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l. Introduction

A number of hydrogen-bonded crystals exhibit the phenomenon of a ferro-
electric or antiferroelectric phase transition (Jona and Shirane, 1962). A
typical example is potassium dihydrogen phosphate, KH,PO,, which under-
goes a phase transition from a paraelectric state into a spontaneously polarized
state at about 122°K. The structure of KH,PO, is typical of these crystals,
being tetragonal (West, 1930) with every phosphate group surrounded tetra-
hedrally by four other phosphate groups. As revealed by neutron diffraction
experiments (Bacon and Pease, 1953 ; Peterson and Levy, 1953), the hydro-
gen ions are located between each pair of phosphate groups so that the crystal
is a hydrogen-bonded lattice with the positions of the phosphate groups as
lattice vertices. It further turns out that the equilibrium positions of the hydro-
gen atoms are near one or the other end of the bonds. Consequently, a “‘state”
of the crystal is characterized by a specification of its hydrogen positions. It
appears to have been first suggested by Onsager (1939) that the ferroelectric
transition in KH,PO, is connected with an ordering of the hydrogen atoms
in the bonds. If an energy is assigned to each of the 2% = 16 vertex hydrogen
configurations, our problem is then simply to evaluate the partition function

Z= 3 e FE €))
states

Here the summation is extended over all states of hydrogen distributions,
B =1/kT, and E is the energy of the crystal for a given state. A basic assump-
tion we shall make is that E is a simple sum of energies associated with the
configuration at each vertex. Ferroelectric or antiferroelectric model results
from different energy assignments. For example, if the configuration with a
net dipole pointing along the crystal axis is given the lowest energy, then at
low enough temperatures there is a tendency for a spontaneous polarization
along the crystal axis, thus resulting in a ferroelectric model. On the other
hand, an antiferroelectric model results if the energy assignment favours
hydrogen configurations with zero dipole moment at each vertex.
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The evaluation of the partition function (1) in a closed form is in general
a difficult problem for three-dimensional lattices and for arbitrary energy
assignments. Very few rigorous results are known. For two-dimensional lat-
tices, however, it is possible in some cases to carry through a rigorous
analysis. It is with respect to these exact results that we shall address our-
selves in this article.

The first simplification (which also applies to the three-dimensional lattices)
was made by Slater (1941) in connection with the hydrogen distributions
(states). Adopting hypotheses made by Bernal and Fowler (1933) and used by
Pauling (1935) in his discussion of the residual entropy of ice, Slater assumed
the following:

(1) There is always one and only one hydrogen atom on each bond. (We
have already implicitly assumed this in our previous discussion.)

Ice Rule

(2) There are precisely two hydrogen atoms near to (and two hydrogen
atoms away from) a given vertex.

The first rule is based on plausible physical and chemical assumptions and
the ice rule ensures local electrical neutrality. As we shall see in later discus-
sions, the imposition of the second condition has profound consequences for
the behaviour of the system.

Il. Ferroelectric Models and Related Probiems

In this section we shall introduce the ferroelectric models and discuss their
connection with a number of related problems, The discussion of these rela-
tions is interesting because it provides us with further insights into the prob-
lems and sometimes allows us to make use of established results in our
considerations. For example, the existence of the thermodynamic limit for
the most general ferroelectric model follows from the fact that the model is
equivalent to an Ising problem for which the thermodynamic limit is known
to exist. Only a few of the models introduced in the present section are soluble,
however. Detailed discussion of the soluble cases and the solutions will be
the subject matter of Sections IV through VII. Another presentation of the
relationship of these models to general lattice problems can be found in
Percus (1969).

A. The ice problem

We shall begin by discussing the ice problem because that forms the skeleton
of the ferroelectric models. Some substances, such as ice and CO, appear to
have a residual entropy even at very low temperatures. In the case of ice, the
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entropy at 10°K is 0-82 4 0-05cal/°’K-mole (Giauque and Stout, 1936).
The ice crystal has a Wurtzite structure with each oxygen ion hydrogen-
bonded to four nearest neighbour oxygens. If the distribution of the hydrogen
ions obeys the ice rule (Section I), we can write the residual entropy, S, as

S =klnZ, @)

where Z, is (1) with all energies equal to zero and is the number of hydrogen
configurations of the crystal consistent with the ice rule, and & is Boltzmann’s
constant. In an ice crystal, the oxygens are situated at the lattice vertices, and
the hydrogen positions on the lattice edges can be specified by attaching
arrows to the lattice edges, e.g., using — to represent —H-. Then Z, is the
number of ways of directing the lattice edges such that there are always two
arrows pointing away and two arrows pointing into each lattice point. To
illustrate the allowed arrow configurations, let us consider ‘“‘square” ice,
which is the two-dimensional version of real ice and is defined by the same ice

it (5) ®

R s

FiG. 1. The six ice rule configurations.

rule applied to a planar square lattice. The six possible states at each vertex
are illustrated in Fig. 1. Note that without the ice rule there will be a total
of 16 possible states at a vertex. For a large lattice of N vertices, Z, is of the
order of eV, and we define
W = lim Zy'™V, 3)
N-w

In Section V.B we shall evaluate W exactly for square ice and obtain (Lieb,
1967a,b)

Wig. ice = ($)*/* =1:5396007 .... 0

It is also possible to consider “linear” ice which is the one-dimensional
version of the real ice. A picture of this one-dimensional arrangement is
shown in Fig. 2. Here again the ice rule applies to all vertices. The two arrows
of the two bonds on the left may be in one of four different configurations.
If the two arrows are in the same direction, all other arrows of the lattice
are then fixed, pointing in the same direction. If on the other hand the two



8. Two-dimensional ferroelectric models 335

arrows are opposite, then each vertex can take two possible states. It follows
that for a linear ice with free ends, Z, = 2V + 2, or

VVIinear ice = 2. (5)

Meijering (1957) and Nagle (1966) have given numerical estimates of W
for two- and three-dimensional ice. Nagle’s results are

VVSQ. ice = 1-540 + 0-001,
Weeat ice = 1:50685 + 0-00015, ©6)
or S = 0-8154 + 0-0002 cal/°’K-mole for real ice.

XX

F1G. 2. A typical arrow configuration of linear ice.

Pauling (1935) made a rough estimate of W in the following way: Suppose
that the lattice edges and the vertex configurations are independent. Then

Zo = 2V(5) = () ™

or W= 1-5. In (7), the factor ;& comes from the fact that only 6 out of the
16 possible vertex configurations are allowed. It is remarkable that the crude
estimate is so close to the accurate value (6).

Pauling’s reasoning to estimate W can be immediately applied to a general
“ice” lattice. Consider an arbitrary lattice L (any dimensionality) whose ith
vertex is hydrogen-bonded to 2/; (=even) other vertices. The edges of the
lattice are directed as before and an ice configuration is defined as having
precisely /; arrows in and /; arrows out at the ith vertex. This amounts to
saying that (37) out of the 2% possible vertex configurations are allowed.
Since the total number of hydrogens is / = ) I, the approximate Pauling

i

estimate for the total number of ice configurations on L is

Zo = 2'T] (211") 272 =] (zlz,.) 27k, ®)

i i i i

It is easy to see, by extending an argument due to Onsager and Dupuis
(1960), that the estimate given by (8) (and (7)) actually is a lower bound on the
exact value of Z,. Let us cover the ice lattice L completely by drawing non-
overlapping closed polygons through all lattice edges. These may intersect
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themselves and each other at vertices but must not overlap on edges. The
resulting polygon configuration is called a pattern. In a given pattern, there
are always /; lines (i.e., parts of distinct polygons) intersecting at the ith vertex.
Since there are (2/)!/(;12") different ways that /; lines may meet at the ith
vertex (i.e., the number of pairings of 2/, edges to form /; lines), the total
number of distinct patterns on L is

QI
;1 = Um_li!‘zli R ®
where the summation is extended over all patterns on L. Next we define a
directed pattern as a pattern in which each of the polygons is directed in
either the clockwise or the counterclockwise direction. Since each polygon
can be directed in two ways, we have then:

The total number of directed patterns = T = ) 27 (10)
P

where p is the number of polygons of a given pattern. Obviously, each directed
pattern gives rise to a unique ice configuration. On the other hand, the num-
ber T can also be obtained by counting the number of directed patterns
giving rise to the same ice configuration. For each ice configuration, we may
obtain a directed pattern by matching the /; out arrows with the /; in. Since
there are /;! ways to do this matching at the ith vertex, we have also

T::Z()Hli!’ (11)

Combining (9), (10) and (11), we see that

!
Zonli! =22P> Zl = H—‘T,
i P P o 120
or

Zy > ]‘[ (2;) 27k, (12)

Note that this lower bound holds for a lattice of any size provided it has no
free edges (i.e., edges which terminate in only one vertex). A periodic lattice
is thus allowable.

