-convex then

sup
n∈N

∥∥∆−1
∥∥
Lp(Fn2 ,X)→Lp(Fn2 ,X)

=∞.

Here we need to extend this statement to the assertion contained in (144) below, which
should hold true for every Banach space X that is not K-convex and every k ∈ N.

sup
n∈N

∥∥∆−1
∥∥
L>k
p (Fn2 ,X)→L>k

p (Fn2 ,X)
=∞. (144)

Arguing as in the proof of Theorem 5.2, by Pisier’s K-convexity theorem [61] it will suffice
to prove that for n > 2, if F : Fkn2 → L1(F kn

2 ) is given as in (140) then

‖∆−1F‖Lp(Fkn2 ,L1(Fkn2 ))

‖F‖Lp(Fkn2 ,L1(Fkn2 ))

&
log n

8k
. (145)

Note that by (129),

‖F‖Lp(Fkn2 ,L1(Fkn2 )) = 2k
(

1− 1

2n

)k
6 2k. (146)

By (130) and (140), for every (x1, . . . , xk), (y1, . . . , yk) ∈ Fkn2 and every t ∈ (0,∞),

e−t∆F (x1, . . . , xk)(y1, . . . , yk) =
k∏
i=1

(
n∏
j=1

(
1 + e−t(−1)x

i
j+y

i
j

)
− 1

)

=
k∏
i=1

((
1− e−t

)‖xi−yi‖1 (1 + e−t
)n−‖xi−yi‖1 − 1

)
. (147)

For every x ∈ Fn2 denote

Ωx
def
=
{
y ∈ Fn2 : ‖y − x‖1 6

n

2

}
.

Then
∀x ∈ Fn2 , |Ωx| > 2n−1, (148)

and by (147) we have

(y1, . . . , yk) ∈
k∏
i=1

Ωxi =⇒
∣∣e−t∆F (x1, . . . , xk)(y1, . . . , yk)

∣∣ > (1−
(
1− e−2t

)n/2)k
. (149)

Now,∥∥∆−1F (x1, . . . , xk)
∥∥
L1(Fkn2 )

=

∥∥∥∥∫ ∞
0

e−t∆F (x1, . . . , xk)dt

∥∥∥∥
L1(Fkn2 )

>
1

2kn

∑
(y1,...,yk)∈

∏k
i=1 Ωxi

∣∣∣∣∫ ∞
0

e−t∆F (x1, . . . , xk)(y1, . . . , yk)dt

∣∣∣∣
>

1

2k

∫ ∞
0

(
1−

(
1− e−2t

)n/2)k
dt, (150)

where in (150) we used (148) and (149). Finally,∥∥∆−1F
∥∥
Lp(Fkn2 ,L1(Fkn2 ))

(150)

>
1

2k

∫ 1
2

logn

0

(
1−

(
1− e−2t

)n/2)k
dt &

log n

4k
. (151)
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The desired estimate (145) now follows from (146) and (151). �

Remark 5.12. The following natural problem presents itself. Can one improve Theorem 5.10
so as to have δ = 1, i.e., to obtain the bound

f ∈ L>kp (Fn2 , X) =⇒ ‖∆f‖Lp(Fn2 ,X) > c(K, p)k · ‖f‖Lp(Fn2 ,X)? (152)

As discussed in Remark 5.5, this seems to be unknown even when X = R. If (152) were true
then it would significantly simplify our construction of the base graph, since in Section 7 we
would be able to use the “vanilla” hypercube quotients of [28] instead of the quotients of the
discretized heat semigroup as in Lemma 7.3; see Remark 7.5 below for more information on
this potential simplification.

6. Nonlinear spectral gaps in uniformly convex normed spaces

Let (X, ‖ · ‖X) be a normed space. For n ∈ N and p ∈ [1,∞) we let Lnp (X) denote the
space of functions f : {1, . . . , n} → X, equipped with the norm

‖f‖Lnp (X) =

(
1

n

n∑
i=1

‖f(i)‖pX

)1/p

.

Thus, using the notation introduced in the beginning of Section 5, Lnp (X) = Lnp ({1, . . . , n}, X).
We shall also use the notation

Lnp (X)0
def
=

{
f ∈ Lnp (X) :

n∑
i=1

f(i) = 0

}
.

Given an n× n symmetric stochastic matrix A = (aij) we denote by A⊗ InX the operator
from Lnp (X) to Lnp (X) given by

(A⊗ InX) f(i) =
n∑
j=1

aijf(j).

Note that since A is symmetric and stochastic the operator A ⊗ InX preserves the subspace
Lnp (X)0, that is (A⊗ InX) (Lnp (X)0) ⊆ Lnp (X)0. Define

λ
(p)
X (A)

def
= ‖A⊗ InX‖Lnp (X)0→Lnp (X)0

. (153)

Note that, since A is doubly stochastic, λpX(A) 6 1. It is immediate to check that

λ
(2)
R (A) = λ

(2)
L2

(A) = λ(A) = max
i∈{2,...,n}

|λi(A)|.

Thus λ
(p)
X (A) should be viewed as a non-Euclidean (though still linear) variant of the absolute

spectral gap of A. The following lemma substantiates this analogy by establishing a relation

between λ
(p)
X (A) and γ+(A, ‖ · ‖pX).

Lemma 6.1. For every normed space (X, ‖ · ‖X), every p > 1 and every n × n symmetric
stochastic matrix A, we have

γ+(A, ‖ · ‖pX) 6

(
1 +

4

1− λ(p)
X (A)

)p

. (154)
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Proof. Write λ = λ
(p)
X (A). We may assume that λ < 1, since otherwise there is nothing to

prove. Fix f, g : {1, . . . , n} → X and denote

f
def
=

1

n

n∑
i=1

f(i) and g
def
=

1

n

n∑
i=1

g(i).

Thus

f0
def
= f − f ∈ Lnp (X)0 and g0

def
= g − g ∈ Lnp (X)0.

Therefore

‖(A⊗ InX)f0‖Lnp (X) 6 λ ‖f0‖Lnp (X) and ‖(A⊗ InX)g0‖Lnp (X) 6 λ‖g0‖Lnp (X). (155)

Let B be the (2n)× (2n) symmetric stochastic matrix given by

B =

(
0 A
A 0

)
. (156)

Letting h = f0 ⊕ g0 ∈ L2n
p (X) be given by

h(i)
def
=

{
f0(i) if i ∈ {1, . . . , n},
g0(i− n) if i ∈ {n+ 1, . . . , 2n},

we see that

(1− λ) ‖h‖L2n
p (X) = ‖h‖L2n

p (X) −
(
λp ‖f0‖pLnp (X) + λp ‖g0‖pLnp (X)

2

)1/p

(155)

6 ‖h‖L2n
p (X) −

(
1

2
‖(A⊗ InX)f0‖pLnp (X) +

1

2
‖(A⊗ InX)g0‖pLnp (X)

)1/p

(156)
= ‖h‖L2n

p (X) −
∥∥(B ⊗ I2n

X )h
∥∥
L2n
p (X)

6
∥∥∥(IL2n

p (X) −B ⊗ I2n
X

)
h
∥∥∥
L2n
p (X)

=

 1

2n

n∑
i=1

∥∥∥∥∥
n∑
j=1

aij (f0(i)− g0(j))

∥∥∥∥∥
p

X

+
1

2n

n∑
i=1

∥∥∥∥∥
n∑
j=1

aij (g0(i)− f0(j))

∥∥∥∥∥
p

X

1/p

6

(
1

n

n∑
i=1

n∑
j=1

aij‖f0(i)− g0(j)‖pX

)1/p

6
∥∥f − g∥∥

X
+

(
1

n

n∑
i=1

n∑
j=1

aij‖f(i)− g(j)‖pX

)1/p

. (157)
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Note that∥∥f − g∥∥
X

=

∥∥∥∥∥ 1

n

n∑
i=1

n∑
j=1

aij(f(i)− g(j))

∥∥∥∥∥
X

6
1

n

n∑
i=1

n∑
j=1

aij ‖f(i)− g(j)‖X 6
(

1

n

n∑
i=1

n∑
j=1

aij‖f(i)− g(j)‖pX

)1/p

. (158)

Combining (157) and (158) we see that(
1

2n

n∑
i=1

(‖f0(i)‖pX + ‖g0(i)‖pX)

)1/p

6
2

1− λ

(
1

n

n∑
i=1

n∑
j=1

aij‖f(i)− g(j)‖pX

)1/p

. (159)

But,(
1

n2

n∑
i=1

n∑
j=1

‖f(i)− g(j)‖pX

)1/p

6
∥∥f − g∥∥

X
+

(
1

n2

n∑
i=1

n∑
j=1

‖f0(i)− g0(j)‖pX

)1/p

6
∥∥f − g∥∥

X
+

(
1

n

n∑
i=1

2p−1 (‖f0(i)‖pX + ‖g0(i)‖pX)

)1/p

(158)∧(159)

6

(
1 +

4

1− λ

)(
1

n

n∑
i=1

n∑
j=1

aij‖f(i)− g(j)‖pX

)1/p

,

which implies the desired estimate (154). �

6.1. Norm bounds need not imply nonlinear spectral gaps. One cannot bound

γ+(A, ‖ · ‖pX) in terms of λ
(p)
X (A) for a general Banach space X, as shown in the follow-

ing example.

Lemma 6.2. For every n ∈ N there exists a 2n × 2n symmetric stochastic matrix An such
that for every p ∈ [1,∞),

sup
n∈N

γ+

(
An, ‖ · ‖pL1

)
<∞, (160)

yet

lim
n→∞

λ
(p)
L1

(An) = 1. (161)

Proof. We use here the results and notation of Section 5. For every t ∈ (0,∞), the operator
e−t∆ is an averaging operator, since by (93) it corresponds to convolution with the Riesz
kernel given in (94). Hence the Fn2 × Fn2 matrix An whose entry at (x, y) ∈ Fn2 × Fn2 is

(e−t∆δx)(y)
(95)
=

(
1− e−t

2

)‖x−y‖1 (1 + e−t

2

)n−‖x−y‖1
is symmetric and stochastic. Lemma 5.9 implies the validity of (161), so it remains to
establish (160).

By Lemma 5.4 there exists cp ∈ (0,∞) such that

λ
(2p)
L2p

(An) 6 e−cp min{t,t2}.
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It therefore follows from Lemma 6.1 that

γ+

(
An, ‖ · ‖2p

L2p

)
6

(
5− e−cp min{t,t2}

1− e−cp min{t,t2}

)p

def
= Cp(t) <∞.

Since L2 embeds isometrically into L2p (see e.g. [70]), it follows that γ+

(
An, ‖ · ‖2p

L2

)
6 Cp(t).

It is a standard fact that L1 equipped with the metric d(f, g) =
√
‖f − g‖1 admits an

isometric embedding into L2 (for one of several possible simple proofs of this, see [50, Sec. 3]).
It follows that γ+

(
An, ‖ · ‖pL1

)
= γ+ (An, d

2p) 6 Cp(t). �

6.2. A partial converse to Lemma 6.1 in uniformly convex spaces. Despite the
validity of Lemma 6.2, Lemma 6.6 below is a partial converse to Lemma 6.1 that holds true
if X is uniformly convex. We start this section with a review of uniform convexity and
smoothness; the material below will also be used in Section 6.3.

Let (X, ‖ · ‖X) be a normed space. The modulus of uniform convexity of X is defined for
ε ∈ [0, 2] as

δX(ε)
def
= inf

{
1− ‖x+ y‖X

2
: x, y ∈ X, ‖x‖X = ‖y‖X = 1, ‖x− y‖X = ε

}
. (162)

X is said to be uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. Furthermore, X is said to
have modulus of convexity of power type p if there exists a constant c ∈ (0,∞) such that
δX(ε) > c εp for all ε ∈ [0, 2]. It is straightforward to check that in this case necessarily
p > 2. By Proposition 7 in [5] (see also [14]), X has modulus of convexity of power type p
if and only if there exists a constant K ∈ [1,∞) such that for every x, y ∈ X

‖x‖pX +
1

Kp
‖y‖pX 6

‖x+ y‖pX + ‖x− y‖pX
2

. (163)

The infimum over those K for which (163) holds is called the p-convexity constant of X, and
is denoted Kp(X).

The modulus of uniform smoothness of X is defined for τ ∈ (0,∞) as

ρX(τ)
def
= sup

{‖x+ τy‖X + ‖x− τy‖X
2

− 1 : x, y ∈ X, ‖x‖X = ‖y‖X = 1

}
. (164)

X is said to be uniformly smooth if limτ→0 ρX(τ)/τ = 0. Furthermore, X is said to have
modulus of smoothness of power type p if there exists a constant C ∈ (0,∞) such that
ρX(τ) 6 Cτ p for all τ ∈ (0,∞). It is straightforward to check that in this case necessarily
p ∈ [1, 2]. It follows from [5] that X has modulus of smoothness of power type p if and only
if there exists a constant S ∈ [1,∞) such that for every x, y ∈ X

‖x+ y‖pX + ‖x− y‖pX
2

6 ‖x‖pX + Sp‖y‖pX . (165)

The infimum over those S for which (165) holds is called the p-smoothness constant of X,
and is denoted Sp(X).

