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Abstract

A hole in a graph is an induced subgraph which is a cycle of length at least four. A hole is called
even if it has an even number of vertices. An even-hole-free graph is a graph with no even holes. A
vertex of a graph is bisimplicial if the set of its neighbours is the union of two cliques. In this paper
we prove that every even-hole-free graph has a bisimplicial vertex, which was originally conjectured
by Reed.



1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. The complement, G, of G is the
graph with vertex set V (G) and such that two vertices u, v ∈ V (G) are adjacent in G if and only
if they are non-adjacent in G. A clique in G is a set of vertices, all pairwise adjacent. Let S be a
subset of V (G). We denote by G|S the subgraph of G induced on S, and by G \ S the subgraph
of G induced on V (G) \ S. We say that S is connected if G|S is connected. A component of S is a
maximal subset S′ of S such that G|S′ is connected. An anticomponent of S is a maximal subset S′

of S such that G|S′ is connected. The neighbourhood of S, denoted by NG(S) (or N(S) when there
is no risk of confusion), is S together with the set of all vertices of V (G) \ S with a neighbour in S.
If S = {v}, we write NG(v) instead of NG({v}) (and, respectively, N(v) instead of N({v})). For an
induced subgraph H of G, we define N(H) to be N(V (H)). The non-neighbourhood of S is the set
V (G) \N(S). A vertex is called bisimplicial (in G) if its neighbourhood is the union of two cliques.
Two disjoint subsets A,B of V (G) are complete to each other if every vertex of A is adjacent to
every vertex of B, and anticomplete to each other if no vertex of A is adjacent to any vertex of B.
If A = {a}, we write “a is complete (anticomplete) to B” instead of “{a} is complete (anticomplete)
to B”.

A hole in a graph is an induced subgraph which is a cycle of length at least four. An antihole
in a graph G is the complement of a hole in the complement of G. A hole is even if it has an
even number of vertices (and, equivalently, edges), and odd otherwise. A graph is even-hole-free if it
contains no even hole. Even-hole-free graphs were studied in [2] and are known to be recognizable in
polynomial time ([1], [3]). In [4] it is shown that every even-hole-free graph contains a vertex whose
neighbourhood induced a graph with no holes at all. However, the following conjecture of Reed has
remained open [5], and is our main result:

1.1 Every non-null even-hole-free graph has a bisimplicial vertex.

A graph G is called odd-signable if there exists a function f : E(G) → {0, 1} such that
∑

e∈E(H) f(e)
is odd for every hole H of G. It is natural to ask whether 1.1 is true if we replace “even-hole-free”
by “odd-signable”. The answer to this question is “no”, and the eight vertex graph which is the
1-skeleton of the cube is a counterexample.

The goal of this paper is to prove 1.1. However, for inductive arguments, it turns out to be
helpful to consider a slightly stronger statement. Instead of just finding one bisimplicial vertex, we
prove that every subgraph with certain properties contains one.

A set S of vertices in a graph G is called dominating (in G) if N(S) = V (G), and non-dominating
otherwise. An induced subgraph H of G is dominating if V (H) is dominating, and non-dominating
otherwise. We can now state our main theorem.

1.2 Let G be an even-hole-free graph. Then both the following statements hold:

1. If H is a non-dominating hole in G, then some vertex of V (G) \ N(H) is bisimplicial in G.

2. If K is a non-dominating clique in G of size at most two, then some vertex of V (G) \N(K) is
bisimplicial in G.
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Clearly the second statement of 1.2 with K = ∅ implies 1.1. We remark that the second statement
of 1.2 is false if we replace “at most two” by “at most three”. The graph obtained from K4 by choosing
a vertex and subdividing once the edges incident with it is a counterexample.

Let us now outline the proof of 1.2. The proof uses induction. Let G be a graph such that 1.2
holds for all smaller graphs. First we suppose that G fails to satisfy the first statement, that is there
is a non-dominating hole H in G, but there is no bisimplicial vertex in the non-neighbourhood of
V (H). Now the idea is to examine the neighbourhood of V (H) and try to find what we call a “useful
cutset” in G, that is, a subset C of V (G) and an edge e with both ends in C such that

• V (G) \ C is the disjoint union of two non-empty sets, L and R, anticomplete to each other

• C ⊆ N(e) and the non-neighbourhood of e in the graph G|(C ∪ R) is a non-empty subset of
the non-neighbourhood of V (H) in G.

If we find such a cutset C, then it follows, from the minimality of G, that R contains a vertex v

which is bisimplicial in G|(C ∪R); and since L is anticomplete to R, it follows that v is a bisimplicial
vertex of G, which is a contradiction.

Unfortunately, we do not always succeed in finding a useful cutset; sometimes we have to make
do with a set C and a list u1, .., uk, v1, .., vk of vertices of C (possibly with repetitions) where ui is
non-adjacent to vi in G for every 1 ≤ i ≤ k, such that:

• V (G) \ C is the disjoint union of two non-empty sets, L and R, anticomplete to each other

• the graph G′ obtained from G|(R ∪ C) by adding the edge uivi for every 1 ≤ i ≤ k is even-
hole-free

• For some edge e of G′, C ⊆ N(e), and the non-neighbourhood of e in the graph G′ is a
non-empty subset of the non-neighbourhood of V (H) in G

• if v is a bisimplicial vertex of G′ contained in the non-neighbourhood of e, then v is bisimplicial
in G.

Having found such a set C etc, the same argument as in the case of a “genuine” useful cutset leads
to a contradiction.

So G satisfies the first statement of 1.2. Suppose it fails to satisfy the second. This means
that there is a non-dominating clique K of size at most two in G with no bisimplicial vertex in its
non-neighbourhood. An easy argument shows that there is a hole H of G such that K is included
in V (H). Since the first assertion of the theorem holds for G, we deduce that H is dominating in
G. Now we can examine the structure of G relative to H, and again find variations on the idea of a
useful cutset, such as the one described above, that lead to a contradiction. So G satisfies the second
statement of 1.2 too. This completes the inductive proof.

For a graph G, we denote by χ(G) the chromatic number of G, and by ω(G), the size of the
largest clique of G. Finally, we would like to point out the following easy corollary of 1.1:

1.3 Let G be an even-hole-free graph. Then χ(G) ≤ 2ω(G) − 1.

Proof. By 1.1, some vertex v of G is bisimplicial, and therefore v has degree at most 2ω − 2. Now
the result follows by deleting v and applying induction.
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2 Preliminaries

Let us start with some definitions. We say that P is a path in G if P is an induced connected
subgraph of G, such that either P is a one-vertex graph, or two vertices of P have degree one, and
all the others have degree two. (This definition is non-standard, but very convenient.) The length of
a path is the number of edges in it. A path is called even if its length is even, and odd otherwise. Let
the vertices of P be p1, . . . , pk in order. Then p1, pk are called the ends of P (sometimes we say P is
from p1 to pk or between p1 and pk), and the set V (P ) \ {p1, pk} is the interior of P and is denoted
by P ∗. For 1 ≤ i < j ≤ k we will write pi-P -pj or pj-P -pi to mean the subpath of P between pi and
pj. Similarly, if H is a hole, and a, b and c are three vertices of H such that a is adjacent to b, then
a-b-H-c is a path, consisting of a, and the subpath of H \ {a} between b and c.

A theta in a graph G means an induced subgraph T of G with two nonadjacent vertices s, t and
three paths P,Q,R, each between s, t, such that P,Q,R are disjoint apart from their ends, the union
of every pair of them is a hole, and T = P ∪Q∪R. A prism in G is an induced subgraph P in which
there are three paths R1, R2, R3, with the following properties:

• for i = 1, 2, 3, Ri has length > 0; let its ends be ai, bi

• R1, R2, R3 are pairwise disjoint, and V (P ) = V (R1 ∪ R2 ∪ R3)

• for 1 ≤ i < j ≤ 3, there are precisely two edges between V (Ri) and V (Rj), namely aiaj and
bibj .

An even wheel in G is an induced subgraph consisting of a hole H and a vertex v 6∈ V (H) with an
even number, and at least four, neighbours in V (H).

It is easy to see that every theta, every prism, and every even wheel contains at least one even
hole, and therefore

2.1 No even-hole-free graph contains a theta, a prism or an even wheel.

Let H be a hole in G and let v ∈ V (G) \ V (H). We say that (with respect to H) v is

• a leaf if it has exactly one neighbour in V (H),

• a hat if it has exactly two neighbours in V (H) and they are adjacent,

• a clone if its neighbours in V (H) form a two-edge subpath of H,

• a pyramid if v has exactly three neighbours in V (H) and exactly one pair of them is an edge
of H, and

• a major vertex if either three neighbours of v in V (H) are pairwise non-adjacent, or |V (H)| = 5
and v is complete to V (H).

If v is a leaf with respect to H and the neighbour of v in V (H) is n1, we say that v is a leaf at
n1. If v is a hat with neighbours n1, n2, then v is a hat at n1n2. If v is a clone with respect to H

and the neighbours of v in V (H) are n1, n2, n3 where n1 is non-adjacent to n3, we say that v is a
clone at n2. Finally, if v is a pyramid with respect to H with neighbours n1, n2, n3 in V (H) where
n1 is adjacent to n2, we say that v is a pyramid with base n1n2 and apex n3.

3



2.2 Let G be an even-hole-free graph and let H be a hole of G. Let v be a vertex of V (G) \ V (H)
with a neighbour in V (H). Then v is either a leaf, or a hat, or a clone, or a pyramid, or a major
vertex with respect to H.

Proof. Let N be the set of neighbours of v in V (H). We may assume that |N | > 1, no three vertices
of N are pairwise non-adjacent, and if |V (H)| = 5, then v is not complete to V (H), for otherwise
the theorem holds. It follows that |N | ≤ 4, and therefore by 2.1 |N | ≤ 3.

Suppose |N | = 2 and write N = {n1, n2}. We may assume that n1 is non-adjacent to n2, for
otherwise the theorem holds. But now the subgraph induced by G on V (H)∪{v} is a theta, contrary
to 2.1.

Next assume that |N | = 3 and write N = {n1, n2, n3}. Since no three vertices of N are pairwise
non-adjacent, we may assume that n1 is adjacent to n2. If n3 is anticomplete to {n1, n2}, then v is
a pyramid with respect to H, so we may assume that n3 is adjacent to n2, say. Since H is a hole,
n3 is non-adjacent to n1, and therefore n1-n2-n3 is a two-edge subpath of H and v is a clone with
respect to H. So if |N | = 3, the theorem holds. This completes the proof of 2.2.

The following is a lemma that we use a number of times in the course of the proof.

2.3 Let G be even-hole-free, let K be a clique in G, and let S be a subset of V (G)\K. Assume that
V (G)\ (K ∪S) is the disjoint union of two sets, L and R, such that L is connected and anticomplete
to R. Assume also that every vertex of K has a neighbour in L, and there is a vertex a ∈ L, such
that S is complete to a and anticomplete to L \ {a}.

Define the graph G′ as follows. Let V (G′) = R ∪ S ∪ K, and let u, v ∈ V (G′) be adjacent if and
only if there is an odd path of G between them with interior in L.

Then G′ is even-hole-free.

We remark that every two vertices of G′ that are adjacent in G, are still adjacent in G′. Since S

is anticomplete to L \ {a} and K is a clique, it follows that every edge in E(G′) \E(G) has one end
in S and the other in K.
Proof. We observe that, since L is connected and every vertex of K ∪ S has a neighbour in L,
it follows that for every k′ ∈ K and s′ ∈ S, there is a path from k′ to s′ in G with interior in L.
Assume for a contradiction that there is an even hole H in G′. Since G|(K ∪R∪S) is even-hole-free,
it follows that at least one edge of H belongs to E(G′) \ E(G). So there exist two vertices k and s

of H such that k ∈ K, s ∈ S, and k is adjacent to s in G′ but not in G.

(1) If k′ ∈ K is non-adjacent in G′ to s′ ∈ S, then every path from k′ to s′ with interior in R

is odd.

Let P be a path from k′ to s′ with interior in R and let Q be a path from k′ to s′ with inte-
rior in L. Since s′, k′ are non-adjacent in G′, it follows that Q is even. But now, since k′-Q-s′-P -k′

is not an even hole in G, it follows that P is odd. This proves (1).

(2) Let k′ ∈ K and s′ ∈ S be adjacent in G′ and non-adjacent in G. Then every path from k′

to s′ in G with interior in R is even.

Let P be a path from k′ to s′ in G with interior in R and let Q be a path from k′ to s′ in G with
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interior in L. Since s′, k′ are adjacent in G′, it follows that Q is odd. But now, since k′-Q-s′-P -k′ is
not an even hole in G, it follows that P is even. This proves (2).

(3) |V (H) ∩ (S ∪ K)| > 2.

If V (H) ∩ (K ∪ S) = {k, s}, then the graph induced by G on V (H) is an odd path from k to s

with interior in R, contrary to (2). This proves (3).

(4) Every vertex of K, incident with an edge of E(G′) \ E(G), is complete to S in G′.

Let k1s1 ∈ E(G′)\E(G) for some k1 ∈ K and s1 ∈ S, and let s2 be in S. Since k1s1 ∈ E(G′)\E(G),
we deduce from the definition of G′ that in G there exists an odd path P from k1 to s1 with interior
in L. Since S is complete to a and anticomplete to L \ a, it follows that the neighbour of s1 in P is
a, and k1-P -a-s2 is an odd path from k1 to s2 with interior in L. But now, k1s2 ∈ E(G′), again by
the definition of G′. This proves (4).

By (4) k is complete to S, and therefore |V (H) ∩ S| ≤ 2. Assume first that |V (H) ∩ S| = 2,
and let s′ be the vertex of V (H) ∩ S different from s. Since H is a hole, s is non-adjacent to s′ and
V (H) \ {k, s, s′} is included in R. Let P be the path H \ {k}. Now, since H is an even hole, P is
even, and s-P -s′-a-s is an even hole in G, a contradiction. This proves that V (H) ∩ S = {s}, and
therefore, by (3) and since K is a clique, |V (H)∩K| = 2. Let k′ be the vertex of V (H)∩K different
from k. Then k′ is non-adjacent to s and V (H) \ {k, k′, s} is a subset of R. But then, since H is an
even hole, the path H \ {k} is even, contrary to (1). This completes the proof of 2.3.

Finally, we show the following:

2.4 Let G be a counterexample to 1.2 with |V (G)| minimum, and assume that there exists a non-
dominating clique K ′ of size at most two in G such that no vertex of V (G) \ N(K ′) is bisimplicial
in G. Then there exists a non-dominating clique K of size exactly two in G such that no vertex of
V (G) \ N(K) is bisimplicial in G.

Proof. First we show that we may assume |K ′| = 1. For suppose that K ′ = ∅. If G is a complete
graph, then every vertex of G is bisimplicial, contrary to the assumption, so there is a non-dominating
vertex k′′. Now K ′′ = {k′′} is a non-dominating clique of size one in G such that no vertex of
V (G) \ N(K ′′) is bisimplicial in G. We therefore assume that K ′ = {k′} for some k′ ∈ V (G).

If there exists a neighbour k of k′, such that {k, k′} is non-dominating, then the clique K = {k, k′}
has the desired property. So we may assume that no such k exists and every k ∈ N(k′) is complete
to V (G)\N(k′). Since for a, b ∈ N(k′)\{k′} and c ∈ V (G)\N(k′), k′-a-c-b-k′ is not a hole of length
four, it follows that N(k′) is a clique. By the minimality of V (G), there is a bisimplicial vertex v in
G \ N(k′). But now, since NG(v) = NG\N(k′)(v) ∪ (N(k′) \ {k′}), it follows that v is bisimplicial in
G, a contradiction. This proves 2.4.

In the next few sections, we will be proving several statements about an even-hole-free graph
G such that 1.2 holds for all graphs with fewer vertices than G. We refer to this property as “the
minimality of |V (G)|”.
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3 Non-dominating holes

The goal of this section is to prove the following:

3.1 Let G be an even-hole-free graph such that 1.2 holds for all graphs with fewer vertices than G.
Let H be a non-dominating hole of G. Then there is a vertex in V (G) \ N(H) which is bisimplicial
in G.

Proof. Assume no such vertex exists. Let h1- . . . -hk-h1 be the vertices of H in order. Let
M = V (G) \ N(H) and N = N(H) \ V (H). Then no vertex of M is bisimplicial in G. From
the minimality of |V (G)| it follows that G is connected, and therefore N 6= ∅.

(1) M is connected, and every vertex of N has a neighbour in M .

Assume that either M is not connected or there is a vertex n ∈ N with no neighbour in M . In
the first case let X be a component of M , and in the second let X = {n}. Then M 6= X, and H is a
non-dominating hole in G\X. By the minimality of |V (G)|, there is a vertex v in M \X that is bisim-
plicial in G\X. But NG(v) = NG\X(v), and so v is bisimplicial in G, a contradiction. This proves (1).

Let X be the set of leaves, Y the set of hats, C the set of clones, and B the set of major ver-
tices and pyramids with respect to H. By 2.2 N = X ∪ Y ∪ C ∪ B.

(2) B is a clique.

Suppose not. Let b1, b2 ∈ B be non-adjacent. By (1), both b1 and b2 have neighbours in M and M

is connected, so there exists a path P0 joining b1 and b2 and otherwise contained in M .
Assume first that there is a vertex h ∈ V (H), adjacent to both b1 and b2. Let h′ and h′′ be

neighbours of h in H. Since b1, b2 are in B, each of them has a neighbour in V (H) \ {h, h′, h′′}, and
therefore there is a path P1 joining b1 and b2 and otherwise contained in V (H)\{h, h′ , h′′}. But now
the paths b1-P0-b2, b1-h-b2, b1-P1-b2 form a theta, contrary to 2.1. This proves that no vertex of H is
a common neighbour of b1 and b2.

We may assume that b1 is adjacent to h1. Let i be maximum and j minimum such that b2 is
adjacent to hi and hj . Then i, j 6= 1. Since b2 is in B, it follows that i− j ≥ 3. Let R be the path of
H between hi and hj containing h1. Let hi′ be the neighbour of b1 in V (R) such that the subpath Pi

of R between hi and hi′ contains no other neighbour of b1, and let hj′ and Pj be defined similarly. If
hi′ and hj′ are distinct and non-adjacent, then b1-P0-b2, b1-hi′-Pi-hi-b2, b1-hj′-Pj-hj-b2 form a theta
in G, contrary to 2.1, so we may assume not, and therefore b1 has at most two neighbours in V (R).

Assume first that b1 has exactly two neighbours in V (R), and therefore hi′ is non-adjacent to
hj , and hj′ to hi. Since |i − j| ≥ 3, it follows that b1 has a neighbour in V (H) \ V (R) non-adjacent
to one of hi, hj , say hi. So there exists a path Q joining b1 and b2 and otherwise contained in
{hj , hj+1, . . . , hi−2}. But then b1-P0-b2, b1-Q-b2, b1-hi′-Pi-hi-b2 form a theta in G, contrary to 2.1.
This proves that h1 is the unique neighbour of b1 in V (R).

From the symmetry and since hi-R-hj-b2-hi is not a hole of length four, we may assume that
j > 2. Since b1 is in B, it follows that b1 has at least two neighbours in V (H) \ V (R), and in
particular b1 has a neighbour in V (H) \ V (R) non-adjacent to hi. So there exists a path Q joining
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b1 and b2 and otherwise contained in {hj , hj+1, . . . , hi−2}. But then b1-P0-b2, b1-Q-b2, b1-hi′-Pi-hi-b2

form a theta in G, contrary to 2.1. This proves (2).

(3) If b ∈ B and c ∈ C are non-adjacent and c is a clone at h, then b is a pyramid with apex
h.

We may assume that h = h1. Let H ′ be the hole H ∪ {c} \ {h1}. Assume first that b is adjacent to
h1. Then the number of neighbours of b in V (H ′) differs by one from the number of neighbours of
b in V (H), and since G contains no even wheel, b has exactly two neighbours, hi, hj in V (H ′). 2.2
applied to H ′ implies that hi is adjacent to hj . But then b is a pyramid with apex h1, and (3) holds.

So we may assume that b is non-adjacent to h1. Let i be maximum and j minimum such that b

is adjacent to hi and hj . Since b is in B, i − j ≥ 3. Let Pi, Pj be the subpaths of H \ {h1} between
hi and hk, and h2 and hj respectively. By (1), there is a path P0 joining b and c and otherwise
contained in M . But now b-P0-c, b-hi-Pi-hk-c, b-hj-Pj-h2-c form a theta in G, contrary to 2.1. This
proves (3).

A vertex h of H is a 1-base if some vertex of N is either a leaf at h or a clone at h. An edge
hh′ of H is a 2-base if some vertex of N is a hat at hh′.

(4) The set of all 1-bases is a clique.

Suppose not. We may assume that h1 is a 1-base, and there exists 3 ≤ i ≤ k − 1 such that hi

is a 1-base. Let x be a leaf or a clone at h1 and y a leaf or a clone at hi. By (1), there is a path P0

joining x and y and otherwise contained in M . Let P1 and P2 be the subpaths of H \ {h1} joining
h2 and hi−1, and hi+1 and hk, respectively.

Now if x, y are both leaves, then h1-x-P0-y-hi, h1-h2-P1-hi−1-hi, h1-hk-P2-hi+1-hi form a theta; if
x, y are both clones and x is non-adjacent to y, then x-P0-y, x-h2-P1-hi−1-y, x-hk-P2-hi+1-y form a
theta; and if, say, x is a leaf and y is a clone, then h1-x-P0-y, h1-h2-P1-hi−1-y, h1-hk-P2-hi+1-y form
a theta, in all cases a contradiction to 2.1. So x and y are both clones and they are adjacent. But
then the graph G|(V (H) ∪ {x, y} \ {h1}) is an even wheel, again contrary to 2.1. This proves (4).

(5) At most one edge of H is a 2-base.

Suppose not. We may assume that h1h2 is a 2-base, and for some 2 ≤ i ≤ k − 1, the edge hihi+1 is
a 2-base. Let x be a hat at h1h2 and y a hat at hihi+1. By (1), there is a path P0 joining x and y

and otherwise contained in M .
Assume first that i = 2. Let P be the path H \ {h2}. Then h1-P -h3-y-P0-x-h1 is a hole H ′, and

the neighbours of h2 in H ′ are precisely {h1, x, y, h3}. So V (H ′) ∪ {h2} induces an even wheel in G,
contrary to 2.1. This proves that i 6= 2.