A crude upper bound on W may be obtained if L has an A-B sublattice
structure, i.e., it is bipartite. If we let all lattice points in A4 take the allowed
ice configurations freely, all the possible ice configurations on L will certainly
be generated. However, for some configurations, the ice rule will be violated
at some vertices in B. Therefore we have generated too many configurations
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and hence have the inequality

21

Z, <] ( '). (13)
icd li

This bound also holds for a finite lattice with free edges. Combining (12) and

(13) and for a large uniform lattice (J; = /), we find

(?)2”<IV<(?)W, (14)

which reduces to

%<W<J6, forli=2

15)

and 5
7<W<\/20, for I =3.
These bounds are compared with the exact values of W as follows. For linear
ice (/ = 2) we have W = 2 from (5). For a square lattice (/ = 2) W is given
by (4). For a planar triangular lattice ({ = 3) Baxter (1969) has obtained the
exact value (see Section VII.B)

3

SV3=2598... (16)

WA lattice ™

The Pauling lower bounds appear to provide surprisingly accurate estimates
in the two- and three-dimensional cases.

B. Equivalence of the ice problem to other counting problems

Before we leave the subject of the ice problem, it is of interest to demon-
strate the equivalence of the ice model with a number of other counting
problems. However, it is convenient in our discussions to use an alternate
description of the ice configurations which we shall now describe.

We define a bond graph as a graph pertaining to the lattice with bonds
(or lines) drawn on a collection of the lattice edges. Since a lattice edge can
exist in two states, bond or no bond, there exists a one-to-one correspondence
between the arrow configurations on the lattice and the bond graphs on the
lattice (Wu, 1967). One way to see this correspondence is to select a basic
arrow configuration on a given lattice L. Then each arrow configuration on
L is converted into a bond graph by comparing it with the basis and by draw-
ing bonds on those lattice edges having arrows pointing opposite to the cor-
responding arrows of the basis. Conversely, each bond graph corresponds to
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a unique arrow configuration. In the case of a square ice lattice L, we have
the following situations:

Egquivalence 1

Every vertex of the basis configuration is of type (1). Then as shown in Fig.
3, the allowed bond configuration at a vertex consists of six different kinds of

0] (2) 3 @ )] ©)

% ) & B e e e e e )

f |
.. S

Fi1c. 3. Bond arrangements obtained by using vertex (1) as the basis.

PR v,
1
1
pu—
a—

bond arrangements. The number of ice configurations on L, (4), now gives
the number of bond graphs that can be drawn on L using these six kinds of
bond arrangements. A typical bond graph of this type is shown in Fig. 4.

-

i
1
1
[

FiG. 4. A typical bond graph constructed from the bond arrangements of Fig. 3.

Egquivalence 2

The basis configuration consists of configurations (5) and (6) intermixed in
a sublattice construction. That is, all vertices of sublattice 4 are of type (5)
and all vertices of sublattice B are of type (6). The allowed bond configur-
ations on both sublattices A and B are shown in Fig. 5. Notice that the same
types of vertices occur on both 4 and B. Therefore the number of ice con-
figurations (4) now counts the number of polygonal configurations construc-
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ted on L without using the straight edges. A typical bond graph of this type
is given in Fig. 6.

0] @ (3) @ s {6

o e

R e

FiG. 5. Bond arrangements obtained by using the basis configurations (5) on sublattice 4
and (6) on sublattice B.

Egquivalence 3

A third way of converting a given arrow configuration into a bond graph
is to draw a bond for each arrow pointing into a vertex of sublattice A. In
the case of a square lattice, the possible bond configurations are shown in
Fig. 7. Again, the same types of vertices occur at both 4 and B. Note that it
is the empty (no bond) and the crossover types of vertices which are now
excluded. Therefore (4) counts the configurations of non-intersecting poly-
gons that cover all lattice points. A typical bond graph of this type is shown
in Fig. 8.

It is also possible to see directly that this counting is equivalent to the
equivalence 2 above. If, on the horizontal (or vertical) edges, we replace bonds

FiG. 6. A typical bond graph constructed from the bond arrangements of Fig. 5—polygons
without straight edges.
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by no bonds and vice versa, the vertex configurations of Fig. 5 and Fig. 7
are seen to be completely identical. Hence there is a one-to-one correspon-
dence between these two types of configurations, and the countings are the
same.

0} @) 3 @ (5 ©)

o

Fic. 7. Bond arrangements obtained by drawing bonds for all arrows pointing toward
vertices of sublattice 4.

Eguivalence 4

Another equivalent counting problem [due to Rys (1963)] can be obtained
by considering Fig. 9 which shows a superlattice L, (denoted by the dotted
lines) superimposed on a square ice lattice L (denoted by the solid lines).
For each ice configuration on L we construct a bond graph on L, according
to the rule:

A bond is drawn on an edge, E, of L, if and only if the vertex of L
on E has a configuration with a polarization along E, and the bond
is drawn in the direction of the polarization.

PET . ———— -

- e ————)

FiG. 8. A typical bond graph constructed from the bond arrangements of Fig. 7—non-
intersecting polygons that cover all lattice points.
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It follows that each vertex of L, has either 0, 2 or 4 bonds but not 1 or 3
bonds. A typical example is shown in Fig. 9. As a result, we have for each ice
configuration on L a polygonal configuration on L,. Next we observe that
if we reverse all the arrows on L associated with a given polygon on L, (i.e.,
those arrows from which the polygon is constructed), the result is another ice

\
e \

N
/(\ N

F1G. 9. A typical example of a polygonal configuration on the superlattice L constructed
from a given ice configuration on the ice lattice L.

configuration which corresponds to the same polygonal configuration on L.
The same effect is also observed if we reverse the four arrows on L surround-
ing any vertex on L, having no bonds. Therefore, by counting the ice con-
figurations on L, we have counted each polygon configuration on L 2P times
where p is the number of components of the polygon configuration. To
obtain p, every polygon as well as every point of L not covered by a polygon
is counted as one component. Therefore we arrive at

Zy=Y 2%, amn

where the summation is taken over all polygonal configurations on L, and
Z, is the number of ice configurations on L. It must be noted that L,
contains only half as many vertices as L.

Egquivalence 5

The ice model can be mapped into another counting problem involving closed
polygon configurations. In a configuration of closed polygons, the number
of bonds incident at each vertex is 0, 2, or 4. Let p be the number of vertices
with two bonds incident in a given polygon configuration, then the number
of ice configurations is equal to (Nagle, 1966)

Zo= "L G (18)
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Here the summation is taken over all closed polygon configurations c that
can be drawn on the ice lattice. It is verified from (18) that (3/2)" is indeed
a lower bound to Z,. The expression (18) also forms the basis of a numerical
estimate of the residual entropy of real ice (Nagle, 1966). The derivation of
(18) will be discussed after eqn (391).

Equivalence 6. The three-colour problem on a square map

It was pointed out to us by Lenard (the original literature reference is un-
known to us) that the solution to the ice problem is also the solution to the
three-colour problem on a square map. The problem posed is the following:
Given a planar square lattice, in how many ways can the squares be coloured
with three colours 4, B and C so that adjacent squares do not have the same
colour. The solution is to A4 colour the leftmost square in the bottom row.
Then, for each ice configuration there is a unique colouring and conversely.
First arrange the colours in the cyclic order A-B—-C—-A. Consider one of the
vertices surrounding the given A colour. The squares surrounding this vertex
are coloured uniquely by proceeding in a clockwise order and using the rule
that an outward arrow on a bond separating two squares means that the colour
of the lattice square follows that of the previous square in the order given above
(conversely for an inward arrow). Because there are always two arrows out
and two arrows in at a given vertex, one always returns to the starting colour
A after going around a vertex. In this way one can colour the first row of the
lattice, and then the other rows ad seriatim. It is easy to see that no ambig-
uity arises and that we are never prevented from adding one more colour.
Finally, the starting colour may be 4, B or C. Hence,

number of three-colourings of a square map = 3Z, (19)

where Z, is the number of ice configurations given by (3) and (4).

The related colouring problem for a hexagonal lattice

A similar colouring problem, but one which is not quite equivalent to an ice
problem, has been considered by Baxter (1970a) for a hexagonal lattice of N
vertices. The problem is the following: In how many ways, Z,, can the edges
of the lattice be coloured with three colours so that no edges incident on a com-
mon vertex are coloured alike. Using a method similar to that for deriving the
residual entropy of square ice, (4), Baxter found (see Section VII.C)
2 5 8

lim Z,'N = . . ... =1.20872 .... 0

e 0 T G G v @0
Since each edge can now be in one of three states, instead of the two states
for the ice problem, one may use an argument (Baxter, 1970a) similar to
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that of Lenard’s to see that this is equivalent to counting the number of
four-colourings of the faces of the hexagonal lattice. More precisely, one has
the result

number of four-colourings of the faces of a hexagonal lattice = 4Z, (21)

where Z, is given by (20).

One may arrive at yet another equivalent counting problem (Baxter, 1970a).
Consider a definite edge colouring of the hexagonal lattice. If the edges of
colours, say, A and B are traced out, the result is a polygon configuration.
Clearly, those colourings having colours 4 and B interchanged along any poly-
gon result in the same polygonal configuration. The following identity then

follows as a result:
Zy=)2? (22)

where the summation is taken over all polygonal configurations ¢ on the hex-
agonal lattice, and p is the number of polygons of a given polygonal configur-
ation. Tt is interesting to note the similarity between (22) and (17). We also
mention that if the C coloured edges are regarded as dimers, then one has the
result

Y 1 = the number of dimer configurations

N w/2

~ exp [——« r In(2sin6)d 9} . 23)
T Jrn/6

The last expression can be obtained by setting the activities equal to unity

in the dimer generating function (359, 372) of the hexagonal lattice.