The moduli appearing in (162) and (164) relate to each other via the following classical
duality formula of Lindenstrauss [33].

ρX∗(τ) = sup
{τε

2
− δX(ε) : ε ∈ [0, 2]

}
.
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Correspondingly, it was shown in [5, Lem. 5] that the best constants in (163) and (165) have
the following duality relation.

Kp(X) = Sp/(p−1)(X
∗). (166)

Observe that if q > p then for all x, y ∈ X we have(‖x+ y‖pX + ‖x− y‖pX
2

)1/p

6

(‖x+ y‖qX + ‖x− y‖qX
2

)1/q

,

and (
‖x‖qX +

1

Kq
‖y‖qX

)1/q

6

(
‖x‖pX +

1

Kp
‖y‖pX

)1/p

.

Hence,
q > p =⇒ Kq(X) 6 Kp(X). (167)

Similarly we have (though we will not use this fact later),

q 6 p =⇒ Sq(X) 6 Sp(X).

The following lemma can be deduced from a combination of results in [15, 14] and [5]
(without the explicit dependence on p, q). A simple proof of the case p = 2 of it is also
contained in [52]; we include the natural adaptation of the argument to general p ∈ (1, 2] for
the sake of completeness.

Lemma 6.3. For every p ∈ (1, 2], q ∈ [p,∞), every Banach space (X, ‖ · ‖X) and every
measure space (Ω, µ), we have

Sp (Lq(µ,X)) 6 (5pq)1/pSp(X).

Proof. Fix S > Sp(X). We will show that for every x, y ∈ X we have

‖x+ y‖qX + ‖x− y‖qX
2

6 (‖x‖pX + 5pqSp‖y‖pX)q/p . (168)

Assuming the validity of (168) for the moment, we complete the proof of Lemma 6.3 as
follows. If f, g ∈ Lq(µ,X) then

‖f + g‖pLq(µ,X) + ‖f − g‖pLq(µ,X)

2
6

(
‖f + g‖qLq(µ,X) + ‖f − g‖qLq(µ,X)

2

)p/q

=

(∫
Ω

‖f + g‖qX + ‖f − g‖qX
2

dµ

)p/q
(168)

6
∥∥∥‖f‖pX + 5pqSp‖g‖pX

∥∥∥
Lq/p(µ)

6 ‖f‖pLq(µ,X) + 5pqSp‖g‖pLq(µ,X).

This proves that Sp(Lq(µ,X))p 6 5pqSp(X)p, as desired.
It remains to prove (168). Since ‖y‖pX +5pqSp‖x‖pX 6 ‖x‖pX +5pqSp‖y‖pX if ‖x‖X 6 ‖y‖X ,

it suffices to prove (168) under the additional assumption ‖y‖X 6 ‖x‖X . After normalization
we may further assume that ‖x‖X = 1 and ‖y‖X 6 1.

Note that ∣∣‖x+ y‖pX − ‖x− y‖pX
∣∣ 6 (1 + ‖y‖X)p − (1− ‖y‖X)p 6 2p‖y‖X . (169)
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We claim that for every α ∈ [1,∞) and β ∈ [−1, 1] we have(
(1 + β)α + (1− β)α

2

)1/α

6 1 + 2αβ2. (170)

Indeed, by symmetry it suffices to prove (170) when β ∈ [0, 1]. The left hand side of (170) is
at most max{1 +β, 1−β} = 1 +β, which implies (170) when β > 1/(2α). We may therefore
assume that β ∈ [0, 1/(2α)], in which case the crude bound (1 + β)α + (1− β)α 6 2 + 4α2β2

follows from Taylor’s expansion, implying (170) in this case as well.
Set

b
def
=
‖x+ y‖pX + ‖x− y‖pX

2
and β

def
=
‖x+ y‖pX − ‖x− y‖pX
‖x+ y‖pX + ‖x− y‖pX

, (171)

and define

θ
def
=

(
(1 + β)q/p + (1− β)q/p

2

)p/q
− 1 ∈ [0, 1]. (172)

Observe that by convexity b > 1, and therefore

θ
(170)

6 2
q

p
β2

(169)∧(171)

6
2q

p

(
2p‖y‖X

2b

)2

6 2pq‖y‖pX , (173)

where we used the fact that p ∈ [1, 2] and ‖y‖X 6 1. Now,

‖x+ y‖qX + ‖x− y‖qX
2

(171)∧(172)
= (b(1 + θ))q/p

(165)

6 ((1 + Sp‖y‖pX) (1 + θ))q/p
(173)

6 (1 + 5pqSp‖y‖pX)q/p . �

By (166), Lemma 6.3 implies the following dual statement.

Corollary 6.4. For every p ∈ [2,∞), q ∈ (1, p], every Banach space (X, ‖ · ‖X) and every
measure space (Ω, µ), we have

Kp(Lq(µ,X)) 6

(
5pq

(p− 1)(q − 1)

)1−1/p

Kp(X).

The following lemma is stated and proved in [4] when p = 2.

Lemma 6.5. Let X be a normed space and U a random vector in X with E [‖U‖pX ] < ∞.
Then

‖E [U ]‖pX +
1

(2p−1 − 1)Kp(X)p
E [‖U − E[U ]‖pX ] 6 E [‖U‖pX ] .

Proof. We repeat here the p > 2 variant of the argument from [4] for the sake of completeness.
Let (Ω,Pr) be the probability space on which U is defined. Denote

θ
def
= inf

{
E [‖V ‖pX ]− ‖E[V ]‖pX
E [‖V − E[V ]‖pX ]

: V ∈ Lp(Ω, X) ∧ E [‖V − E[V ]‖pX ] > 0

}
. (174)

Then θ > 0. Our goal is to show that

θ >
1

(2p−1 − 1)Kp(X)p
. (175)
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Fix φ > θ. Then there exists a random vector V0 ∈ Lp(Ω, X) for which

φE [‖V0 − E[V0]‖pX ] > E [‖V0‖pX ]− ‖E[V0]‖pX . (176)

Fix K > Kp(X). Apply the inequality (163) to the vectors

x =
1

2
V0 +

1

2
E[V0] and y =

1

2
V0 −

1

2
E[V0],

to get the point-wise estimate

2

∥∥∥∥1

2
V0 +

1

2
E[V0]

∥∥∥∥p
X

+
2

Kp

∥∥∥∥1

2
V0 −

1

2
E[V0]

∥∥∥∥p
X

6 ‖V0‖pX + ‖E[V0]‖pX . (177)

Hence

φE [‖V0 − E[V0]‖pX ]
(176)
> E [‖V0‖pX ]− ‖E[V0]‖pX

(177)

> 2

(
E
[∥∥∥∥1

2
V0 +

1

2
E[V0]

∥∥∥∥p
X

]
−
∥∥∥∥E [1

2
V0 +

1

2
E[V0]

]∥∥∥∥p
X

)
+

2

Kp
E
[∥∥∥∥1

2
V0 −

1

2
E[V0]

∥∥∥∥p
X

]
(174)

> 2θE
[∥∥∥∥(1

2
V0 +

1

2
E[V0]

)
− E

[
1

2
V0 +

1

2
E[V0]

]∥∥∥∥p
X

]
+

2

Kp
E
[∥∥∥∥1

2
V0 −

1

2
E[V0]

∥∥∥∥p
X

]
=

(
θ

2p−1
+

1

2p−1Kp

)
E [‖V0 − E[V0]‖pX ] .

Thus

φ >
θ

2p−1
+

1

2p−1Kp
. (178)

Since (178) holds for all φ > θ and K > Kp(X), the desired lower bound (175) follows. �

Lemma 6.6. Fix p ∈ [2,∞) and let X be a normed space with Kp(X) <∞. Then for every
n× n symmetric stochastic matrix A = (aij) we have

λ
(p)
X (A) 6

(
1− 1

(2p−1 − 1)Kp(X)pγ+ (A, ‖ · ‖pX)

)1/p

.

Proof. Fix γ+ > γ+ (A, ‖ · ‖pX) and f ∈ Lnp (X)0. For every i ∈ {1, . . . , n} consider the
random vector Ui ∈ X given by

Pr [Ui = f(j)] = aij.

Lemma 6.5 implies that∥∥∥∥∥
n∑
j=1

aijf(j)

∥∥∥∥∥
p

X

6
n∑
j=1

aij‖f(j)‖pX −
1

(2p−1 − 1)Kp(X)p

n∑
j=1

aij

∥∥∥∥∥f(j)−
n∑
k=1

aikf(k)

∥∥∥∥∥
p

X

. (179)

Define for i ∈ {1, . . . , n},

g(i) = E[Ui] =
n∑
k=1

aikf(k).
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By averaging (179) over i ∈ {1, . . . , n} we see that

‖(A⊗ InX)f‖pLnp (X) =
1

n

n∑
i=1

∥∥∥∥∥
n∑
j=1

aijf(j)

∥∥∥∥∥
p

X

6
1

n

n∑
i=1

n∑
j=1

aij‖f(j)‖pX −
1

n(2p−1 − 1)Kp(X)p

n∑
i=1

n∑
j=1

aij ‖f(j)− g(i)‖pX

= ‖f‖pLnp (X) −
1

n(2p−1 − 1)Kp(X)p

n∑
i=1

n∑
j=1

aij ‖f(j)− g(i)‖pX . (180)

The definition of γ+ (A, ‖ · ‖pX) implies that

1

n

n∑
i=1

n∑
j=1

aij ‖f(j)− g(i)‖pX >
1

γ+n2

n∑
i=1

n∑
j=1

‖f(j)− g(i)‖pX

>
1

γ+n

n∑
j=1

∥∥∥∥∥f(j)− 1

n

n∑
i=1

g(i)

∥∥∥∥∥
p

X

=
1

γ+n

n∑
j=1

‖f(j)‖pX =
1

γ+

‖f‖pLnp (X), (181)

where we used the fact that since f ∈ Lnp (X)0 we have

n∑
i=1

g(i) =
n∑
k=1

(
n∑
i=1

aik

)
f(k) =

n∑
k=1

f(k) = 0.

Substituting (181) into (180) yields the bound

‖(A⊗ InX)f‖pLnp (X) 6

(
1− 1

(2p−1 − 1)Kp(X)pγ+

)
‖f‖pLnp (X). (182)

Since (182) holds for every f ∈ Lnp (X)0 and γ+ > γ+ (A, ‖ · ‖pX), inequality (182) implies the

required bound on λ
(p)
X (A) = ‖A⊗ InX‖Lnp (X)0→Lnp (X)0

. �

Theorem 6.7. Fix p ∈ [2,∞) and t ∈ N. Let X be a normed space with Kp(X) <∞. Then
for every n× n symmetric stochastic matrix A = (aij) we have

γ+

(
At, ‖ · ‖pX

)
6 [4Kp(X)]p

2 ·max

{
1,

(
γ+ (A, ‖ · ‖pX)

t

)p}
.

Proof. Note that since A⊗ InX preserves Lnp (X)0 we have

λ
(p)
X (At) =

∥∥At ⊗ InX∥∥Lnp (X)0→Lnp (X)0
=
∥∥(A⊗ InX)t

∥∥
Lnp (X)0→Lnp (X)0

6 ‖A⊗ InX‖tLnp (X)0→Lnp (X)0
= λ

(p)
X (A)t. (183)

Lemma 6.1 applied to the matrix At, in combination with (183), yields the bound

γ+

(
At, ‖ · ‖pX

)
6

(
5− λ(p)

X (A)t

1− λ(p)
X (A)t

)p

6

(
5

1− λ(p)
X (A)t

)p

. (184)
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On the other hand, using Lemma 6.6 we have

λ
(p)
X (A) 6

(
1− 1

(2p−1 − 1)Kp(X)pγ+ (A, ‖ · ‖pX)

)1/p

6 exp

(
− 1

p(2p−1 − 1)Kp(X)pγ+ (A, ‖ · ‖pX)

)
. (185)

Thus

1− λ(p)
X (A)t

(185)

> 1− exp

(
− t

p(2p−1 − 1)Kp(X)pγ+ (A, ‖ · ‖pX)

)
>

1

2
min

{
1,

t

p(2p−1 − 1)Kp(X)pγ+ (A, ‖ · ‖pX)

}
. (186)

The required result is now a combination of (186) and (184). �

6.3. Martingale inequalities and metric Markov cotype. Let X be a Banach space
with Kp(X) <∞. Assume that {Mk}nk=0 ⊆ X is a martingale with respect to the filtration
F0 ⊆ F1 ⊆ · · · ⊆ Fn−1, i.e., E [Mi+1|Fi] = Mi for every i ∈ {0, 1, . . . , n − 1}. Lemma 6.5
implies that

E
[
‖Mn −M0‖pX

∣∣∣Fn−1

]
>
∥∥∥E [Mn −M0

∣∣∣Fn−1

]∥∥∥p
X

+
1

(2p−1 − 1)Kp(X)p
E
[∥∥∥Mn −M0 − E

[
Mn −M0

∣∣∣Fn−1

]∥∥∥p
X

∣∣∣Fn−1

]
= ‖Mn−1 −M0‖pX +

1

(2p−1 − 1)Kp(X)p
E
[
‖Mn −Mn−1‖pX

∣∣∣Fn−1

]
. (187)

Taking expectation in (187) yields the estimate

E [‖Mn −M0‖pX ] > E [‖Mn−1 −M0‖pX ] +
1

(2p−1 − 1)Kp(X)p
E [‖Mn −Mn−1‖pX ] .