Let P1 be the subpath of H \{h2} joining h1 and hi+1, and P2 be the subpath of H \{h1} joining
h2 and hi. Then the three paths h1-P1-hi+1, h2-P2-hi, x-P0-y form a prism in G, contrary to 2.1.
This proves (5).

(6) There does not exist a clique K with |K| ≤ 2, such that N ⊆ N(K) and M 6⊆ N(K).
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Suppose such K exists. Let G′ = G \ (V (H) \ K). Then K is a clique of size at most two in
G′, and, since M 6⊆ N(K), it is non-dominating in G′. It follows from the minimality of |V (G)| that
there exists a vertex v in V (G′) \ N(K) which is bisimplicial in G′. Since N ⊆ N(K), we deduce
that v ∈ M . But since V (G) \ V (G′) ⊆ V (H), it follows that NG(v) = NG′(v), and therefore v is
bisimplicial in G, a contradiction. This proves (6).

(7) Every 1-base is complete to B ∪ C.

Suppose not. Let b in B ∪ C be non-adjacent to a 1-base, say h1. Let x be a clone or a leaf at
h1. If b belongs to C, we get a contradiction to (4), so we may assume that b is in B.

Assume first that x is a clone, and let H ′ be the hole with vertex set V (H) ∪ {x} \ {h1}. By (3)
b is adjacent to x. But now N(b) ∩ V (H ′) = N(b) ∩ V (H) ∪ {x} and so b has an even number, and
at least four, neighbours in V (H ′), contrary to 2.1.

So x is a leaf. Let i be maximum and j minimum such that b is adjacent to hi and hj . Let Pi be
the subpath of H \ {h1} joining hk and hi and let Pj be the subpath of H \ {h1} joining h2 and hj .
Since b belongs to B, i−j > 3. By (1) there exists a path P0 joining x and b and otherwise contained
in M . But now h1-x-P0-b, h1-Pi-hi-b, h1-Pj-hj-b is a theta in G, contrary to 2.1. This proves (7).

(8) C is a clique.

Suppose not, and choose non-adjacent c1, c2 ∈ C. We may assume that c1 is a clone at h1. Since
h2-c1-hk-c2-h2 is not a hole of length four in G, it follows that c2 is not a clone at h1. By (4) we may
assume that c2 is a clone at h2; and h1 and h2 are the only 1-bases.

First we claim that every 2-base is incident with one of h1, h2. Suppose not and let hihi+1 be a
2-base with i 6= 1, 2, k. Let x be a hat at hihi+1. By (1) all of x, c1, c2 have neighbours in M and M

is connected. Let P0 = p1- . . . -pm be a path with p1 = x, V (P ) \ {p1} ⊆ M , and such that pm has a
neighbour in {c1, c2} and {c1, c2} is anticomplete to P \ {pm}. From the symmetry we may assume
that pm is adjacent to c2. Since c1-h2-c2-pm-c1 is not a hole of length four, c1 is non-adjacent to pm,
and therefore has no neighbour in V (P0).

Let P1 be the subpath of H \ {h2} joining h3 and hi. Let P2 be the subpath of H \ {h1} joining
hk and hi+1. If i 6= 3 then the three paths c2-pm-P0-x, h3-P1-hi, h2-c1-hk-P2-hi+1 form a prism in G;
and if i = 3 then h4-P2-hk-c1-h2-c2-pm-P0-x-h4 is a hole in G and h3 has exactly four neighbours in
it, in both cases contrary to 2.1. This proves that every 2-base is incident with one of h1, h2.

Let K = {h1, h2}. Since h1, h2 are the only 1-bases in H, every 2-base is incident with one of
h1, h2, every vertex of B is adjacent to both of h1, h2 by (7), and N = X ∪C ∪Y ∪B, it follows that
N is included in N(K). But M ∩ N(K) = ∅, contrary to (6). This proves (8).

(9) There exists either a vertex in N that is not complete to M , or a 1-base, or a 2-base.

Suppose not. Then N = B and B is complete to M . It follows from the minimality of |V (G)|
that some vertex v of M is bisimplicial in G|M . Since NG(v) = NG|M(v) ∪ B and by (2) B is a
clique, it follows that v is bisimplicial in G, a contradiction. This proves (9).
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(10) There exists a 2-base.

Suppose not, so Y = ∅. If there exists a 1-base, let K be the set of all 1-bases, and otherwise
let K = {n} for some n ∈ N that is not complete to M (the existence of such a vertex n follows
from (9)). Then M 6⊆ N(K). By (4) K is a clique of size at most two. But by (2) and (7), and since
N = B ∪ C ∪ X, it follows that N ⊆ N(K), contrary to (6). This proves (10).

In view of (10) we may assume without loss of generality that h1h2 is a 2-base.

(11) None of h1, h2 is a 1-base.

Suppose one of h1, h2 is a 1-base, and from the symmetry we may assume it is h1. Let K be
the set of all 1-bases, then by (4) K is a clique of size at most two. Since by (5) Y is complete to
h1, it follows from (7) that N ⊆ N(K). But now, since K ⊆ V (H), it follows that N(K) ∩ M = ∅,
contrary to (6). This proves (11).

For a vertex v in B ∪ C let i(v) be the minimum i > 2 such that v is adjacent to hi. We say
that v is of even type if i(v) is even, and of odd type otherwise. Let T be the set of all vertices of
even type. Please note that T is anticomplete to h2.

(12) B ∪ C is a clique.

Suppose not. It follows from (2), (3) and (8) that there exist a vertex hj of H, a clone c at hj ,
and a pyramid p with apex hj such that c is non-adjacent to p. By (11), j 6= 1, 2. Let hihi+1 be the
base of p.

First we claim that hj is the only 1-base in H. For suppose for some m 6= j, hm is another 1-base.
By (4) m ∈ {j − 1, j + 1}, and by (7) p is adjacent to hm, contrary to the fact that hj is the apex of
p. This proves the claim.

Next we claim that i = 1. Suppose not. From the symmetry we may assume that j < i. Let x be
a hat at h1h2. By (1) all of x, c, p have neighbours in M and M is connected. Let P0 = p1- . . . -pm

be a path with p1 = x, V (P0) \ {p1} ⊆ M , and such that pm has a neighbour in {c, p} and {c, p}
is anticomplete to P0 \ {pm}. Since c-hj-p-pm-c is not a hole of length four, not both c and p are
adjacent to pm, and therefore one of c, p has no neighbour in V (P0).

If p is adjacent to pm, then the subgraph induced by G on V (H) ∪ V (P0) ∪ {p, c} \ {hj} is an
even wheel if i = k and a prism if i 6= k, contrary to 2.1. If c is adjacent to pm, let P1 be the
subpath of H \ {hi} between hi+1 and h1, and let P2 be the subpath of H \ {h1} between h2 and
hj−1. Then the three paths c-pm-P0-x, hj -p-hi+1-P1-h1, hj−1-P2-h2 form a prism if j > 3 and an even
wheel otherwise, contrary to 2.1. This proves that i = 1. Consequently 4 ≤ j ≤ k − 1.

Let L = {h3, h4, . . . , hj−1} and let B′ be the set of all vertices of B that are anticomplete to
L. Let S = {h2}, K = B ∪ C ∪ {hj} \ B′ and R = M ∪ X ∪ Y ∪ B′. Then G|(K ∪ S ∪ R ∪ L) is
even-hole-free, by (3) and (7) both K and S are cliques, and L is connected and every vertex of K has
a neighbour in L. Let G′ be the graph obtained from G \ (V (H) \ {h2, hj}) by adding edges between
h2 and all its non-neighbours in T ∪ {hj}. Since p-h2-h3- . . . -hj-p is not an even hole, it follows that
j is odd, and therefore, by (7), B′ ∩T = ∅. This implies that the only edges of G′ that are not edges
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of G are those with one end in K and the other one in S. By 2.3 applied to G|(K ∪ S ∪ L ∪ R), it
follows that G′ is even-hole-free.

Let U = {h2, hj}. Then M is disjoint from NG′(U), and therefore U is a non-dominating clique
in G′. By (7), and since hj is the only 1-base in H, we deduce that B ∪C ∪X is complete to hj , and
by (5) Y is complete to h2, so N is included in NG′(U). It follows from the minimality of |V (G)|
that there is a vertex v ∈ V (G′) \ NG′(U) that is bisimplicial in G′, and therefore v is in M . Since
V (G)\V (G′) ⊆ V (H), we deduce that NG(v) = NG′(v), and so v is bisimplicial in G, a contradiction.
This proves (12).

(13) X ∪ T 6= ∅.

Suppose X ∪T is empty. Then N = B ∪Y ∪C. Let S = {h3}, K = B ∪C, L = H \ {h1, h2, h3} and
R = M ∪ Y ∪ {h2}. Then, by (12), K,S are both cliques; L is connected and, by (5), anticomplete
to R; and, by (11), every vertex of K has a neighbour in L. Let G′ be the graph obtained from
G|(K∪S∪R) by adding all edges between B∪C and h3. It follows from 2.3 that G′ is even-hole-free.

Let U = {h2, h3}. Since N(U) ∩ M = ∅, U is a non-dominating clique in G′. By the mini-
mality of |V (G)|, it follows that there is a bisimplicial vertex v in V (G′) \ N(U). Since V (G′) =
{h2, h3} ∪B ∪C ∪ Y ∪M , and Y is complete to h2 and B ∪C to h3, we deduce that v is in M . But
now NG(v) = NG′(v), and therefore v is bisimplicial in G, a contradiction. This proves (13).

(14) For some even integer i with 3 < i < k there is a leaf at hi.

Suppose not. Let K ′ be the set of all vertices hj of H such that there is a leaf at hj . By (4)
and (11) |K ′| ≤ 1.

Assume first that K ′ is empty and T is complete to M . Then N = B ∪C ∪Y . Since every y ∈ Y

has a neighbour m ∈ M , every t ∈ T is adjacent to m, and y-h2- . . . -hi(t)-t-m-y is not an even hole
in G, it follows that Y is complete to T . Choose t ∈ T (by (13) T 6= ∅). Since H is a non-dominating
hole in G \ {t}, it follows from the minimality of |V (G)| that some vertex m of M is bisimplicial in
G \ {t}. Now t is complete to NG\{t}(m), because NG\{t}(m) ⊆ M ∪ Y ∪ B ∪ C, and by (12) and
the previous argument t is complete to M ∪ Y ∪ B ∪ C. Since NG(m) = NG\{t}(m) ∪ {t}, it follows
that m is bisimplicial in G, a contradiction. This proves that either K ′ 6= ∅ or some vertex of T is
not complete to M .

Suppose first that K ′ = {hj} for some j > 3. Let L be the subpath of H \ {h1} from h3 to hj−1.
Let S = {h2}, and define K to be the union of K ′ with the set of all the vertices of B ∪C that have
a neighbour in L. Let R = (M ∪ X ∪ Y ∪ B ∪ C) \ K. Then by (7) and (12) both K,S are cliques,
L is connected and, by (5), anticomplete to R and every vertex of K has a neighbour in L. Let G′

be the graph obtained from G|(R ∪K ∪ S) by adding all edges between K ′ ∪ T and h2. By 2.3 G′ is
even-hole-free. Let U = {h2, hj}. Then U is a non-dominating clique of size two in G′, and it follows
from the minimality of |V (G)| that there is a vertex v ∈ V (G′) \ NG′(U) that is bisimplicial in G′.
Since, by (7), B ∪ C ∪ X is complete to hj and, by (5), Y is complete to h2, it follows that v is in
M . But then, since V (G) \ V (G′) is included in V (H), it follows that NG(v) = NG′(v), and so v is
bisimplicial in G, a contradiction. This proves that if K ′ 6= ∅, then K ′ = {h3}.

Next suppose that K ′ = {h3}. Let G′ = G \ (V (H) \ {h2, h3}), and U = {h2, h3}. Then U is a
non-dominating clique of size two in G′, and it follows from the minimality of |V (G)| that there is
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a vertex v ∈ V (G′) \ NG′(U) that is bisimplicial in G′. Since, by (7), B ∪ C ∪ X is complete to h3

and, by (5), Y is complete to h2, it follows that v is in M . But then, since V (G) \ V (G′) is included
in V (H), it follows that NG(v) = NG′(v), and so v is bisimplicial in G, a contradiction. This proves
that K ′ = ∅, and therefore some vertex of T is not complete to M , and, in particular, T 6= ∅.

Let L be the path H \ {h1, h2}, S = {h2}, K = B ∪ C and R = M ∪ Y . We observe that since
K ′ = ∅, it follows that X = ∅. Then by (12) both K,S are cliques, L is connected and anticomplete
to R and every vertex of K has a neighbour in L. Let G′ be the graph obtained from G|(R∪K ∪S)
by adding all edges between T and h2. By 2.3 G′ is even-hole-free. Let a be a vertex in T that is
not complete to M . Let U = {a, h2}. Then U is a non-dominating clique of size two in G′, and it
follows from the minimality of |V (G)| that there is a vertex v ∈ V (G′) \ NG′(U) that is bisimplicial
in G′. Since, by (12), B ∪C is complete to a and, by (5), Y is complete to h2, it follows that v is in
M . But then, since V (G) \ V (G′) is included in V (H), it follows that NG(v) = NG′(v), and so v is
bisimplicial in G, a contradiction. This proves (14).

In view of (14) let i0 be an even integer such that 3 < i0 < k and hi0 is a 1-base. By (4), the
set of all 1-bases is a clique included in {hi0−1, hi0 , hi0+1}, and from the symmetry we may assume
that hi0−1 is not a 1-base. Let L be the subpath of H \ {h1} between h2 and hi0−1, and let R be
the union of X ∪ M ∪ {hi0+1} with the set of all vertices of B ∪ C that have no neighbour in L.
Let K = {hi0} ∪ B ∪ C \ R and let S = Y . Then (by (7) and (12)) K is a clique, L is connected,
anticomplete to R, and every vertex of K ∪ S has a neighbour in L. Moreover, h2 is a vertex of L

complete to S, and S is anticomplete to L \ {h2}. Let G′ be the graph obtained from G|(K ∪S ∪R)
by adding all edges between K \T and Y . By 2.3 G′ is even-hole-free. Let U = {hi0 , hi0+1}. Then U

is a clique of size two in G′, and since M is anticomplete to U , it is non-dominating. It follows from
the minimality of |V (G)| that some vertex v of V (G′) \ NG′(U) is bisimplicial. Since U contains all
1-bases, by (7) B∪C is complete to hi0 and Y is complete to hi0 by the construction of G′, it follows
that v belongs to M . But since V (G) \ V (G′) is a subset of V (H), it follows that NG(v) = NG′(v),
and so v is bisimplicial in G, a contradiction. This completes the proof of 3.1.

4 Star Cutsets

A cutset in G is a subset C of V (G) such that V (G) \C is the union of two disjoint non-empty sets,
anticomplete to each other. A star cutset is a cutset consisting of a vertex and some of its neighbours.
If v together with a subset of N(v) is a cutset, we say that v is a centre of this star cutset. A star
cutset C is called full if it consists of a vertex and all its neighbours. A double star cutset in G is a
cutset consisting of two adjacent vertices u, v and some of their neighbours. The edge uv is then a
centre of the double star cutset.

In the next few theorems, we develop tools that allow us to make use of certain variations of star
cutsets and double star cutsets in the proof of 1.2.

4.1 Let G be an even-hole-free graph such that 1.2 is true for all graphs with fewer vertices than G.
Assume that there exists a non-dominating clique K of size at most two in G such that no vertex of
V (G)\N(K) is bisimplicial in G. Let C be a star cutset of G with centre c such that some component
of V (G) \ C is disjoint from K and is not complete to c. Then K ⊆ C \ {c}.
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Proof. By 2.4, we may assume that |K| = 2. Let K = {x, y}. Let C1, . . . , Ck be the components of
V (G) \ C. Then k ≥ 2. Let Gi = G|(C ∪ Ci).

(1) c 6∈ K.

Suppose c ∈ K. Assume without loss of generality that c = x. Since K is a non-dominating
clique in G, K ∩ V (Gi) is non-dominating in Gi for some 1 ≤ i ≤ k. From the minimality of |V (G)|,
there exists a vertex v ∈ V (Gi) \N(K), such that v is bisimplicial in Gi. It follows that v ∈ Ci. But
then NGi

(v) = NG(v), and so v is bisimplicial in G, a contradiction. This proves (1).

(2) K ∩ C 6= ∅.

Suppose K ∩ C = ∅. Then we may assume that K ⊆ C1. By hypothesis some other component of
V (G)\C, say C2, is not complete to c. Thus {c} is a non-dominating clique in G2. By the minimality
of |V (G)|, there exists a vertex v ∈ V (G2) \ N({c}), such that v is bisimplicial in G2. It follows
that v ∈ C2. But now NG2

(v) = NG(v), and so v is bisimplicial in G, a contradiction. This proves (2).

To complete the proof, suppose that K 6⊆ C. By (1) and (2), we may assume that x ∈ C \ {c},
and y ∈ C1. For 2 ≤ i ≤ k, let C ′

i = Ci \ N(c) and let C ′′
i = Ci ∩ N(c). Since some component of

V (G) \C is disjoint from K and is not complete to c, it follows that
⋃k

i=2 C ′
i 6= ∅. Assume first that

for some 2 ≤ i ≤ k, x is not complete to C ′
i. Then {c, x} is a non-dominating clique in Gi, and by

the minimality of |V (G)|, there exists a vertex v ∈ V (Gi) \ N({c, x}), such that v is bisimplicial in
Gi. It follows that v ∈ C ′

i. But then NGi
(v) = NG(v), and so v is bisimplicial in G, a contradiction.

This proves that x is complete to
⋃k

i=2 C ′
i.

We claim that for every 2 ≤ i ≤ k, x is complete to (C ∪ C ′′
i \ {x}) ∩ N(C ′

i). For suppose not,
choose n ∈ (C ∪ C ′′

i \ {x}) ∩ N(C ′
i) non-adjacent to x, and let c1 ∈ C ′

1 be a neighbour of n. Then x

is adjacent to c1, and n-c1-x-c-n is a hole of length four, a contradiction. This proves the claim.
Let G′ = G|(C ∪ C1 ∪

⋃k
i=2 C ′′

i ). Since K is a non-dominating clique in G, and x is complete to⋃k
i=2 C ′

i, it follows that K is a non-dominating clique in G′. By the minimality of |V (G)|, there exists
a vertex v ∈ V (G′) \ N(K), such that v is bisimplicial in G′. Since x is adjacent to c, and for every
2 ≤ i ≤ k, x is complete to (C∪C ′′

i \{x})∩N(C ′
i), it follows that either v belongs to

⋃k
i=2 C ′′

i ∪C\{c},
and v is anticomplete to V (G) \ V (G′), or v belongs to C1. In both cases, NG′(v) = NG(v), and so
v is bisimplicial in G, a contradiction. This proves 4.1.

4.2 Let G be an even-hole-free graph such that 1.2 is true for all graphs with fewer vertices than G.
Assume that there exists a non-dominating clique K of size at most two in G such that no vertex of
V (G) \ N(K) is bisimplicial in G. Then G does not admit a full star cutset.

Proof. By 2.4, we may assume that |K| = 2; and let the vertices of K be x and y. Suppose there
exists w ∈ V (G) such that N(w) is a cutset in G. Let N = N(w) \ {w} and let C1, . . . , Ck be the
components of V (G) \ N(w). Then k ≥ 2. Let Gi = G|(Ci ∪ N(w)). By 4.1, K ⊆ N .

(1) Ci \ N(K) 6= ∅ for every 1 ≤ i ≤ k.
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Suppose C1 ∈ N(K). Since K is a non-dominating clique in G, it follows that K is a non-dominating
clique in G′ = G \ C1. By the minimality of |V (G)|, there exists a vertex v ∈ V (G′) \ N(K), such
that v is bisimplicial in G′. If either v ∈

⋃k
i=2 Ci, or v ∈ N and v is anticomplete to C1, then

NG′(v) = NG(v), and so v is bisimplicial in G, a contradiction. So v ∈ N , and v has a neighbour
c ∈ C1. Without loss of generality we may assume that c is adjacent to x. But now v-c-x-w-v is a
hole of length four, a contradiction. This proves (1).

(2) Ci ∩ N(x) 6= ∅ and Ci ∩ N(y) 6= ∅ for every 1 ≤ i ≤ k.

Suppose C1 ∩ N(x) = ∅. By (1), y is not complete to C1, and therefore {w, y} is a non-dominating
clique in G1. By the minimality of |V (G)|, there exists a vertex v ∈ V (G1) \ N({w, y}), such that v

is bisimplicial in G1. But now, v ∈ C1 and so NG1
(v) = NG(v) and v 6∈ N(K). Consequently, v is

bisimplicial in G, and v ∈ V (G) \ N(K), a contradiction. This proves (2).

Let W be the set of vertices in N(w) \ N(K) that are anticomplete to
⋃k

i=1 Ci. Let Z = N(w) \
(N(K) ∪ W ) and let Zi = N(Ci) ∩ Z.

(3) For 1 ≤ i < j ≤ k, Zi ∩ Zj = ∅ and there does not exist a path from a vertex of Zi to a
vertex of Zj with interior in W .

Suppose (3) is false. Assume first that there exist z1 ∈ Z1 and z2 ∈ Z2, such that there is a
path R of even length from z1 to z2 with R∗ ⊆ W , and either z1 = z2, or z1 6∈ Z2 and z2 6∈ Z1.
By (2), x has a neighbour in C1 and in C2, and so for m = 1, 2 there exists a path Pm between x

and zm, such that P ∗
m ⊆ Cm. Since x-Pm-zm-w-x is not an even hole, Pm is odd for m = 1, 2. But

now, x-P1-z1-R-z2-P2-x is an even hole in G, a contradiction. This proves that for 1 ≤ i < j ≤ k,
Zi ∩ Zj = ∅ and every path from a vertex of Zi to a vertex of Zj with interior in W is odd.

We may therefore assume that there exist z1 ∈ Z1, z2 ∈ Z2, and a path R of odd length from z1

to z2 with R∗ ⊆ W . Suppose there exist a path P1 from x to z1 with P ∗
1 ⊆ C1 \N(y) and a path P2

from y to z2 with P ∗
2 ⊆ C2 \ N(x). Since x-P1-z1-w-x and y-P2-z2-w-y are not even holes, it follows

that both P1 and P2 are odd. But then x-P1-z1-R-z2-P2-y-x is an even hole, a contradiction. This
proves that no such P1 and P2 exist.