C. Ferroelectric models with the ice rule

Having introduced the ice model, we are now in a position to define the
ferroelectric models. For the sake of clarity in presentation, we shall, in the
present section, consider only the ferroelectric models which obey the ice
rule (the ice rule models), and reserve the discussions of the more general
models to a later section. As we shall see, the exact solution of the ice rule
models can be obtained for a square lattice, while only special cases of the
more general models can be solved.

The difference from the ice problem is that now we introduce energies to
the vertices. Therefore, instead of computing the number of ice configura-
tions, the problem now is to evalute the partition function (1). Ferroelectric
or antiferroelectric models then result according to different energy assign-
ments. Some energy values for a square lattice are given in Table I.

The KDP model is the two-dimensional version of a model proposed by
Slater (1941) for the ferroelectric KH,PO,, whereas the F model, first con-
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sidered by Rys (1963), is a model of two-dimensional antiferroelectrics. The
modified KDP model, first introduced by Wu (1967, 1968), is also a model of
ferroelectrics. Note that vertices 1, 2, 3 and 4 have a net polarization, while
vertices 5 and 6 have no polarization. Both the modified KDP and the KDP
models encourage vertices 1 or 2 or both and hence have completely polarized
ground states. The F model encourages vertices 5 and 6 and has an anti-
ferroelectric ground state. Atlow enough temperature, the onset of long-range
order in both models leads to the occurrence of phase transitions.

TaBLE 1. Vertex Energies for the Ice Rule Models of Fig. 1

€1 €y [ €4 €s €g
ice 0 0 0 0 0 0
modified KDP o 0 e € g >
KDP 0 0 &4 & & £
F g, & & g, 0
direct field —(h+v) h+v —h+v h—v O 0
staggered field 0 0 0 0 s(sublattice A) — s(sublattice A)

—s(sublattice B) s(sublattice B)

It is also possible to include an external horizontal electric field % and a
vertical electric field v. Assuming each arrow represents a unit electric dipole
moment, the effect of the external field can be included by adding to the
vertex energies the field energies shown in Table I. The long-range order of
the KDP and the modified KDP models are the polarizations and can be
computed. However, the long range order for the F model is characterized
by a sublattice polarization of vertices 5 and 6. Therefore, to compute this
long-range order, it is necessary to apply a staggered quadrupole field which
alternates from site to site. The energies of such a staggered field are also
given in Table I. Unfortunately, unlike the case of inclusion of a direct field
(h, v), the solution to the F model with a staggered field is known only at a
particular temperature (Baxter, 1970b, see Section V. H.1).

The KDP model can be defined for lattices in all dimensions (Nagle, 1968).
It has been established rigorously that a first-order phase transition occurs
for the KDP model in all dimensions (Nagle, 1969 and Takahashi, 1941).
The two-dimensional model was first solved by Lieb (1967d) for all tempera-
tures T, and simultaneously by Sutherland (1967) for T > T, the transition
temperature. On the other hand, the antiferroelectric model in one dimension
is uninteresting because it leads to no phase trasition. Lieb (1967¢c) solved
the two-dimensional antiferroelectric model, the F model, and showed that
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it exhibits an infinite order transition. A similar antiferroelectric model,
the J model, can also be defined in three dimensions (Nagle, 1965), but no
rigorous results are known. The model with all six energy parameters
arbitrary is equivalent to a ferroelectric or antiferroelectric model with an
external electric field (C. P. Yang, 1967). The solution of the latter problem
was obtained by Sutherland et al. (1967). The exact results on these models
will be the subject matter of Sections IV and V.

It is of interest to mention here two generalizations of these models. We
have shown that there is a 3 to 1 morphism between the ice configurations and
the three-colourings of the faces of a square lattice such that no two adjacent
squares are coloured alike. If we regard the three colours as three types of par-
ticles with an infinitely repulsive force between nearest neighbours of the same
type, then we have a model of hard squares. It turns out that using a tech-
nique similar to that for treating the ferroelectric model, the generating
function for this problem can also be evaluated in closed form (Baxter, 1970c;
see also Section VII.A). The problem is different because we have to keep
track of colours and not just patterns of colours. In particular, if we regard
two colours as the background and the third colour as particles, the situation
is very similar to the usual gas of hard squares. The model exhibits the interest-
ing behaviour that a phase transition occurs at some intermediate value of the
particle density. Another interesting extension of these models is the consider-
ation of the F model on a triangular lattice. A result similar to the infinite
ordér transition of a square lattice has also been obtained by Baxter (1969)
(see Section VIL.B).

Finally, there is the ferrielectric model. It is obvious that the properties of
the KDP ferroelectric do not change, even with a field, if we replace the
favoured vertices (1) and (2) by the vertices (3) and (4). The ferrielectric is
constructed by using the KDP energy assignments except that (1) and (2) are
favoured on odd numbered rows and (3) and (4) are favoured on even number-
ed rows. The ordered ferrielectric state will then have a vertical polarization
but no net horizontal polarization. Such substances are discussed in Jona and
Shirane (1962).

It is far from obvious, but nonetheless true, that in the thermodynamic
limit the properties (including correlation functions) of the ferroelectric and
ferrielectric are identical when % = 0. The reason for this is presented in
Section V.H.2. When /4 # 0 the properties of the two models are completely
different and progress in solving the ferrielectric problem for / # 0 is being
made at present.

We conclude this subsection with the remark that for ¢, <0 and A= 1v
with |4| < %|e;| the KDP model has no phase transition of any kind. Glasser
(1969) has termed this case the IKDP model (I = inverse). The partition
function can also be evaluated in this case when % = v = 0. (There is an
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error in Glasser (1969), and the correct result will appear in Abraham et al.
(1972) and is given in Section V.B.) Makita and Miki (1970) claimth at the
choice exp (—fe;) = 2 gives, using (2), the anomalous entropy of three-
dimensional NaH;(SeOs3),, also known as STS (sodium trihydrogen selenite).
The value of W so obtained is

Wers = 2:578 ... (24)

Details of this calculation are given in Abraham et al. (1970, 1971).
Analogously, for the F model with e, < 0 and % or v equal to zero, there
is no phase transition. This is the IF model.

D. General ferroelectric models

The models described in the preceding section are the ice models satisfying
the ice condition. The physical consideration which leads to the ice rule
assumption is the expectation that there are always two hydrogens near to
and two hydrogens away from a given lattice point. As the real physical
situation is undoubtedly more complicated than this simple picture, it is
important to investigate the effect of removing the ice rule restriction (Takagi,
1948). We refer to the models with the ice rule relaxed as the general ferro-
electric models.

If no restriction at all is imposed on the positioning of the hydrogen atoms,
a total of 2* = 16 different kinds of vertex configurations can occur. This
general model will be referred to as the sixteen vertex problem. The mathe-
matical problem here is to evaluate the partition sum (1) which we now
rewrite as

N

z=3%
Gi=1

Here the summation is extended over all possible arrow configurations, G,
on the lattice, N is the total number of vertices, £(i) indicates the type of
vertex configuration at the ith lattice point, and ;= exp (—fe,) is the
weight of a vertex having energy e,. The 16 different kinds of vertices for a
two-dimensional square lattice are shown in Fig. 10 together with the as-
sociated bond arrangements obtained using the prescription given in Section
ILB. Vertices (1) through (6) obey the ice rule. Vertices (7) and (8), having
four arrows in or out, have the physical interpretation of being doubly
ionized, whereas vertices (9) through (16) are singly ionized. The ice models
are obtained by taking e, = oo for & =7, 8, ..., 16.

A less general, but important case of interest is the eight vertex problem
for which

eg=00 or w;=0, ¢=09,10,..,16. (26)
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That is, only vertices (1) through (8) are allowed. This eight vertex problem
is a first step generalization of both the ice and the Ising models. The mathe-
matical problem is again to evaluate the partition sum (25), but the sum-
mation is taken over a more restricted set of graphs. We note from Fig. 10
that in the bond language the number of bonds incident at a vertex in the
eight vertex problem is always even, so that the resulting bond graphs al-
ways form closed polygons. Thus, the partition sum Z is a generating function
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Fic. 10. The sixteen vertex configurations of the general ferroelectric model on a square
lattice and the associated bond arrangements obtained by using vertex (1) as the basis.

for weighted polygons drawn on the lattice. The Ising partition function is
also a generating function for such polygons, but it counts only the number
of polygonal edges (Newell and Montroll, 1953). Since the edge weights can
always be converted into vertex weights but not vice versa, the eight vertex
problem is, in this sense, a generalization of the Ising problem.

One interesting aspect of the general ferroelectric models is their close
relationship with the Ising model with many-body interactions. The results
are summarised in the following:

(i) The eight vertex problem on a square lattice is equivalent to an Ising
model with 2 and 4 body interactions and without an external magnetic
field.
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(i) The sixteen vertex problem (in any dimensionality) is equivalent to an
Ising model with 2, 3, and 4 body interactions and with an external magnetic
field.

We now show this equivalence for the two cases separately.