Iterating this argument we obtain the following famous inequality of Pisier [59], which will
be used crucially in what follows.

Theorem 6.8 (Pisier’s martingale inequality). Let X be a Banach space with Kp(X) <∞.
Suppose that {Mk}nk=0 ⊆ X is a martingale (with respect some filtration). Then

E [‖Mn −M0‖pX ] >
1

(2p−1 − 1)Kp(X)p

n∑
k=1

E [‖Mk −Mk−1‖pX ] .

We also need the following variant of Pisier’s inequality.

Corollary 6.9. Fix p ∈ [2,∞), q ∈ (1,∞) and let X be a normed space with Kp(X) < ∞.
Then for every q-integrable martingale {Mk}nk=0 ⊆ X, if q ∈ [p,∞) then

E [‖Mn −M0‖qX ] >
1

(2q−1 − 1)Kp(X)q

n∑
k=1

E [‖Mk −Mk−1‖qX ] . (188)
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and if q ∈ (1, p], then

E [‖Mn −M0‖qX ] >
((1− 1/p)(1− 1/q))q(1−1/p)

5q(1−1/p) (2Kp(X))q n1−q/p

n∑
k=1

E [‖Mk −Mk−1‖qX ] . (189)

Proof. Denote the probability space on which the martingale {Mk}nk=0 is defined by (Ω, µ).
Suppose also that F0 ⊆ F1 ⊆ · · · ⊆ Fn−1 is the filtration with respect to which {Mk}nk=0 is
a martingale.

If p 6 q then (188) is an immediate consequence of Theorem 6.8 and (167). If q ∈ (1, p]
then by Corollary 6.4 we have

K
def
= Kp(Lq(µ,X)) 6

(
5pq

(p− 1)(q − 1)

)1−1/p

Kp(X).

We can therefore apply (163) to the following two vectors in Lq(µ,X).

x = Mn−1 −M0 +
Mn −Mn−1

2
and y =

Mn −Mn−1

2
,

yielding the following estimate.(
E
[∥∥∥∥Mn−1 −M0 +

Mn −Mn−1

2

∥∥∥∥q
X

])p/q
+

1

(2K)p
(E [‖Mn −Mn−1‖qX ])

p/q

6
(E [‖Mn −M0‖qX ])

p/q
+ (E [‖Mn−1 −M0‖qX ])

p/q

2
. (190)

Now,

E [‖Mn−1 −M0‖qX ] = E
[∥∥∥Mn−1 −M0 + E

[
Mn −Mn−1

∣∣∣Fn−1

]∥∥∥q
X

]
6 E [‖Mn −M0‖qX ] ,

and

E [‖Mn−1 −M0‖qX ] = E
[∥∥∥∥Mn−1 −M0 + E

[
Mn −Mn−1

2

∣∣∣Fn−1

]∥∥∥∥q
X

]
6 E

[∥∥∥∥Mn−1 −M0 +
Mn −Mn−1

2

∥∥∥∥q
X

]
.

Thus (190) implies that

(E [‖Mn−1 −M0‖qX ])
p/q

+
1

(2K)p
(E [‖Mn −Mn−1‖qX ])

p/q 6 (E [‖Mn −M0‖qX ])
p/q
. (191)

Applying (191) inductively we get the lower bound

(2K)p (E [‖Mn −M0‖qX ])
p/q >

n∑
k=1

(E [‖Mk −Mk−1‖qX ])
p/q

>
1

n
p
q
−1

(
n∑
k=1

E [‖Mk −Mk−1‖qX ]

)p/q

,

which is precisely (189). �
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We are now in position to prove the main theorem of this section, which establishes
metric Markov cotype p inequalities (recall Definition 1.4) for Banach space with modulus
of convexity of power type p. An important theorem of Pisier [59] asserts that if a normed
space (X, ‖ · ‖X) is super-reflexive then there exists p ∈ [2,∞) and an equivalent norm ‖ · ‖
on X such that Kp(X, ‖ · ‖) <∞. Thus the case q = 2 of Theorem 6.10 below corresponds
to Theorem 1.8.

Theorem 6.10. Fix p ∈ [2,∞) and let (X, ‖ · ‖X) be a normed space with Kp(X) < ∞.
Then for every m,n ∈ N, every n × n symmetric stochastic matrix A = (aij) and every
x1, . . . , xn ∈ X there exist y1, . . . yn ∈ X such that for all q ∈ (1,∞),

max

{
n∑
i=1

‖xi − yi‖qX ,
(

((1− 1/p)(1− 1/q))1−1/p

16 · 51−1/pKp(X)

)q
mmin{1,q/p}

n∑
i=1

n∑
j=1

aij ‖yi − yj‖qX

}

6
n∑
i=1

n∑
j=1

Am(A)ij‖xi − xj‖qX . (192)

In particular, for q = 2 we have
n∑
i=1

‖xi − yi‖2
X +m2/p

n∑
i=1

n∑
j=1

aij ‖yi − yj‖2
X 6 (320Kp(X))2

n∑
i=1

n∑
j=1

Am(A)ij‖xi − xj‖2
X ,

Thus X has metric Markov cotype p with exponent 2 and with C
(2)
p (X) 6 320Kp(X).

Proof. Define f ∈ Lnp (X) by f(i) = xi. For every ` ∈ {1, . . . , n} let

Z
(`)
0 , Z

(`)
1 , Z

(`)
2 , . . .

be the Markov chain on {1, . . . , n} which starts at ` and has transition matrix A. In other

words Z
(`)
0 = ` with probability one and for all t ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n} we have

Pr
[
Z

(`)
t = j

∣∣∣Z(`)
t−1 = i

]
= aij.

For t ∈ {0, . . . ,m} define ft ∈ Lnp (X) by

ft
def
= (Am−t ⊗ InX)f.

Observe that if we set

M
(`)
t

def
= ft

(
Z

(`)
t

)
then M

(`)
0 ,M

(`)
1 , . . . ,M

(`)
m is a martingale with respect to the filtration induced by the random

variables Z
(`)
0 , Z

(`)
1 , . . . , Z

(`)
m . Indeed, writing L = A⊗ InX we have for every t > 1,

E
[
M

(`)
t

∣∣∣Z(`)
0 , . . . , Z

(`)
t−1

]
= E

[(
Lm−tf

) (
Z

(`)
t

)∣∣∣Z(`)
t−1

]
= Lm−t E

[
f
(
Z

(`)
t

)∣∣∣Z(`)
t−1

]
= Lm−t(Lf)

(
Z

(`)
t−1

)
=
(
Lm−(t−1)f

) (
Z

(`)
t−1

)
= M

(`)
t−1.

Write

K
def
=

{
(2q−1 − 1)Kp(X)q if q ∈ [p,∞),
5q(1−1/p)(2Kp(X))qm1−q/p

((1−1/p)(1−1/q))q(1−1/p) if q ∈ (1, p).
(193)
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Then Corollary 6.9 applied to the martingale
{
M

(`)
t

}m
t=0

implies that

K E
[∥∥f (Z(`)

m

)
− (Lmf)(`)

∥∥q
X

]
>

m∑
t=1

E
[∥∥∥(Lm−tf)

(
Z

(`)
t

)
− (Lm−t+1f)

(
Z

(`)
t−1

)∥∥∥q
X

]
. (194)

Let {Zt}∞t=0 be the Markov chain with transition matrix A such that Z0 is uniformly dis-
tributed on {1, . . . , n}. Averaging (194) over ` ∈ {1, . . . , n} yields the inequality

K E [‖f (Zm)− (Lmf)(Z0)‖qX ] >
m∑
t=1

E
[∥∥(Lm−tf) (Zt)− (Lm−t+1f) (Zt−1)

∥∥q
X

]
, (195)

Which is the same as

K
n∑
i=1

n∑
j=1

(Am)ij ‖f(i)− (Lmf)(j)‖qX

>
m∑
t=1

n∑
i=1

n∑
j=1

aij
∥∥(Lm−tf)(i)− (Lm−t+1f)(j)

∥∥q
X
. (196)

In order to bound the right-hand side of (196), for every i ∈ {1 . . . , n} consider the vector

yi
def
=

1

m

n∑
j=1

m−1∑
s=0

(As)ijxj =
1

m

m−1∑
s=0

Lsf(i), (197)

and observe that

1

m

m∑
s=1

Lsf(i) = yi −
1

m
xi +

1

m
Lmf(i) = yi −

1

m

n∑
r=1

(Am)ir(xi − xr). (198)

Therefore, using convexity we have:
m∑
t=1

n∑
i=1

n∑
j=1

aij
∥∥(Lm−tf)(i)− (Lm−t+1f)(j)

∥∥q
X

> m
n∑
i=1

n∑
j=1

aij

∥∥∥∥∥ 1

m

m∑
t=1

(
(Lm−tf)(i)− (Lm−t+1f)(j)

)∥∥∥∥∥
q

X

(197)∧(198)
= m

n∑
i=1

n∑
j=1

aij

∥∥∥∥∥yi − yj +
1

m

n∑
r=1

(Am)jr(xj − xr)
∥∥∥∥∥
q

X

>
m

2q−1

n∑
i=1

n∑
j=1

aij ‖yi − yj‖qX −
1

mq−1

n∑
i=1

n∑
j=1

aij

∥∥∥∥∥
n∑
r=1

(Am)jr(xj − xr)
∥∥∥∥∥
q

X

=
m

2q−1

n∑
i=1

n∑
j=1

aij ‖yi − yj‖qX −
1

mq−1

n∑
j=1

∥∥∥∥∥
n∑
r=1

(Am)jr(xj − xr)
∥∥∥∥∥
q

X

>
m

2q−1

n∑
i=1

n∑
j=1

aij ‖yi − yj‖qX −
1

mq−1

n∑
j=1

n∑
r=1

(Am)jr ‖xj − xr‖qX . (199)
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At the same time, we can bound the left-hand side of (196) as follows:

n∑
i=1

n∑
j=1

(Am)ij ‖f(i)− (Lmf)(j)‖qX =
n∑
i=1

n∑
j=1

(Am)ij

∥∥∥∥∥xi −
n∑
r=1

(Am)jrxr

∥∥∥∥∥
q

X

6
n∑
i=1

n∑
j=1

n∑
r=1

(Am)ij(A
m)jr ‖xi − xr‖qX

6 2q−1

n∑
i=1

n∑
j=1

n∑
r=1

(Am)ij(A
m)jr (‖xi − xj‖qX + ‖xj − xr‖qX)

= 2q
n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖qX . (200)

We note that,

n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖qX =
n∑
i=1

n∑
j=1

(
1

m

m−1∑
t=0

AtAm−t

)
ij

‖xi − xj‖qX

6
2q−1

m

n∑
i=1

n∑
j=1

n∑
r=1

m−1∑
t=0

(At)ir(A
m−t)rj (‖xi − xr‖qX + ‖xr − xj‖qX)

= 2q−1

n∑
i=1

n∑
r=1

(
1

m

m−1∑
t=0

At

)
ir

‖xi − xr‖qX + 2q−1

n∑
j=1

n∑
r=1

(
1

m

m−1∑
t=0

Am−t

)
rj

‖xr − xj‖qX

= 2q
n∑
i=1

n∑
j=1

Am(A)ij‖xi − xj‖qX +
2q−1

m

n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖qX ,

which, assuming that m > 2q gives the following bound.

n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖qX 6 2q+1

n∑
i=1

n∑
j=1

Am(A)ij‖xi − xj‖qX . (201)

On the other hand, if m 6 2q then

n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖qX 6
n∑
i=1

n∑
j=1

n∑
r=1

air(A
m−1)rj‖xi − xj‖qX

6 2q−1

n∑
i=1

n∑
j=1

n∑
r=1

air(A
m−1)rj (‖xi − xr‖qX + ‖xr − xj‖qX)

= 2q−1

n∑
i=1

n∑
j=1

aij‖xi − xj‖qX + 2q−1

n∑
i=1

n∑
j=1

(Am−1)ij‖xi − xj‖qX

6 2q−1m

n∑
i=1

n∑
j=1

Am(A)ij‖xi − xj‖qX 6 22q−1

n∑
i=1

n∑
j=1

Am(A)ij‖xi − xj‖qX . (202)
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Thus, by combining (201) and (202) we get the estimate

n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖qX 6 4q
n∑
i=1

n∑
j=1

Am(A)ij‖xi − xj‖qX . (203)

Substituting (199) and (200) into (196) yields the bound

m
n∑
i=1

n∑
j=1

aij ‖yi − yj‖qX 6 4qK
n∑
i=1

n∑
j=1

(Am)ij‖xi − xj‖qX

(203)

6 24qK

n∑
i=1

n∑
j=1

Am(A)ij‖xi − xj‖qX . (204)

At the same time,

n∑
i=1

‖xi − yi‖qX =
n∑
i=1

∥∥∥∥∥ 1

m

n∑
j=1

m−1∑
t=0

(At)ij(xi − xj)
∥∥∥∥∥
q

X

6
n∑
i=1

n∑
j=1

Am(A)ij‖xi − xj‖qX . (205)

Recalling (193), the desired inequality (192) is now a combination of (204) and (205). �

7. Construction of the base graph

For t ∈ (0,∞) and n ∈ N write

τt
def
=

1− e−t
2

and σnt
def
= τ 4τtn

t (1− τt)(1−4τt)n. (206)

We also define ent : {0, . . . , n} → N ∪ {0} by

ent (k)
def
=

⌊
τ kt (1− τt)n−k

σnt

⌋
. (207)

The following lemma records elementary estimates on binomial sums that will be useful
for us later.