From the symmetry assume that there is no path from z1 to x with interior in C1 \ N(y). Let S

be the union of the components of C1 \ N(y) that contain no neighbour of x. Now z1 has a neigh-
bour, say c, in C1. Since z1-c-y-w-z1 is not a hole of length four, it follows that y is non-adjacent
to c. Since there is no path from z1 to x with interior in C1 \ N(y), it follows that c ∈ S. Let
G′ = G|(N(w)∪ (N(y)∩C1)∪S). Then {w, y} is a non-dominating clique in G′. By the minimality
of |V (G)|, there exists a vertex v ∈ V (G′) \ N({w, y}), such that v is bisimplicial in G′. But this
means that v ∈ S, and therefore v is anticomplete to {x, y} and NG′(v) = NG(v); and so v is bisim-
plicial in G, a contradiction. This proves (3).

For 1 ≤ i ≤ k, let Wi be the set of vertices a ∈ W , such that there is a path from w to a ver-
tex of Zi, with interior in W , and let W0 = W \

⋃k
i=1 Wi. By (3), Wi and Wj are disjoint and

anticomplete to each other for 0 ≤ i < j ≤ k. Let G′ = G \
⋃k

i=2(Ci ∪ Zi ∪ Wi). By (1), K is a non-
dominating clique in G′. By the minimality of |V (G)|, there exists a vertex v ∈ V (G′) \N(K), such
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that v is bisimplicial in G′. But this means that v ∈ C1∪Z1∪W1∪W0, and therefore NG′(v) = NG(v);
and so v is bisimplicial in G, a contradiction. This completes the proof of 4.2.

4.3 Let G be an even-hole-free graph such that 1.2 is true for all graphs with fewer vertices than G.
Assume that there exists a non-dominating clique K of size at most two in G such that no vertex
of V (G) \ N(K) is bisimplicial in G. Then there does not exist a double star cutset C in G with
centre uv and a vertex w ∈ V (G) \ (N(u)∪N(v)), such that K and w are contained in two different
components of V (G) \ C.

Proof. Suppose 4.3 is false. Let C1 be the component of V (G) \ C with w ∈ C1, and let G′ =
G|(C ∪ C1). Then {u, v} is a non-dominating clique of size two in G′. By the minimality of |V (G)|,
there exists a vertex z ∈ V (G′) \ N({u, v}), such that z is bisimplicial in G′. But this means that
z ∈ C1, and therefore z is anticomplete to K and NG′(z) = NG(z), and so z is bisimplicial in G, a
contradiction. This proves 4.3.

Another useful fact of similar flavour is the following:

4.4 Let G be an even-hole-free graph such that 1.2 is true for all graphs with fewer vertices than G.
Assume that there exists a non-dominating clique K = {x, y} in G such that no vertex of V (G)\N(K)
is bisimplicial in G. Let H be a hole in G, such that x ∈ V (H) and y 6∈ V (H). Then G\(N(H)\{y})
is connected.

Proof. Suppose G\(N(H)\{y}) is not connected, and let C1 be the component of G\(N(H)\{y})
containing y, and C2 6= ∅ some other component. Let G′ = G|(C2 ∪N(H) \ {y}). Since C2 6= ∅, H is
a non-dominating hole in G′. By the minimality of |V (G)|, there exists a vertex v ∈ V (G′) \ N(H)
such that v is bisimplicial in G′. But this means that v ∈ C2, and therefore v is anticomplete to
{x, y} and NG(v) = NG′(v); so v is bisimplicial in G, a contradiction. This proves 4.4.

Let H be a hole, and w a major vertex with respect to H that is not complete to V (H). Let us
call a w-interval a maximal path of H whose vertex set is complete to w, and a w-gap a maximal path
of H whose vertex set is anticomplete to w. Thus every vertex of H either belongs to a unique w-gap
or to a unique w-interval. For a w-gap C, let the borders of C be the ends of the path H \ V (C). So
the borders of a gap are adjacent to w.

In view of 4.2 and 4.1, it is of interest to us to find out which even-hole-free graphs admit a star
cutset. While we do not know the complete answer to this question, we can prove the following:

4.5 Let G be even-hole-free, and let H be a hole in G, such that some vertex w of G is major with
respect to H. Assume that w is not complete to V (H). Then G admits a star cutset with centre w.
Moreover, let C be a w-gap of H with borders x, y. Let A be the set of all vertices h in V (H)∩N(w)
such that the subpath of H \ {x} from y to h contains an even number of neighbours of w, and let
B = V (H)\(V (C)∪N(w)). Let N ′ = N(w)\A. Then V (G)\(N ′∪{w}) is the union of two disjoint
sets V1 and V2, such that V1 is anticomplete to V2, V (C) ⊆ V1 and A ∪ B ⊆ V2.

We start with some lemmas.
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4.6 Let G be a graph and let P be a path in G with vertices p1, . . . , pn in order, and let x, y be
two non-adjacent vertices in V (G) \ V (P ) such that each of x, y has two non-adjacent neighbours in
V (P ). Suppose there do not exist two paths S1 and S2 between x and y such that S∗

1 ∪ S∗
2 ⊆ V (P )

and S∗
1 is anticomplete to S∗

2 . Then, possibly with x and y exchanged, there exists 1 ≤ i ≤ n such
that N(x) ∩ V (P ) ⊆ {p1, . . . , pi+1} and N(y) ∩ V (P ) ⊆ {pi, . . . , pn}.

Proof. Let ix be minimum and jx maximum such that x is adjacent to pix and pjx
, and let iy

and jy be defined similarly for y. We may assume that ix ≤ iy. If jx ≤ iy + 1 , then the theorem
holds, so we may assume not, and therefore pjx

and piy are distinct and non-adjacent. Since y has
two non-adjacent neighbours in V (P ), jy > iy + 1, and in particular piy and pjy

are distinct and
non-adjacent. Let P1 be the subpath of P between pix and piy and P2 the subpath of P between pjx

and pjy
. Then V (P1) is anticomplete to V (P2), and there exist paths S1, S2 between x and y with

S∗
1 ⊆ V (P1) and S∗

2 ⊆ V (P2), a contradiction. This proves 4.6.

We say that two major vertices x and y with respect to a hole H cross if there do not exist paths
P1 and P2 of H with |V (P1)∩V (P2)| ≤ 1 such that N(x)∩V (H) ⊆ V (P1) and N(y)∩V (H) ⊆ V (P2).

4.7 Let G be even-hole free. Let H be a hole and let x, y be major vertices with respect to H. If x

and y cross then x is adjacent to y.

Proof. Suppose not. Since G|(V (H)∪{x}) and G|(V (H)∪{y}) are not even wheels, it follows that
each of x and y has an odd number of neighbours in V (H). Let the vertices of H be h1-h2- . . . -hk-h1.
First we prove the following useful fact.

(1) x and y have no common neighbour in V (H).

Suppose h1 is adjacent to both x and y. Let q, r ∈ {3, . . . , k − 1} be such that q is minimum
and r is maximum with x adjacent to hq and hr. Let s, t ∈ {3, . . . , k− 1} be such that s is minimum
and t is maximum with y adjacent to hs and ht. Since x and y are both major, hq is different from
hr, and hs from ht. Let t′ = k if y is adjacent to hk, and let t′ = t otherwise, and define q′ similarly.

We claim that r > s. Suppose r ≤ s. Since x-h1-hr-y-h1 is not a hole of length four in G, it
follows that r 6= s. Since x and y cross, we may assume, from the symmetry, that x is adjacent to hk.
Since G|({hr , hr+1, . . . , hk, x, y}) is not an even wheel or a theta by 2.1, it follows that y is adjacent
to h2. Since x and y are both major, it follows that r ≥ q′ + 2 and t′ ≥ s + 2. But now the three
subpaths of H \ {h1} from h2 to hq′ , from hr to hs and from ht′ to hk, together with x and y, form
a theta, contrary to 2.1. This proves that r > s. Similarly, t > q.

Let A = H \{h1, h2, hk}. Assume first that each of x, y has two non-adjacent neighbours in V (A).
If there exist two paths S1 and S2 between x and y such that S∗

1 ∪S∗
2 ⊆ V (A) and S∗

1 is anticomplete
to S∗

2 , then G|(V (S1) ∪ V (S2) ∪ {h1}) is a theta, contrary to 2.1. So no such pair of paths exists,
and, by 4.6 applied to x, y and A, and from the symmetry, we may assume that r = s + 1.

Since x-h1-y-hr-x and x-h1-y-hs-x are not holes of length four, x is non-adjacent to hs and y is
non-adjacent to hr. Let s′′ > s be minimum such that y is adjacent to hs′′ . Since y is major, we
deduce that s′′ < k. But now the paths y-hs-hr, y-h1-x-hr and y-hs′′-A-hr form a theta, contrary to
2.1. This proves that not both x and y have two non-adjacent neighbours in V (A), and hence we
may assume that r = q + 1.
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Since x is major and G|(V (H)∪ {x}) is not an even wheel by 2.1, it follows that x is adjacent to
hk and h2. Since x-hk-y-h2-x is not a hole of length four, y is non-adjacent to at least one of hk and
h2 , and therefore y has two non-adjacent neighbours in V (A). Since x-h1-y-hq-x and x-h1-y-hr-x
are not holes of length four, it follows that y is non-adjacent to hq and hr. Let t′′ > r be minimum
such that y is adjacent to ht′′ and let s′′ < q be maximum such that y is adjacent to hs′′ . Let s′ = 2
if y is adjacent to h2, and let s′ = s otherwise. Let A′ = H \ {h1}.

Now t′′ ≤ t ≤ t′. If t′′ < t′ − 1, then the three paths y-ht′-A
′-hk-x, y-ht′′ -A

′-hr-x, y-hs′-A
′-h2-x

form a theta; and if t′ = t′′ + 1 then the three paths ht′ -A
′-hk-x, y-hs′′-A

′-hq and ht′′ -A
′-hr form

a prism, in both cases contrary to 2.1. So t′′ = t = t′, and from the symmetry s′′ = s = s′, and
therefore the only neighbours of y in V (H) are h1, hs and ht. But now the three paths ht-A

′-hk-x,
ht-A

′-hr-x, and ht-y-hs-A
′-h2-x form a theta, again contrary to 2.1. This proves (1).

To finish the proof, we may assume using (1) that y is adjacent to h1 and there exists m with
2 ≤ m ≤ k − 1 such that y-h1-h2- . . . -hm-x is a path. Let A = H \ {hk, h1, . . . , hm, hm+1}.

Assume that x is adjacent to hk. Since by (1) x and y have no common neighbour and
y-hk−1-hk-h1-y is not a hole of length four, y is non-adjacent to hk, hk−1. Since x, y are major and
G|(V (H) ∪ {x}) is not an even wheel by 2.1, it follows that each of x, y has at least one neighbour
in V (A) \ {hk−1}. Consequently there is a path P between x and y with interior in V (A) \ {hk−1}.
But then the paths h1-hk-x, h1-h2-H-hm-x and h1-y-P -x form a theta, contrary to 2.1. This proves
that x is not adjacent to hk, and similarly y is not adjacent to hm+1.

Let s > 1 be minimum such that y is adjacent to hs. Then s ≥ m + 2. Let P be the subpath
of H \ {hk} between h1 and hs. Choose q maximum with m ≤ q ≤ s such that x is adjacent to hq.
By (1), q < s.

Assume first that q = m. Since both x and y are major, they each have a neighbour in V (H) \
(V (P )∪{hk, hs+1}), and therefore there exists a path R from x to y, with interior in V (H)\(V (P )∪
{hk, hs+1}). But now, the three paths y-h1-P -hq, y-hs-P -hq and y-R-x-hq form a theta, contrary to
2.1.

Next assume that q > m + 1. Since x and y cross, x has a neighbour in V (H) \ V (P ), and since
G|(V (P ) ∪ {x, y}) is not an even wheel or a theta, x has at least two neighbours in V (H) \ V (P ).
Since x is non-adjacent to hk, and y is major, it follows that both x and y have a neighbour in
V (H) \ (V (P ) ∪ {hk, hs+1}), and therefore there exists a path R from x to y, with interior in
V (H) \ (V (P ) ∪ {hk, hs+1}). But now the three paths y-h1-P -hm-x, y-hs-P -hq-x and y-R-x form a
theta, contrary to 2.1. This proves that q = m + 1.

From the symmetry, we deduce that y is adjacent to hk, and there exists r < k, such that
x-hr-hr+1- . . . -hk-y is a path, say Q. Since both x and y are major, it follows that r > s + 1. But
now the paths x-Q-hk, y-hs-P -hm+1 and h1-P -hm form a prism, contrary to 2.1. This completes the
proof of 4.7.

Let H be a hole, and w a major vertex with respect to H. A path Q such that V (Q)∩V (H) = ∅,
is called an (H,w)-pyramid path if the vertices of Q can be numbered q1, . . . , qk in order and there
exist distinct vertices x, y, z ∈ V (H) such that

• q1 is adjacent to x, and qk is adjacent to y and z, and there are no other edges between
{q1, . . . , qk} and V (H),

• y and z are adjacent,
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• w is anticomplete to {q1, . . . , qk} ,

• w is adjacent to x,

• the subpath of H \ {y}, from x to z contains an odd number of neighbours of w, and

• the subpath of H \ {z} from x to y contains an odd number of neighbours of w.

We call x the apex of the pyramid path, and yz the base. Note that we permit k = 1, and x may be
adjacent to y or z.

4.8 Let G be even-hole-free, let H be a hole in G and let w be a major vertex with respect to H.
Let p ∈ V (G) \ (V (H)∪{w}) and assume that p forms an (H,w)-pyramid path with apex x and base
yz. Then w is non-adjacent to y, z.

Proof. Suppose w is adjacent to y, say. Since the subpath of H \ {z} from x to y contains an odd
number of neighbours of w, it follows that y is non-adjacent to x. But now x-p-y-w-x is a hole of
length four. This proves 4.8.

4.9 Let G be even-hole-free, let H be a hole in G and let w be a major vertex with respect to H.
Let T be a path of G \ (V (H) ∪ {w}) with vertices t1, . . . , tm in order such that there exist distinct
vertices u, u′, v ∈ V (H), t1 is adjacent to u and u′, tm is adjacent to v, there are no other edges
between {t1, . . . , tm} and V (H), u is adjacent to u′, and {t1, . . . , tm} is anticomplete to w. Let Q be
the path of H \ {u′} from u to v, and let Q′ be the path of H \ {u} from u′ to v. Assume that each
of V (Q) and V (Q′) contains a neighbour of w. Then T is an (H,w)-pyramid path.

Proof. It is enough to show that w is adjacent to v, and each of V (Q), V (Q′) contains an odd
number of neighbours of w. Suppose v is non-adjacent to w. Since G|(V (H) ∪ {w}) is not an even
wheel by 2.1, w has an odd number of neighbours in V (H), and from the symmetry we may assume
that V (Q) contains an even number of neighbours of w. Since G|(V (Q)∪V (T )∪{w}) is not an even
wheel by 2.1, w has exactly two neighbours in V (Q), say x and y, and x is adjacent to y, by 2.2.
We may assume that the subpath of Q from u to x does not contain y. Let z be a neighbour of w

in Q′ such that the subpath of Q′ from u′ to z contains no other neighbours of w. Since w is major
with respect to H, it follows that z is non-adjacent to v. But now, if x 6= u, the three paths u-Q-x,
u′-Q′-z-w and t1-T -tm-v-Q-y form a prism, and if u = x, then u has exactly four neighbours in the
hole y-w-z-Q′-u′-t1-T -tm-v-Q-y, in both cases contrary to 2.1. This proves that v is adjacent to w.

Since by 2.1 w has an odd number of neighbours in V (H), it follows that the parity of the number
of neighbours of w in V (Q) and V (Q′) is the same. We may assume that w has an even number
of neighbours in V (Q) and V (Q′), for otherwise the theorem holds. Since neither of G|(V (Q) ∪
V (T )∪ {w}) and G|(V (Q′)∪ V (T )∪ {w}) is an even wheel by 2.1, it follows that w has exactly two
neighbours in V (Q) and they are adjacent, by 2.2, and the same holds for V (Q′). But now, since w

is adjacent to v, we deduce that the neighbours of w in V (H) are v and the two neighbours of v in
H, contrary to the fact that w is major. This proves 4.9.

4.10 Let G be even-hole-free, let H be a hole in G and let w be a major vertex with respect to H.
Let u, v ∈ V (H) be non-adjacent, and let P be a path with vertices u, p1, . . . , pk, v in order such that
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1. P ∗ ∩ (V (H) ∪ {w}) = ∅,

2. w is anticomplete to {p1, . . . , pk}, and

3. each of the paths of H between u and v contains a neighbour of w in its interior.

Then there exist i, j ∈ {1, . . . , k} such that the subpath of P between pi and pj is an (H,w)-pyramid
path.

Proof. We use induction on k. We observe that since G|(V (H) ∪ {w}) is not an even wheel, it
follows that |N(w) ∩ V (H)| is odd.

(1) If k = 1 then the theorem holds.

Suppose k = 1. Since p1 is non-adjacent to w, 4.7 implies that p1 is not a major vertex. Since
p1 has two non-adjacent neighbours in V (H), namely u and v, it follows that p1 is a pyramid or a
clone, and from the symmetry we may assume that the neighbours of p1 in V (H) are u, u′ and v,
where u is adjacent to u′. But now the theorem holds by 4.9. This proves (1).

In view of (1) we may assume that k ≥ 2. Let N = V (H) ∩ N(p1) and let M = V (H) ∩ N(pk).

(2) One of the following holds:

• N is contained in the union of the vertex set of some non-empty w-gap of H and its borders,
and at least one vertex of the gap belongs to N , or

• |N | = 1 and w is complete to N

• |N | = 2, w is complete to N , and the two vertices of N are adjacent to each other

and the same for M .

Suppose there exists a vertex n ∈ N \ N(w), and let C be the w-gap containing n. Let x and
y be the borders of C. If N contains a vertex n′ ∈ V (H) \ (V (C) ∪ {x, y}), then the path n-p1-n

′

contradicts the minimality of k. So no such n′ exists and the first outcome of (2) holds. This proves
that we may assume that N ⊆ N(w). Now, if N contains two non-adjacent vertices n and n′, then
n-p1-n

′-w-n is a hole of length four, a contradiction; and therefore either the second or the third
outcome of (2). Using symmetry, we deduce that a similar statement holds for M . This proves (2).

(3) {p2, . . . , pk−1} is anticomplete to V (H).

Suppose for some 2 ≤ i ≤ k−1 pi has a neighbour y in V (H). Assume first that y is non-adjacent to
w, and let C be the w-gap of H containing y. Let x and z be the borders of C. If p1 has a neighbour
n ∈ V (H) \ (V (C) ∪ {x, z}), then the path from n to y with interior in {p1, . . . , pi} contradicts the
minimality of k. From the symmetry, this implies that M ∪ N ⊆ V (C) ∪ {x, z}, a contradiction.
This proves that y is adjacent to w, and, since y is an arbitrary neighbour of pi in V (H), we deduce
that N(pi) ∩ V (H) ⊆ N(w).
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Next we prove that N ⊆ N(w). Assume that there exists n ∈ N \ N(w). Let C be the w-gap of
H containing n, and let x, z be the borders of C. By (2) and the definition of P , M ∩ N ⊆ {x, z}.
By the minimality of k, the path from n to y with interior in {p1, . . . , pi} fails to satisfy one of the
hypotheses of the theorem, and therefore N(pi) ∩ V (H) ⊆ {x, z}. Since G|(V (H) ∪ {pi}) is not a
theta, pi is adjacent to at most one of x, z. We may assume without loss of generality, that x = y and
pi is non-adjacent to z. We claim that {p2, . . . , pk−1} is anticomplete to V (H) \ {x}. For suppose
there exists 2 ≤ j ≤ k − 1, such that pj has a neighbour in V (H) \ {x}. By the previous argument
applied to pj instead of pi, we deduce that the only neighbour of pj in V (H) is z. This implies that
there exists a path P ′ from x to z with interior in {p2, . . . , pk−1}. But now the paths x-C-z, x-w-z
and x-P ′-z form a theta, contrary to 2.1. This proves the claim. Suppose that pk is adjacent to z, let
P ′ be the path from x to z with interior in {pi, . . . , pk}. Then, by the claim, the paths x-C-z, x-w-z
and x-P ′-z form a theta, contrary to 2.1. This proves that pk is non-adjacent to z. Let v1, v2 ∈ M

be such that the subpath S1 of V (H) \ {z} between x and v1 and the subpath S2 of V (H) \ {x}
between z and v2 contain no vertex of M , other than v1, v2, respectively. Let T be the subpath of
H \ {n} between v1 and v2. Now the minimality of k and the fact that pk is non-adjacent to z,
applied to the path from y to v′ with interior in {pi, . . . , pk}, for v′ ∈ (V (S1)∪V (T ))∩M , imply that
N(w)∩ (V (S1)∪V (T )) ⊆ {x, v2}. Let C ′ be the path from z to p1 with interior in V (C). In view of
the claim, let H ′ be the hole z-C ′-p1-P -pk-v2-S2-z. Then N(w)∩V (H) = (N(w)∩V (H ′))∪{x}, and
since w is major with respect to H, this implies that G|(V (H ′)∪ {w}) is an even wheel, contrary to
2.1. This proves that there does not exist n ∈ N \ N(w), and so N ⊆ N(w). From the symmetry,
M ∪ N ⊆ N(w).

Let Q and Q′ be the two paths of H between u and v, where y ∈ V (Q). From the minimality
of k we deduce that (Q∗ \ {y}) ∩ N(w) = ∅, and therefore no vertex of Q∗ \ {y} has a neighbour in
{p2, . . . , pk−1}. If some vertex y′ in Q′∗ has a neighbour in {p2, . . . , pk−1}, then, similarly, y′ is the
only neighbour of w in Q′∗, and so w has exactly four neighbours in V (H), a contradiction. So no
such y′ exists. This proves that y is the only vertex of V (H) with a neighbour in {p2, . . . , pk−1}, and
(Q∗ \ {y}) ∩ N(w) = ∅.

Assume that N = {u} and M = {v}, and let H ′ be the hole u-Q′-v-P -u. From the minimality of
k, y 6= u, v. But now V (H) ∩ N(w) = (V (H ′) ∩ N(w)) ∪ {y}, and therefore G|(V (H ′) ∪ {w}) is an
even wheel or a theta, contrary to 2.1.