1. The eight vertex problem

Consider a square ferroelectric lattice L. The equivalence of the eight vertex
problem on L with an Ising model is established through the introduction
of the dual lattice D (Fan and Wu, 1969). The dual lattice D is obtained by
drawing perpendicular bisectors to all Iattice edges of L, and is itself another
square lattice. Let D be an Ising lattice with spins (¢ = + 1) located at its
vertices. As is well-known, there exists a two-to-one correspondence between
the spin configurations of D and the polygon configurations of L (Wannier,
1945). For each spin configuration on D, we can construct a unique polygon
configuration on L by drawing bonds along the edges of L separating pairs
of unlike spins. In fact, the two spin configurations related by a complete
spin reversal result in the same polygon configuration. Conversely, for each
polygon configuration on L, we can obtain two different spin configurations
on D which are related by a reversal of all spins. If the energies of these
corresponding configurations are identical, we then have

Z= 2ZIsing (27)

where Z;,. is the partition function for the Ising problem.
In order to establish (27), we introduce for the Ising lattice 2 and 4 body
interactions and write the Hamiltonian as (Wu, 1971b)

H=—J,—J,2Wg¢" — J,3Wg¢’

- J2P¢¢ — J 3Pgq’

— JyZad'a"a"". (28)
Here the first two sums extend over, respectively, the first neighbour inter-
actions in the horizontal and the vertical directions, the next two sums extend
over the next nearest neighbour interactions in the diagonal directions, and
the last term is the four-body interaction summed over the sets of four spins
surrounding a vertex of L. The interactions surrounding a typical lattice
point of L is shown in Fig. 11, where we have included only one half of the
horizontal and vertical interactions. It is now easy to write down the equiva-
lent vertex energies of L in terms of the Ising interactions. For example, the

vertex (1) corresponds to having 4 identical spins (+ 1 or — 1) surrounding
a vertex of L. Therefore the energy e, is obtained from (28) as

ey=—Jo—Ji—J,—J—J —J,.
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Similarly,
e=—Jo+Jy+ I, =T =T = J,
e3=—Jog+J - J,+J+J —J,
eg=—Jo—Ji+Jy+J+J ~Jy (29)
es=es=—Jog+J —J+ J,
e =eg=—Jo—J +J+ J,

Now the number of opposite polygonal corners (i.e., vertices (5) and (6) or
(7) and (8), see Fig. 10) are equal in a given polygon configuration. Therefore,
there is no loss of generality in restricting consideration to es=eq and e;=eg.

FiG. 11. The Ising interaction (28) surrounding a lattice point of the ferroelectric lattice.
Only half of the horizontal and vertical interactions are associated with each lattice point.
The four-body interaction is not shown.

We can then solve (29) for the Ising interactions and obtain the inverse
relations

Jo=—%(es + e+ e5+ e, +es+ e+ e+ eg),
Ji=d(—e+ e, +e3—ey),

Jy=14(—e  + e, —e;+ey),

J =3—e —e;t+est+e,+es+es—e; — eg), (30)
J =3—eg —e; +e3+e,—es —eg+ e; + eg),

Jao=3%(—eg —e, —e3 —ey+ 5+ eg + e, + eg).

This completes the proof of equivalence of the two models. In particular for
J4 = 0, we have the interesting result that the next neighbour Ising model is
equivalent to an eight vertex problem. On putting e; = e¢; = 0, the resulting
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ferroelectric (ice) model is soluble (Sutherland er al, 1967), but the
equivalent Ising model involves some infinite interactions, and this equiva-
lence of models is not very useful in practice. On the other hand, the eight
vertex problem is soluble if the corresponding Ising problem has only
noncrossing two-body interactions. We find the following possibilities:

(a) {er + ey 65+ ey} = {es + eq, €7 + €5} (€1))

This ensures J, =0 and J =0 or J' =0, and the ferroelectric model is
equivalent to the Ising model of a triangular lattice. The condition (31) can
be shown to lead to the problem of a noninteracting fermion system in the
S-matrix formulation (Hurst, 1966) of the eight vertex problem, and has been
termed (Fan and Wu, 1969) the free fermion condition.

(b) € =€ = —e3= — ¢y,
es=96= '—e7= —‘es. (32)

This ensures J; = J, = J, = 0 (J, is taken to be zero), and the model is
equivalent to an Ising model consisting of two superimposed square lattices.
This leads to the modified F model considered by Wu (1969b) (see Section
VL. A).

2. The sixteen vertex problem

The most general sixteen vertex problem is equivalent to an Ising model with
2, 3 and 4 body interactions and with an external magnetic field (Suzuki and
Fisher, 1970). While this result is valid for models in all dimensions, we shall
now establish it for the case of a square lattice. The extension to other lattices
is straightforward.

Consider a square ferroelectric lattice L consisting of N vertices. It is
convenient to consider an Ising lattice L, whose 2N vertices are located at
the centres of the 2N edges of L. This situation is shown in Fig. 12. As each
spin of L; can take on two values + 1 and each lattice edge of L can be
directed in two different ways, there clearly exists a one-to-one correspon-
dence between the spin configurations of L; and the arrow configurations of
L. Next we assume interactions only among those four spins of L 1 surround-
ing a vertex of L. It is then possible to identify the Ising interaction energies
of the four spins as the corresponding vertex energies of L. For the most
general ferroelectric problem the 16 energy parameters ey, ..., e,¢ are all
different. It is therefore necessary to introduce the same number of indepen-
dent parameters for the interactions among the four spins surrounding a
vertex of L. This can be accomplished by including up to 4-body interactions
among the spins. Relations similar to (29) and (30) can then be written down
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for a unique transformation of the parameters involved. Instead of dealing
with the most general case with all 16 parameters different, we shall now
illustrate the procedure for the more physical situation when some vertex
energies are the same. The extension to the most general case can be readily
worked out.

FiG. 12. The superposition of the Ising lattice L (the solid lines) and the ferroelectric
lattice L (the dashed lines). The dots denote the positions of the Ising spins.

Let us consider the energy assignment for the following ferroelectric prob-
lem

e, = E,,

e, =E,,

e3 = ey = Ey,

es =es = E,’, (33

e; = eg = E,",

ey = €59 = ey = €15 = Ky,

€13 = €14 = €55 = €y = Ej.
Here the subscripts of the E’s refer to the numbers of bonds attached to the
vertex in the bond language (Fig. 10). The Ising Hamiltonian for the four
spins of L; surrounding a vertex of L is now taken to be
H=—J,—J(o,+0,+03+0,) — Jy(0,05+0,0,) — J, (6,0,+030,)

— J,/'(6,04+0,03) — J3(0,0,03+ 06,0304+ 0,030,+0,0,04)

- J40‘10'20'304. (34)
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The relative positioning of the spins ¢, 0,, g5 and g, is shown in Fig. 12.
For definiteness, the following rule of correspondence between the spin and
the arrow (or the bond) configuartions will be used.

spin — 1 (+ 1) on L; <> a bond (no bond) on L.
Using (33) and (34) we obtain

Ey = —=(Jo+4J, +2J,+2J,) +2J," +4J; + ),

E, =—Jo—2J,+2J5+J,

E, = —Jo—2J, +2J,) +2J," — J,,

Ey = —Jo+2J, —2J, +2J," — J,, (3%5)

E)) = —~Jo+2J,+ 2], —2J," — J,,
Ey =—Jg+2J, —2J3+ J,,
E, =—-Jo+4J,-2J,-2J, — 2J2"V+ 475 — J,
Solving (35) for the J’s, the result is
Jo = — $5(Ey +4E, + 2E, + 2E,’ + 2E,” + 4E; + E,),
Jy =+H(—Ey, —2E{ + 2E; + E,).
J, =+¢(—Ey —2E, + 2E," + 2E,” — E,),
J,' = 3&(—Ey + 2E, — 2E,’ + 2E,” — E,), (36)
Jy) = #6(—Ey + 2E, + 2E," — 2E," — E,),
Jy =(—E,+2E; —2E; + E,),
Jo =s(—E, +4E, — 2E, — 2E,’ — 2E,”" + 4E; — E,).

This completes the mapping of the two models in this special case. It is note-
worthy that the matrix which transforms E’s into 4J’s is idempotent, a result
which also holds in the general case when all sixteen energies are different.
Suzuki and Fisher (1970) have also given the explicit transformation formu-
las for the case that the energies are invariant when spins are reversed:

€1 =€, €3=¢€, €5=2¢€; €;=2=8e €9 =~€3 €1p= L€y,

€11 = €15, €13 = €y6:
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The equivalent Ising model will have only two-body interactions (i.e.,
Jy = J3 = J, = 0) if we further assume that

El = E3,
EO = E4,
and 4E1 = EO + E2 + Ez, + Ez”. (37)

This then leads to the general KDP (Wu, 1970) and the general F (Wu, 1969a)
models to be considered in Section VI.B.

Another interesting application of this equivalence of models is the finite
field Ising problem for which we take

Jl =mH,
Jo=J,=J;=J,=0, (38)
J) =J, =J.