Lemma 7.1. Fix t ∈ (0, 1/4) and n ∈ N ∩ [8000,∞) such that

τt >
1

3
√
n
. (208)

Then
1

3σnt
6

∑
k∈Z∩[0,4τtn]

(
n

k

)
ent (k) 6

1

σnt
. (209)

Moreover, for every s ∈ Z ∩ (4τtn, n] we have∑
m∈Z∩[(s−4τtn)/2,s/2]

(
n

s− 2m

)
ent (s− 2m) >

1

18σnt
. (210)
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Proof. For simplicity of notation write τ = τt and σ = σnt . The rightmost inequality in (209)
is an immediate consequence of (207). To establish the leftmost estimate in (209) note that
by the Chernoff inequality (e.g. [2, Thm. A.1.4]) we have∑

k∈Z∩(4τn,n]

(
n

k

)
τ k(1− τ)n−k < e−18τ2n

(208)

6
1

3
. (211)

For every k ∈ {1, . . . , n} satisfying k 6 4τn we have τ k(1 − τ)n−k > σ, and therefore
ent (k) > 1

2σ
τ k(1− τ)n−k. Hence∑

k∈Z∩[0,4τn]

(
n

k

)
ent (k) >

1

2σ

∑
k∈Z∩[0,4τn]

(
n

k

)
τ k(1− τ)n−k

(211)
>

1

2σ

(
1− 1

3

)
=

1

3σ
. (212)

This completes the proof of (209).
To prove (210), we apply a standard binomial concentration bound (e.g. [2, Cor. A.1.14])

to get the estimate ∑
k∈Z∩[τn/2,3τn/2]

(
n

k

)
τ k(1− τ)n−k > 1− 2e−τn/10 >

8

9
, (213)

where in the rightmost inequality in (213) we used the assumptions (208) and n > 8000.
Observe that for every k ∈ Z ∩ [τn/2, 3τn/2], since by the assumption t ∈ (0, 1/4) we have
τ ∈ (0, 1/8),(

n
k+1

)
τ k+1(1− τ)n−k−1(
n
k

)
τ k(1− τ)n−k

=
τ

1− τ ·
n− k
k + 1

∈
[

1− 3τ/2

3(1− τ)
,
2− τ
1− τ

]
⊆
[

1

4
, 4

]
. (214)

It follows that∑
k∈(2Z)∩[τn/2,3τn/2]

(
n

k

)
τ k(1− τ)n−k

(214)

>
1

8

∑
k∈Z∩[τn/2,3τn/2]

(
n

k

)
τ k(1− τ)n−k

(213)

>
1

9
,

and, for the same reason, ∑
k∈(2Z+1)∩[τn/2,3τn/2]

(
n

k

)
τ k(1− τ)n−k >

1

9
.

Thus, ∑
m∈Z∩[(s−3τn/2)/2,(s−τn/2)/2]

(
n

s− 2m

)
τ s−2m(1− τ)n−(s−2m) >

1

9
. (215)

Finally, ∑
m∈Z∩[(s−4τn)/2,s/2]

(
n

s− 2m

)
ent (s− 2m)

(207)

>
1

2σ

∑
m∈Z∩[(s−3τn/2)/2,(s−τn/2)/2]

(
n

s− 2m

)
τ s−2m(1− τ)n−(s−2m)

(215)

>
1

18σ
. �

53



Lemma 7.2 (Discretization of e−t∆ w.r.t. Poincaré inequalities). Fix t ∈ (0, 1/4), p ∈ [1,∞)
and n ∈ N ∩ [213,∞) such that

τt >

√
p log(18n)

18n
. (216)

Let Gn
t = (Fn2 , En

t ) be the graph whose vertex set is Fn2 and every x, y ∈ Fn2 is joined by
ent (‖x− y‖1) edges. Then the graph Gn

t is dnt ∈ N regular, where

1

3σnt
6 dnt 6

1

σnt
. (217)

Moreover, for every metric space (X, dX) and every f, g : Fn2 → X we have

1

3|En
t |

∑
(x,y)∈Ent

dX(f(x), g(y))p 6
1

2n

∑
(x,y)∈Fn2×Fn2

(
e−t∆δx

)
(y)dX(f(x), g(y))p

6
3

|En
t |

∑
(x,y)∈Ent

dX(f(x), g(y))p. (218)

Proof. Observe that the assumptions of Lemma 7.2 imply the assumptions of Lemma 7.1.
We may therefore use the conclusions of Lemma 7.1 in the ensuing proof. For simplicity of
notation write τ = τt and σ = σnt . By definition Gn

t is a regular graph. Denote its degree by
d = dnt . Then,

d =
n∑
k=0

(
n

k

)
et(k)

(207)
∈
[

1

3σ
,

1

σ

]
. (219)

This proves (217). We also immediately deduce the leftmost inequality in (218) as follows.

1

2n

∑
(x,y)∈Fn2×Fn2

(
e−t∆δx

)
(y)dX(f(x), g(y))p

(96)
=

1

2n

∑
(x,y)∈Fn2×Fn2

τ ‖x−y‖1(1− τ)n−‖x−y‖1dX(f(x), g(y))p

(207)

>
σ

2n

∑
(x,y)∈Fn2×Fn2

ent (‖x− y‖1)dX(f(x), g(y))p

(217)

>
1

3|En
t |

∑
(x,y)∈Ent

dX(f(x), g(y))p,

where we used the fact that |Et
n| = 2nd.

It remains to prove the rightmost inequality in (218). To this end fix k ∈ Z satisfying
0 6 k 6 4τn and m ∈ N ∪ {0} satisfying k + 2m 6 n. For every permutation π ∈ Sn define
zπ0 , . . . , z

π
2m+1, y

π
0 , . . . , y

π
2m+1 ∈ Fn2 by setting zπ0 = yπ0 = 0 and for i ∈ {1, . . . , 2m+ 1},

zπi
def
=

k−1∑
j=1

eπ(j) + eπ(k+i−1),
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and

yπi
def
=

i∑
j=1

zπj , (220)

where the sum in (220) is performed in Fn2 (i.e., modulo 2), and we recall that e1, . . . , en is
the standard basis of Fn2 . For every x ∈ Fn2 we have

dX
(
f(x), g

(
x+ yπ2m+1

))
6

m∑
i=0

dX
(
f (x+ yπ2i) , g

(
x+ yπ2i+1

))
+

m−1∑
i=0

dX
(
g
(
x+ yπ2i+1

)
, f
(
x+ yπ2i+2

))
.

Hence, Hölder’s inequality yields the following estimate.

dX
(
f(x), g

(
x+ yπ2m+1

))p
(2m+ 1)p−1

6
m∑
i=0

dX
(
f (x+ yπ2i) , g

(
x+ yπ2i+1

))p
+

m−1∑
i=0

dX
(
g
(
x+ yπ2i+1

)
, f
(
x+ yπ2i+2

))p
. (221)

Note that

yπ2m+1 =
k+2m∑
j=1

eπ(j).

Therefore, if π ∈ Sn is chosen uniformly at random then yπ2m+1 is distributed uniformly over
the

(
n

k+2m

)
elements w ∈ F2 with ‖w‖1 = k + 2m. This observation implies that

1

2nn!

∑
x∈Fn2

∑
π∈Sn

dX
(
f(x), g

(
x+ yπ2m+1

))p
=

1

2n
(

n
k+2m

) ∑
(x,y)∈Fn2×Fn2
‖x−y‖1=k+2m

dX (f(x), g (y))p . (222)

Similarly, for every j ∈ {0, . . . , 2m} we have∑
x∈Fn2

∑
π∈Sn

dX
(
f
(
x+ yπj

)
, g
(
x+ yπj+1

))p
=
∑
π∈Sn

∑
x∈Fn2

dX
(
f
(
x+ yπj

)
, g
(
x+ yπj + zπj

))p
=
∑
π∈Sn

∑
u∈Fn2

dX
(
f (u) , g

(
u+ zπj

))p
=

n!(
n
k

) ∑
(u,v)∈Fn2×Fn2
‖u−v‖1=k

dX (f(u), g (v))p , (223)

where in the penultimate equality of (223) we used the fact that for each π ∈ Sn, if x is
chosen uniformly at random from Fn2 then x+yπj is distributed uniformly over Fn2 , and in the
last equality of (223) we used the fact that, because ‖zπj ‖1 = k, if π ∈ Sn is chosen uniformly

at random then zπj is distributed uniformly over the
(
n
k

)
elements w ∈ F2 with ‖w‖1 = k.

A combination of (221), (222) and (223) yields the following (crude) estimate.

1

2n
(

n
k+2m

) ∑
(x,y)∈Fn2×Fn2
‖x−y‖1=k+2m

dX (f(x), g (y))p 6
np

2n
(
n
k

) ∑
(x,y)∈Fn2×Fn2
‖x−y‖1=k

dX (f(x), g (y))p . (224)
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If we fix s ∈ N ∩ (4τn, n] then (224) implies that for every m ∈ N ∩ [(s− 4τn)/2, s/2],(
n

s−2m

)
np
(
n
s

) ∑
(x,y)∈Fn2×Fn2
‖x−y‖1=s

dX (f(x), g (y))p 6
∑

(x,y)∈Fn2×Fn2
‖x−y‖1=s−2m

dX (f(x), g (y))p . (225)

Multiplying both sides of (225) by ent (s− 2m) and summing over m ∈ N∩ [(s− 4τn)/2, s/2]
yields the following estimate.∑

m∈Z∩[(s−4τn)/2,s/2]

(
n

s−2m

)
ent (s− 2m)

np
(
n
s

) ∑
x,y∈Fn2
‖x−y‖1=s

dX (f(x), g (y))p

6
∑

m∈Z∩[(s−4τn)/2,s/2]

ent (s− 2m)
∑

(x,y)∈Fn2×Fn2
‖x−y‖1=s−2m

dX (f(x), g (y))p 6
∑

(x,y)∈Ent

dX(f(x), g(y))p.

Due to (210) it follows that for every s ∈ N ∩ (4τn, n] we have

1(
n
s

) ∑
(x,y)∈Fn2×Fn2
‖x−y‖1=s

dX (f(x), g (y))p 6 18σnp
∑

(x,y)∈Ent

dX(f(x), g(y))p. (226)

Now,

1

2n

∑
(x,y)∈Fn2×Fn2

(
e−t∆δx

)
(y)dX(f(x), g(y))p

(96)
=

1

2n

n∑
s=0

τ s(1− τ)n−s
∑

(x,y)∈Fn2×Fn2
‖x−y‖1=s

d(f(x), g(y))p

(207)∧(226)

6
σ

2n

2 + 18np
∑

s∈Z∩(4τn,n]

(
n

s

)
τ s(1− τ)n−s

 ∑
(x,y)∈Ent

dX(f(x), g(y))p

(211)∧(219)

6
(

2 + 18npe−18τ2n
) 1

d2n

∑
(x,y)∈Ent

dX(f(x), g(y))p

(216)

6
3

|En
t |

∑
(x,y)∈Ent

dX(f(x), g(y))p.

This concludes the proof of (218). �

In what follows for every n ∈ N we fix Vn ⊆ Fn2 which is a “good linear code”, i.e., a linear
subspace over F2 with

Dn
def
= dim(Vn) >

n

10
and kn

def
= min

x∈Vnr{0}
‖x‖1 >

n

10
. (227)

Also, we assume that the sequences {Dn}∞n=1 and {kn}∞n=1 are increasing. The essentially
arbitrary choice of the constant 10 in (227) does not play an important role in what follows.
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The fact that {Vn}∞n=1 exists is simple; see [39]. We shall use the standard notation

V ⊥n
def
=

{
x ∈ Fn2 : ∀ y ∈ Vn,

n∑
j=1

xjyj ≡ 0 mod 2

}
.

Lemma 7.3. For every K, p ∈ (1,∞) there exists n(K, p) ∈ N and δ(K, p) ∈ (0, 1) with the
following properties. Setting

mn
def
= |Fn2/V ⊥n |

(227)
= 2Dn , (228)

there exists a sequence of connected regular graphs

{Hn(K, p)}∞n=n(K,p)

such that for every integer n > n(K, p) the graph Hn(K, p) has mn vertices and degree

dn(K, p) 6 e(logmn)1−δ(K,p) , (229)

and for every K-convex Banach space X = (X, ‖ · ‖X) with K(X) 6 K,

∀n ∈ [n(K, p),∞) ∩ N, γ+ ((Hn(K, p), ‖ · ‖pX) 6 9p+1. (230)

Proof. Fix K, p ∈ (1,∞). Let A = A(K, p), B = B(K, p), C = C(K, p) be the constants of
Theorem 5.1. Recall that B > 2. Set

t = t(n,K, p)
def
=

(
log(2C)

knA

)1/B

, (231)

where kn is given in (227). Then there exists n(K, p) ∈ N such that every integer n > n(K, p)
satisfies the assumptions of Lemma 7.2, and moreover there exists δ(K, p) ∈ (0, 1) such that
for every integer n > n(K, p) we have

1

τ 8nτt
t

6 e(logmn)1−δ(K,p) . (232)

(To verify (232) recall that logmn = Dn log 2 > n/20.)
Assume from now on that n ∈ N satisfies n > n(K, p). Let Gn

t = (Fn2 , En
t ) be the graph

constructed in Lemma 7.2. The degree of Gn
t is

dnt
(217)

6
1

σnt

(206)

6
1

τ 8nτt
t

(232)

6 en
1−δ(K,p)

.