Now by (2) and the symmetry we may assume that |M | = 2, say M = {t, t′}, and t is adjacent to
t′. If y 6∈ M , then either the subpath of H \ {t′} from y to t, or the subpath of H \ {t} from y to t′,
contains a neighbour of w in its interior. From the symmetry we may assume the former. But now
the path from y to t with interior in {pi, . . . , pk} contradicts the minimality of k. This proves that
y ∈ M , and we may assume that y = t. Let T be the path from p1 to t′ with interior in V (H) \ {t},
and let H ′ be the hole p1-P -pk-t

′-T -p1. By the symmetry, either |N | = 1, or y ∈ N ∩ M . In either
case, V (H) ∩ N(w) = (V (H ′) ∩ N(w)) ∪ {t}, and therefore G|(V (H ′) ∪ {w}) is an even wheel or a
theta, contrary to 2.1. This proves (3).

(4) There do not exist two non-adjacent vertices in N .

Suppose there exist two non-adjacent vertices in N . By (2), there exists a w-gap C with bor-
ders x, y such that N ⊆ V (C) ∪ {x, y}. Since N contains two non-adjacent vertices, there exist
paths Sx from p1 to x and Sy from p1 to y such that V (Sx) ∪ V (Sy) ⊆ V (C) ∪ {x, y, p1} and
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V (Sx) \ {p1} is anticomplete to V (Sy) \ p1. Let x′, y′ be the neighbours of x and y, respectively, in
V (H) \ V (C). Let T be the subpath of H \ {x} from x′ to y′. Since w is major, w has a neighbour
in T ∗. Assume that pk also has a neighbour in T ∗. Then there exists a path Sz from pk to w with
interior in T ∗. But now, by (3), the paths p1-Sx-x-w, p1-Sy-y-w and p1-P -pk-Sz-z-w form a theta,
contrary to 2.1. This proves that pk has no neighbour in T ∗. It follows from the definition of P

that pk is adjacent to at least one of x′, y′; and from the minimality of k, that pk is adjacent to
exactly one of them, say x′ and not y′. If pk is adjacent to y, let R be the path y′-y-pk, and if pk

is non-adjacent to y, let R be the path y′-y-Sy-p1-P -pk. Then, by (3), y′-R-pk-x
′-T -y′ is a hole, say

H ′, and V (H) ∩ N(w) = V (H ′) ∩ N(w) ∪ {x}. Since w is major with respect to H, it follows that
G|(V (H ′) ∪ {w}) is an even wheel or a theta, contrary to 2.1. This proves (4).

By (4) either |N | = 1 or |N | = 2 and the two members of N are adjacent, and from the sym-
metry the same holds for M . If |N | = |M | then G|(V (H) ∪ V (P )) is a theta, a prism, or an even
wheel, contrary to 2.1, so we may assume that |N | = 1 and |M | = 2, and the two members of M are
adjacent. But now the theorem follows by 4.9. This completes the proof of 4.10.

Let H be a hole, and let w be a major vertex with respect to H. Let P be a path with vertices
p1- . . . -pk such that {p1, . . . , pk} ⊆ V (G) \ (V (H) ∪ {w}). We say that P is (H,w)-significant (or
just significant when there is no risk of confusion) if (possibly with p1 and pk exchanged) p1 has a
neighbour u ∈ V (H) that belongs to some w-gap, say C, of H, and pk has a neighbour v ∈ V (H),
non-adjacent to u, and either

1. v belongs to a w-gap of H different from C, or

2. v is adjacent to w, and each of the two paths of H between u and v contains an even number
of neighbours of w.

4.11 Let G be an even-hole-free graph. If H is a hole in G and w is a major vertex with respect to
H, then every (H,w)-significant path contains a neighbour of w.

Proof. Suppose not. Choose m minimum such that there exists a hole H, a vertex w major with
respect to H, and an (H,w)-significant path P with vertices p1- . . . -pm such that w is anticomplete
to V (P ). Let the vertices of H be h1- . . . -hk-h1. Since G|(V (H) ∪ {w}) is not an even wheel by 2.1,
it follows that w has an odd number of neighbours in V (H).

(1) Let s, t ∈ {2, . . . , k} with s < t be such that w is adjacent to hs and not to ht. Let H1 be
the vertex set of the subpath of H \ {h1} between hs and ht, and let H2 = (V (H) \V (H1))∪{hs, ht}.
Then H1 contains an even number of neighbours of w if and only if H2 does.

For suppose the parity of N(w) ∩ H1 is different from that of N(w) ∩ H2. Then, since hs is ad-
jacent to w and ht is not, V (H) contains an even number of neighbours of w, a contradiction. This
proves (1).

Let u and v be as in the definition of (H,w)-significant path. This means that u is adjacent to
one of p1, pm and v is adjacent to the other.
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(2) m > 1.

Suppose m = 1. By 4.7, p1 is not major with respect to H. Since by 2.1 G|(V (H) ∪ {w}) is
not a theta, it follows that p1 has exactly three neighbours in V (H), and two of them are adjacent.
By 4.9, it follows that P is an (H,w)-pyramid path, contrary to the fact that P is (H,w)-significant.
This proves (2).

(3) No vertex of P ∗ has a neighbour in V (H) \ N(w), and no vertex of P ∗ has two adjacent neigh-
bours in V (H).

From the symmetry we may assume that p1 is adjacent to u. If some vertex p ∈ P ∗ has a neighbour in
V (H)\N(w), then one of the two paths p1-P -p and p-P -pm is significant, contrary to the minimality
of m. Now suppose that some vertex p of P ∗ has two neighbours hj , hj+1 in V (H). Then both hj

and hj+1 are adjacent to w, and there exists a path of H from u to {hj , hj+1} containing an even
number of neighbours of w. But now, by (1), p1-P -p is significant, contrary to the minimality of m.
This proves (3).

By 4.10 there exist a, b ∈ {1, . . . ,m} with a ≤ b such that the subpath P ′ of P between pa and
pb is an (H,w)-pyramid path. We may assume that h1 is the apex of P ′ and pa is adjacent to h1, and
for some i ∈ {2, . . . , k − 1}, hihi+1 is the base and pb is adjacent to hi, hi+1. We may also assume,
by exchanging p1 and pm, if necessary, that if a = b, then a > 1. Let S be the path from h1 to p1

with interior in {p2, . . . , pa}. By (3) b = m. Since P ′ is an (H,w)-pyramid path, it is not significant,
and therefore a 6= 1. Let Q be the subpath of H \ {hi+1} from h1 to hi and let Q′ be the subpath of
H \ {hi} from h1 to hi+1. Let s ∈ {2, . . . , k} be minimum and t ∈ {2, . . . , k} maximum such that w

is adjacent to hs and ht.

(4) If a < m then {p2, . . . , pa} is anticomplete to V (H) \ {h1, hs, ht}.

Suppose not and choose n ∈ {2, . . . , a} such that pn has a neighbour h ∈ V (H) \ {h1, hs, ht}. By (3)
h is adjacent to w. By 4.10 applied to the path pn-P -pa, this path contains a pyramid subpath P ′′,
and therefore some vertex p of P ′′ has two neighbours hj and hj+1 in V (H), contrary to (3). This
proves (4).

(5) P ∗ is anticomplete to V (H) \ {h1}.

Since P ′ is an (H,w)-pyramid path with apex h1, it follows that P
′∗ is anticomplete to V (H)\{h1}.

Since b = m, in order to prove (5), it is enough to show that {p2, . . . , pa} \ {pm} is anticomplete to
V (H)\{h1}. Suppose first that a < m. By (4), it is enough to show that {p2, . . . , pa} is anticomplete
to {hs, ht}. Suppose not, and let n ∈ {2, . . . , a} be maximum such that pn is adjacent to one of hs, ht.
Then n < a. Since hs-pn-ht-w-hs is not a hole of length four, pn is adjacent to exactly one of hs, ht,
and from the symmetry we may assume that pn is adjacent to hs. Assume first that s > 2, and
let P ′′ be the path from h1 to hs with interior in {pn, pn+1, . . . , pa}. Then the paths h1-h2-H-hs,
h1-P

′′-hs and h1-w-hs form a theta, contrary to 2.1. So s = 2. Since w is major, w has a neighbour in
V (H)\{hk , h1, h2, h3}. Since both h1 and h2 are adjacent to w, and P ′ is an (H,w)-pyramid path, it
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follows that i > 2, and therefore pm also has a neighbour in V (H) \ {hk, h1, h2, h3}. Let T be a path
between w and pm with interior in V (H) \ {hk, h1, h2, h3}, let H1 be the hole h2-Q-hi-pm-P -pn-h2,
and let H2 be the hole h2-pn-P -pm-T -w-h2. Then N(h1) ∩ V (H2) = (N(h1) ∩ V (H1)) ∪ {w}, and
since h1 has at least two non-adjacent neighbours in V (H1), namely pa and h2, it follows that one
of G|(V (H1)∪ {h1}) and G|(V (H2)∪ {h1}) is an even wheel or a theta, contrary to 2.1. This proves
that a = m.

Let n ∈ {2, . . . ,m − 1} be maximum such that pn has a neighbour V (H) \ {h1}. From the
symmetry, we may assume that pn has a neighbour in V (Q). Let q ∈ {2, . . . , i} be minimum such
that pn is adjacent to hq. By (3), hq is adjacent to w. Since pm is a pyramid path, it follows that
V (Q) contains an odd number of neighbours of w; and since pn-P -pm is not a significant path, it
follows that pn is non-adjacent to hs. It follows that i > 2, and since h1-pm-hi-w-h1 is not a hole of
length four, we deduce that w is non-adjacent to hi. Consequently, pn is non-adjacent to hi.

Suppose first that w has a neighbour in V (Q′) \ {h1}, and let r ∈ {i + 1, . . . , k} be minimum
such that w is adjacent to hr. Let H1 be the hole w-hq-pn-P -pm-hi+1-Q

′-hr-w and H2 the hole
pn-P -pm-hi-Q-hq-pn. Then N(h1) ∩ V (H1) = (N(h1) ∩ V (H2)) ∪ {w}. Now 2.1 implies that h1

is adjacent to pm and pm−1 and has no other neighbour in {pn, . . . , pm}. Let H3 be the hole
h1-pm−1-P -pn-hq-Q-hi-hi+1-Q

′-h1. Then N(pm) ∩ V (H3) = {h1, pm−1, hi, hi+1}, contrary to 2.1.
This proves that w is anticomplete to V (Q′) \ {h1}. Let H ′ be the hole h1-Q-hi-pm-h1. Then
N(w) ∩ V (H) = N(w) ∩ V (H ′), and therefore w is a major vertex with respect to H ′. Since P is a
significant path with respect to H, there exist j ∈ {1, . . . , i − 2} such that p1 is adjacent to hj and

1. hi and hj belong to different w-gaps of H, or

2. hj is adjacent to w, and each of the two paths of H between hi and hj contains an even number
of neighbours of w.

But now p1-P -pm−1 is an (H ′, w)-significant path, contrary to the minimality of m. This proves (5).

(6) p1 is anticomplete to one of V (Q) \ {h1} and V (Q′) \ {h1}.

Assume that p1 has a neighbour in V (Q) \ {h1} and a neighbour in V (Q′) \ {h1}. Let q > 1
and r ≤ k be minimum and maximum such that p1 is adjacent to hq and hr. Suppose that w

has no neighbour in the interior of the subpath of H \ {h1} between hq and hr. Let C be the
path of H \ {h1} from hq to hr. Then w has no neighbour in C∗. We recall that u, v are as in
the definition of an (H,w)-significant path, and therefore not both u and v belong to V (C). Since
(N(pm) ∪ N(p1) ∪ N(pa)) ∩ V (H) is a subset of V (C) ∪ {h1}, it follows that v = h1 and u ∈ V (C)
(since u is non-adjacent to w). But now, since P ′ is a pyramid path, the number of neighbours of w

in each of the paths of H between u and v is odd, contrary to the fact that P is a significant path.
This proves that w has a neighbour in the interior of the subpath of H \ {h1} between hq and hr.
Since h1 is adjacent to w, by 4.10, p1 forms an (H,w)-pyramid path.

We claim that p1 is non-adjacent to at least one of hi, hi+1. By the minimality of m, some
neighbour of pm in V (H) is anticomplete to V (P )\{pm}. If a 6= m, then N(pm)∩V (H) = {hi, hi+1},
so we may assume that a = m, and p1 is adjacent to hi and hi+1, and non-adjacent to h1. By 4.8,
hi, hi+1 are non-adjacent to w. Since p1 is an (H,w)-pyramid path, it follows that there exists
h ∈ V (H) \ {hi, hi+1} such that both p1 and w are adjacent to h, and N(p1)∩ V (H) = {hi, hi+1, h}.
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Since u is non-adjacent to w, it follows that u ∈ {hi, hi+1}. But now u is adjacent to both p1, pm,
contrary to the minimality of m. This proves the claim.

From the symmetry we may assume that p1 has two neighbours hn, hn+1 in V (Q) and one
neighbour hr in V (Q′) \ {h1}. Then hr is adjacent to w.

By 4.8, p1 is non-adjacent to h1. For the same reason, if pa = pm then pa is non-adjacent to hr,
and therefore, pa is non-adjacent to hr. By (5), P ∗ is anticomplete to {h2, . . . , hn}. But now the
paths p1-hr-Q

′-h1, p1-S-h1 and p1-hn-Q-h1 form a theta, contrary to 2.1. This proves (6).

By (6) and from the symmetry we may assume that p1 is anticomplete to V (Q′) \ {h1}.

(7) Not both p1 and w have neighbours in Q∗ \ {h2}.

Assume for a contradiction that both p1 and w have a neighbour in Q∗ \ {h2}. Then there ex-
ists a path R from p1 to hi with R∗ ⊆ Q∗ \ {h2} and a path T from p1 to w with T ∗ ⊆ Q∗ \ {h2}.
Let hj be the neighbour of w in T . Assume first that T can be chosen so that for some t′ such that
j < t′ < k, w is adjacent to ht′ , and ht′ is anticomplete to V (T ) \ {w}. Let T ′ be a path from pm to
ht′ with interior in V (H)\ (V (T )∪{h1, h2, . . . , hj}∪{hk}). Let H1 be the hole p1-R-hi-pm-P -p1 and
let H2 be the hole p1-T -w-ht′-T

′-pm-P -p1. Then N(h1) ∩ V (H2) = (N(h1) ∩ V (H1)) ∪ {w}. Since
G|(V (Hi)∪{h1}) is not an even wheel or a theta for i = 1, 2 by 2.1, we deduce that h1 is adjacent to
pa−1 and anticomplete to V (P ) \ {pa−1, pa}. But now the three paths pa−1-P -p1-R-hi, pa-P

′-pm and
h1-Q

′-hi+1 form a prism or an even wheel, contrary to 2.1. This proves that we cannot choose such
T and t′. Since P ′ is an (H,w)-pyramid path, and so w has an odd number of neighbours in V (Q′),
we deduce that w is anticomplete to V (Q′) \ {h1}. Let H ′ be the hole h1-Q-hi-pm-P ′-pa-h1. Then
N(w)∩V (H) = N(w)∩V (H ′), and therefore w is major with respect to H ′. Since P is a significant
path with respect to H, there exist j ∈ {1, . . . , i − 2} such that p1 is adjacent to hj and

1. hi and hj belong to different w-gaps of H, or

2. hj is adjacent to w, and each of the two paths of H between hi and hj contains an even number
of neighbours of w.

But now p1-P -pm−1 is an (H ′, w)-significant path, contrary to the minimality of m. This proves (7).

(8) p1 has a neighbour in Q∗ \ {h2}.

Suppose not, and so N(p1) ∩ V (H) ⊆ {h1, h2, hi}. We claim that p1 is adjacent to h2. Suppose
not. If a = m, then N(p1) ∩ V (H) ⊆ N(pm) ∩ V (H), contrary to the fact that P is significant. So
we may assume that a < m. Since P is significant and V (H) ∩ N(pm) = {hi, hi+1}, it follows that
p1 is adjacent to h1. Since P ′ is a pyramid path, it follows that each of V (Q) and V (Q′) contains an
odd number of neighbours of w; and so, since P is significant, we deduce that p1 is adjacent to hi.
But now the paths h1-Q-hi, h1-p1-hi, h1-Q

′-hi+1-hi form a theta, contrary to 2.1. This proves that
p1 is adjacent to h2.

Since P is significant and P ′ is a pyramid, w has an even number of neighbours, and at least
two, in V (Q) \ {h1}. Let R be a path from p1 to hi with interior in V (P ), and let H ′ be the induced
cycle h2-Q-hi-R-p1-h2. Since by 2.1 G|(V (H ′)∪ {w}) is not an even wheel or a theta, it follows that
w has exactly two neighbours in V (Q) \ {h1}, and they are adjacent, say hn and hn+1. Since w is
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major with respect to H, we deduce that w has a neighbour in V (Q′) \ {h1}. Let t′ ∈ {i + 1, . . . , k}
be minimum such that w is adjacent to ht′ .

Assume first that p1 is non-adjacent to hi. Then pm ∈ V (R), and the paths hn+1-Q-hi,
hn-Q-h2-p1-R-pm and w-ht′-Q

′-hi+1 form a prism if i 6= n + 1, or an even wheel if i = n + 1,
contrary to 2.1. This proves that p1 is adjacent to hi.

Suppose p1 is adjacent to h1. Since h1-p1-hi-w-h1 is not a hole of length four, it follows that
hi is non-adjacent to w. We deduce from the minimality of m that h2 is adjacent to w. But now,
by (1), each of the subpaths of H between h2 and hi contains an even number of neighbours of
w, and therefore p1 is a significant path, contrary to the minimality of m. This proves that p1 is
non-adjacent to h1.

Since G|(V (H) ∪ {p1}) is not a theta by 2.1, i = 3, and so w is adjacent to both h2 and h3.
Consequently, by 4.8, it follows that a < m. But now by 4.10 the path p1-P -pa contains a subpath
that is an (H,w)-pyramid path, which is impossible since h1, h2, h3 are the only vertices of V (H)
with a neighbour in p1-P -pa and all of them are adjacent to w. This proves (8).

By (7) and (8) w has no neighbour in Q∗ \ {h2}. Since P ′ is an (H,w)-pyramid path, w is ad-
jacent to both or neither of h2 and hi. Since P is a significant path, we deduce that w is adjacent
to both h2 and hi. By 4.8, it follows that a < m. But now the subpath of P from p1 to pa is a
significant path, contrary to the minimality of m. This completes the proof of 4.11.

We can now prove 4.5.
Proof of 4.5. It is enough to prove that w has a neighbour in the interior of every path of G

from V (C) to A ∪ B. Let P be such a path. Then P includes a minimal such path P ′; the interior
of P ′ is therefore disjoint from H, and so P ′ is (H,w)-significant. Now by 4.11 w has a neighbour in
P ∗. This proves 4.5.

5 Non-dominating cliques

In view of 3.1, to complete the proof of 1.2, it is enough to prove the following:

5.1 Let G be an even-hole-free graph such that 1.2 is true for all graphs with fewer vertices than G.
Let K be a non-dominating clique of G of size at most two. Then there is a vertex in V (G) \ N(K)
which is bisimplicial in G.

Proof. Assume no such vertex exists. By 2.4 we may assume that K = {x, y} with x, y ∈ V (G).
Let C = N(x) ∩ N(y) \ {x, y}. Then the five sets N(x) \ N(y),N(y) \ N(x), V (G) \ N(K), C and
{x, y} are pairwise disjoint, and have union V (G).

(1) V (G) \ N(K) is connected, every vertex of N(K) \ K has a neighbour in V (G) \ N(K), and
there exists a hole H of G with {x, y} ⊆ V (H).

If N(x) \ N(y) is empty, let G′ be the graph G \ {x}. Then {y} is a non-dominating clique in
G′. By the minimality of |V (G)|, there is a vertex v ∈ V (G′) \ N(y) that is bisimplicial in G′.
Since N(x) \ N(y) is empty, v is non-adjacent to x, and therefore v is a bisimplicial vertex of G,
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and v ∈ V (G) \ N(K), a contradiction. This proves that N(x) \ N(y), and from the symmetry
N(y) \ N(x), are non-empty. Consequently, the third assertion of (1) follows from the first two.

If some vertex v ∈ N(K) \ K is anticomplete to V (G) \ N(K), let X = {v}, and other-
wise, if V (G) \ N(K) is not connected, let X be a component of V (G) \ N(K). In either case
V (G) \ (X ∪ N(K)) is non-empty, and therefore K is a non-dominating clique in G′ = G \ X.
Since V (G′) \ N(K) ⊆ V (G) \ N(K), the minimality of |V (G)| implies that there exists a vertex
w ∈ V (G) \ N(K) that is bisimplicial in G′. But it follows from the definition of X that w is an-
ticomplete to X, and so NG(w) = NG′(w) and w is bisimplicial in G, a contradiction. This proves (1).

(2) Let H be a hole with x, y ∈ V (H). Then H is dominating. If w ∈ C is major with respect
to H, then w is complete to V (H).

Suppose first that H is non-dominating. Then by 3.1 there is a vertex v ∈ V (G) \ N(H) that
is bisimplicial in G, and therefore v ∈ V (G) \ N(K), a contradiction. This proves that H is domi-
nating.

Let w ∈ C be a major vertex with respect to H, and suppose that w is not complete to V (H).
Now by 4.5 there exists a subset N ′ of N(w) such that N ′ ∪ {w} is a star cutset in G, such that
{x, y} 6⊆ N ′ and some component of G \ (N ′ ∪ {w}) is disjoint from {x, y} and not complete to w,
contrary to 4.1. This proves (2).

(3) No vertex of C has both a neighbour in N(x) \ N(y) and a neighbour in N(y) \ N(x).

Let A = N(x) \ N(y), B = N(y) \ N(x) and D = V (G) \ N(K). Suppose some c ∈ C has a
neighbour in A and a neighbour in B. Let A′ be the set of neighbours of c in A, A′′ = A \ A′, and
let B′, B′′,D′,D′′ be defined similarly.

We claim that A′′ is non-empty. For suppose not. Assume first that D′′ 6= ∅. Then {y, c} is
a non-dominating clique in G′ = G \ {x}. By the minimality of |V (G)|, there exists a vertex v in
V (G′) \ N({y, c}) that is bisimplicial in G′, and since A ∪ B ∪ C ⊆ N({y, c}), it follows that v is in
D. But NG(v) = NG′(v), because x is anticomplete to D, and consequently v is bisimplicial in G,
a contradiction. This proves that D′′ = ∅. Applying 1.2 to the graph G′′ = G \ {c} and using the
minimality of |V (G)|, we deduce that there exists a vertex v of V (G′′) \N(K) that is bisimplicial in
G′′. Since A∪B∪C ⊆ N(K) and D = D′, it follows that v is in D and NG(v) = NG′′(v)∪{c}. Since
y-c-v-b-y is not a hole of length four for any b ∈ N(v) ∩ (B ∪ C), it follows that NG′′(v) ∩ (B ∪ C)
is complete to c. From the symmetry, NG′′(v) ∩ (A ∪ C) is complete to c; and therefore, since c

is complete to D, it follows that NG′′(v) is complete to c. Consequently, v is bisimplicial in G, a
contradiction. This proves the claim.