From (35), we see that the Ising problem is equivalent to a sixteen vertex
problem on L with energies (33) or

Ey = —4mH — 4J, E; = —2mH, E,=4J,

(39
E,, =E," =0, E; =2mH, E, =4mH — 4J.
The corresponding vertex weights are therefore
oy =122, o, =y*2*, o0;=o0,=27
Ws = Wg = W7 = Wg =1,
Wy = Wy9 = W33 =3 =1/y, (40)

W3 = W1y = W15 = W16 =),

where

—ZﬁJ, = e-—ZﬁmH.

z=e y

The result (40) should be compared with the following alternative formu-
lation of the finite field Ising model as a sixteen vertex problem. In the
combinatorial approach to the Ising model with zero magnetic field (Kac and
Ward, 1952), the partition function is written as the generating function for
polygonal configurations on the lattice (van der Waerden, 1941). This pro-
cedure of the high temperature “tanh” expansion can be easily extended to
the case of a nonzero magnetic field. The only difference is that the partition
function is now written as the generating function for a// graphs. But this is
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precisely the sixteen vertex problem. Following the procedure of the combi-
natorial approach [see, for example, Newell and Montroll (1953)], it can be
shown without difficulty that the partition function of the finite field Ising
model defined on L; is

Ziging = (cosh BJ)*¥(cosh pmH)*N Z. 4n

Here 2N is the total number of spins, and Z is the partition function (25) of
a sixteen vertex problem also defined on L; but with vertex weights

0, =1, 0,=w, 0;=0,=05=0w0=0;=ws =W,
W9 = W19 = W13 = Wy = WT, W13 = W34 = W15 = W15 = w't, (42)
where
w? = tanh §J and 1 = tanh BmH.

We conclude our discussion of the general ferroelectric model with the
following remarks.

(a) The validity of our discussion is not restricted to the square lattice. In
a three-dimensional ferroelectric crystal, each lattice vertex is hydrogen-
bonded to four nearest neighbours. We can again imagine an Ising lattice
superimposed on the ferroelectric crystal such that each spin occupies a
hydrogen bond. The one-to-one correspondence between the hydrogen and
spin configurations again holds. The Ising interactions can then be introduced
and the isomorphism of the two models follows as before (see Suzuki and
Fisher, 1970).

(b) If we interpret each arrow of L as carrying an electric dipole moment,
then the polarizations of the ferroelectric lattice L in the horizontal and
vertical directions are precisely the sublattice magnetizations of the Ising
lattice L, as one can easily see from Fig. 12.

(c) If some vertex energies of L are infinite, then the resulting Ising lattice
will have infinite interactions and the scheme of equivalence of the models
is not very useful in practice.

ili. The Thermodynamic Limit for the Ferroelectric Models

Logic and rigor require that we give consideration to the thermodynamic
limit of the ferroelectric models. There are four types of questions. One is the
usual problem of the existence of the limiting free energy per unit volume and
its convexity with respect to the various intensive parameters. The second is
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the relationship of the constrained ice rule models to the unconstrained six-
teen vertex models. We shall show in Section III.A that for the free energy
and for free edge boundary conditions it is possible to interchange the ice
rule limit with the bulk limit. Thus, as far as physics in the bulk is concerned,
the ice rule models, which in general are the only ones we can solve analyti-
cally, really are the limits of the more physical unconstrained models. This is
not to say, however, that the critical indices of the two kinds of models are
related. The third problem is to show that, for the ice rule models, free bound-
ary conditions and periodic boundary conditions are identical in the bulk
limit. Our interest in this last question is not entirely academic and arises
from the following fact: the natural boundary condition to impose logically
and physically is the free one; for it we can settle the first two questions and
this we do in Section III.A. On the other hand, the boundary condition we
need in the rest of this article in order to solve the problem analytically is
the periodic one. In Section III.B we shall show that the thermodynamic
limit exists for periodic boundary conditions but we are unable to show that
it is the same as for free edge boundary conditions.

The fourth problem is the existence of the “‘canonical” free energy and its
convexity with respect to the horizontal and vertical polarizations x and y.
These concepts are defined and briefly discussed in Section III.C, but we are
unable to shed much light on the problem. For the ice rule models we shall,
in Sections IV and V, actually calculate a free energy which is grand canonical
with respect to x and canonical with respect to y. It is not always easy to
see explicitly that it is convex in y but we shall assume convexity, which
surely must be true, even though we cannot prove it.

Thus, we raise more problems than we can solve and hope that in time
their solution will be forthcoming. It is to be emphasized, however, that all
these problems can be settled affirmatively for the eight and sixteen vertex
models (provided all the vertex weights are nonzero). This is so because both
of these models are equivalent (in different ways) to Ising models with finite
spin interaction energies, and for the Ising model there is no difficulty in
carrying through the proofs (c¢f. Ruelle, 1969).

In an attempt to be systematic we have placed the present section before
the detailed analysis of the ice rule models. It is not needed in the remainder
of this article and may be omitted in a first reading.

A. The thermodynamic limit for free edge boundary conditions
For the sake of concreteness we restrict ourselves to the planar square lattice
although the following theorems can evidently be extended to more general
lattices and even more general models as, for example, the model discussed
by Baxter in Section VII.

Let L be the infinite two-dimensional square lattice.
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Definition: A domain, A, is a subset of vertices of L together with the bonds
of L terminating in at least one vertex of A. Those bonds of A which ter-
minate in two vertices of A are called interior bonds and those which termin-
ate in one vertex are called exterior. A vertex which is the terminus of an
exterior bond is called a boundary vertex and the set of such vertices is called
the boundary of A. Thus each vertex of A always is the terminus of four
bonds of A. We define V' (4) to be the number of vertices of A. Finally,
Ay U A, has the usual meaning except for the understanding that exterior
bonds may become interior bonds under the union.

Rectangular Domains: These will be denoted by (M, N) with M rows and
N columns of vertices.

The partition function, Z(A), is defined in (25). To specify Z more pre-
cisely we must specify what constraints, if any, we place on the arrows of the
exterior bonds.

Definition: The free partition function (denoted by Zj) is the sum in (25)
with no restriction on the exterior bond arrows. The periodic partition func-
tion (denoted by Zp) is defined for rectangular domains and is the sum in
(25) with the constraint that horizontal exterior bonds on the same row have
the same arrow, and similarly for vertical exterior bonds.

In both cases we define

z(A) =

1
A). 4
0 In Z(4) (43)
[The free energy per vertex, &, is defined to be —kT z(A).]
Clearly,

zp(A) = zp(4). @44

In this section we shall consider only free boundary conditions and shall
drop the subscript F. We shall, however, consider domains of arbitrary shape.

Now consider the sixteen vertex model which we define by the condition
that w; through w,4 are all non-zero. As shown in section IL.D, this model
is equivalent to an Ising model with interaction energies that involve at most
four spins and that are finite. The only difference is in the definition of volume;
for the Ising model the usual definition of the volume is ¥ (A4) = number of
“spins” = number of bonds = 2NM + N + M for a rectangular domain.
However, the use of V(A) in (43) is equally appropriate. It is well known
(¢f- Ruelle, 1969) that for the Ising model under consideration the following
is true:
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(1) lim z(A) = z exists for a sequence of domains tending to infinity in

A- o
the sense of Van Hove (Ruelle, 1969, definition 2.1.1) and the limit is
independent of shape.

(2) z, considered as a function of the 16 energies, is jointly continuous and
convex and is a decreasing function of each energy.

To discuss what happens when certain particular vertex weights, w,, @y ...,
vanish (e.g. a,b,... = {7,...,16} which would be the ice rule limit), let
w; - w;e”® for j=a,b,... and denote the resulting z(A4) by z(4, &) and
lim z(4, &) by z(g). By (1) above lim z(¢) exists (possibly it is —co) and we
A— o0 g
denote it by z(c0). Since z(A4, 00) < z(4, &) for all g, we have, for all ¢ and for
a sequence of domains tending to infinity in the sense of Van Hove, lim sup

2(A, ©) < z(¢) for all ¢ and hence Ao

lim sup z(A4, o) < z(c0). 45)
A—> 0
To obtain an opposite bound we note that if we paste two domains, 4,
and 4,, together then

Z(A, 0 Ay,8) < Z(Ay, 8) Z(Ay, 8). (46)

This is so because any bond (spin) which was exterior in A, and 4, and
which becomes interior under the union has a constraint placed on it, i.e.
two independent spins become one spin. For the same reason, (46) is true
even if A, and 4, have common interior bonds. Let A = (M, N) be a rec-
tangular domain and paste together J? copies of A (with J an integer) to
form A’ which is a (JM, JN) domain. (46) reads

2(A7,8) < z2(4, 8) 47

for all e. Letting J =00, z(g) < z(A, &) which implies that z(c0) < z(4, ).
Finally, letting A — o0 in the sense of Van Hove

lim inf 2(4, 00) > z(c0). (48)

A~

Combining (45) and (48) we arrive at the desired result for rectangular
domains tending to infinity in the sense of Van Hove

lim z(A4, o) = lim z(g) = z(c0). (49)

A= g

For domains of general shape the same result can be obtained by the stan-
dard trick of embedding a given domain in a larger rectangular domain. To
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carry out this proof, however, we require that the sequence of domains go
to infinity in the sense of Fisher (Ruelle, 1969, definition 2.1.2).

The proof leading to (49) obviously generalizes in the sense that it is not
necessary to switch off all the undesired vertices simultaneously but instead
they can be switched off one at a time. That is to say the six vertex (ice rule)
model can be regarded as the limit of the eight vertex model and that, in
turn, can be regarded as the limit of the sixteen vertex model.

We can state our conclusions as follows: let {4} be a sequence of domains
tending to infinity in the sense of Fisher (or Van Hove for rectangular
domains). Let I be a subset of the integers 1 through 16 and let J be its
complement. Denote by e; the vertex energies associated with each i in I and
similarly for e, We denote the I vertex problem by writing e; = 0. Let
z(4, e;) be defined as in (43) using the free partition function. Then

(1) The limit
lim z(4, e;, ey = 00) = z(ep) (50)

A
exists independent of shape. It is a convex, decreasing function of e,.