The desired graph Hn = Hn(K, p) is defined to be the following quotient of Gn
t . The vertex

set of Hn is Fn2/V ⊥n . Given two cosets x+V ⊥n , y+V ⊥n ∈ Fn2/V ⊥n , the number of edges joining
x + V ⊥n and y + V ⊥n in Hn is defined to be the number of edges of Gn

t with one endpoint
in x + V ⊥n and the other endpoint in y + V ⊥n , divided by the cardinality of V ⊥n . Thus, the
number of edges joining x+ V ⊥n and y + V ⊥n in the graph Hn equals

1

|V ⊥n |
∑

(u⊥,v⊥)∈V ⊥n ×V ⊥n

ent
(∥∥x− y + (u⊥ − v⊥)

∥∥
1

)
=
∑

u⊥∈V ⊥n

ent
(∥∥x− y + u⊥

∥∥
1

)
.

Hence Hn is a regular graph of the same degree as Gn
t (i.e., the degree of Hn equals dnt ). In

what follows we let π : Fn2 → Fn2/V ⊥n denote the quotient map.
Fix a K-convex Banach space (X, ‖ · ‖X) with K(X) 6 K. For every f ∈ Lp(Fn2/V ⊥n , X)

define πf : Fn2 → X by πf(x) = f(π(x)). Thus πf is constant on the cosets of V ⊥n . It follows
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from [28, Lem. 3.3] that if
∑

x∈Fn2 /V ⊥n
f(x) = 0 then πf ∈ L>knp (Fn2 , X), where kn is defined

in (227). By Theorem 5.1 we therefore have∥∥(e−t∆π) f∥∥
Lp(Fn2 /V ⊥n ,X)

‖f‖Lp(Fn2 /V ⊥n ,X)

6 Ce−Akn min{t,tB} (231)
=

1

2
. (233)

Let Q be the (Fn2/V ⊥n )×(Fn2/V ⊥n ) symmetric stochastic matrix corresponding to the averaging
operator e−t∆π, i.e., the entry of Q at (x+ V ⊥n , y + V ⊥n ) ∈ (Fn2/V ⊥n )× (Fn2/V ⊥n ) is

qx+V ⊥n ,y+V ⊥n

def
=
((
e−t∆π

)
δx+V ⊥n

) (
y + V ⊥n

)
=

1

|Vn|
∑

u∈x+V ⊥n
v∈y+V ⊥n

τ
‖x−y‖1
t (1− τt)n−‖x−y‖1 . (234)

Since (233) holds for all f ∈ Lp(Fn2/V ⊥n , X) with
∑

x∈Fn2 /V ⊥n
f(x) = 0, we have λ

(p)
X (Q) 6 1

2

(recall here the notation introduced in (153)). Consequently, Lemma 6.1 implies that

γ+ (Q, ‖ · ‖pX) 6 9p.

Thus every f, g : Fn2/V ⊥n → X satisfy

1

|Fn2/V ⊥n |2
∑

(S,T )∈(Fn2 /V ⊥n )×(Fn2 /V ⊥n )

‖f(S)− g(T )‖pX

6
9p

|Fn2/V ⊥n |
∑

(S,T )∈(Fn2 /V ⊥n )×(Fn2 /V ⊥n )

qS,T‖f(S)− g(T )‖pX . (235)

Observe that
1

|Fn2/V ⊥n |
∑

(S,T )∈(Fn2 /V ⊥n )×(Fn2 /V ⊥n )

qS,T‖f(S)− g(T )‖pX

(234)
=

1

2n

∑
(a,b)∈Fn2×Fn2

(
e−t∆δa

)
(b)‖πf(a)− πg(b)‖pX

(218)

6
3

|En
t |

∑
(a,b)∈Ent

‖πf(a)− πg(b)‖pX

=
3

2ndnt

∑
(S,T )∈(Fn2 /V ⊥n )×(Fn2 /V ⊥n )

 ∑
(a,b)∈S×T

En
t (a, b)

 ‖f(S)− g(T )‖pX

=
3

|E(Hn)|
∑

(S,T )∈E(Hn)

‖f(S)− g(T )‖pX . (236)

In (236) we used the fact that for every S, T ∈ Fn2/V ⊥n , by the definition of the graph Hn,
the quantity

1

|V ⊥n |
∑

(a,b)∈S×T

En
t (a, b)

equals the number of edges joining S and T in Hn, and that since Hn is a dnt -regular graph
we have |V ⊥n |/(2ndnt ) = 1/|E(Hn)|.
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The desired estimate (230) now follows from (235) and (236). �

The case p = 2 of Corollary 7.4 below (which is nothing more than a convenient way to
restate Lemma 7.3) corresponds to Lemma 1.12.

Corollary 7.4. For every δ ∈ (0, 1) and p ∈ (1,∞) there exists np0(δ) ∈ N and a sequence of
regular graphs {Hp

n(δ)}∞
n=np0(δ)

such that for every every n > np0(δ) the graph Hp
n(δ) is regular

and has mn vertices, with mn given in (228). The degree of Hp
n(δ), denoted dpn(δ), satisfies

dpn(δ) 6 e(logmn)1−δ . (237)

Moreover, for every K-convex Banach space (X, ‖ · ‖X) we have γ+ (Hp
n(δ), ‖ · ‖pX) <∞ for

all integers n > np0(δ), and there exists δp0(X) ∈ (0, 1) such that for every 0 < δ 6 δp0(X) and
every integer n > np0(δ) we have

γ+ (Hp
n(δ), ‖ · ‖pX) 6 9p+1. (238)

Proof. We shall use here the notation of Lemma 7.3. We may assume without loss of
generality that δ(K, p) decreases continuously with K and that limK→∞ δ(K, p) = 0. If
δ ∈ (δ(2, p), 1) then let np0(δ) be the smallest integer such that (logmn)1−δ > log 3 and
set Hp

n(δ) = C◦mn be the mn-cycle with self loops. Since in this case dpn(δ) = 3, the
desired degree bound (237) holds true by design. Moreover, in this case the finiteness
of γ+(Hp

n(δ), ‖ · ‖pX) is a consequence of Lemma 2.1. For δ ∈ (0, δ(2, p)] we can define
Kp
δ = sup {K ∈ [2,∞) : δ(K, p) > δ}. Set np0(δ) = n(Kp

δ , p) and for every integer n > np0(δ)
define Hp

n(δ) = Hn(Kp
δ , p). Thus dpn(δ) = dn(Kp

δ , p) and (237) follows from (229). Finally,
setting δp0(X) = inf{δ ∈ (0, δ(2, p)] : Kp

δ 6 2K(X)}, it follows that for every δ ∈ (0, δp0(X)]
we have Kp

δ > 2K(X), so that (238) follows from (230). �

Remark 7.5. In Remark 5.12 we asked whether Theorem 5.10 can be improved so as to yield
the estimate

‖∆f‖Lp(Fn2 ,X) &X,p k‖f‖Lp(Fn2 ,X) (239)

for every f ∈ L>kp (Fn2 , X). Here (X, ‖ · ‖X) is a K-convex Banach space and the implied
constant is allowed to depend only on p ∈ (1,∞) and the K-convexity constant K(X). If
true, this would yield the following simpler proof of Lemma 7.3, with better degree bounds.
Continuing to use the notation of Lemma 7.3, we would consider instead the “vanilla” quo-
tient graph G on Fn2/V ⊥n , i.e., the graph in which the number of edges joining two cosets
x+V ⊥n , y+V ⊥n equals the number of standard hypercube edges joining these two sets divided
by |V ⊥n |. The degree of this graph is n � logmn. Given a mean-zero f : Fn2/V ⊥n → X we
think of f as being a V ⊥n -invariant function defined on Fn2 , in which case by [28, Lem. 3.3]
we have f ∈ L>knp (Fn2 , X), where kn � n is given in (227). Assuming the validity of (239),

n‖f‖Lp(Fn2 ,X) . kn‖f‖Lp(Fn2 ,X) .X,p ‖∆f‖Lp(Fn2 ,X)

=

∥∥∥∥∥
n∑
i=1

∂if

∥∥∥∥∥
Lp(Fn2 ,X)

6
n∑
i=1

‖∂if‖Lp(Fn2 ,X) 6 n1−1/p

(
n∑
i=1

‖∂if‖pLp(Fn2 ,X)

)1/p

. (240)

It follows that

1

22n

∑
(x,y)∈Fn2×Fn2

‖f(x)− f(y)‖pX 6 2p‖f‖pLp(Fn2 ,X)

(240)

.X,p
1

n

n∑
i=1

‖∂if‖pLp(Fn2 ,X). (241)
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By the definition of the quotient graph G, it follows from (241) that γ(G,X) .p,X 1. Using
Lemma 2.6 we conclude that there exists a regular graph G′ with mn/2 = 2Dn−1 vertices
and degree at most a constant multiple of logmn such that γ+(G′, X) .p,X 1.

8. Graph products

The purpose of this section is to recall the definitions of the various graph products that
were mentioned in the introduction, and to prove Theorem 1.13.

8.1. Sub-multiplicativity for tensor products. The case of tensor products, i.e., part (I)
of Theorem 1.13, is very simple, and should mainly serve as warmup for the other parts of
Theorem 1.13.

Proposition 8.1 (Sub-multiplicativity for tensor products). Fix m,n ∈ N. Let A = (aij)
be an m×m symmetric stochastic matrix and let B = (bij) be an n×n symmetric stochastic
matrix. Then every kernel K : X ×X → [0,∞) satisfies

γ+(A⊗B,K) 6 γ+(A,K)γ+(B,K). (242)

Proof. Fix f, g : {1, . . . ,m} × {1, . . . , n} → X. Then for every fixed s, t ∈ {1, . . . , n},
1

m2

m∑
i=1

m∑
j=1

K (f(i, s), g(j, t)) 6
γ+(A,K)

m

m∑
i=1

m∑
j=1

aijK (f(i, s), g(j, t)) . (243)

Also, for every fixed i, j ∈ {1, . . . ,m} we have

1

n2

m∑
s=1

m∑
t=1

K (f(i, s), g(j, t)) 6
γ+(B,K)

n

n∑
s=1

n∑
t=1

bstK (f(i, s), g(j, t)) . (244)

Consequently,

1

m2n2

m∑
i=1

m∑
j=1

n∑
s=1

n∑
t=1

K (f(i, s), g(j, t)) =
1

n2

n∑
s=1

n∑
t=1

1

m2

m∑
i=1

m∑
j=1

K (f(i, s), g(j, t))

(243)

6
1

n2

n∑
s=1

n∑
t=1

γ+(A,K)

m

m∑
i=1

m∑
j=1

aijK (f(i, s), g(j, t))

=
γ+(A,K)

m

m∑
i=1

m∑
j=1

aij
1

n2

m∑
s=1

m∑
t=1

K (f(i, s), g(j, t))

(244)

6
γ+(A,K)

m

m∑
i=1

m∑
j=1

aij
γ+(B,K)

n

n∑
s=1

n∑
t=1

bstK (f(i, s), g(j, t))

=
γ+(A,K)γ+(B,K)

mn

m∑
i=1

m∑
j=1

n∑
s=1

n∑
t=1

(A⊗B)ijstK (f(i, s), g(j, t)) . (245)

Since (245) holds for every f, g : {1, . . . , n} × {1, . . . ,m} → X, (242) follows. �

This concludes the proof of part (I) of Theorem 1.13. Nevertheless, when the kernel in
question is the pth power of a norm whose modulus of convexity has power type p it is
possible improve Proposition 8.1 as follows.
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Lemma 8.2. Fix m,n ∈ N and p ∈ [2,∞). Let A = (aij) be an m×m symmetric stochastic
matrix and let B = (bij) be an n× n symmetric stochastic matrix. Suppose that (X, ‖ · ‖X)
is a Banach space that satisfies the p-uniform convexity inequality (163). Then

γ+ (A⊗B, ‖ · ‖pX) 6 2p−1 max
{
γ+ (A, ‖ · ‖pX) ,

(
2p−1 − 1

)
Kp(X)pγ+ (B, ‖ · ‖pX)

}
. (246)

Proof. For simplicity of notation write

c
def
=

1

(2p−1 − 1)Kp(X)p
,

and

Γ
def
= 2p−1 max

{
γ+ (A, ‖ · ‖pX) ,

1

c
γ+ (B, ‖ · ‖pX)

}
. (247)