From the symmetry it follows that both A′′ and B′′ are non-empty. Since a-x-y-b-a is not a hole
of length four for a ∈ A and b ∈ B, it follows that A is anticomplete to B. Choose a′ ∈ A′, b′ ∈
B′, a′′ ∈ A′′ and b′′ ∈ B′′. By (1), there exists a path P1 from a′ to b′′ and a path P2 from a′′ to
b′, both with interior in D. Let H1, H2 be the holes x-a′-P1-b

′′-y-x and x-a′′-P2-b
′-y-x. By (2), and

since c is non-adjacent to a′′ and b′′, it follows that c is not major with respect to H1 or H2, and
therefore c is anticomplete to P ∗

1 ∪ P ∗
2 .

We claim that V (P1) is disjoint from V (P2), and V (P1) \ {b
′′} is anticomplete to V (P2) \ {a

′′}.
Suppose not. Then there is a path P from a′ to b′ with P ∗ ⊆ P ∗

1 ∪ P ∗
2 , and the hole x-a′-P -b′-y-x
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contains exactly four neighbours of w, contrary to 2.1. This proves the claim.
Let d1 be the neighbour of b′′ in P1 and d2 the neighbour of a′′ in P2. Since A is anticomplete to

B, it follows that d1 and d2 are in D. By (2), H2 is dominating, and therefore d1 has a neighbour in
V (H2). By the argument of the previous paragraph, d1 is adjacent to a′′ and not to d2. Similarly,
d2 is adjacent to b′′. But now, since A is anticomplete to B, a′′-d2-b

′′-d1-a
′′ is a hole of length four,

a contradiction. This proves (3).

Let m be the minimum length of all holes containing x and y.

(4) Let H be a hole with {x, y} ⊆ V (H). If a vertex w of G is major with respect to H, then
w is not complete to {x, y}. Moreover, if H has length m, then no vertex of G is major with respect
to H, and every pyramid with respect to H is adjacent to both x and y.

If w is a major vertex with respect to H that is complete to {x, y}, then by (3) w is not com-
plete to V (H), contrary to (2).

If H has length m and w is a major vertex or a pyramid with respect to H, then the minimality
of |V (H)| implies that w is adjacent to both x and y, and the result follows. This proves (4).

Let

W =
⋃

{V (H) : H is a hole, K ⊆ V (H) and |V (H)| = m}.

For 1 ≤ i ≤ m− 2 let Ai be the set of all vertices v ∈ W such that there exists a hole H of length
m with x, y, v ∈ V (H), and the subpath of H \ {y} from x to v has length i. Let A0 = {x} and
Am−1 = {y}. Clearly W =

⋃m−1
i=0 Ai.

(5) Ai ∩ Aj = ∅ and Ai is anticomplete to Aj for all i, j ∈ {0, . . . ,m − 1} with 1 < j − i < m − 1.

Since for 1 ≤ i ≤ m − 2 every vertex in Ai has a neighbour in Ai−1 and in Ai+1, it is enough
to prove the second statement. Suppose for some 1 ≤ i < j ≤ m − 2 with j − i > 1 there exist
ai ∈ Ai and aj ∈ Aj that are adjacent. By the definition of Ai and Aj, there exists a path P from
ai to x, such that y 6∈ V (P ) and P has length i, and a path Q from aj to y, such that x 6∈ V (Q)
and Q has length m− j − 1. Since every vertex of W is in a hole containing x and y, it follows that
no vertex of V (P ) ∪ V (Q) is adjacent to both x and y, and therefore G|(V (P ) ∪ V (Q)) contains a
hole H ′ with x, y ∈ V (H ′). But |V (P )∪V (Q)| < m, contrary to the minimality of m. This proves (5).

Let 1 ≤ i ≤ m − 2 and let u ∈ Ai. We say that a path P is an x-path for u if

• u ∈ V (P ),

• for 0 ≤ j ≤ i |V (P ) ∩ Aj| = 1, and

• V (P ) ⊆
⋃i

j=0 Aj .

and P is a y-path for u if

• u ∈ V (P ),
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• for i ≤ j ≤ m − 1, |V (P ) ∩ Aj | = 1, and

• V (P ) ⊆
⋃m−1

j=i Aj .

By the definition of W , there is an x-path and a y-path for every vertex in W \K. It follows from (5)
that for every u ∈ W \K, if P is an x-path for u and Q is a y-path for u, then V (P )∩ V (Q) = {u},
V (P )\{u, x} is anticomplete to V (Q)\{u, y}, and G|(V (P )∪V (Q)) is a hole of length m. Moreover,
let u ∈ Ai and let u′ be a neighbour of u in Ai−1. Then there is an x-path P ′ for u′, and the path
x-P ′-u′-u is an x-path for u. Thus every neighbour of u in Ai−1 is in an x-path for u, and similarly
every neighbour of u in Ai+1 is in a y-path for u.

Let us call a pair of non-adjacent vertices u, v in Ai an x-pair if N(u) ∩ N(v) ∩ Ai−1 6= ∅, and
a y-pair if N(u) ∩ N(v) ∩ Ai+1 6= ∅,

(6) Let 1 ≤ i ≤ m − 2 and let u, v ∈ Ai be non-adjacent. Then u, v is either an x-pair, or a
y-pair, and not both. Moreover,

• if u, v is an x-pair, then N(u)∩Ai−1 = N(v)∩Ai−1, N(u)∩N(v)∩Ai+1 = ∅, and N(u)∩Ai+1

is complete to N(v) ∩ Ai+1

• if u, v is a y-pair, then N(u)∩Ai+1 = N(v)∩Ai+1, N(u)∩N(v)∩Ai−1 = ∅, and N(u)∩Ai−1

is complete to N(v) ∩ Ai−1.

Let Pu and Qu be an x-path and a y-path for u, respectively; and let Pv and Qv be defined
similarly. Since x-Pu-u-Qu-y-x is a hole, by (2) and (5) v has a neighbour in (V (Pu) ∪ V (Qu)) ∩
(Ai−1 ∪ Ai ∪ Ai+1). Since v is non-adjacent to u, we may assume from the symmetry that v is
adjacent to the neighbour p of u in Pu, and hence u, v is an x-pair. So p ∈ Ai−1. Since by (5) Ai−1

is anticomplete to Ai+1, and u-p-v-a-u is not a hole of length four for any a ∈ Ai+1, it follows that
N(u) ∩ N(v) ∩ Ai+1 = ∅. Therefore u, v is not a y-pair.

Suppose there exist a ∈ N(u) ∩ Ai+1 and a′ ∈ N(v) ∩ Ai+1 such that a is non-adjacent to a′.
Then i < m− 2. Since every vertex in N(u)∩Ai+1 is in a y-path for u, we may assume that a ∈ Qu.
By (2), a′ has a neighbour in V (Pu) ∪ V (Qu). By (5) and since a′ is anticomplete to {u, a}, a′ is
adjacent to the unique vertex q of V (Qu) ∩ Ai+2. But now, again by (5), p-v-a′-q-a-u-p is a hole of
length six, a contradiction. This proves that N(u) ∩ Ai+1 is complete to N(v) ∩ Ai+1.

It remains to prove that N(u)∩Ai−1 = N(v)∩Ai−1. Suppose there exists p′ ∈ (N(v)∩Ai−1)\N(u).
Since every vertex in N(v) ∩ Ai−1 is in an x-path for v, we may assume that p′ ∈ V (Pv). Since
x-Pv-v-Qv-y-x is a hole, and by (2), and (5), u has a neighbour in (V (Pv)∪V (Qv))∩(Ai−1∪Ai∪Ai+1).
But u is anticomplete to {p′, v} and N(u) ∩ N(v) ∩ Ai+1 = ∅, a contradiction. This proves (6).

(7) Let 1 ≤ i ≤ m − 2 and let u, v ∈ Ai be an x-pair. Then Ai is complete to N(u) ∩ Ai−1. In
particular there is no y-pair in Ai.

Suppose there exists z ∈ N(u) ∩ Ai−1 and w ∈ Ai such that z is non-adjacent to w. Since u, v

is an x-pair, v is adjacent to z (by (6)), and there exist a, b ∈ Ai+1 such that u is adjacent to a and
not to b, v is adjacent to b and not to a, and a is adjacent to b. Since z-u-w-v-z is not a hole of
length four, we may assume from the symmetry that w is non-adjacent to v. Since z is in an x-path
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for v, and b is in a y-path for v, it follows from (2) and (5) that w is adjacent to b. Now by (6), v,w

is a y-pair, and therefore there exists z′ ∈ Ai−1, adjacent to z and w and non-adjacent to v. Since
u, v is an x-pair, u is non-adjacent to z′. Since z′ is in an x-path for w, and b is in a y-path for w,
it follows from (2) and (5) that u is adjacent to w. But now z-u-w-z′-z is a hole of length four, a
contradiction. This proves (7).

(8) Let u ∈ V (G) be adjacent to x or to y, or such that K is non-dominating in G \ {u}. Then there
exists a neighbour v of u, such that v is anticomplete to {x, y} and v is bisimplicial in the graph
G \ {u}.

First we claim that K is non-dominating in G \ {u}. To prove the claim, we may assume that
u ∈ N(K). But in this case, since K is non-dominating in G, there exists a vertex v 6= u, such that
v is anticomplete to K, and therefore K is non-dominating in G \ {u}. This proves the claim.

We deduce from the minimality of |V (G)| that there exists a vertex v in V (G) \ (N(K) ∪ {u})
that is bisimplicial in G \ {u}. But now, since v is not bisimplicial in G, it follows that u is adjacent
to v. This proves (8).

(9) Let 1 ≤ j < k ≤ m − 2 such that k − j > 1 and let aj ∈ Aj and ak ∈ Ak. Then there exists

a path from aj to ak with interior in
⋃k−1

i=j+1 Ai using exactly one vertex from each of Aj, Aj+1, . . . Ak.

Let Q be a y-path for aj and let ak−1 be the vertex of Q in Ak−1. We may assume that ak is
non-adjacent to ak−1, for otherwise by (5) aj-Q-ak−1-ak is a path and the claim holds. Let a′k−1 be
a neighbour of ak in Ak−1 and let ak−2 be the vertex of Q in Ak−2. Then we may assume that a′k−1

is non-adjacent to ak−2, for otherwise by (5) aj-Q-ak−2-a
′
k−1-ak is a path and the claim holds. If

ak−1 is adjacent to a′k−1 then x-Pj-aj-Q-ak−1-a
′
k−1-ak-Qk-y-x is a hole of length m+1, and therefore

even, where Pj is an x-path for aj and Qk is a y-path for ak, a contradiction. So ak−1 is not adjacent
to a′k−1. But now, since ak−1 is non-adjacent to ak, and a′k−1 is non-adjacent to ak−2, the pair
ak−1, a

′
k−1 is not an x-pair and not a y-pair, contrary to (6). This proves (9).

(10) Let v be a vertex adjacent to both x and y. Then there exists an odd integer 1 ≤ i ≤ m− 2 such
that N(v) ∩ W ⊆ K ∪ Ai.

Let j > 0 be minimum and k < m − 1 maximum such that v has a neighbour aj ∈ Aj and ak ∈ Ak.
Let Pj be an x-path for aj and let Qk be a y-path for ak. Since x-Pj-aj-v-x and y-Qk-ak-v-y are
not even holes, it follows that k − j is even, and in particular either k = j or k − j > 1. Suppose
j 6= k and let R be a path from aj to ak as in (9). Then x-Pj-aj-R-ak-Qk-y-x is a hole of length m

and v is a major vertex with respect to it, contrary to (4). This proves that k = j. But now, since
x-Pj-aj-v-x is not an even hole, Pj is odd, and therefore j is odd. This proves (10).

(11) Let v ∈ V (G) \ W and let N = N(v) ∩ W . Then either

1. N = Ai for some 1 ≤ i ≤ m − 2 , or

2. For some 1 ≤ i ≤ m − 3, N ⊆ Ai ∪ Ai+1, N ∩ Ai 6= ∅, N ∩ Ai+1 6= ∅, N ∩ Ai is complete to
N ∩ Ai+1, and Ai \ N is anticomplete to Ai+1 \ N , or
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3. K ⊆ N ⊆ Ai ∪ K for some odd 1 ≤ i ≤ m − 2, and N ∩ Ai 6= ∅, or

4. N = K, or

5. x ∈ N ⊆ A1 ∪ {x}, and N ∩ A1 6= ∅, or

6. y ∈ N ⊆ Am−2 ∪ {y}, and N ∩ Am−2 6= ∅.

If K ⊆ N , then by (10) either the third or the fourth outcome holds, so, from the symmetry we
may assume that y 6∈ N . Assume that x ∈ N . Then from the minimality of m we deduce that v

is anticomplete to Ai for i > 2, and since v 6∈ W , it follows that v is anticomplete to A2. If v has
a neighbour in A1, then the fifth outcome holds, so we may assume not. By (8), v has a neighbour
u ∈ V (G) \ N(K), and we have just shown that u 6∈ W . By (2) u has a neighbour in W ; let j be
maximum such that u has a neighbour in Aj and let aj be such a neighbour. Since x-v-u-y-x is not
a hole of length four, it follows that j < m − 1. Since x-v-u-a1-x is not a hole of length four for
any a1 ∈ A1, u is anticomplete to A1. Let Q be a y-path for aj . Then x-v-u-aj-Q-y-x is a hole of
length at most m + 1, and since G is even-hole-free, it is a hole of length m. But now v ∈ A1, a
contradiction. Thus we may assume that N ∩ K = ∅.

By (2), N 6= ∅. Let 1 ≤ j ≤ m − 2 be minimum and 1 ≤ k ≤ m − 2 maximum such that v

has a neighbour aj ∈ Aj and ak ∈ Ak. Let Pj be an x-path for aj and let Qk be a y-path for ak.
If k − j > 1, then x-Pj-aj-v-ak-Qk-y-x is a hole of length at most m containing x and y, which
contradicts either the minimality of m or the fact that v 6∈ W , so either j = k or j = k− 1. If j = k,
then by (2) v is complete to Aj , and the first outcome holds. So we may assume that j = k − 1.
To show that the second outcome holds, it remains to prove that N ∩ Aj is complete to N ∩ Ak,
and Aj \ N is anticomplete to Ak \ N . Let u ∈ Aj and w ∈ Ak, let P be an x-path for u and let Q

be a y-path for w. Assume first that u ∈ N ∩ Aj, w ∈ N ∩ Ak and u is non-adjacent to w. Then
x-P -u-v-w-Q-y-x is a hole of length m + 1, and therefore even, a contradiction. This proves that
N ∩ Aj is complete to N ∩ Ak. Next assume that u ∈ Aj \ N , w ∈ Ak \ N and u is adjacent to w.
Then x-P -u-w-Q-y-x is a hole and v has no neighbour in it, contrary to (2). This proves that Aj \N

is anticomplete to Ak \ N and completes the proof of (11).

For 1 ≤ i ≤ m − 2, let Bi be the set of all vertices of V (G) \ W that are complete to Ai and
have no other neighbours in W , and let Ci be the set of all vertices of V (G) \ W that are complete
to K, anticomplete to W \ (K ∪ Ai) and have at least one neighbour in Ai. For 0 ≤ i ≤ m − 2 let
Bi,i+1 be the set of all vertices of V (G) \ W that have a neighbour in Ai and a neighbour in Ai+1,
and are anticomplete to W \ (Ai ∪Ai+1). Let Bx,y be the vertices of V (G) \W that are complete to
K and anticomplete to W \ K. Let B0 = Bm−1 = C0 = Cm−1 = ∅. Then all these sets are pairwise
disjoint, and by (11)

V (G) = W ∪
m−2⋃

i=0

(Bi ∪ Ci ∪ Bi,i+1) ∪ Bx,y.

(12) Both C1 and Cm−2 are cliques.

Suppose there exist two non-adjacent vertices u, u′ in C1. Since y-u-a-u′-y is not a hole of length
four for any a ∈ A1, it follows that no vertex of A1 is adjacent to both u and u′, and in particular u
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is not complete to A1, and neither is u′. Let a1 be a neighbour of u in A1 and a′1 a neighbour of u′

in A1. By (8), u has a neighbour in V (G) \N(K), and since u is anticomplete to W \ (K ∪A1), (11)
implies that u has a neighbour in

⋃m−2
i=1 Bi ∪

⋃m−3
j=1 Bi,i+1. Let n be such a neighbour.

Assume first that n ∈ Bi for some i. Then i > 1, since x-u-n-a′1-x is not a hole of length four.
Let Q be a y-path for a1 and let ai be the vertex of Q in Ai. Since Bi is complete to Ai, n is adjacent
to ai. But now the three paths ai-Q-a1-u, ai-n-u, ai-Q-y-u form a theta, contrary to 2.1. This proves
that u is anticomplete to

⋃m−2
i=1 Bi.

Next assume that n ∈ Bi,i+1 for some 2 ≤ i ≤ m − 3. Let ai, ai+1 be neighbours of n in Ai and
Ai+1, respectively. By (11) ai is adjacent to ai+1. First we claim that there exist a path R from ai

to a non-neighbour of u in A1 with interior in
⋃i−1

j=2 Aj . If i ≥ 3, the existence of such a path follows
from (9), so we may assume that i = 2 and every neighbour a of ai in A1 is adjacent to u. But now
u-a-ai-n-u is a hole of length four, a contradiction. So such a path R exists, and we may assume
that R ∩ A1 = {a′1}. Let Q be a y-path for ai+1. Now, by (5), the three paths x-a′1-R-ai, u-n and
y-Q-ai+1 form a prism, contrary to 2.1. This proves that n ∈ B1,2. Similarly, u′ has a neighbour n′

in B1,2.
Let a be a neighbour of n in A1, and let a′ be a neighbour of n′ in A1. Since u-x-u′-n-u is not a

hole of length four, u is non-adjacent to n′, and similarly u′ is non-adjacent to n. Since a′1-x-u-n-a′1
is not a hole of length four, it follows that n is non-adjacent to a′1. Let T be a y-path for a′1. By (2)
and (11), n is adjacent to the vertex of T in A2, say a2. Since x-u-n-a-x is not a hole of length four,
it follows that a is adjacent to u. By (11), a is adjacent to a2, and since, by (6), a, a′1 is not an x-pair
and not a y-pair, it follows that a is adjacent to a′1. Since no vertex of A1 is adjacent to both u and
u′, a is non-adjacent to u′. Since a is adjacent to a2, a-a2-T -y is a y-path for a. By the previous
argument applied to u′, n′, a instead of u, n, a′1, we deduce that n′ is non-adjacent to a and adjacent
to a2, and every neighbour a′ of n′ in A1 is adjacent to a and u′, and therefore not to u and not
to n. Since n-a2-n

′-u′-y-u-n is not a hole of length six, it follows that n is adjacent to n′. But now
n-n′-a′-a-n is a hole of length four, a contradiction. This proves (12).

(13) If c1 ∈ C has a neighbour a ∈ N(x) \ N(y) and c2 ∈ C has a neighbour b ∈ N(y) \ N(x),
then c1 and c2 are adjacent.

Suppose not. Since a-x-y-b-a is not a hole of length four, a is non-adjacent to b. By (3) c1 is
non-adjacent to b and c2 to a, and therefore c1 6= c2. By (1) there exists a path P from a to b such
that P ∗ ⊆ V (G) \ N(K). Let H1 be the hole a-x-y-b-P -a. By (2), c1 and c2 are not major with
respect to H1, and therefore {c1, c2} is anticomplete to P ∗. Let D be a minimal connected subset of
V (G) \ N(K) such that P ∗ ⊆ D, and at least one of c1, c2 has a neighbour in D (the existence of
D follows from (1)). Since c1-x-c2-d-c1 is not a hole of length four, no vertex d of D is adjacent to
both c1 and c2, and therefore, the minimality of D implies that exactly one of c1, c2 has a neighbour
in D, say c1. Let Q be a path from c1 to b with Q∗ ⊆ D. Now both c1-Q-b-y-c1 and c1-Q-b-c2-x-c1

are holes and their lengths differ by one, so one of them is even, a contradiction. This proves (13).

(14) Let c1, c2 ∈ C be non-adjacent. Then {c1, c2} is anticomplete to N(K) \ (C ∪ K).

Suppose c1 has a neighbour a ∈ N(x) \ N(y), say. Then by (3) c1 is anticomplete to N(y) \ N(x),
and by (13) c2 is anticomplete to N(y) \ N(x). By (1) N(y) \ N(x) 6= ∅. Choose b ∈ N(y) \ N(x).
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By (1) there is a path P from a to b with P ∗ ⊆ V (G) \ N(K). Let H be the hole a-P -b-y-x-a.
By (2), c1 is not a major vertex with respect to H, and therefore c1 is anticomplete to P ∗. Suppose
c2 has neighbour in V (P ). Let Q be a path from c2 to a with Q∗ ⊆ P . Then both a-Q-c2-x-a
and a-Q-c2-y-c1-a are holes, and their lengths differ by one, so one of them is even, a contradiction.
This proves that c2 is anticomplete to V (P ). By (1) c2 has a neighbour d in V (G) \ N(K). Since
c1-x-c2-d-c1 is not a hole of length four, c1 is non-adjacent to d. By (2) the hole H is dominating,
and so d has a neighbour in V (P ). Since c2-y-b-d-c2 is not a hole of length four, d is non-adjacent to
b, and so there exists a path R from d to a such that R∗ ⊆ V (P ) \ {b}. But now both a-x-c2-d-R-a
and a-c1-y-c2-d-R-a are holes, and their lengths differ by one, so one of them is even, a contradiction.
This proves (14).

(15) Let c1, c2 ∈ C be non-adjacent. Then every path P between c1 and c2 with interior in V (G) \
N(K) has length three, the set V (P ) ∪ {x, y} is dominating, and either

• m = 5, c1, c2 ∈ Bx,y and P ∗ ⊆ B2, or

• m = 7, c1, c2 ∈ C3 and P ∗ ⊆ A3.