(2) The limit A — oo and the limit ¢; —co can be interchanged, i.e.

z(ep) = lim z(ep, ¢)). (51)

ey w

The latter limit can be taken in any order.

B. Periodic boundary conditions

In this section we shall be concerned exclusively with periodic boundary
conditions and shall omit the subscript P.

Let A = (M, N) be a rectangular domain with specific configurations of
arrows S(resp.S’) on the left hand (resp. right hand) set of M horizontal
exterior bonds. Likewise, specify configurations T and T’ on the lower and

- upper sets of N vertical exterior bonds, and let Z(S, S’; T, T') be the parti-
tion function, (25), with these imposed constraints. Then

Z(M,N) = ZZ Z(S,8; T, T). (52)
S T
If we define
I'(M,N)=max Z(S, S; T, T), (53)
S.T

then
(M, N) < Z(M, N) < I'(M. N2M*+M), (54)
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If we paste two such domains together to form a (2M, N) rectangle then
Z(2M, N) > T(M,N)? > Z(M, N)* 272+ (55)

since we can always impose the favoured configuration of (53) on each com-
ponent of (2M, N).

Now let A, = (Mg, No) be an arbitrary, but henceforth fixed, rectangle
and form a standard sequence A; = (2’M,, 2/N,) with j integral. Denoting
z(A;) by z; we have, from the trivial generalization of (55), that

Zjey 3 2;— 279 (Mp ™! + Ny~ In2, (56)

Hence, the sequence {z;} is essentially increasing and since it is bounded
above it has a limit z which, of course, is a convex non-increasing function
of the vertex energies since each z; has this property.

To establish the same limit for a general, Van Hove sequence of domains
{A} we shall require that

e = min {w,, 03, 0.} > 0. 57

Fix j and fill each A in the sequence with a maximal number, k(4, j), of dis-
joint copies of A; arranged in a rectangle. The remainder of 4 can be filled
with vertices 2, 3 or 4. Then, in analogy with (55), one has that

2A) > az; — 27 (Mo~ + No~™HIn2 + A(1 — o), (58)

where o = k(A, )22 MoNo/V(A). As A -, « — 1, so that

liminfz(4) > z; — 27(My™t 4+ No ™ HIn2. (59
A-©
Hence, letting j —co,
liminfz(4) > z. (60)
A-

Conversely, we can fix A and fill 4; with a maximal number, k', of copies
of A. In the same way as we derived (59) we obtain

zzz(A)— M ' + N Hin2 (61)

where A = (M, N). As A -0, both M and N —co. Combining (61) and (59)
we obtain the desired result:

lim z(A) = lim z; =z (62)

A— Jj—roo

for a sequence of rectangles tending to infinity in the sense of Van Hove.
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In point of fact, what we shall actually calculate, as shown in (76), is the
limit
lim lim z(M, N), (63)
N-w M-
and we must demonstrate that this limit is also z. Aanticipating the result of
Section IV.A, which is derived using the transfer matrix, we have that

I}Iin z(M, N) = h(N) 64
exists for each N. Put M = kN, for k an integer, and use (55) to obtain
z(kN,N) = z(N,N) — 2N~ 'In 2. (65)
By letting k — o0, we conclude that
h(N) 2 z(N,N) — 2N~ *In2, (66)
and hence that
11'}131 inf A(N) > z. 67

To obtain the opposite bound, consider a domain (M, kN) and use (55) to
obtain

2(M,kN) > z2(M, N) = (M~* + N9 In2. (69)

If we put k = M, then the sequence of domains (M, MN) is Van Hove, for
fixed N. The limit M — oo in (68) then gives

z2hN)—~N"1ln2, (69)
and hence
lim sup A(N) < z, (70)
N-w

which establishes that (63) does, indeed, give the correct limit z.

Unfortunately, we are unable to prove that z, and zp are identical. The
major stumbling block seems to be the following: As we see from (55), zp(A)
increases upward to its limit zp, provided we ignore inessential “surface”
terms. Contrariwise, (46) shows that zy(A) essentially decreases downward to
its limit zp. It is this disparity that stands in the way of a proof.

C. The canonical ensemble

For a given domain A we can, for each configuration of arrows, define the
horizontal and vertical polarizations per bond, x and y, as

number of right arrows —number of left arrows
x= -
number of horizontal bonds

(7
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and similarly for y. Thus —1<x <1 and — 1<y < 1. In terms of these
intensive parameters, (25) defines the grand canonical partition function.
We can, however, also define the canonical partition function Z(x, y) as the
restricted sum over configurations with fixed values of x and y. In Sections
IV, V and VII we actually use a mixed ensemble which is canonical with respect
to y and grand canonical with respect to x.

The problems we pose are the following:

1. Does the canonical free energy per vertex, & (x, y) = — k Tz(x, y), have
a thermodynamic limit?

2. Is z(x, y) the same for free and periodic boundary conditions?

3. Is z(x, y) a concave function of (x,y) as thermodynamic stability
requires?

4. Is z(x, ) the same as the grand canonical z discussed in Sections ITI.A
and III.B? That is, for all vertex energies is

z = maxz(x, ») (72)
(x,)

true?

We remark that an affirmative answer to 1, 2 and 4 does not imply 3. A
trivial counterexample is the following: Suppose the only allowed vertices
are (1) and (2) and w, = w, = 1. Then

z,D=2z(-1,—-1)=0
z(x, y) = — oo otherwise
z=0. (73)

Thus, in this case, all limits exist and (72) is true, but z(x, y) is not concave.
This example shows that a condition even stronger than (57) is required to
establish 3.

IV. The Transfer Matrix and Its Diagonalization

A. The transfer matrix concept

We begin with some general remarks on the transfer matrix. It is not our
intention to describe the concept in stratospheric generality or to give its
history, which is a long one. The reader can find a more general treatment in
Lieb (1969Db) as well as in the article on the Ising model in this book.

The two-dimensional lattices we wish to consider are N x M, which is to
say they have N sites horizontally and M vertically. A row will usually mean
a row of N vertical bonds, as in the case of the square lattice, but it may
have a slightly different meaning as, for example, in the case of the triangular
lattice (Section VI below). In any case, we can talk of the state of a row by
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specifying the configuration of the lattice restricted to the row. For the square
ice lattice the state of a row is the configuration of up or down arrows on
the row of bonds. If ¢, is the state on the ith row then the sequence {¢,,
@25 ..., Oar+1} is @ partial description of the configuration of the whole lattice.
As all rows are equivalent, each ¢, in turn, is one of the set {p!, ¢2, ..., ¢¥}
where R = 2¥ generally and the ¢ are the allowed states of any row. We do
not attempt to describe the configuration of the horizontal bonds, but in-
stead introduce the transfer matrix Tj;, alternatively T (¢, ¢7), which couples
two adjacent states and is

T;; = X (allowed configurations of horizontal bonds) e #£ (74)

where E is the sum of the vertex energies formed by the two states ¢’ and ¢’
together with the horizontal arrows. Our convention is that ¢’ is the state of
the upper row.

It is very convenient to assume that ¢, = ¢4, i.e. that the lattice is
periodic in the vertical direction, but it is not absolutely essential to do so.
In the limit M — oo, the imposition of periodicity has no effect.

From the definition of the partition function (1)

Z= ¢Z ; T (91> 0T Bar> Gre-1) .- T3, $2)T (§2, b 1)

= Trace (T™)
= ()M (75)

where {1;} are the eigenvalues of T, i.e. the roots of det |T — AI| = 0. Since
the matrix elements of T' are non-negative, the Perron-Frobenius theorem
(Brauer, 1964) guarantees that the 1; of maximum modulus is positive and
unique if the diagonal elements of T are positive. In our case, it will turn out
that T breaks up into several diagonal blocks, in each of which the above
assertion holds. Denoting the largest eigenvalue by A we have (even if 4 is
degenerate)

L1
Ail_l;l:o M—ln Z = In (max 4;) = In 4. (76)

To use (76) we have to solve the eigenvalue equation

TY = AY an
which means finding a vector ¥ = (Y4, V5, ..., ¥g) such that
Z Tji‘pi = A‘Pj- (78)

We remark that T need not be symmetric and, in fact, it is not for KDP.
Physically, this means that turning the lattice upside down does not leave the
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vertex energy assignments unchanged. However, the Perron-Frobenius
theorem guarantees that the ¥ we seek is a non-negative vector and this
property will be very useful in identifying 4.

Another remark is that while periodicity in the vertical direction is not
essential, periodicity in the horizontal direction is, and we shall derive T
under this assumption. This entails connecting together the bonds which
emanate from the right and left of each row; unless they are connected, the
conservation law which we shall rely on heavily is not strict but only approxi-
mate.