Fix f, g : {1, . . . ,m} × {1, . . . , n} → X. For every i, j ∈ {1, . . . ,m} and s ∈ {1, . . . , n}
consider the X-valued random variable U s

ij which, for every t ∈ {1, . . . ,m}, takes the value
f(i, s)− g(j, t) with probability bst. An application of Lemma 6.5 with U = U s

ij shows that
if for every j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} we define

h(j, s)
def
=

n∑
t=1

bstg(j, t),

then for every i, j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} we have

‖f(i, s)− h(j, s)‖pX + c
n∑
t=1

bst ‖h(j, s)− g(j, t)‖pX 6
n∑
t=1

bst ‖f(i, s)− g(j, t)‖pX . (248)

By the definition of γ+ (A, ‖ · ‖pX), for every fixed s ∈ {1, . . . , n} we have

1

m2

m∑
i=1

m∑
j=1

‖f(i, s)− h(j, s)‖pX 6
γ+ (A, ‖ · ‖pX)

m

m∑
i=1

m∑
j=1

aij ‖f(i, s)− h(j, s)‖pX , (249)

Similarly, for every fixed j ∈ {1, . . . ,m} we have

1

n2

n∑
s=1

n∑
t=1

‖h(j, s)− g(j, t)‖pX 6
γ+ (B, ‖ · ‖pX)

n

n∑
s=1

n∑
t=1

bst ‖h(j, s)− g(j, t)‖pX . (250)

By the triangle inequality, for every fixed i, j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} we have

1

n

n∑
t=1

‖f(i, s)− g(j, t)‖pX 6 2p−1 ‖f(i, s)− h(j, s)‖pX +
2p−1

n

n∑
t=1

‖h(j, s)− g(j, t)‖pX . (251)

By averaging (251) over i, j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} we deduce that

1

m2n2

m∑
i=1

m∑
j=1

n∑
s=1

n∑
t=1

‖f(i, s)− g(j, t)‖pX

6
2p−1

n

n∑
s=1

1

m2

m∑
i=1

m∑
j=1

‖f(i, s)− h(j, s)‖pX +
2p−1

m

m∑
j=1

1

n2

n∑
s=1

n∑
t=1

‖h(j, s)− g(j, t)‖pX . (252)
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By substituting (249) and (250) into (252) we obtain the estimate

1

m2n2

m∑
i=1

m∑
j=1

n∑
s=1

n∑
t=1

‖f(i, s)− g(j, t)‖pX

6
2p−1γ+ (A, ‖ · ‖pX)

mn

m∑
i=1

m∑
j=1

n∑
s=1

aij ‖f(i, s)− h(j, s)‖pX

+
2p−1γ+ (B, ‖ · ‖pX)

mn

n∑
s=1

n∑
t=1

m∑
j=1

bst ‖h(j, s)− g(j, t)‖pX

(247)

6
Γ

mn

m∑
i=1

n∑
j=1

aij

n∑
s=1

(
‖f(i, s)− h(j, s)‖pX + c

n∑
t=1

bst ‖h(j, s)− g(j, t)‖pX

)
(248)

6
Γ

mn

m∑
i=1

n∑
j=1

n∑
s=1

n∑
t=1

aijbst ‖f(i, s)− g(j, t)‖pX . (253)

Since (253) holds for every f, g : {1, . . . ,m} × {1, . . . , n} → X, (246) follows. �

8.2. Sub-multiplicativity for the zigzag product. Here we prove Theorem 1.3. Before
doing so, we need to recall the definition of the zigzag product of Reingold, Vadhan and
Wigderson [67]. The notation used below, which lends itself well to the ensuing proof of
Theorem 1.3, was suggested to us by K. Ball.

Fix n1, d1, d2 ∈ N. Suppose that G1 = (V1, E1) is an n1-vertex graph which is d1-regular
and that G2 = (V2, E2) is a d1-vertex graph which is d2-regular. Since the number of vertices
in G2 is the same as the degree of G1, we can identify V2 with the edges emanating from a
given vertex u ∈ V1. Formally, we fix for every u ∈ V1 a bijection

πu : {(u, v) ∈ {u} × V1 : (u, v) ∈ E1} → V2. (254)

Moreover, we fix for every a ∈ V2 a bijection between {1, . . . , d2} and the multiset of the
vertices adjacent to a in G2, i.e.,

κa : {1, . . . , d2} → {b ∈ V2 : (a, b) ∈ E2}. (255)

The zigzag product G1 z©G2 is the graph whose vertices are V1 × V2 and the ordered
pair ((u, a), (v, b)) ∈ V1 × V2 is added to E(G1 z©G2) whenever there exist i, j ∈ {1, . . . , d2}
satisfying

(u, v) ∈ E1 and a = κπu(u,v)(i) and b = κπv(v,u)(j). (256)

Thus,

E(G1 z©G2)((u, a), (v, b))
def
=

d2∑
i=1

d2∑
j=1

E1(u, v) · 1{a=κπu(u,v)(i)} · 1{b=κπv(u,v)(j)}.

The schematic description of this construction is as follows. Think of the vertex set of
G1 z©G2 as a disjoint union of “clouds” which are copies of V2 = {1, . . . , d1} indexed by V1.
Thus (u, a) is the point indexed by a in the cloud labeled by u. Every edge ((u, a), (v, b))
of G1 z©G2 is the result of a three step walk: a “zig” step in G2 from a to πu(u, v) in u’s
cloud, a “zag” step in G1 from u’s cloud to v’s cloud along the edge (u, v) and a final “zig”
step in G2 from πv(u, v) to b in v’s cloud. The zigzag product is illustrated in Figure 2. The

62



number of vertices of G1 z©G2 is n1d1 and its degree is d2
2. The zigzag product depends on

G1
u v

G2

u v

G1 z©G2
πu(u, v) πv(v, u)

Figure 2. A schematic illustration of the zigzag product. The upper part of
the figure depicts part of a 4-regular graph G1, and a 4-vertex cycle G2. The
bottom part of the figure depicts the edges of the zigzag product between u’s
cloud and v’s cloud. The original edges of G1 and G2 are drawn as dotted and
dashed lines, respectively.

the choice of labels {πu}u∈V1 , and in fact different labels of the same graphs can produce
non-isomorphic products3. However, the estimates below will be independent of the actual
choice of the labeling, so while our notation should formally depend on the labeling, we will
drop its explicit mention for the sake of simplicity.

Proof of Theorem 1.3. Fix f, g : V1 × V2 → X. The definition of γ+(G1, K) implies that for
all a, b ∈ V2 we have

1

n2
1

∑
(u,v)∈V1×V1

K (f(u, a), g(v, b)) 6
γ+(G1, K)

n1d1

∑
(u,v)∈E1

K (f(u, a), g (v, b)) . (257)

Hence,

1

|V1 × V2|2
∑

((u,a),(v,b))∈(V1×V2)×(V1×V2)

K(f(u, a), g(v, b))

=
1

d2
1

∑
(a,b)∈V2×V2

1

n2
1

∑
(u,v)∈V1×V1

K(f(u, a), g(v, b))

(257)

6
γ+(G1, K)

n1d3
1

∑
(a,b)∈V2×V2

∑
(u,v)∈E1

K (f(u, a), g (v, b)) . (258)

Next, fix u ∈ V1 and b ∈ V2, and define φub : V2 → X as follows. Recalling (254), for c ∈ V2

write π−1
u (c) = (u, v) ∈ E1 for some v ∈ V1, and define φub (c) = g(v, b). The definition of

3The labels {κa}a∈V2 do not affect the structure of the zigzag product but they are useful in the subsequent
analysis.
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γ+(G2, K) implies that

1

d2
1

∑
a∈V2

∑
v∈V1

(u,v)∈E1

K (f(u, a), g (v, b)) =
1

d2
1

∑
a∈V2

∑
c∈V2

K (f(u, a), φub (c))

6
γ+(G2, K)

d1d2

∑
v∈V1

(u,v)∈E1

d2∑
i=1

K
(
f
(
u, κπu(u,v)(i)

)
, g (v, b)

)
, (259)

Summing (259) over u ∈ V1 and b ∈ V2 and substituting the resulting expression into (258)
yields the bound

1

|V1 × V2|2
∑

((u,a),(v,b))∈(V1×V2)×(V1×V2)

K(f(u, a), g(v, b))

6
γ+(G1, K)γ+(G2, K)

n1d2
1d2

∑
v∈V1

d2∑
i=1

∑
u∈V1

(u,v)∈E1

∑
b∈V2

K
(
f
(
u, κπu(u,v)(i)

)
, g (v, b)

)
. (260)

Fix i ∈ {1, . . . , d2} and v ∈ V1, and define ψvi : V2 → X as follows. For c ∈ V2 write
π−1
v (c) = (v, u) for some u ∈ V1 such that (v, u) ∈ E1 (equivalently, (u, v) ∈ E1), and set
ψvi (c) = f

(
u, κπu(u,v)(i)

)
. Another application of the definition of γ+(G2, K) implies that

1

d2
1

∑
u∈V1

(u,v)∈E1

∑
b∈V2

K
(
f
(
u, κπu(u,v)(i)

)
, g (v, b)

)
=

1

d2
1

∑
c∈V2

∑
b∈V2

K (ψvi (c), g(v, b))

6
γ+(G2, K)

d1d2

∑
u∈V1

(u,v)∈E1

d2∑
j=1

K
(
f
(
u, κπu(u,v)(i)

)
, g
(
v, κπv(v,u)(j)

))
. (261)

Summing (261) over v ∈ V1 and i ∈ {1, . . . , d2}, and combining the resulting inequality
with (260), yields the bound

1

|V1 × V2|2
∑

((u,a),(v,b))∈(V1×V2)×(V1×V2)

K(f(u, a), g(v, b))

6
γ+(G1, K)γ+(G2, K)2

n1d1d2
2

∑
(u,v)∈E1

d2∑
i=1

d2∑
j=1

K
(
f
(
u, κπu(u,v)(i)

)
, g
(
v, κπv(v,u)(j)

))
(256)
=

γ+(G1, K)γ+(G2, K)2

n1d1d2
2

∑
((u,a),(v,b))E(G1 z©G2)

K (f (u, a) , g (v, b)) . (262)

Since (262) holds for every f, g : V1 × V2 → X, the proof of Theorem 1.3 is complete. �

8.3. Sub-multiplicativity for replacement products. Here we continue to use the no-
tation of Section 8.2. Specifically, we fix n1, d1, d2 ∈ N and suppose that G1 = (V1, E1) is
an n1-vertex graph which is d1-regular and that G2 = (V2, E2) is a d1-vertex graph which
is d2-regular. We also identify V1 = {1, . . . , n1} and V2 = {1, . . . , d1}, and for every u ∈ V1
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and a ∈ V2 we fix a bijections πu and κa as in (254) and (255), respectively. The re-
placement product [17, 67] of G1 and G2, denoted G1 r©G2, is the graph with vertex set
{1, . . . , n1} × {1, . . . , d1} in which the ordered pair ((u, i), (v, j)) ∈ {1, . . . , n1} × {1, . . . , d1}
is added to E(G1 r©G2) if and only if either u = v and (i, j) ∈ E2 or (u, v) ∈ E1 and
i = πu(u, v) and j = πv(v, u). Thus,

E(G1 r©G2)((u, i), (v, j))
def
= E2(i, j) · 1{u=v} + E1(u, v) · 1{i=πu(u,v)} · 1{j=πv(v,u)}.

This definition makes G1 r©G2 be a (d2 + 1)-regular graph.
The following lemma shows that the “discrete gradient” associated toG1 z©G2 is dominated

by 3p−1(d2 + 1) times the “discrete gradient” associated to G1 r©G2.

Lemma 8.3. Fix p ∈ [1,∞), a metric space (X, dX) and n1, d1, d2 ∈ N. Suppose that
G1 = (V1, E1) is an n1-vertex graph which is d1-regular and that G2 = (V2, E2) is a d1-vertex
graph which is d2-regular. Then every f, g : V1 × V2 → X satisfy

1

|E (G1 z©G2)|
∑

((u,a),(v,b))∈E(G1 z©G2)

dX (f (u, a) , g (v, b))p

6
3p−1(d2 + 1)

|E (G1 r©G2)|
∑

((u,a),(v,b))∈E(G1 r©G2)

dX (f (u, a) , g (v, b))p . (263)

Before proving Lemma 8.3 we record two of its immediate (yet useful) consequences.

Corollary 8.4. Under the assumptions of Lemma 8.3 we have

γ+ (G1 r©G2, d
p
X) 6 3p−1(d2 + 1) · γ+ (G1 z©G2, d

p
X) .

Now, part (IV) of Theorem 1.13 corresponds to the case p = 2 of the following combination
of Theorem 1.3 and Corollary 8.4.

Corollary 8.5. Under the assumptions of Lemma 8.3 we have

γ+ (G1 r©G2, d
p
X) 6 3p−1(d2 + 1) · γ+ (G1, d

p
X) · γ+ (G2, d

p
X)2 .

Proof of Lemma 8.3. Fix ((u, a), (v, b)) ∈ E(G1 z©G2). Thus by the definition of the zigzag
product we have (u, v) ∈ E1 and (a, πu(u, v)), (b, πv(v, u)) ∈ E2. Observe that the following
three pairs are edges of G1 r©G2.

((u, a), (u, πu(u, v)) , ((u, πu(u, v), (v, πv(v, u)) , ((v, πv(v, u), (v, b)) .