Let P be a path with ends c1, c2 and interior in V (G) \ N(K). Let Q be a path with ends
a ∈ N(x) \ N(y) and b ∈ N(y) \N(x), and with Q∗ ⊆ V (G) \N(K). (Such a path Q exists by (1).)
We claim that Q∗ contains a vertex with a neighbour in P ∗. Let H be the hole x-a-Q-b-y-x. By (2)
H is dominating, and so every vertex of P ∗ has a neighbour in V (H), and therefore in V (Q). We
may assume that no vertex of P ∗ has a neighbour in Q∗, for otherwise the claim holds, and therefore
every vertex of P ∗ is adjacent to either a or b. Let p be the neighbour of c1 in P . From the symmetry
we may assume that p is adjacent to a. But c1 is non-adjacent to a, by (14), and so a-x-c1-p-a is a
hole of length four, a contradiction. This proves the claim.

Next we show that every vertex of G has a neighbour in V (P ) ∪ {x, y}. For suppose there exists
v with no such neighbour. Then v belongs to V (G) \ N(K). Suppose there exists a path P1 from v

to a′ ∈ N(x)\N(y) and a path P2 from v to b′ ∈ N(y)\N(x) with (P ∗
1 ∪P ∗

2 )∩N(V (P )∪{x, y}) = ∅.
Then, in P1 ∪ P2, there is a path from a′ to b′ that contradicts the claim of the previous paragraph.
So from the symmetry we may assume that there is no path from v to N(y) \ N(x) with interior in
V (G) \ N(V (P ) ∪ {x, y}). Let F be a component of G \ N(V (P ) ∪ {x}) containing v. Then F is
disjoint from N(y) \N(x). By 3.1 applied to G′ = G|(F ∪N(V (P )∪{x})) and the hole x-c1-P -c2-x,
there exists a bisimplicial vertex w of G′ in

V (G′) \ NG′(V (P ) ∪ {x}) = V (G′) \ NG(V (P ) ∪ {x}) = F.

But now it follows from the definition of F that NG′(w) = NG(w), and so, since F is disjoint
from N(K), w is a bisimplicial vertex of G contained in V (G) \ N(K), a contradiction. This proves
that every vertex of G has a neighbour in V (P ) ∪ {x, y}.

If a has a neighbour in P ∗ define xa = a, and otherwise let xa be the neighbour of a in Q. Let
xb be defined similarly. Then both xa and xb have neighbours in P ∗. Let p1 be the neighbour of xa

in P such that the subpath P1 of P from p1 to c1 contains no other neighbour of xa. Let p2 be the
neighbour of xa in P such that the subpath P2 of P from p2 to c2 contains no other neighbour of xa.
Let p′1, P

′
1, p

′
2, P

′
2 be defined similarly with xb instead of xa.

We claim that xa (and from the symmetry xb) has exactly two neighbours in V (P ) and they are
adjacent to each other. Suppose first that xa 6= a. Now, if p1 and p2 are distinct and non-adjacent,
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then the three paths xa-p1-P1-c1-x, xa-p2-P2-c2-x and xa-a-x form a theta, and if p1 = p2 then then
the three paths p1-P1-c1-x, p1-P2-c2-x and p1-xa-a-x form a theta, contrary to 2.1. This proves that
p1 and p2 are distinct and adjacent, and the claim follows.

So we may assume that xa = a. By (14) xa is non-adjacent to both c1 and c2. Then p1 6= p2, for
otherwise, G|(V (P ) ∪ {x, xa}) is a theta, contrary to 2.1; and may assume that p1 is non-adjacent
to p2, for otherwise the claim holds. So xa is a major vertex with respect to the hole x-c1-P -c2-x.
But now, since xa is non-adjacent to both c1 and c2, there are two disjoint xa-gaps in this hole, and
so by 4.5 G admits a full star cutset, contrary to 4.2. This proves that xa (and from the symmetry
xb) has exactly two neighbours in V (P ) and they are adjacent to each other, that is, p1 and p2 are
distinct and adjacent, and the same holds for p′1 and p′2.

If p′1 ∈ V (P2), then the paths xa-Q-a-x, p1-P1-c1 and p2-P2-p
′
1-xb-Q-b-y form a prism or an even

wheel, and if p′2 ∈ V (P1), then the paths xa-Q-a-x, p2-P2-c2 and p1-P1-p
′
2-xb-Q-b-y form a prism or

an even wheel, in both cases contrary to 2.1. This proves that p1 = p′1 and p2 = p′2.
If p1 = c1, then, by (14) xa 6= a, and so xa-a-x-c1-xa is a hole of length four, a contradiction.

So, from the symmetry, both p1 and p2 belong to P ∗. By (2), the hole x-a-Q-xa-p1-xb-Q-b-y-x is
dominating, and since no vertex of P ∗

2 has a neighbour in it, it follows that P ∗
2 is empty, and therefore

p2 is adjacent to c2. Similarly, p1 is adjacent to c1, and therefore P has length three.
Since c1 is anticomplete to N(x) \ N(y) and a′-p1-c1-x-a′ is not a hole of length four for any

a′ ∈ N(x)\N(y), it follows that p1 is anticomplete to N(x)\N(y), and, from the symmetry, {p1, p2}
is anticomplete to N(K) \ (C ∪K). Consequently xa 6= a and xb 6= b. So x-a-xa-p1-xb-b-y-x is a hole
of length seven, and therefore m ≤ 7.

If m = 7, then the holes x-a-xa-p1-xb-b-y-x and x-a-xa-p2-xb-b-y-x show that p1 and p2 belong to
A3. Each of c1, c2 is complete to {x, y}, and has a neighbour in A3, so by (10) both c1 and c2 are in
C3.

If m = 5, then by (10) c1, c2 ∈ Bx,y ∪ C1 ∪ C3, and since by (14) {c1, c2} is anticomplete to
N(K) \ (C ∪ K), it follows that c1, c2 ∈ Bx,y. Therefore p1, p2 6∈ A1 ∪ A2 ∪ A3. Since {p1, p2} is
anticomplete to N(K) \ (C ∪ K), it follows that p1, p2 6∈ B1 ∪ B3 ∪ B1,2 ∪ B2,3. But now, since

V (G) = W ∪
m−2⋃

i=0

(Bi ∪ Ci ∪ Bi,i+1) ∪ Bx,y.

and p1, p2 are anticomplete to {x, y}, we deduce that p1, p2 belong to B2. This proves (15).

(16) Let 1 ≤ j < i ≤ m − 2 and let p ∈ Cj be adjacent to b ∈ Bi ∪ Bi−1,i. Then i is even,
b ∈ Bi−1,i and either

• i > j + 1, p is complete to Aj , and b is complete to Ai−1 ∪ Ai, or

• i = j + 1 and N(b) ∩ Ai−1 = N(p) ∩ Ai−1.

Let ai be a neighbour of b in Ai and let Q be a y-path from ai. Then ai-Q-y-p-b-ai is a hole, and
therefore Q has even length and so i is even.

By (10), j is odd. Let A′
j be the set of neighbours of p in Aj , and A′

i−1 the set of neighbours of b

in Ai−1. By (11) ai is complete to A′
i−1. Let P be a path from Ai−1 to Aj such that |V (P )∩Ak| = 1

for j ≤ k ≤ i− 1. Let aj ∈ Aj and ai−1 ∈ Ai−1 be the ends of P . We claim that aj ∈ A′
j if and only

if ai−1 ∈ A′
i−1. Suppose first that aj ∈ A′

j and ai−1 ∈ Ai−1 \ A′
i−1, and let a ∈ Ai be adjacent to
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ai−1. By (11), b is adjacent to a. But now p-aj-P -ai−1-a-b-p is an even hole, a contradiction. Next
suppose that aj ∈ Aj \A′

j and ai−1 ∈ A′
i−1, and let S be an x-path for aj . Then p-x-S-aj-P -ai−1-b-p

is an even hole, again a contradiction. This proves the claim. The claim implies that A′
i−1 6= ∅, and

in particular, b ∈ Bi−1,i. If i = j + 1, the claim implies that N(b) ∩ Ai−1 = N(p) ∩ Ai−1, and (16)
follows. So we may assume that i > j + 1.

Assume that A′
i−1 6= Ai−1. Let a′i−1 ∈ A′

i−1 and ai−1 ∈ Ai−1 \A′
i−1. Let R′ and R be x-paths for

a′i−1 and ai−1, respectively, and for 1 ≤ k ≤ i − 2 let ak and a′k be the vertices of R and R′ in Ak,

respectively. By the claim, a′j ∈ A′
j and aj ∈ Aj \ A′

j; and by (5) and the claim, V (R) \ (
⋃j−1

k=0 Ak)

is disjoint from V (R′) \ (
⋃j−1

k=0 Ak), and for j + 1 ≤ k ≤ i − 1, a′k is non-adjacent to ak−1 and ak to
a′k−1. Consequently, since both R and R′ can be completed to holes via y-paths for ai−1 and a′i−1,
respectively, (2) implies that for j < k < i − 1, ak is adjacent to a′k. We recall that Q is a y-path
for ai. Since i > j + 1, x-R-aj-aj+1-a

′
j+1-R

′-a′i−1-ai-Q-y-x is a hole of length m + 1, and therefore
even, a contradiction. This proves that A′

i−1 = Ai−1. Since the claim implies that for every vertex
aj ∈ Aj \ A′

j , if T is a y-path for aj then V (T ) ∩ Ai−1 ⊆ Ai−1 \ A′
i−1, it follows that Aj = A′

j.
Finally suppose that there exists a vertex a ∈ Ai non-adjacent to b. Let S be an x-path for a and

T a y-path, let ai−1 be the vertex of S in Ai−1 and let aj be the vertex of S in Aj . Then the paths
p-b-ai−1, p-aj-S-ai−1 and p-y-T -a-ai−1 form a theta, contrary to 2.1. This proves that b is complete
to Ai and completes the proof of (16).

(17) Every vertex of A1 that is complete to B1,2 is complete to C1. Some vertex of A1 is com-
plete to C1.

Let p ∈ C1, and suppose that p has a non-neighbour a1 ∈ A1. Since K is non-dominating in
G \ {p}, it follows from (8) that p has a neighbour b ∈ V (G) \ N(K). From the definition of C1, we
deduce that either b ∈ B1, or b ∈ Bi ∪ Bi−1,i for some 2 ≤ i ≤ m − 2. If b ∈ B1 then b-a1-x-p-b is a
hole of length four, a contradiction. So b ∈ Bi ∪ Bi−1,i for some 2 ≤ i ≤ m − 2, and by (16), i = 2
and N(b)∩A1 = N(p)∩A1. In particular, a1 6∈ N(b)∩A1. This proves that every vertex of A1 that
is complete to B1,2 is complete to C1.

Now we prove that some vertex of A1 is complete to C1. Suppose not, and choose a ∈ A1

with maximal set of neighbours in C1. Let c′ ∈ C1 be non-adjacent to a. Then c′ has a neighbour
a′ ∈ A1. By the choice of a, some vertex c ∈ C1 is adjacent to a and non-adjacent to a′. By (12),
c is adjacent to c′. Since a-a′-c′-c-a is not a hole of length four, it follows that a is non-adjacent
to a′. By the argument of the previous paragraph, there exists a vertex b′ ∈ B1,2, adjacent to c′

and such that N(b′) ∩ A1 = N(c′) ∩ A1. Thus b′ is adjacent to a′ and not to a. Let a2 ∈ A2 be
adjacent to a. By (11), a2 is adjacent to both b′ and a′. But now a-a2-a

′-x-a is a hole of length four, a
contradiction. This proves that some vertex of A1 is complete to C1, and completes the proof of (17).

(18) Let i ∈ {1, . . . ,m − 2}. If Ai contains an x-pair u, v, then Ai is complete to Ai−1 ∩ N(u),
Bi,i+1 is anticomplete to {u, v}, Bi is empty and Ai−1 ∩ N(u) is complete to Bi−1,i.

The first assertion of (18) follows from (7). Since u-w-v-b-u is not a hole of length four, where
w ∈ N(u) ∩ Ai−1 and b ∈ Bi,i+1 ∪ Bi, it follows that Bi = ∅, and no vertex in Bi,i+1 is adjacent to
both u and v.
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Next suppose there exists b ∈ Bi,i+1 with a neighbour in {u, v}. From the symmetry we may
assume that b is adjacent to u. Let a be a neighbour of u in Ai+1, and a′ a neighbour of v in Ai+1.
Since u, v is an x-pair, (6) implies that a is non-adjacent to v and a′ is non-adjacent to u. By (11), b

is non-adjacent to a′, and therefore, again by (11), b is adjacent to v. But then b is adjacent to both
u and v, a contradiction.

Finally, suppose that there exist a ∈ Ai−1 ∩ N(u) and b ∈ Bi−1,i non-adjacent. By (11), b is
adjacent to both u and v. But now u-b-v-a-u is a hole of length four, a contradiction. This proves (18).

(19) The sets Bx,y, B0,1, B1,2, . . . , Bm−2,m−1 are pairwise anticomplete; the sets B0, . . . , Bm−1 are
pairwise anticomplete; and for all i ∈ {0, . . . ,m − 2} and j ∈ {0, . . . m − 1} with j 6= i, i + 1, Bi,i+1

is anticomplete to Bj .

Let 0 ≤ i < j ≤ m − 2. From the symmetry it is enough to prove that Bi ∪ Bi,i+1 is anticom-
plete to Bj+1 ∪ Bj,j+1, Bi is anticomplete to Bi+1 and Bx,y is anticomplete to Bi,i+1.

Assume for a contradiction that there exist adjacent u ∈ Bi ∪ Bi,i+1 and v ∈ Bj+1 ∪ Bj,j+1. Let
ai be a neighbour of u ∈ Ai and aj+1 a neighbour of v in Aj+1, and let P be an x-path for ai and Q a
y-path from aj+1. Then x-P -ai-u-v-aj+1-Q-y-x is a hole, say H. Since V (H) 6⊆ W , x, y are vertices
of H and H is odd, it follows that H has length at least m + 2, a contradiction.

If bi ∈ Bi is adjacent to bi+1 ∈ Bi+1, then, by (11), bi-bi+1-ai+1-ai-bi is a hole of length four for
every adjacent ai ∈ Ai and ai+1 ∈ Ai+1, a contradiction.

Finally, assume that b ∈ Bx,y has a neighbour b′ ∈ Bi,i+1. Let ai and ai+1 be neighbours of b′ in
Ai and Ai+1, respectively. By (11), ai is adjacent to ai+1. Let P be an x-path for ai and Q a y-path
for ai+1. Then G|(V (P )∪V (Q)∪{b, b′}) is a prism or an even wheel, contrary to 2.1. This proves (19).

(20) Ai is a clique for every odd integer i with 3 ≤ i ≤ m − 4.

Suppose there exists an odd integer i ∈ {3, . . . ,m − 4} such that Ai is not a clique. Then m ≥ 7.
From the symmetry and by (6) and (7) we may assume that every pair of non-adjacent vertices in
Ai is an x-pair.

Let a1 ∈ A1 be a vertex complete to C1 (such a vertex exists by (17)), and let u, u′ be an x-pair
in Ai. By (9) there exists a path P from u to a1 such that |V (P ) ∩ Aj | = 1 for all 1 ≤ j ≤ i. Let
ai−1 be the vertex of P in Ai−1. By (18) ai−1 is complete to Ai. Let

L = V (P ) \ {u}, T = {x} ∪ C1, S = Ai,

and

R =

m−2⋃

j=i+1

(Aj ∪ Bj ∪ Cj ∪ Bj,j+1) ∪ Bi,i+1 ∪ Bx,y ∪ {y}.

Then L is connected, anticomplete to R, the vertex ai−1 ∈ L is complete to S and L \ {ai−1}
is anticomplete to S, T is a clique by (12), and a1 is complete to T . Let G′ be the graph obtained
from G|(R∪S ∪T ) by adding all edges between S and T . Then, since i is odd, 2.3 implies that G′ is
even-hole-free. Since i < m − 2, K is non-dominating in G′, and therefore the minimality of |V (G)|
implies that there exists a vertex v ∈ V (G′) \ NG′(K) that is bisimplicial in G′.

34



Next we show that v belongs to V (G) \ N(K) and is bisimplicial in G, thus obtaining a contra-
diction. Let R′ = V (G′) \ NG′(K). Then

R′ =

m−3⋃

j=i+1

Aj ∪
m−3⋃

j=i

Bj ∪ Bj,j+1 ∪ Bm−2,

and in particular R′ ⊆ V (G) \N(K). By (18) Bi is empty, and consequently, by (19), R′ is anticom-
plete to V (G) \V (G′), and hence NG(v) = NG′(v). Since, by (18), no vertex of Bi,i+1 is complete to
Ai, (16) implies that C1 is anticomplete to Bi,i+1, and therefore no vertex of R′ has both a neighbour
in S and a neighbour in T . It follows that G and G′ induce the same graph on NG′(v), and therefore
v is bisimplicial in G, a contradiction. This proves (20).

(21) Let i ∈ {4, . . . ,m − 3} be an even integer. If Ai does not contain a y-pair, then some ver-
tex of Ai−1 is complete to it. If Ai−2 does not contain an x-pair then some vertex of Ai−1 is complete
to Ai−2. If Ai does not contain a y-pair and Ai−2 does not contain an x-pair then some vertex of
Ai−1 is complete to Ai−2 ∪ Ai.

Assume that Ai does not contain a y-pair. We claim that some vertex a ∈ Ai−1 is complete to
Ai. Suppose not and let ai−1 ∈ Ai−1 be a vertex with a maximal set of neighbours in Ai. Let
N = Ai ∩ N(ai−1). Then there exists a′i ∈ Ai \ N . Let a′i−1 ∈ Ai−1 be a neighbour of a′i. Now
it follows from the choice of ai−1, that there exists ai ∈ N \ N(a′i−1). But by (6) and (18) Ai is a
clique, and by (20) Ai−1 is a clique, and therefore ai is adjacent to a′i and ai−1 to a′i−1. Consequently
ai−1-ai-a

′
i-a

′
i−1-ai−1 is a hole of length four, a contradiction. This proves that some vertex a ∈ Ai−1

is complete to Ai. From the symmetry, if Ai−2 contains no x-pair, then some vertex a′ ∈ Ai−1 is
complete to Ai−2. This proves the first two statements of (21).

Now assume that Ai does not contain a y-pair and Ai−2 does not contain an x-pair, and let a, a′

be as above. We claim that either a is complete to Ai−2 or a′ is complete to Ai. Suppose not, and
let ai ∈ Ai \ N(a′) and ai−2 ∈ Ai−2 \ N(a). Let P be an x-path for ai−2 and let Q be a y-path for
ai. By (20), a is adjacent to a′. By (5) x-P -ai−2-a

′-a-ai-Q-y-x is a hole. But this hole has length
m + 1, and therefore it is even, a contradiction. This proves (21).

Let P =
⋃m−2

j=1 Cj. By (4), C = P ∪ Bx,y. For 1 ≤ i ≤ m − 2 let A′
i be the set of vertices of

Ai with a neighbour in P, and let B′
i, B

′
i,i+1 be defined similarly. For a ∈ Ai−1 let M(a) = N(a)∩Ai,

M ′(a) = N(a) ∩ A′
i, Q(a) = N(a) ∩ Bi−1,i and Q′(a) = N(a) ∩ B′

i−1,i; and and for b ∈ Bi−1,i let
M(b) = N(b) ∩ Ai and M ′(b) = N(b) ∩ A′

i.

(22) Let i be an odd integer such that 3 ≤ i ≤ m − 4. Assume that Ai−1 contains no y-pair.
Choose w ∈ Ai−1 with M ′(w) maximal, and subject to that with Q′(w) maximal, and suppose that
B′

i−1,i 6= Q′(w). Then there exist w′ ∈ Ai−1, b, b′ ∈ B′
i−1,i and p ∈ Ci such that

1. b-w-w′-b′ is a path

2. M(w) = M(w′) = M(b) = M(b′) = Ai

3. either N(b) ∩ P ⊆ N(b′) ∩ P or N(b′) ∩ P ⊆ N(b) ∩ P,
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4. p is adjacent to both b and b′ and complete to Ai

Let b′ be a non-neighbour of w in B′
i−1,i and let w′ be a neighbour of b′ in Ai−1. (11) implies

that b′ is complete to M(w), and so again by (11) w′ is complete to M(w). Now it follows from the
choice of w that Q′(w) is not a proper subset of Q′(w′), and therefore there exists b ∈ Q′(w)\Q′(w′).
Since Ai−1 does not contain a y-pair, and since M(w) ⊆ M(w′), it follows that w is adjacent to w′.
Since w-w′-b′-b-w is not a hole of length four, b is non-adjacent to b′. Thus b-w-w′-b′ is a path and
(22.1) holds.

By (11) and since b is non-adjacent to w′, it follows that M(w′) ⊆ M(b) and similarly M(w) ⊆
M(b′). Again by (11), M(b) ⊆ M(w) and M(b′) ⊆ M(w′), and therefore all the inclusions hold with
equality, that is M(w) = M(w′) = M(b) = M(b′).

Next we claim that either N(b) ∩ P ⊆ N(b′) ∩ P or N(b′) ∩ P ⊆ N(b) ∩ P. Suppose not, and let
p ∈ (N(b) \ N(b′)) ∩ P and p′ ∈ (N(b′) \ N(b)) ∩ P. If p is non-adjacent to p′, then, since i is odd
and therefore Ai−1 is anticomplete to P by (11), it follows that p-b-w-w′-b′-p′ is a path with interior
in V (G) \ N({x, y}), contrary to (15), so p is adjacent to p′. But then p-b-w-w′-b′-p′-p is a hole of
length six, a contradiction. This proves that (22.3) holds, and in particular, because b, b′ ∈ B′

i−1,i,
and therefore N(b) ∩ P 6= ∅ and N(b′) ∩ P 6= ∅, there exists p ∈ P adjacent to both b and b′.

Since {b, b′} is complete to M(w), and b-a-b′-p-b is not a hole of length four for any a ∈ M(w), it
follows that p is complete to M(w), and p ∈ Ci.

We claim that M(b) = Ai. For suppose not, and let a ∈ Ai be non-adjacent to b, and therefore
non-adjacent to b′. Let v be a neighbour of a in Ai−1. By (11) both b and b′ are adjacent to v, and
therefore b-v-b′-p-b is a hole of length four, a contradiction. This proves that M(b) = Ai, and hence
M(b) = M(b′) = M(w) = M(w′) = Ai. So (22.2) and (22.4) follow. This proves (22).