B. The ice problem

It is easily inferred (Lieb, 1967b) that one consequence of the ice rule
(together with the horizontal periodicity) is that T;; = 0 unless ¢' and ¢’ have
the same number of down (or up) arrows. Thus, if

n = number of down arrows in a row (79)

then 7 is a conserved quantity from row to row and T is a block diagonal
matrix with one block for each value of # = 0, 1, ..., N. The order of block n
is (V). In analogy with a spin } system we may define

S, = 3(N — 2n) (80)
but a more useful quantity (in the thermodynamic limit) is
y=1-2nN (81)

which is the average z component of the ““spin” per vertical bond.
Instead of the notation i; as in (78) it is convenient to use

S X3, 05 %) (82)
to denote the ¥ associated with the state having down arrows at the locations
ISx<x<..<x,<N, (83)
so that in a given n subspace (78) becomes

; TX, V/(Y) = Af(X) (84)
where X and Y refer to n-tuples as in (83). It is easily seen [see Lieb (1967b,

1969b) for elucidation] that T can be written
T=Tg+ T, (85)

where
TR = ] lf xi_l S yl' < x,-, all i (863.)

= 0 otherwise (86b)
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and
To=1i1x <y <x..qalli (87a)
= 0 otherwise. (87b)

The subscripts L(resp. R) refer to the fact that the horizontal arrows at the
extremities of a row point to the left (resp. right). Clearly,

T, =Ty (88)

where ' means Hermitian conjugate.
If we combine (84-87) (always bearing in mind that we are in some
definite n subspace) then

Af (g, X)) = 3 Y o Y* (D1 s V)
y1=1y2=x1 Yn=Xn—1

X2 N
+ X e X s I (89)

y1=x1 IYn=Xn

where the * means that we sum only over those Y consistent with (83). We
emphasize, once again, that (89) is meaningful only when X and Y satisfy (83).
The first sum is Ty and the second is Tj.

Henceforth, we shall write the first repeated summation in (89) (with the
asterisk included) as £ and the second as X;.

C. The transfer matrix for the ice rule ferroelectric models

The transfer matrix for the ice rule ferroelectric problem (Table 1) has, in
the absence of a staggered field, the same structure features as the ice problem.
In particular: T has the same diagonal block structure; in each n subspace
(85), (86b) and (87b) are true (although (88) may fail). The general analog of
(89) is

Af(X) = ZpDp(X, V)A(Y) + Z.D(X, V) (Y) (90)
where the functions Dy and D;, which are different in general, depend on the
energy assignments. They are, of course, non-negative in the physical case so

that the Perron-Frobenius theorem still holds. Eqn (90) is Hermitian, i.e.
(88) is true, if and only if

Dy(X,Y) = Di(Y, X), on

where the bar means complex conjugate.
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The D function, L or R, is the Boltzmann factor for the vertices ““formed”
by Yand X. If n;, j = 1, ..., 6, is the number of vertices of type j so formed
then

We want to consider the general six vertex problem with ey, ..., es being
arbitrary and we remark that there are only four independent energies to
consider. This is so because: (a) The zero of energy can be chosen arbitrarily
which merely requires multiplying 4, or Z, by a trivial factor; (b) the conser-
vation of » implies that ns = ns on every row and hence we may assume
es = eg.

Persual of Table I shows that the most general energy assignment is a
linear combination of the lines marked KDP, F and direct field, provided we
allow the two &’s to be different. In other words,

e1=82—h—v, 62=82+h+v, e3=81+82_h+v,
e4 == 81 + 82 + h - U, 95 = 81, 86 = 81. (93)
A ferroelectric transition occurs if the lowest energy is ey, e,, e; or e,. Simi-
larly an antiferroelectric transition occurs if es = eg < ey, €,, €3, €,. (See
further discussion of this point in Section V.F.) The model is said to be
intrinsically ferroelectric (or antiferroelectric) if, in the absence of an external

field, the transition is ferroelectric (or antiferroelectric). This can be most
simply specified by defining the variable

& =max (0, &) — &, %94)

such that & > 0 (resp. & < 0) for an intrinsically ferroelectric (resp. antiferro-
electric) model.

Now, with ¢;, &,, # and v determined, consider the three different D’s we
would get from each line alone, that is either the KDP row with ¢ = g, the
F row with & = &, or the direct field row with the given 4 and v. Call these
D’s, either L or R, DXPP, DF and DF, respectively. Then from (92)

D = D*PPDFDE, 95)
where ordinary multiplication is meant. We can further write
DE = DHDY (95b)

where D¥ and DY are the separate contributions of the horizontal and vertical
fields. We also introduce the quantities

K, = ey, K, = Be,,
H = fh, V = po. (96)
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Clearly,
D(X,Y) = D,/ (X, Y) = e""” on

where y is defined in (81). Since DY is independent of X and Y its effect is
merely to multiply A by an » dependent constant.
D is almost as simple:

DX, V) = exp (V) exp |23, (3= )|

D #(X, Y) = exp (—NH) exp [ZHE1 - x,-)]. 98)

It is interesting to note that D¥, unlike DY, satisfies (91) and hence is Her-
mitian.

To evaluate D" we need only count the number of times some x; = some
y;- That is

DX, ¥) = DX, V)
- e |~ K (V- 20425 $o - )| ©9)

with 6 being the Kronecker delta, DY is Hermitian.
KDP is the most complicated case. With some reflection one finds

n n—1
DX, V) = exp K| =+ 504 = ) + 2500001~ x) }

D *PP(X,Y) = eprl[mN —n+Y (3 — x + 26(y; — xi))]. (100)
=1

Clearly, (91) is not satisfied for KDP. It is noteworthy that part of DXP?
is the same as D¥, apart from some obvious differences in parameters. The
remainder of D*P? is similar to, but essentially different from DF.

Notation: If we are discussing only either F or KDP then we will denote
K, or K, simply by K.

D. Relationship of two-dimensional ferroelectric models and one-dimen-
sional spin systems (E. Barouch, Department of Mathematics, Massa-
chusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.).

The transfer matrix for a two-dimensional ferroelectric system can be thought
of as a complicated, generally non-Hermitian operator on a quantum mech-
anical, one-dimensional spin system. For the general ferroelectric model
considered in Section ILD, even when all vertices are allowed, the corres-
pondence is simple. The correspondence for the models considered by Baxter
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in Section VII is much more complicated and we shall not discuss those in
this section.

The configurations of up or down arrows on vertical bonds are evidently
isomorphic to the states of a chain of N spin  particles and the transfer
matrix, T, is then equivalent to some spin operator. We set ourselves two
goals:

(1) Find an explicit expression for T in terms of Pauli spin operators.
(2) Find a non-trivial /inear Hamiltonian that commutes with T.
By a linear Hamiltonian is meant one of the form

N
H=Y H, (101)
i=1

where H, involves only spin operators at sites i and i + 1 (with the obvious
notation that N + 1 =1). The usual Heisenberg Hamiltonian is an example
of (101). If we can accomplish goal 2 then we shall have obviously gained
some additional information about the eigenvectors of T because [H, T] = 0
implies that the eigenvectors of T lie in the invariant subspaces of H.

The achievement of the two goals was first accomplished by McCoy and
Wu (1968) for the 6 vertex problem and by Sutherland (1970), using an idea
of Fan, for a special case of the 8 vertex problem. Here, we shall complete
goal 1 for the 16 vertex case but shall not go beyond the 8 vertex model for
goal 2.

For the ice problem (Lieb, 1967a, b)

Tr=1+ Y 0405+ Y 040-;0440-+ ... (102)
i<y i<j<k<l
and T, = Tg!. For the 16 vertex problem the analogue of (102) is evidently
much more complicated, but even (102) is not yet in a sufficiently useful
form because calculating the commutator of (101) and (102) is difficult.

To proceed, we define Ty z" to be the transfer matrix for N spins in which
we insist that the leftmost horizontal arrow point left and the rightmost
point right. Likewise we define Tz, Tr." and Ty . We record this
information in the form of a matrix

Tre" Trr™
AN=< RR RL ) (103)

N N
TLR TLL

whose entries, it must be kept clearly in mind, are operators acting on the
space of N spins. In the usual unpedantic, but imprecise, physics notation we
can also think of the T as operators on the first N spins in a chain of more
than N spins. Obviously the transfer matrix is given by

Tr = Trg"s T, = Tu"; T=Tr+ T, (104)
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or, more schematically,
T = Trace* A", (105)

where * means we take only the 2 x 2 trace and not the trace on the spin
operators.

A is a matrix function of the operators on spin 1. We can, however, think
of a copy of A acting on an arbitrary spin, k. This matrix we will denote by
A, If we wish to discuss A, without specifying which spin it acts on, we shall
omit the subscript k.

Clearly,

ANt = ANAL L (106)
where matrix multiplication is meant. Hence,
AN = A1A2 eee AN’ (107)

The next problem is to find the basic, single spin, A. We consider the 16
vertex problem, as given in Fig. 10, with energies e, to e, and vertex weights

w; = e~ e, (108)

A can be read off from Fig. 10. For instance, vertex 1 contributes only to
Tyg and its contribution is 3 @, (1 + ¢,). The total result is

T, T,
A= ( RR RL) (109)
Tir ToL

Trr = 3oy + @3) + o, — w3)o, + w0, + 0y40-

and

Tip = 304 + 0;)  + Hws — 0)0, + 0504 + 030
Tir = 3010 + @16) + H (@10 — ©16)0; + 0,0, + w40
Trr = 3 (012 + 014) + H @1, — 014)0, + 050, + wgo_. (110)

We now turn to goal 2. If we replace H (resp H;) in (101) by

H "o 111
(7 0) an

H, 0
resp ;= o ml (112)

i
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then
C = [AY, #]
and
C, = [AY, #]] (113)

are well defined. In order to achieve [T, H] = 0 we could, using (105), require
that C = 0, but it turns out that this is too stringent. It is possible, however
(at least for the 8 vertex case) to require that

Trace* C =0 (114)

and this is just as good. Now, note that

C=(AA) ... A_ DDA, ;... Ay) (115)
where
D; = [AA4y, 4] (116)
If we can choose H so that
D, = AB;;; — BA;,, (117)

with B; having the same structure as A; (namely a universal 2 x 2 operator
on spin i alone) then (114) will be true. (Taking the sum over i cancels all
terms of the commutator but the boundary ones. These cancel because we
take the trace®.) Another way to say this is: find H(o, 7), with ¢ and 7 being
two spins, such that

[A(9)A(7), # (0, 1)] = A(9)B(7) — B(0)A(7) (118)

for some B. The problem is reduced to the consideration of two spins only,
but it is complicated insofar as 2 X 2 matrix multiplication is understood in
(118).