By the triangle inequality,

dX (f(u, a), g(v, b))p 6 3p−1
(
dX (f(u, a), g(u, πu(u, v)))p

+ dX (g(u, πu(u, v)), f(v, πv(v, u)))p + dX (f(v, πv(v, u)), g(v, b)))p
)
. (264)
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Therefore,

1

|E (G1 z©G2)|
∑

((u,a),(v,b))∈E(G1 z©G2)

dX (f (u, a) , g (v, b))p

=
1

n1d1d2
2

∑
(u,v)∈E1

∑
a∈V2

(a,πu(u,v))∈E2

∑
b∈V2

(b,πv(v,u))∈E2

dX (f (u, a) , g (v, b))p

(264)

6
3p−1

n1d1d2
2

(S1 + S2 + S3) , (265)

where the quantities S1, S2, S3 are defined as follows.

S1
def
=

∑
(u,v)∈E1

∑
a∈V2

(a,πu(u,v))∈E2

∑
b∈V2

(b,πv(v,u))∈E2

dX (f(u, a), g(u, πu(u, v)))p

= d2

∑
(u,v)∈E1

∑
a∈V2

(a,πu(u,v))∈E2

dX (f(u, a), g(u, πu(u, v)))p ,

S2
def
=

∑
(u,v)∈E1

∑
a∈V2

(a,πu(u,v))∈E2

∑
b∈V2

(b,πv(v,u))∈E2

dX (g(u, πu(u, v)), f(v, πv(v, u)))p

= d2
2

∑
(u,v)∈E1

dX (g(u, πu(u, v)), f(v, πv(v, u)))p ,

S3
def
=

∑
(u,v)∈E1

∑
a∈V2

(a,πu(u,v))∈E2

∑
b∈V2

(b,πv(v,u))∈E2

dX (f(v, πv(v, u)), g(v, b)))p

= d2

∑
(u,v)∈E1

∑
b∈V2

(b,πv(v,u))}∈E2

dX (f(v, πv(v, u)), g(v, b)))p .

By the definition of the replacement product we have

S1 + S2 + S3

= d2

∑
u∈V1

∑
(i,j)∈E2

dX(f(u, i), g(u, j))p + d2
2

∑
(u,v)∈E1

dX (g(u, πu(u, v)), f(v, πv(v, u)))p

6 d2
2

∑
((u,i),(v,j))∈E(G1 r©G2)

dX (f(u, i), g(v, j))p . (266)

Recalling that |E(G1 r©G2)| = n1d1(d2 + 1), the desired estimate (263) is now a consequence
of (265) and (266). �

The balanced replacement product of G1 and G2, denoted G1 b©G2, is a useful variant of
G1 r©G2 that was introduced in [67]. The vertex set ofG1 b©G2 is still {1, . . . , n1}×{1, . . . , d1},
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but the edges of G1 b©G2 are now given by

∀((u, i), (v, j)) ∈ {1, . . . , n1} × {1, . . . , d1},
E(G1 b©G2)((u, i), (v, j))

def
= E2(i, j) · 1{u=v} + d2E1(u, v) · 1{i=πu(u,v)} · 1{j=πv(v,u)}.

This definition makes G1 b©G2 be a 2d2-regular graph.
Arguing analogously to the proof of Lemma 8.3, we have the following statements.

Lemma 8.6. Fix p ∈ [1,∞), a metric space (X, dX) and n1, d1, d2 ∈ N. Suppose that
G1 = (V1, E1) is an n1-vertex graph which is d1-regular and that G2 = (V2, E2) is a d1-vertex
graph which is d2-regular. Then every f, g : V1 × V2 → X satisfy

1

|E (G1 z©G2)|
∑

((u,a),(v,b))∈E(G1 z©G2)

dX (f (u, a) , g (v, b))p

6
2 · 3p−1

|E (G1 b©G2)|
∑

((u,a),(v,b))∈E(G1 b©G2)

dX (f (u, a) , g (v, b))p . (267)

Corollary 8.7. Under the assumptions of Lemma 8.6 we have

γ+ (G1 b©G2, d
p
X) 6 2 · 3p−1 · γ+ (G1 z©G2, d

p
X) .

Part (V) of Theorem 1.13 corresponds to the case p = 2 of the following combination of
Theorem 1.3 and Corollary 8.7.

Corollary 8.8. Under the assumptions of Lemma 8.6 we have

γ+ (G1 b©G2, d
p
X) 6 2 · 3p−1 · γ+ (G1, d

p
X) · γ+ (G2, d

p
X)2 .

Remark 8.9. An analysis of the behavior of spectral gaps under the balanced replace-
ment product was previously performed in a non-Euclidean setting by Alon, Schwartz and
Shapira [1]. Specifically, [1, Thm. 1.3] estimates the edge expansion of G1 b©G2 in terms of
the edge expansion of G1 and G2 via a direct combinatorial argument. The edge expansion
of a graph G is equivalent up to universal constant factors to γ(G, | · |), where | · | is the
standard absolute value on R. The corresponding bound arising from Corollary 8.8 is better
than the bound of [1, Thm. 1.3] in terms of constant factors.

8.4. Sub-multiplicativity for derandomized squaring. Here we continue to use the
notation of Section 8.2 and Section 8.3. The derandomized squaring of G1 and G2, as
introduced by Rozenman and Vadhan in [69] and denoted G1 s©G2, is defined as follows.
The vertex set of G1 s©G2 is V1 = {1, . . . , n1}, and the edges E(G1 s©G2) are given by

∀(u, v) ∈ V1 × V1, E(G1 s©G2)(u, v)
def
=
∑
w∈V1

E1(w, u)E1(w, v)E2 (πw(w, u), πw(w, v)) .

Thus, given (u, v) ∈ V1×V1, we add a copy of (u, v) to E(G1 s©G2) for every (i, j) ∈ E2 such
that there exists w ∈ V1 with (w, u), (w, v) ∈ E1 and πw(w, u) = i, πw(w, v) = j. With this
definition one checks that G1 s©G2 is d1d2-regular.

The following proposition corresponds to part (III) of Theorem 1.13.
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Proposition 8.10. Fix n1, d1, d2 ∈ N and suppose that G1 = (V1, E1) is an n1-vertex graph
which is d1-regular and that G2 = (V2, E2) is a d1-vertex graph which is d2-regular. Then for
every kernel K : X ×X → [0,∞) we have

γ+ (G1 s©G2, K) 6 γ+

(
G2

1, K
)
γ+ (G2, K) . (268)

In [69] Rozenman and Vadhan used a spectral argument to prove the Euclidean case
of (268), i.e., the special case of (268) when K : R×R→ [0,∞) is given by K(x, y) = (x−y)2.

Proof of Proposition 8.10. Fix f, g : V1 → X. The definition of γ+ (G2
1, K) implies that

1

n2
1

∑
(u,v)∈V1×V1

K(f(u), f(v)) 6
γ+ (G2

1, K)

n1d2
1

∑
(u,v)∈E(G2

1)

K(f(u), f(v))

=
γ+ (G2

1, K)

n1d2
1

∑
w∈V1

∑
(u,w)∈E1

∑
(w,v)∈E1

K (f(u), g(v)) . (269)

For every fixed w ∈ V1 define φw, ψw : V2 → X as follows. For i, j ∈ V2 consider the unique
vertices u, v ∈ V1 such that πw(w, u) = i and πw(w, v) = j, and define φw(i) = f(u) and
ψw(j) = g(v). The definition of γ+(G2, K) implies that

1

d2
1

∑
(u,w)∈E1

∑
(w,v)∈E1

K (f(u), g(v)) =
1

d2
1

∑
(i,j)∈V2×V2

K (φw(i), ψw(j))

6
γ+(G2, K)

d1d2

∑
(i,j)∈E2

K (φw(i), ψw(j))

=
γ+(G2, K)

d1d2

∑
(u,w)∈E1

∑
(w,v)∈E1

E2 (πw(w, u), πw(w, v))K (f(u), g(v)) . (270)

The definition of G1 s©G2 in combination with (269) and (270) now yields the estimate

1

n2
1

∑
(u,v)∈V1×V1

K(f(u), f(v))

6
γ+ (G2

1, K) γ+(G2, K)

n1d1d2

∑
w∈V1

∑
(u,w)∈E1

∑
(w,v)∈E1

E2 (πw(w, u), πw(w, v))K (f(u), g(v))

=
γ+ (G2

1, K) γ+(G2, K)

n1d1d2

∑
(x,y)∈E(G1 s©G2)

K(f(x), g(y)). �

9. Counterexamples

9.1. Expander families need not embed coarsely into each other. As was mentioned
in the introduction, it is an open question whether every classical (i.e., Euclidean) expander
graph family is also a super-expander. Here we rule out the most obvious approach towards
such a result: to embed coarsely any expander family in any other expander family. Formally,
given two families of metric spaces X ,Y , we say that X admits a coarse embedding into
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Y if there exist non-decreasing α, β : [0,∞)→ [0,∞) satisfying limt→∞ α(t) =∞ such that
for every (X, dX) ∈X there exists (Y, dY ) ∈ Y and a mapping f : X → Y that satisfies

∀x, y ∈ X, α (dX(x, y)) 6 dY (f(x), f(y)) 6 β (dX(x, y)) .

This condition clearly implies that α(0) = 0, and for notational convenience we also assume
without loss of generality that β(0) = 0.

Let C denote the set of all increasing sub-additive functions ω : [0,∞) → [0,∞) with
ω(0) = 0. If (X, dX) is a metric space and ω ∈ C then (X,ω ◦ dX) is also a metric space,
known as the metric transform of (X, dX) by ω.

In what follows, given a connected graph G = (V,E), the geodesic metric induced by G on
V will be denoted dG. Recall that a sequence of graphs {Gn}∞n=1 is called a constant degree
expander sequence if there exists d ∈ N such that each Gn is d-regular and supn∈N λ(Gn) < 1.
The purpose of this section is to prove the following result.

Theorem 9.1. There exist two constant degree expander sequences {Gi}∞i=1 and {Hi}∞i=1 such
that {(V (Hi), dHi)}∞i=1 does not admit a coarse embedding into the family of metric spaces
{(V (Gi), ω ◦ dGi) : (i, ω) ∈ N× C }.
Proof. It is well known (see e.g. [37, 40]) that there exists c ∈ (0,∞), an integer d > 3, and
a sequence of d-regular expanders {Gi}∞i=1 such that if we set ni = |V (Gi)| then {ni}∞i=1 is
strictly increasing and each Gi has girth at least 4c log ni. By adjusting c to be a smaller
constant if necessary (as we may), we assume below that

c log ni <
ni

2(d+ 1)2c logni
. (271)

We also assume throughout the ensuing argument that c log ni > 7 for all i ∈ N.
The desired expander sequence {Hi}∞i=1 will be constructed by modifying {Gi}∞i=1 so as to

contain sufficiently many short cycles. Specifically, fix i ∈ N and write Gi = (Vi, Ei). We
will construct Hi = (Vi, Fi) with Fi ) Ei, i.e., Hi will be a graph with the same vertices as
Gi but with additional edges. The construction will ensure that

diam(Hi) >
c

2
log ni. (272)

(Here, and in what follows, diameters of graphs are always understood to be with respect
to their shortest-path metric.) We will also ensure that for every integer h ∈ [3, c log ni]
the graph Hi contains a cycle of length h which is embedded isometrically into (Hi, dHi),
i.e., there exist x1, . . . , xh ∈ Vi such that dHi(xa, xb) = min{|a − b|, h − |a − b|} for every
a, b ∈ {1, . . . , h}, and {x1, x2}, {x2, x3}, . . . , {xh−1, xh}, {xh, x1} ∈ Fi.

Set

`
def
= bc log nic . (273)

We will define inductively sets of edges E = F 0 ( F 1 ( . . . ( F ` with |Fj r Fj−1| = 1 for
all j ∈ {1, . . . , `}. Fix j ∈ {0, . . . , ` − 1} and assume inductively that F j has already been
defined so that the graph

Gj
i

def
= (Vi, F

j)

has maximal degree at most d+ 1. Write

Mj
def
=
{
u ∈ Vi : ∃ e ∈ F j r E, u ∈ e

}
=

⋃
e∈F jrE

e.
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Thus |Mj| 6 2j. Hence, if we set

Dj
def
=
{
u ∈ Vi : dGji

(u,Mj) 6 2c log ni

}
,

then

|Dj| 6 2j(d+ 1)2c logni 6 2`(d+ 1)2c logni
(271)∧(273)

< ni.

Therefore V rDj 6= ∅. Choose an arbitrary vertex x ∈ V rDj. Since Gi has girth at least
4c log ni and j 6 `, there exists y ∈ V with dGi(x, y) = j + 2. Define F j+1 = F j ∪ {{x, y}}.
This creates a new cycle of length j + 3.