(23) Let i be an odd integer such that 3 ≤ i ≤ m − 4, and Ai−1 does not contain a y-pair, and
Bi is empty. Then there is a vertex in Ai−1 complete to A′

i ∪ B′
i−1,i.

First we claim that no vertex of Ci is complete to Ai. For assume for a contradiction that p ∈ Ci is
complete to Ai. By (15), since m ≥ 7 and p is either complete or anticomplete to A3, it follows that
p is complete to C \ {p}. Let

S = {y} ∪ Ai ∪ C

T = {x} ∪
i−1⋃

j=1

(Aj ∪ Bj) ∪
i−1⋃

j=0

Bj,j+1

and

U =
m−2⋃

j=i+1

(Aj ∪ Bj) ∪
m−2⋃

j=i

Bj,j+1.

Then p is complete to S \ {p}. Since Bi is empty, V (G) = S ∪ T ∪ U , and by (19) T is anticomplete
to U . But now S is a star cutset with centre p, and x 6∈ S, contrary to 4.1. This proves that no
vertex of Ci is complete to Ai.

Choose w ∈ Ai−1 with M ′(w) maximal, and subject to that with Q′(w) maximal. Suppose first
that A′

i 6⊆ M ′(w), and let a ∈ A′
i be a non-neighbour of w in A′

i. Since by (20) Ai is a clique, it
follows that a is complete to M(w). Let p be a neighbour of a in Ci. Then p is not complete to
Ai; let a′ ∈ Ai be a non-neighbour of p. Let w′ be a neighbour of a′ in Ai−1, choosing a′ and w′
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so that w′ = w if possible, and let R′ be an x-path for w′. Since x-R′-w′-a′-a-p-x is not an even
hole, it follows that w′ is adjacent to a, and therefore w′ 6= w, and so p is complete to M(w). But
now, since x-R′-w′-a′-m′-p-x is not an even hole for any m′ ∈ M(w), it follows that w′ is complete
to M(w) ∪ {a}, contrary to the choice of w. This proves that w is complete to A′

i. Finally, suppose
that w is not complete to B′

i−1,i. Let w′, b, b′ and p be as in (22). But then p is complete to Ai, a
contradiction. This proves (23).

(24) Let i be an odd integer such that 3 ≤ i ≤ m − 4 and Ai−1 contains no y-pair. Then some
vertex of Ai−1 is complete to B′

i−1,i.

Suppose no such vertex exists. By (23) Bi is non-empty. By (22) there exist w1, w2 ∈ Ai−1,
b1, b2 ∈ B′

i−1,i and p ∈ Ci such that

1. b1-w1-w2-b2 is a path

2. M(w1) = M(w2) = M(b1) = M(b2) = Ai

3. N(b2) ∩ P ⊆ N(b1) ∩ P

4. p is adjacent to both b1 and b2 and complete to Ai.

Since Ai−1 contains no y-pair, and so, we deduce from (18) that {w1, w2} is complete to Ai−1 \
{w1, w2}. Let R1 and R2 be x-paths for w1 and w2, respectively.

We claim that there exist s, t with {s, t} = {1, 2} and a path Q from bs to a vertex of Bi,i+1 such
that V (Q) is anticomplete to {wt, bt} and Q∗ ⊆ Bi−1,i ∪ Bi.

Let

U = {x, y} ∪ C ∪
m−2⋃

j=i+1

(Aj ∪ Bj) ∪
m−2⋃

j=i

Bj,j+1

S1 = N({b1, w1})

and

S2 = N({b2, w2}).

By 4.3 S2 is not a double star cutset in G, and therefore there exists a path Q2 from b1 to a
vertex u ∈ U with V (Q2) ∩ S2 = ∅, and such that (V (Q2) \ {u}) ∩ U = ∅. Since by (19) Bi−1,i ∪ Bi

is anticomplete to V (G) \ (U ∪ S2), it follows that V (Q2) \ {u} ⊆ Bi−1,i ∪ Bi, and therefore, again
by (19), u ∈ Bi,i+1 ∪ C.

We may assume that u ∈ C, for otherwise the claim holds with s = 1 and Q = Q2. Let Q′ be
a subpath of Q2 with ends u, q′ such that q′ is adjacent to w1 and no other vertex of Q′ is. Let H

be the hole w1-q
′-Q′-u-x-R1-w1. Then H is not dominating in G because b2 ∈ V (G) \ N(H) (since

V (Q2)∩ S2 = ∅). Let F be the component of V (G) \N(H) containing b2. By 3.1 there is a vertex v

in F that is bisimplicial in G|(F ∪N(H)), and therefore in G. Since there is no bisimplicial vertex of
G in V (G) \N(K), we deduce that v is adjacent to y. Let T be a path from b2 to v with V (T ) ⊆ F .
Since Ai−1 ∪ Ai ∪ Bi−1 ⊆ N(w1) ⊆ N(H), (19) implies that T contains a vertex of U . Let Q1 be a
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minimal subpath of T containing b2 and a vertex u′ of U . Since V (Q1) ∩ N(w1) = ∅, it follows that
u′ ∈ Bi,i+1 ∪ C, and since V (Q1) ⊆ F , and in particular {x} is anticomplete to V (Q1), we deduce
that u′ 6∈ C. But now the claim holds with s = 2 and Q = Q1. This proves the claim.

Let Q be a path from bs to a vertex u of Bi,i+1 with V (Q) \ {u} ⊆ (Bi−1,i ∪ Bi) \ St as in the
claim. Let a be a neighbour of u in Ai+1 and let T be a y-path for a. Let q′ be the neighbour of
ws in Q such that the subpath Q′ of Q between q′ and u contains no other neighbour of ws. Then
x-Rs-ws-q

′-Q′-u-a-T -y-x is a hole and by (19) and the choice of Q′, bt has no neighbour in it, contrary
to (2). This proves (24).

(25) m < 9.

Suppose m ≥ 9 and let i be an even integer in {4, . . . ,m − 5}. From the symmetry and (6) we
may assume that Ai contains no y-pair. By (21) there exists a vertex a ∈ Ai−1 complete to Ai. Let
P be an x-path for a.

Let

S = Ai, T = {y} ∪ C, L = V (P )

and

R = (

m−2⋃

j=i

Aj ∪ Bj ∪ Bj,j+1) \ Ai.

Then L is connected, anticomplete to R, by (15) T is a clique, T is complete to {x}, S is complete
to a and anticomplete to L\{a}. Let G′ be the graph with V (G′) = S∪T ∪R, in which u, v ∈ V (G′)
are adjacent if and only if there is an odd path between them with interior in L. By 2.3 G′ is
even-hole-free.

If Bi+1 = ∅, let t be a vertex in Ai complete to A′
i+1 ∪ B′

i,i+1, and if Bi+1 6= ∅, let t be a vertex
in Ai complete to B′

i,i+1 (the existence of such a vertex t follows from (23) and (24)). Then, since i

is even, y is complete in G′ to Ai, and in particular, y is adjacent in G′ to t. Let K ′ = {y, t}. Then
K ′ is anticomplete to Am−3, and therefore K ′ is a non-dominating clique in G′. By the minimality
of |V (G)|, there exists a vertex v ∈ V (G′) \ NG′(K ′) that is bisimplicial in G′. Since y is complete
to Ai ∪ Am−2 ∪ Bm−2,m−1 ∪ C in G′ and t is complete to Bi in G′, it follows that

v ∈
m−3⋃

j=i+1

Aj ∪
m−2⋃

j=i+1

Bj ∪
m−3⋃

j=i

Bj,j+1,

and hence by (5) and (19) NG(v) = NG′(v). Let N = NG(v).
Since NG(x) ∩ V (G′) ⊆ C ∪ {y} and V (G′) \ NG′(y) ⊆ V (G) \ NG(y), it follows that v ∈

V (G) \ NG(K), and therefore v is not bisimplicial in G. Consequently, G|N 6= G′|N , and so, from
the construction of G′ and since y 6∈ N , we deduce that N ∩Ai 6= ∅ and N ∩C 6= ∅. By (5) and (19),
and since v is anticomplete to K ′ in G′, this means that v ∈ Ai+1 ∪ Bi,i+1.

We claim that N ∩ C ⊆ P. Let p ∈ N ∩ C. If v ∈ Ai+1, then p ∈ Ci+1 by the definition of Ci+1,
and if v ∈ Bi,i+1, then p 6∈ Bx,y by (19), and therefore p ∈ P. This proves the claim.

Since v is non-adjacent to t and has a neighbour in P, it follows from the choice of t that v ∈ Ai+1

and Bi+1 6= ∅. But now, let ai ∈ Ai and ai+2 ∈ Ai+2 be neighbours of v. Choose b ∈ Bi+1. Then
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ai, ai+2 and b all belong to NG′(v), and they are pairwise non-adjacent, contrary to the fact that v

is bisimplicial in G′. This proves (25).

(26) If m = 7 then C is a clique.

Suppose not and let c1, c2 ∈ C be non-adjacent. By (1) there exists a path P between c1 and c2 with
interior in V (G)\N(K), and by (15) V (P )∪K is dominating, P has length three, and P ∗ ⊆ A3 and
c1, c2 ∈ C3. Since V (P )∪K is dominating, (16) implies B1 ∪B1,2 ∪B2 ∪B4 ∪B4,5 ∪B5 = ∅. By (1)
and (19) B0,1 = B5,6 = ∅. Suppose C1 6= ∅, and let p ∈ C1. By (1) and (16), p has a neighbour
b ∈ B3,4, and b is complete to A3. By (15), c1 has a neighbour a ∈ A3, and c1 is not complete to
A3. Therefore, by (16), it follows that b is non-adjacent to c1. By (15), p is adjacent to c1. But now,
c1-a-b-p-c1 is a hole of length four, a contradiction. This proves that C1 = ∅, and, from the symmetry,
C5 = ∅. Next suppose that there exists p ∈ Bx,y. By (1), p has a neighbour d ∈ V (G) \ N(K), and
so d ∈ B2,3 ∪ B3 ∪ B3,4, and from the symmetry we may assume that d ∈ B2,3 ∪ B3. Let a3 be a
neighbour of d in A3, and let Q be a y-path for a3. But now y-p-d-a3-Q-y is a hole of length six, a
contradiction. So Bx,y = ∅, and N(K) = K ∪ A1 ∪ A5 ∪ C3.

For i = 1, 2 let Di = N(ci) ∩ A3. Since c1-x-c2-a-c1 is not a hole of length four for any a ∈ A3,
it follows that D1 ∩D2 = ∅. If there exist non-adjacent d1 ∈ D1 and d2 ∈ D2, then by (6) d1 and d2

have a common neighbour a ∈ A2∪A4, and x-c1-d1-a-d2-c2-x is a a hole of length six, a contradiction.
So D1 is complete to D2.

We claim that (A2∪A3∪A4)\(D1∪D2) is complete to D1∪D2. For let a ∈ (A2∪A3∪A4)\(D1∪D2)
have a non-neighbour d ∈ D1 ∪ D2. From the symmetry we may assume that d ∈ D2. By (20) A3

is a clique, and hence a ∈ A2 ∪ A4, and from the symmetry we may assume that a ∈ A4. Choose
d1 ∈ D1. Then c1-d1-d-c2 is a path, and so, by (15), the set {x, y, c1, c2, d1, d} is dominating, and
therefore a is adjacent to d1. But now let a5 be a neighbour of a in A5. Then by (5) d-c2-y-a5-a-d1-d
is a hole of length six, a contradiction. This proves that (A2 ∪ A3 ∪ A4) \ (D1 ∪ D2) is complete to
D1 ∪ D2.

Choose d1 ∈ D1. We claim that d1 is complete to B2,3∪B3,4. Suppose not; from the symmetry we
may assume that B′ = B2,3 \N(d1) is non-empty. Since by (19) N(B2,3) ⊆ B2,3 ∪A2 ∪A3 ∪B3 ∪C3,
d1 is complete to A2 ∪ A3 ∪ B3 and N(d1) is not a full star-cutset in G by 4.2, it follows that some
b ∈ B′ has a neighbour c ∈ C3 \N(d1). Since b-c1-d1-a2-b is not a hole of length four for any a2 ∈ A2

adjacent to b, it follows that b is non-adjacent to c1 . If c is non-adjacent to c1, then b-c-x-c1-d1-a2-b
is a hole of length six, for any a2 ∈ A2 adjacent to b; and hence c is adjacent to c1. Since c1-c-d2-d1-c1

is not a hole of length four for any d2 ∈ D2, c is anticomplete to D2; and so by (16), b is anticomplete
to D2. Now, by the three previous sentences with the roles of c1 and c2 reversed, c is adjacent to c2

and anticomplete to D1. Since c ∈ C3, there exists d ∈ A3 adjacent to c, and d 6∈ D1. But now, since
A3 is a clique, c1-c-d-d1-c1 is a hole of length four, a contradiction. This proves that D1 is complete
to B2,3 ∪ B3,4.

Since K is a non-dominating clique in G′ = G \ {d1}, it follows from the minimality of |V (G)|
that some vertex v ∈ V (G′) \ NG′(K) is bisimplicial in G′. Since G′ is an induced subgraph of G

and no vertex of V (G) \ N(K) is bisimplicial in G, it follows that v ∈ V (G) \ N(K), v is adjacent
to d1 and d1 has a non-neighbour n that is adjacent to v. Since v ∈ N(d1) \ N(K), it follows that
v ∈ A2∪A3∪A4∪B2,3∪B3∪B3,4. Let Q be a y-path for d1. If v ∈ B2,3∪B3, then by (19) n ∈ N(K),
and since n is adjacent to v, we deduce that n ∈ C3. Now d1-Q-y-n-v-d1 is a hole of length six, a
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contradiction. Similarly, v 6∈ B3,4, and therefore v ∈ A2 ∪ A3 ∪ A4.
Next assume that v ∈ A2. Then N(v) ⊆ A1 ∪A2 ∪A3 ∪B2,3. Since v has a neighbour in A1, and

v is bisimplicial in G′, it follows that N(v) ∩ A2 = N1 ∪ N2 where N2 ∪ (NG′(v) ∩ (A3 ∪ B2,3)) is a
clique and N1 ∪ (NG′(v) ∩A1) is a clique. But since d1 is complete to A2 ∪A3 ∪B2,3, it follows that
N2 ∪ (NG(v)∩ (A3 ∪B2,3)) = {d1}∪N2 ∪ (NG′(v)∩ (A3 ∪B2,3)) is a clique, and so v is bisimplicial in
G, a contradiction. This proves that v 6∈ A2, and from the symmetry v 6∈ A4, and therefore v ∈ A3.
Since n is adjacent to v and non-adjacent to d1, it follows that n ∈ C3. But now, choosing a2 and
a4 to be neighbours of v in A2 and A4, respectively, we observe that a2, a4 and n are three pairwise
non-adjacent neighbours of v in G′, contrary to the fact that v is bisimplicial in G′. This proves (26).

Let S be a hole in G. We say that v ∈ V (G) \ V (S) is a centre for S if v is complete to V (S).

(27) Let S be a hole of length five with centre v. Let A be a connected subgraph of V (G)\(V (S)∪{v}),
such that three consecutive vertices of S have neighbours in V (A). Then v has a neighbour in V (A).

Suppose not. We may assume that A is a minimal connected subgraph of V (G) \ (V (S) ∪ {v}),
such that three consecutive vertices of S have neighbours in V (A). Let the vertices of S be c1, . . . , c5

in order. Let P be a path between two non-consecutive vertices of S with P ∗ ⊆ V (A) and with
|V (P )| minimum. Without loss of generality, we may assume that the ends of P are c1 and c3.
Since v has no neighbour in P ∗ and c1-P -c3-v-c1 is not an even hole, it follows that P is odd. Since
c1-P -c3-c4-c5-c1 is not an even hole, it follows that one of c4, c5 has a neighbour in P ∗, and from the
minimality of |V (P )| and by the symmetry, we may assume that c1 and c5 have a common neighbour
p in P ∗, and p is the unique neighbour of c5 in P ∗. Suppose c2 has a neighbour p′ ∈ P ∗. From the
minimality of |V (P )|, p′ is adjacent to c3 and c2 has no neighbour in P ∗ \{p′}. But now c1-P -p′-c2-c1

is an even hole, a contradiction. So c2 has no neighbour in P ∗. From the symmetry we deduce that
c4 has no neighbour in P ∗. Let D be a minimal connected subgraph of A, such that P ∗ ⊆ V (D), and
at least one of c2, c4 has a neighbour in V (D). If both c2, c4 have neighbours in D, then, since {c2, c4}
is anticomplete to P ∗, the minimality of D implies that some d ∈ V (D) is adjacent to both c2 and c4,
and c2-d-c4-v-c2 is a hole of length four, a contradiction. So we may assume that c4 has a neighbour
in V (D), and c2 does not. Let Q be a path with interior in D from c4 to a vertex q ∈ V (D), such
that q has a neighbour in P ∗, and no other vertex of Q does. By the minimality of A, q has a unique
neighbour p′ in P ∗, and p′ is adjacent to c3. If c5 has a neighbour in V (Q) \ {c4}, then A \ {p} is a
connected subgraph of V (G)\ (V (S)∪{v}), and c3, c4, c5 all have neighbours in V (A\{p}), contrary
to the minimality of A. So c5 has no neighbour in V (Q)\{c4}. If c1 has no neighbour in V (Q), then
c4-Q-p′-P -p-c5-c4 and c4-Q-p′-P -p-c1-v-c4 are two holes of different parity, and therefore one of them
is even, a contradiction. So c1 has a neighbour in V (Q). Let q′ be the neighbour of c1 in V (Q), such
that the subpath of Q between q and q′ contains no other neighbour of c1. Since c1-q

′-c4-v-c1 is not
a hole of length four, c4 is non-adjacent to q′. But now, there exists a path T between c1 and c3 with
interior in V (q-Q-q′)∪ {p′}, and neither of c4, c5 has a neighbour in T ∗. But now one of c1-T -c3-v-c1

and c1-T -c3-c4-c5-c1 is an even hole, a contradiction . This proves (27).

(28) Let u ∈ V (G)\N(K) and let v ∈ V (G)\ (N(K)∪{u}) be a bisimplicial vertex of G\{u}. Then
NG(v) \ NG(u) is not a clique.
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Let G′ = G \ {u}. Suppose NG(v) \ NG(u) is a clique. Then, since v is a bisimplicial vertex of
G′, there is no stable set of size three in NG(v). Since v is not bisimplicial in G, it follows that
u is adjacent to v and G|(NG(v)) contains an odd antihole. Since every odd antihole of length
at least seven contains a hole of length four, it follows that G|(NG(v)) contains an antihole of
length five, and therefore a hole of length five. Let S be such a hole. Since v is bisimplicial in
G′, it follows that u ∈ V (S). Let the vertices of S be a-u-b-b′-a′-a. Let F be the component of
V (G) \ N(v) containing {x, y}. By 4.2, F = V (G) \ N(v). We claim that u has a neighbour in
F , for otherwise NG(u) \ {u} ⊆ NG′(v), and therefore u is bisimplicial in G and non-adjacent to
both x and y, a contradiction. Let A = NG(v) \ (NG(b′) ∪ {u}), B = NG(v) \ (NG(a′) ∪ {u}) and
D = NG(v) ∩ NG(a′) ∩ NG(b′). Then a ∈ A and b ∈ B. Since v is bisimplicial in G′, both A and
B are cliques; and since NG(v) \ NG(u) is a clique, it follows that NG(v) \ NG(u) ⊆ D, and so u is
complete to A ∪ B.

By (27), not both a and b have neighbours in F , and from the symmetry we may assume that a

does not. If a has a neighbour z ∈ B \ A, then a-a′-b′-z-a is a hole of length four, and therefore a

is anticomplete to B \ A. Thus N(a) ⊆ A ∪ D ∪ {a′, u, v}. Since a-d-b′-d′-a is not a hole of length
four, where d, d′ ∈ D ∩ N(a), it follows that D ∩ N(a) is a clique. But now, NG(a) is the union of
two cliques, namely A ∪ {u, v}, and N(a) ∩ (D ∪ {a′}). Since a is anticomplete to F , it follows that
a is a bisimplicial vertex of G in V (G) \ N(K), a contradiction. This proves (28).

(29) m = 5.

Suppose m > 5. By (25), m = 7. By (26) C is a clique. Assume first that A2 does not con-
tain a y-pair. Let R =

⋃5
i=3 Ai ∪

⋃5
i=2(Bi ∪Bi,i+1), let C ′ = (C ∪ {y}) \C1, and let G′ be the graph

obtained from G|(A2 ∪ C ′ ∪ C1 ∪ R) by adding all the edges between A2 and C ′. We claim that G′

is even-hole-free.
Assume first that A2 contains an x-pair. By (18), there exists a vertex a1 ∈ A1 complete to

A2 ∪ B1,2. By (17), a1 is complete to C1. Let S = A2, T = C ′ ∪ C1 and L = {a1, x}. Then L is
connected, anticomplete to R, T is complete to x and S is complete to a1 and anticomplete to x.
Since no vertex of T \ C1 is adjacent to a1, and since C1 is complete to a1, 2.3 implies that G′ is
even-hole-free.

Next assume that A2 is a clique. Suppose there is an even hole H is G′. Since G is even-hole-free,
it follows that V (H) ∩ A2 6= ∅, and V (H) ∩ C ′ 6= ∅. Since A2 ∪ C ′ is a clique in G′, it follows that
|V (H)∩A2| = |V (H)∩C ′| = 1. Let V (H)∩A2 = {h1} and V (H)∩C ′ = {h2}. Then h1 is adjacent
to h2 in G′, and G|V (H) is a path from h1 to h2, say P , with interior in R∪C1. Since H is an even
hole in G′, P is odd. Let a1 be the neighbour of h1 in A1. Since h1-P -h2-x-a1-h1 is not an even hole,
it follows that one of a1, x has a neighbour in P ∗, and therefore some vertex of P ∗ is in C1. Since C

is a clique, it follows that the neighbour h3 of h2 in P belongs to C1, and no other vertex of P does.
But now h1-P -h3-a1-h1 is an even hole, a contradiction. This proves that if A2 is a clique, then G′

is even-hole-free, and, by (6), completes the proof of the claim.
If B3 = ∅, let a2 ∈ A2 be as in (23), and if B3 6= ∅, let a2 ∈ A2 be as in (24). Let U = {y, a2}.