By construction, the graph Gj+1
i

def
= (Vi, F

j+1) contains a cycle Ch of length h for every
h ∈ {3, . . . , j+ 3}. Moreover, we claim that these cycles are embedded isometrically into the
metric space (Vi, dGj+1

i
). Indeed, due to the choice of x, if h ∈ {3, . . . , j + 2} then

dGji
(Ch, {x, y}) > 2c log ni − (j + 2),

which is at least h/2 (the diameter of Ch) because c log ni > 7. Thus the new edge {x, y}
does not change the isometric embeddability of Ch. The new cycle Cj+3 is isometrically
embedded into (Vi, dGi) since the girth of Gi is at least 4c log ni > 2(j + 2). Since

dGji
(Mj, Cj+3) > 2c log ni − (j + 2) >

j + 3

2
,

The cycle Cj+3 remains isometrically embedded into (Vi, dGj+1
i

). Note also that by construc-

tion the new edge {x, y} is not incident to any vertex in Mj. Therefore the maximum degree
of (Vi, F

j+1) remains d+ 1. This completes the inductive construction.
The degree of every vertex of G`+1

i is either d or d+ 1. Add to every vertex of degree d a
self loop so as to obtain a d + 1 regular graph Hi = (Vi, Fi) without changing the induced
shortest path metric. Note that (272) holds true because D` 6= Vi.

It follows from Lemma 2.7 that for every kernel K : X ×X → [0,∞),

γ(Hi, K) 6
d+ 1

d
γ(Gi, K) and γ+(Hi, K) 6

d+ 1

d
γ+(Gi, K).

In particular, since {Gi}∞i=1 is an expander sequence also {Hi}∞i=1 is an expander sequence.
Assume for the sake of obtaining a contradiction that {(Vi, dHi}∞i=1 admits a coarse embed-

ding into {(Vi, ω ◦ dGi) : (i, ω) ∈ N× C }. Then there exist {ωi}∞i=1 ⊆ C and nondecreasing
moduli α, β : [0,∞)→ [0,∞) with

lim
t→∞

α(t) =∞, (274)

and for every i ∈ N there exists j(i) ∈ N and fi : Vi → Vj(i) satisfying

∀u, v ∈ V (Hi), α (dHi(u, v)) 6 ωi

(
dGj(i)(fi(u), fi(v))

)
6 β (dHi(u, v)) . (275)

Note that only the values of β on N∪ {0} matter here, and that since β(·) serves only as an
upper bound in (275) we may assume without loss of generality that the sequence {β(n)}∞n=0

is strictly increasing.
Define

hi
def
=

⌊
1

3
min

{
β−1

(⌊
ωi
(
c log nj(i)

)⌋)
, c log ni

}⌋
. (276)
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We claim that

lim
i→∞

hi =∞. (277)

Indeed, since {Gj}∞j=1 is an expander sequence,

λ
def
= sup

j∈N
λ(Gj) < 1.

We therefore have the following bound on the diameter of Gi (see [13]):

diam(Gj) 6
2 log nj
log(1/λ)

. (278)

Observe that since Gj has girth at least 4c log nj, it follows from (278) that c log(1/λ) 6 1.
It now follows from (272), (275) and (278) that

α
( c

2
log ni

)
6 ωi

(
2 log nj(i)
log(1/λ)

)
6

4

c log(1/λ)
ωi
(
c log nj(i)

)
, (279)

where in the rightmost inequality of (279) we used the fact that ωi is increasing and sub-
additive. Due to (274) and (276), we indeed have (277) as a consequence of (279).

Our construction ensures that Hi contains a cycle C
def
= {x1, . . . , x3hi} of length 3hi which

is embedded isometrically into (Hi, dHi). Then

fi(C)
(275)

⊆ BGj(i)

(
fi(x1), ω−1

i (β(3hi))
) (276)

⊆ BGj(i)

(
fi(x1), c log nj(i)

)
. (280)

Since c log nj(i) is smaller than half the girth of Gj(i), the ball BGj(i)

(
fi(x1), c log nj(i)

)
is

isometric to a tree. We will now proceed to show that combined with the inclusion (280)
this leads to a contraction, using a coarse version of an argument of Rabinovich and Raz [65].

Let C denote the one dimensional simplicial complex induced by C, i.e., in C, which is
isometric to the circle 3hi

2π
S1, all the edges of C are present as intervals of length 1. Similarly,

denote by T the one dimensional simplicial complex induced by BGj(i)

(
fi(x1), c log nj(i)

)
(thus T is isometric to a metric tree). Let f i : C → T be the linear interpolation of fi,
i.e., the extension of fi to C such that for every u, v ∈ C with {u, v} ∈ Fi the segment
[u, v] is mapped onto the unique geodesic [fi(u), fi(v)] ⊆ T with constant speed (see e.g. the
discussion preceding Theorem 2 of [55]). It follows from (275) that

dGj(i)(fi(u), fi(v)) 6 ω−1
i (β(1))

whenever {u, v} is an edge of Hi. Hence fi is ω−1
i (β(1))-Lipschitz. Therefore f i is also

ω−1
i (β(1))-Lipschitz.
Consider the three paths

fi([x1, xhi+1]), fi([xhi+1, x2hi+1]), fi([x2hi+1, x1]) ⊆ T .

Arguing as in [65], since T is a metric tree, there must exist a common point

p ∈ fi([x1, xhi+1])
⋂

fi([xhi+1, x2hi+1])
⋂

fi([x2hi+1, x1]).

We can therefore find(
a, b, c

)
∈ [x1, xhi+1]× [xhi+1, x2hi+1]× [x2hi+1, x1]
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such that

fi (a) = fi
(
b
)

= fi (c) = p.

By considering the closest points to a, b, c in C, there exist a, b, c ∈ C such that

max
{
dC (a, a) , dC

(
b, b
)
, dC (c, c)

}
6

1

2
,

and

max {dHi(a, b), dHi(a, c), dHi(b, c)} > hi.

Without loss of generality we may assume that dHi(a, b) = dC(a, b) > hi.
Since f i is ω−1

i (β(1))-Lipschitz and f (a) = f
(
b
)
,

α(hi)
(275)

6 ωi

(
dGj(i) (fi(a), fi(b))

)
6 ωi

(
dGj(i) (f (a) , f (a)) + dGj(i)

(
f (b) , f

(
b
)))

6 ωi

(
2ω−1

i (β (1))
1

2

)
= β(1). (281)

The desired contradiction now follows by contrasting (274) and (277) with (281). �

9.2. A metric space failing calculus for nonlinear spectral gaps. Let (X, dX) be a
metric space and p ∈ (0,∞). Observe that if A = (aij) is an n × n symmetric stochastic
matrix then, provided X contains at least two points, the fact that γ+(A, dpX) < ∞ implies
that A is ergodic, and therefore

lim
t→∞

γ+

(
At, dpX

)
= lim

t→∞
γ+ (At(A), dpX) = 1. (282)

Thus, we always have asymptotic decay of the Poincaré constants of At and At(A) as t→∞,
but for the iterative construction presented in this paper we need a quantitative variant
of (282). At the very least, we need (X, dpX) to admit the following type of uniform decay of
the Poincaré constant.

Definition 9.2 (Spaces admitting uniform decay of Poincaré constants). Let X be a set
and K : X × X → [0,∞) a kernel. Say that (X,K) has the uniform decay property if for
every M ∈ (1,∞) there exists t ∈ N and Γ ∈ [1,∞) such that for every n ∈ N and every
n× n symmetric stochastic matrix A,

γ+(A,K) > Γ =⇒ γ+(At(A), K) 6
γ+(A,K)

M
.

We now show that there exists a metric space (X, dX) such that (X, d2
X) does not have

the uniform decay property.

Proposition 9.3. There exist a metric space (X, ρ) and a universal constant η ∈ (0,∞) with
the following property. For every n ∈ N there is an n-vertex regular graph Gn = (Vn, En)
such that limn→∞ γ+(Gn, ρ

2) =∞, yet for every t ∈ N there exists n0 ∈ N such

n > n0 =⇒ γ+(At(Gn), ρ2) > η · γ+(Gn, ρ
2).

Proof. Define

X
def
= `∞ ∩ Zℵ0 ,
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i.e., X is the set of all integer-valued bounded sequences. Consider the following metric
ρ : X ×X → [0,∞).

ρ(x, y)
def
= log (1 + ‖x− y‖∞) . (283)

Note that ρ is indeed a metric since the mapping T : [0,∞)→ [0,∞) given by

T (s)
def
= log(1 + s)

is concave, increasing and T (0) = 0.
Let Gn = (Vn, En) be an arbitrary sequence of constant degree expanders, i.e., Gn is an

n-vertex graph of degree d (say d = 4) satisfying

C
def
= sup

n∈N
γ+(Gn, ‖ · ‖2

2) <∞.

We claim that
γ+(Gn, ρ

2) . (log(1 + log n))2. (284)

The goal is to prove that every f, g : Gn → X satisfy

1

n2

∑
(u,v)∈Vn×Vn

ρ(f(u), g(v))2 .
(log(1 + log n))2

nd

∑
(u,v)∈En

ρ(f(u), g(v))2.

To this end write
Sn

def
= f(Vn) ∪ g(Vn) ⊆ Zℵ0 .

By Bourgain’s embedding theorem [10], applied to the metric space (Sn, `∞), there exists
β : Sn → `2 satisfying

∀u, v ∈ Vn, ‖f(u)− g(v)‖∞ 6 ‖β(f(u))− β(g(v))‖2 6 c(1 + log n)‖f(u)− g(v)‖∞, (285)

where c ∈ (1,∞) is a universal constant. For every u, v ∈ Vn we have

ρ(f(u), g(v))
(283)∧(285)

6 log (1 + ‖β(f(u))− β(g(v))‖2)

(285)

6 log (1 + c(1 + log n)‖f(u)− g(v)‖∞)
(283)

. log(1 + log n) · ρ(f(u), g(v)), (286)

where in the last step of (286) we used the fact that if f(u) 6= g(v) then ‖f(u)−g(v)‖∞ > 1.
As shown in [44, Remark 5.4], there exists a universal constant κ > 1 and a mapping

φ : `2 → `2 such that

∀x, y ∈ `2, T (‖x− y‖2) 6 ‖φ(x)− φ(y)‖2 6 κT (‖x− y‖2) . (287)

A combination of (285), (286) and (287) implies that the mapping ψ = φ ◦ β : Sn → `2

satisfies

∀u, v ∈ Vn ρ(f(u), g(v)) 6 ‖ψ(f(u))− ψ(g(v))‖2 . log(1 + log n) · ρ(f(u), g(v)),

Since γ+(Gn, ‖ · ‖2
2) 6 C, we conclude that

1

n2

∑
(u,v)∈Vn×Vn

ρ(f(u), g(v))2 6
1

n2

∑
(u,v)∈Vn×Vn

‖ψ(f(u))− ψ(g(v))‖2
2

6
C

nd

∑
(u,v)∈En

‖ψ(f(u))− ψ(g(v))‖2
2 .

(log(1 + log n))2

nd

∑
(u,v)∈En

ρ(f(u), g(v))2.
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This completes the proof of (284).
We will now bound γ+(At(Gn), ρ2) from below. For this purpose it is sufficient to examine

a specific embedding of the graph At(Gn) into X. Let ϕ : Vn → Zℵ0 be an isometric
embedding of the shortest path metric on At(Gn) into (Zℵ0 , ‖ · ‖∞). If {u, v} ∈ E(At(Gn))
then ρ(ϕ(u), ϕ(v)) = T (‖ϕ(u) − ϕ(v)‖∞) = T (1) = 1. On the other hand, since the degree
of At(G) is tdt, at least half of the pairs in Vn × Vn are at distance & logn

t log d
in the shortest

path metric metric on At(G). Hence for at least half of the pairs (u, v) ∈ Vn × Vn we have

ρ(ϕ(u), ϕ(v)) > log

(
1 + ξ

log n

t log d

)
,

where ξ ∈ (0,∞) is a universal constant. If

n > e(t log d)2

then we deduce that

γ+(At(Gn), ρ2) >
1
n2

∑
(u,v)∈Vn×Vn ρ(ϕ(u), ϕ(v))2

1
ntdt

∑
(u,v)∈E(At(Gn)) ρ(ϕ(u), ϕ(v))2

& (log(1 + log n))2
(284)

& γ+(Gn, ρ
2),

thus completing the proof of Proposition 9.3. �

Remark 9.4. Using Matoušek’s Lp-variant of the Poincaré inequality for expanders [41], the
proof of Proposition 9.3 extends mutatis mutandis to show that (X, dpX) fails to have the
uniform decay property for any p ∈ (0,∞).

Remark 9.5. We do not know if there exists a normed space which does not have the uniform
decay property, though we conjecture that such spaces do exist, and that this even holds for
`∞. Note that despite the fact that all separable metric spaces embed into `∞, we cannot
formally deduce from Proposition 9.3 that `∞ satisfies the same conclusion since the uniform
decay property of the Poincaré constant is not necessarily monotone when passing to subsets
of metric spaces. We suspect that (`1, ‖ · ‖2

1) does have the uniform decay property despite
the fact that `1 does not admit an equivalent uniformly convex norm.
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A. N. was visiting Université Pierre et Marie Curie, Paris, France.

74



References

[1] N. Alon, O. Schwartz, and A. Shapira. An elementary construction of constant-degree expanders. Com-
bin. Probab. Comput., 17(3):319–327, 2008.

[2] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete Mathematics
and Optimization. John Wiley & Sons Inc., Hoboken, NJ, third edition, 2008. With an appendix on the
life and work of Paul Erdős.
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