Since U is anticomplete to A4, U is a non-dominating clique in G′, and therefore, by the minimality
of |V (G)|, there exists a vertex v ∈ V (G′) \ NG′(U) that is bisimplicial in G′. Since y is complete
to A2 ∪ C1, and a2 is complete to B2 ∪ C ′, it follows from (5) and (19) that v ∈ R, and therefore
NG(v) = NG′(v). Since v is not bisimplicial in G, it follows that G|(NG(v)) 6= G′|(NG′(v)), and
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therefore in G, v has both a neighbour in A2 and a neighbour in C ′. This, together with (19),
implies that v ∈ A′

3 ∪ B′
2,3. From the choice of a2 and the fact that v is non-adjacent to a2, we

deduce that v ∈ A′
3 and B3 6= ∅. But then v has a neighbours in A2, A4, B3, and these are three

pairwise non-adjacent neighbours of v in G′, contrary to the fact that v is bisimplicial in G′.
This proves that A2 contains a y-pair, and, therefore, by (6), no x-pair. From the symmetry, it

follows that A4 contains an x-pair and no y-pair. By (18), this implies that B2 = B4 = ∅.
Let a3 in A3 be complete to A2∪A4 (such a vertex a3 exists by applying (21) with i = 4). By (20)

A3 is a clique, by (18) a3 is complete to B2,3 ∪ B3,4, and since B2 ∪ B4 = ∅, we deduce that a3 is
complete to

A2 ∪ A3 ∪ A4 ∪ B2 ∪ B3 ∪ B4 ∪ B2,3 ∪ B3,4.

Let G′ = G \ {a3}. Since K is a non-dominating clique in G′, (8) implies that there exists v ∈
V (G′) \ NG′(K), adjacent to a3 and bisimplicial in G′. Since v is adjacent to a3, we deduce that
v ∈ A2∪A3∪A4∪B3∪B2,3∪B3,4. From the symmetry we may assume that v ∈ A2∪A3∪B3∪B2,3.

Assume first that v ∈ A3∪B3∪B2,3. By (5), (18) and (19), it follows that N(v)\N(a3) is a subset
of C, and therefore N(v) \ N(a3) is a clique, contrary to (28). This proves that v 6∈ A3 ∪ B3 ∪ B2,3,
and therefore v ∈ A2.

By (11), NG′(v) ⊆ A1 ∪ A2 ∪ A3 ∪ B2 ∪ B1,2 ∪ B2,3. Suppose v has a neighbour b in B1,2. Since
every non-adjacent pair in A2 is a y-pair, (18) implies that v is complete to A2 \ {v}. Let a2, a

′
2 be a

y-pair in A2. Then, by (18), a2, a
′
2, b is a stable set of size three in NG′(v), contrary to the fact that

v is bisimplicial in G′. This proves that v is anticomplete to B1,2, and N(v) \N(a3) ⊆ A1. But now,
since v-n-x-n′-v is not a hole of length four for any n, n′ ∈ N(v) ∩ A1, it follows that N(v) ∩ A1 is a
clique, and we get a contradiction to (28). This proves (29).

In view of (29), from now on we assume that m = 5.

(30) Every vertex in Bx,y is anticomplete to B1 ∪ B3 ∪ B1,2 ∪ B2,3, and every vertex of Bx,y has
a neighbour in B2.

Let b ∈ Bx,y, and suppose that b has a neighbour b′ ∈ B1,2 ∪ B2,3 ∪ B1 ∪ B3. From the sym-
metry we may assume that b′ ∈ B3 ∪ B2,3. Choose a ∈ A3 adjacent to b′. Now y-b-b′-a-y is a hole of
length four, a contradiction. This proves that Bx,y is anticomplete to B1 ∪B3 ∪B1,2 ∪B2,3. By (8),
every vertex of Bx,y has a neighbour in V (G) \ N(K), and therefore every vertex of Bx,y has a
neighbour in B2. This proves (30).

(31) If A2 contains a y-pair, then there exist vertices a2, a
′
2 ∈ A2 and a vertex a1 ∈ A1 such that a1

is adjacent to a2, and there exists a path P in G, from a′2 to a vertex p, such that

(i) p is adjacent to at least one of x, y,

(ii) {a1, a2} is anticomplete to V (P ),

(iii) V (P ) ∩ C3 = ∅,

(iv) V (P ) \ {p} is anticomplete to {x, y}, and

(v) V (P ) ∩ A2 = {a′2}.
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By (6) A2 contains no x-pair and by (18) B2 = ∅. We observe that it is enough to prove that
there exist a1, a2, a

′
2, p and P satisfying (i) − (iii) above, for then a1, a2, a

′
2, p and P chosen with

|V (P )| minimum will satisfy (i) − (v).
Let a′2 ∈ A2 be a vertex that has a non-neighbour n ∈ A2 and let a′1 ∈ A1 be adjacent to a′2.

Since a′2, n is not an x-pair, it follows that n is non-adjacent to a′1.
By 4.3, the edge a′1a

′
2 is not the centre of a double star cutset D such that K and n are in different

component of V (G) \ D, and therefore there exists a path P in G, from some a2 ∈ A2 to a vertex
p, adjacent to one of x, y, and such that {a′1, a

′
2} is anticomplete to V (P ). We may assume that a2

and P are chosen such that |V (P )| is minimum. Consequently, V (P ) ∩ A2 = {a2} and V (P ) \ {p}
is anticomplete to {x, y}. If V (P ) ∩ C3 = ∅, then (31) holds, so we may assume that p ∈ C3. Let
a1 ∈ A1 be adjacent to a2. Since a2, a

′
2 are non-adjacent and there is no x-pair in A2, it follows that

a′2 is non-adjacent to a1.
We claim that a1 is anticomplete to V (P ). It is enough to show that a1 is anticomplete to

V (P ) \ {a′2}. Since V (P ) \ {p} is anticomplete to {x, y}, it follows that V (P )∩ (A1 ∪B0,1 ∪C1) = ∅.
By (11) and (18), B1 ∪ B1,2 is complete to a′1 and so, since a′1 is anticomplete to V (P ), it follows
that V (P ) ∩ (B1 ∪ B1,2) = ∅. By (30) and since B2 = ∅, it follows that Bx,y = ∅. But now, since

N(a1) ⊆ A1 ∪ C1 ∪ B1 ∪ B0,1 ∪ B1,2 ∪ A2 ∪ {x},

we deduce that a1 is anticomplete to V (P ) \ {a2}. Let H0 be the hole x-a1-a2-P -p-x. By 4.4,
G \ (N(H0) \ {y}) is connected. Therefore, there is a path P ′ in G, from a′2 to a vertex p′, adjacent
to y, and such that V (H0) is anticomplete to V (P ′). In particular, since x ∈ V (H0), it follows that
V (P ′) ∩ C3 = ∅, and {a1, a2} is anticomplete to V (P ′). This proves (31).

(32) A2 is a clique.

Suppose not. Then by (18) B2 = ∅ and we may assume that A2 contains a y-pair, and there-
fore by (6) no x-pair. Choose a1, a2, a

′
2, p and P as in (31). Since by (11) every vertex of B1 ∪ B1,2

is adjacent to one of a1, a2, it follows that P ∩ (B1 ∪ B1,2) = ∅. By (30) Bx,y = ∅, since B2 = ∅.
By (17), C1 is complete to a1, and therefore V (P )∩ (Bx,y∪C1) = ∅. Suppose V (P )∩ (A1∪B0,1) 6= ∅.
It follows that the only vertex of P in A1 ∪ B0,1 is p. Let p′ be the neighbour of p in P . If p ∈ A1

then N(p) \ N(K) ⊆ A2 ∪ B1 ∪ B1,2; and if p ∈ B0,1 then, by (19), N(p) \ N(K) ⊆ B1. Since
p′ 6∈ N(K) ∪ B1 ∪ B1,2, it follows that p′ = a′2, p ∈ A1, and p is adjacent to a′2, and not to a1 or a2,
contrary to (6). This proves that V (P ) ∩ (A1 ∪ B0,1) = ∅, and consequently

V (P ) ⊆ {a′2} ∪ A3 ∪ B3 ∪ B2,3 ∪ B3,4.

Thus p ∈ A3 ∪ B3,4, and V (P ) \ {p} ⊆ {a′2} ∪ B3 ∪ B2,3, and, in particular, p is adjacent to y and
not to x. Let a′1 ∈ A1 be adjacent to a′2. Since a2, a

′
2 is a y-pair, it follows that a2 is non-adjacent

to a′1. But now let H1 be the hole a′2-P -p-y-x-a′1-a
′
2. Then x, y ∈ V (H1) and a2 6∈ N(H1), contrary

to (2). This proves (32).

(33) C is a clique.

Suppose not, and let c1, c2 ∈ C be non-adjacent. By (15), c1, c2 ∈ Bx,y, and every path P from
c1 to c2 with interior in V (G) \ N(K) satisfies P ∗ ⊆ B2. For i = 1, 2, let Ni = B2 ∩ N(ci). By (30),
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both N1 and N2 are non-empty. (15) implies that N1 and N2 are disjoint. If some n1 ∈ N1 and
n2 ∈ N2 are non-adjacent, then for every a2 ∈ A2 the path c1-n1-a2-n2-c2 contradicts (15), so N1

is complete to N2. Since c1-n1-n2-n
′
1-c1 is not a hole of length four for n1, n

′
1 ∈ N1 and n2 ∈ N2,

it follows that N1, and similarly N2, is a clique. Also by (15), for every n1 ∈ N1 and n2 ∈ N2,
the set {c1, c2, n1, n2, x, y} is dominating. By (19) and (30), this implies that B1 = B3 = ∅. Since
by (8) and (19) every vertex in B0,1 has a neighbour in B1, B0,1 = ∅, and similarly B3,4 = ∅. Since
{c1, c2, n1, n2, x, y} is dominating, (30) implies that every vertex b ∈ B1,2∪B2,3 is adjacent to at least
one of n1, n2. If b ∈ B1,2 is adjacent to n1 and not n2, then x-a1-b-n1-n2-c2-x is a hole of length six,
where a1 is a neighbour of b in A1, a contradiction. So B1,2 is complete to {n1, n2}, and since n1, n2

were chosen arbitrarily, it follows that B1,2 is complete to N1 ∪N2. From the symmetry, B2,3 is also
complete to N1 ∪ N2.

Fix n1 ∈ N1. Suppose some vertex b ∈ B2 is non-adjacent to n1. Then b 6∈ N1, and so b is
non-adjacent to c1. We claim that every neighbour of b in Bx,y is adjacent to c1. For suppose not,
and let c be a neighbour of b in Bx,y non-adjacent to c1. Then the path c1-n1-a2-b-c contradicts (15),
where a2 ∈ A2. This proves the claim. Let M be a component of B2 \ N(n1) containing b. By the
previous argument applied to any vertex of M instead of b, we deduce that N(M) ∩ Bx,y ⊆ N(c1).
Let

X = A2 ∪ B1,2 ∪ B2,3 ∪ C1 ∪ C3 ∪ N1 ∪ N2 ∪ (N(c1) ∩ Bx,y).

By (19), N(M) ⊆ X. But now, since A2∪B1,2∪B2,3∪N1∪N2 ⊆ N(n1), and by (15), C1∪C3 ⊆ N(c1),
X is a double star cutset that contradicts 4.3. This proves that B2 \ {n1} is complete to n1.

Let G′ = G\{n1}. Since K is a non-dominating clique in G, by (8) some vertex v ∈ N(n1)\N(K)
is bisimplicial in G′. Consequently, v ∈ B1,2 ∪ B2,3 ∪ A2 ∪ B2. Since every vertex in A2 has three
pairwise non-adjacent neighbours in G′, namely n2, some a1 ∈ A1 and some a3 ∈ A3, we de-
duce that v 6∈ A2. From the symmetry we may assume that v ∈ B2 ∪ B1,2. But now, by (19),
N(v) \ N(n1) ⊆ C1 ∪ C3 ∪ Bx,y ∪ A1, and in particular N(v) \ N(n1) is complete to x. Since
x-u-v-u′-x is not a hole of length four for u, u′ ∈ N(v) \ N(n1), we deduce that N(v) \ N(n1) is a
clique, contrary to (28). This proves (33).

(34) Let a2, a
′
2 ∈ A2 and b ∈ B1,2 such that b-a2-a

′
2 is a path and let P be a path from a neigh-

bour of a′2 in B1,2 to a vertex with a neighbour in K, such that {a2, b} is anticomplete to V (P ), and
only one vertex of P has a neighbour in K. Then V (P ) ⊆ A1∪B1∪B1,2∪B0,1∪C and V (P )∩C 6= ∅.

Let p be the unique vertex of P with a neighbour in K. Then p is an end of P . Since by (32) A2 is
a clique, and A2 is complete to B2, it follows that V (P )∩ (A2 ∪B2) = ∅. Since A1 ∪B1 ∪B1,2 ∪B0,1

is anticomplete to A3 ∪B3 ∪B2,3 ∪B3,4, (V (P ) \ {p})∩ (C ∪A2 ∪B2 ∪K) = ∅, and V (P )∩B1,2 6= ∅,
it follows that V (P ) ⊆ A1 ∪ B1 ∪ B1,2 ∪ B0,1 ∪ C.

It remains to prove that p ∈ C. Suppose not, and choose P of minimum length, violating (34).
By the minimality, the first vertex, b′, of P is in B1,2 ∩ N(a′2) and no other vertex of V (P ) ∩ B1,2 is
adjacent to a′2. Since p has a neighbour in {x, y}, we deduce that p ∈ A1 ∪ B0,1. Let Q be a y-path
for a′2. Then x is anticomplete to V (Q) \ {y}, and y is anticomplete to V (P ), and therefore there
exists a hole H such that x, y ∈ V (H) and V (H) ⊆ V (P ) ∪ V (Q) ∪ {x}. By the choice of P , b is
anticomplete to V (P ), and since b ∈ B1,2, b is anticomplete to V (Q)∪ {x}. But this means that b is
anticomplete to V (H), contrary to (2). This proves (34).
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(35) Some vertex of A2 is complete to B1,2.

Suppose not. For a vertex a ∈ A2 let M(a) = N(a) ∩ B1,2. Let a2 ∈ A2 be a vertex with M(a2)
maximal. Then there exists b′ ∈ B1,2 \ M(a2). Let a′2 be a neighbour of b′ in A2. By the choice of
a2, there exists a vertex b ∈ B1,2 adjacent to a2 and not to a′2. By (32), a2 is adjacent to a′2, and
since a2-b-b

′-a′2-a2 is not a hole of length four, b is non-adjacent to b′.
Since by 4.3, the edge a′2b

′ is not the centre of a double star-cutset D such that b and K are
in different components of V (G) \ D, it follows that there exists a path S from b to a vertex with
a neighbour in K such that {a′2, b

′} is anticomplete to V (S). By choosing b appropriately, we may
assume a2 is anticomplete to (V (S) \ {b}) ∩ B1,2. We may also assume that only the last vertex,
c, of S has a neighbour in K. By (34), V (S) ⊆ A1 ∪ B1 ∪ B1,2 ∪ B0,1 ∪ C and c ∈ C. Let T be a
y-path for a2. Then y is anticomplete to V (S) \ c. If c has a neighbour in V (T ) \ {y}, then c ∈ C3,
the neighbour s of c in S is in B1 ∪ B1,2, and c-x-a1-s-c is a hole of length four, where a1 ∈ A1 is a
neighbour of s, a contradiction. This proves that c is anticomplete to V (T ) \ {y}. Therefore there
exists a hole H, with c, y ∈ V (H) and V (H) ⊆ V (S)∪V (T ); and b′ has no neighbour in V (H). Since
A3 is anticomplete to V (S) \ {c}, it follows that a2 ∈ V (H). If a2 has a neighbour n ∈ V (S) \ B1,2

then n ∈ A1, and b′ is anticomplete to {a2, n}, contrary to (11). This proves that a2 is anticomplete
to V (S)\B1,2, and, consequently, b ∈ V (H). Now, by 4.4, V (G)\ (N(H)\{x}) is connected, and we
deduce that there exists a path P from b′ to a vertex p with a neighbour in {x, y}, such that V (H) is
anticomplete to V (P ). Since a2, b ∈ V (H) and c ∈ V (H) ∩ C, and, by (33), C is a clique, it follows
that V (P ) ∩ C = ∅, contrary to (34). This proves (35).

(36) B1 ∪ B0,1 = ∅.

Suppose B1 6= ∅. Let S = C1 ∪ Bx,y ∪ {x}, T = A2, R = A1 ∪ B1 ∪ B0,1 ∪ B1,2 and L = A3 ∪ {y}.
Then S is a clique by (33) and T is a clique by (32), L is connected, S is complete to y and anti-
complete to L \ {y}, every vertex of T has a neighbour in L, and L is anticomplete to R. Let G′

be the graph obtained from G|(R ∪ S ∪ T ) by adding all the edges st with s ∈ S and t ∈ T . By
2.3 G′ is even-hole-free. Let a2 ∈ A2 be a vertex complete to B1,2 (such a vertex exists by (35)).
Since B1 6= ∅, {x, a2} is a non-dominating clique in G′, and the minimality of |V (G)| implies that
there exists v ∈ V (G′) \ NG′({a2, x}) that is bisimplicial in G′. Since S and T are both cliques, x is
complete to A1 ∪B0,1 and a2 is complete to B1,2, it follows that v ∈ B1. Since v is not a bisimplicial
vertex of G, and v is anticomplete to T , it follows that v has a neighbour u ∈ V (G)\V (G′). By (19)
u ∈ C, and since C = C1 ∪C3 ∪Bx,y and u 6∈ S, it follows that u ∈ C3. But now v-a1-x-u-v is a hole
of length four, for every a1 ∈ A1, a contradiction. This proves that B1 = ∅.

Next assume that B0,1 6= ∅ and choose b ∈ B0,1. By (8), b has a neighbour u in V (G)\N({x, y}).
But (19) implies that u ∈ B1, a contradiction. This proves (36).

From (36) and the symmetry we deduce that B3 ∪ B3,4 = ∅, and so

V (G) = A1 ∪ A2 ∪ A3 ∪ B1,2 ∪ B2,3 ∪ B2 ∪ C1 ∪ C3 ∪ Bx,y ∪ {x, y}.

(37) No vertex in A2 is complete to B1,2 ∪ B2,3.
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Suppose such a vertex u exists, and choose u with a maximal set of neighbours in A1 ∪ A3, over all
vertices of A2 complete to B1,2 ∪ B2,3.

We claim that K is a non-dominating clique in the graph G \ {u}. Suppose the claim is false.
Then B2 = B1,2 = B2,3 = ∅, A2 = {u}, and u is complete to A1 ∪ A3. By (7), this implies that A1

and A3 are both cliques, and therefore u is a bisimplicial vertex in G, a contradiction. This proves
that K is a non-dominating clique in the graph G \ {u}.

Let N1 and N3 be the sets of neighbours of u in A1 and A3, respectively. By the minimality
of |V (G)| and since {x, y} is non-dominating in the graph G′ = G \ {u}, there exists a vertex
v ∈ V (G) \ (N(K) ∪ {u}) such that v ∈ NG(u) and v is a bisimplicial vertex of G′. Since v ∈
V (G) \ (N(K) ∪ {u}), it follows that v ∈ A2 ∪ B2 ∪ B1,2 ∪ B2,3, and from the symmetry we may
assume that v ∈ A2 ∪ B2 ∪ B1,2 and therefore NG(v) \ NG(u) ⊆ C ∪ A1 ∪ A3. Since by (33) C is a
clique, it follows that v has a neighbour in A1 ∪ A3, and therefore v ∈ A2 ∪ B1,2.

Assume first that v ∈ B1,2. Then NG(v) \ NG(u) ⊆ C ∪ A1, and therefore NG(v) \ NG(u) is
complete to x. Let n1, n2 ∈ NG(v) \NG(u). Since x-n1-v-n2-x is not a hole of length four, it follows
that n1 is adjacent to n2, and therefore NG(v)\NG(u) is a clique, contrary to (28). This proves that
v ∈ A2.

Since v ∈ A2, it follows that v is anticomplete to C. Since A1 contains an x-pair, and therefore,
by (7), no y-pair, it follows that N(v) ∩ A1 is a clique, and similarly, N(v) ∩ A3 is a clique. Since
by (28) NG(v) \ NG(u) ⊆ A1 ∪ A3 is not a clique, we deduce that v has a neighbour a1 ∈ A1 \ N(u)
and a neighbour a3 ∈ A3 \N(u). If v has a non-neighbour in b ∈ B1,2, then by (11), b is adjacent to
a1, and u-v-a1-b-u is a hole of length four, a contradiction. So v is complete to B1,2, and similarly, v

is complete to B2,3. From the choice of u it now follows that there exists a vertex a′1 ∈ A1, adjacent
to u and not to v. But now x-a′1-u-v-a3-y-x is a hole of length six, a contradiction. This proves (37).

By (35), there exist vertices v1, v3 ∈ A2 such that v1 is complete to B1,2 and v3 to B2,3; choose
v1 and v3 with maximal sets of neighbours in A1 and A3, respectively. Let N1 be the set of neigh-
bours of v1 in A1, and N3 the set of neighbours of v3 in A3. By (37), v1 6= v3, and by (33) v1 is
adjacent to v3. If there exist n1 ∈ N1 and n3 ∈ N3 such that n1 is non-adjacent to v3, and n3 is
non-adjacent to v1, then x-n1-v1-v3-n3-y-x is a hole of length six, a contradiction. Consequently,
from the symmetry we may assume that v3 is complete to N1. By (37), v3 is not complete to B1,2.
Since by 4.2 v3 is not the centre of a full star cutset in G, there is a path from a vertex of B1,2 \N(v3)
to one of x, y, containing no neighbour of v3. Since by (11), N(B1,2) ∩ A1 ⊆ N1, and by (19) B1,2 is
anticomplete to B2,3, and v3 is complete to B2 ∪A2 \{v3}, it follows that there exist an edge bc with
b ∈ B1,2\N(v3) and c ∈ C \N(v3). Since b-a1-x-c-b is not a hole of length four, where a1 ∈ A1∩N(b),
it follows that c ∈ C1 \ N(v3). Since if some n3 ∈ N3 is non-adjacent to v1, then y-c-b-v1-v3-n3-y
is a hole of length six, we deduce that v1 is complete to N3. But now, from the symmetry, there
exists an edge b′c′ with b′ ∈ B2,3 \ N(v1) and c′ ∈ C3 \ N(v1), and since by (33) c is adjacent to c′,
c-b-v1-v3-b

′-c′-c is a hole of length six, a contradiction. This completes the proof of 5.1.
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