The procedure we use to achieve goal 2 is not hard conceptually, but ex-
tremely tedious algebraically. For the sake of continuous reading of the text,
we exhibit here only the basic steps needed to draw the necessary conclusions,
but eliminate most of the algebra.

The simplification obtained by the restriction to the eight vertex problem
is that the transfer matrix conserves the parity of the arrows, i.e. it changes
the number of up arrows by an even number as we go from row to row. We
may therefore choose a parity conserving H because if H commutes with T
then both the parity conserving and parity violating parts of H commute
with T. There may exist a linear H that violates parity and yet commutes
with T, but we shall not investigate that question here.
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The most general parity conserving operator, H = XH,, is

H; = 5 0205141 + 404,04 501+ Bo_ ;0 01 +7(04 0 10y

+ 004410 +3D(0,; + 0,41 + C(04,,0_ 101 —0_;0,,;41) (119)

Achieving goal 2 means finding the constants of H as explicit functions of
®y, ..., 0g. Note that H is defined up to a multiplicative constant, which
allows us to choose one of the constants arbitrarily. For the eight vertex case,
we can set ws = s = o without any loss of generality because if ws; # wg
we can transform T by the similarity transformation exp {6X;0,;} and can
choose 0 to make the coefficients equal, ¢f. (110). Such a transformation,
when applied to H, preserves linearity. We may also assume, without loss of
generality, that @ # 0. Otherwise we would be dealing with a six vertex pro-
blem 1,2,3,4,7,8 and, as (110) shows, this may be converted into the usual
six vertex model by the unitary transformation which interchanges o, and
o_.

The statement [T, H] = 0 is independent of N, and if true must be valid
for the cases N = 2,3,4. It is useful to study these cases for two reasons. The
first is that they allow us to determine H completely, although that would
hardly be a sufficient reason for presenting them here. The second and more
important reason lies in the fact that we shall deduce that an H does not
exist for the most general eight vertex model, and that when it does exist it
is essentially unique. By studying these cases we can be sure that the non-
existence of an H is not merely an artifact of Fan’s method.

We compute the matrices H and T in the basis in which all ¢, ; are diagonal,
then compute the commutator and equate it to zero. For the specific cases
mentioned we obtain the following results:

@ N=2
Bow,; = Aowg (120)
2DCOCO7 = A(w12 + CU42 - CO22 - w32). (121)

@ N=3
Bowg = Aww,. (122)

If w, and wg are both nonzero, equations (120) and (122) tell us that we must
have

w;, =wg=0a; A=B. (123)

If w; = wg = 0 it is undoubtedly true (although we have not constructed a
proof) that we must have A = B = 0. Otherwise T would commute with the
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total z component of the spin, S =Y ,"0,;, and H would not. Likewise,
w; = 0, wg # 0 implies that A = B = 0 and this is surely impossible because
[H,S] =0 and [T, S] # 0. Thus we shall assume that (123) is generally
valid.

There are two more important relations in the N = 3 case
aAd —2b(D + 4) +2by — (d+e)A =0 (124a)
adA+20'(D— A)+20y—(d +e)A=0 (124b)

where
a=0(0,® = 03%) + 04(0,> — ;%)

b = (CO]_ -+ Q)4)C()OC
d = 0,0* + wzw*
e = w,w* + wya? (125)

and the @’ ... ¢’ are obtained from a ... e by the exchanges o, & w3, W, <> 0y,
o <> .

Combining (121, 124a, 124b) we obtain

a al d’ + e, d + e 6012 + Q)42 - w22 - (})32}
= = — — =0.
{[b b’] + [ b b ] 2 ow 4

(126)
Equation (126) has two solutions:

Case (a), A = 0: This is the six vertex case, and D is arbitrary since [T, S] = 0.
We shall take D = 0 for the six vertex case.

Case (b), A # 0: One solution is w; = w, and w; = w,. This means that
there can be no electric fields for the eight vertex case if we want an H to exist.
Another possibility is w; = w; and w, = @,, but this would mean &, = 0
and v = 0 which is not very interesting physically. Other solutions require
a relationship among the six weights which would not be temperature inde-
pendent. Assuming, henceforth, only the first possibility, (126) implies that

A0, + 032 — 0? — 2 - 20,03) = 2(4 — ). (127)
(iii) N =4
This case is quite elaborate, since one deals with matrices of order 16. We
find the new relations:

— 24(0,0,0% + 0,050%) + (y + C)@,0,6% + 030,07 + 2(y — C) v’
+ (7 + O)N(@0,0,0% + 030407 = 2A(0,0,00 + ©,w300)

+ (7 + O)(w* + o«*) (128)
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and another relation obtained from (128) by the exchanges C <« —C,
Wy > Wy, O3 <> Wy,
For case (a) we set A = « = 0 and conclude from (128) that, up to a com-
mon factor
24 = (0,0, + 0304 — ©?)(0,0,030,) 7

=eKt 4 g7K1 . g2K2—Ki (129)
7 = w05 + C‘)zwzt)(601602603604)—‘ZL
= cosh H,
C =3 (w004 — CU1C"s)(a’1w2003f‘34,)—‘;L
= — sinh H,
A=B=D=0. (130)

Equations (129, 130) agree with the results of McCoy and Wu (1968).
Equation (129) agrees with (138) derived in the next section.
For case (b) we set w; = w, and w; = w, and use (127) to conclude that

up to a factor

Y = 003,

24 = 0,* + 03* — 0 — o,
A =B =aw,
C=D=0. (131)

Equation (131) agrees with Sutherland (1970).

The next step is to prove that (129, 130, 131) are correct for arbitrary N
(under the stated conditions) by calculating Fan’s matrix B of (117). For six
vertices, case (a) above, we find that

2(0;0,0304)Brg = (0% — 010, — 030,)(01 — 03) + 0,04(w4 — ;)
+ [0,04(04+ @2) + (0% — 0,0, — 030,) (01 + ©3)] 0,
2(010,030,)* By, = (0% — 010, — 030,4)(0; — 04) + @1 03(w3 ~ ©y)
— [0,03(0 + ©3) + (0% — 0,0, — 030,)(@4 + )]0,
Bz = Bz = 0. (132)

For eight vertices, case (b) above, it is convenient to add a constant energy
to all the vertices so that w; = w;~*, i.e. y =1 in (131). Then

4Bgr = (& — 0)[(0; — @3) + (0, + w3)0.],
4By = (0‘2 - 032)[(“’1 — w3) — (0; + w3)0,],

2B = 2B " = (0,2 — 0;*)(woy — ag_). (133)
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The matrix B is, of course, only defined modulo the addition of a matrix
proportional to A.

If we set w, = w, !, which we can do generally, and, in addition, require
that o = @™ !, then we have the modified F model [cf. (404) et. seq.]. The
Hamiltonian (131) is the so called XZ Hamiltonian. An analysis of its
ground state properties (Barouch, 1971) reveals that the correlation function
between two vertical arrows on the same row contains a long range compo-
nent that vanishes as (T, — T)'/? for T~ T, —.

The Hamiltonian (119) has certain symmetry properties which Sutherland
(1970) exploits in order to make conjectures about the critical behaviour in
the eight vertex case. See also (400).

E. Diagonalization of the ferroelectric transfer matrix

We wish to find the largest eigenfunction f(x, ..., x,) of (90) with D given
by (94-100). As an introduction, consider the n =1 case

Af(x)=exp [V(N—-2)—N(K,—H)+2K, - K] i exp [QH+K)(y—x)
T L2K,8(- 01 ()

+ exp[V(N—-2)—N(K,+K,+H)+2K,—K,] ‘Z exp [(QH + K )(y—x)

+(2K; —2K,)0(y—x)1/(»)- (134)
We try
f(x) =€ (135)

The sums in (134) are simple geometric series. Each term in (134) produces
one term proportional to (135). We call these proportionality constants Ag
and A, respectively. Thus,

/1 e AR + AL
Ag = exp [V(N = 2) = N(K, — H))ix(k; Ky, Ko, H)
Ay = exp [V(N — 2) — N(K, + K, + H)]A.(k; Ky, K5, H), (136)

A — exp (K,) — exp (ik + 2H)
1 — exp (ik + K, + 2H)

2l Ky, Ko H) = >

24 — exp (—K,) — exp (—ik — 2H)

- (137)
1—exp(—ik — Ky — 2H)

)“L(k; Kl’ Kz, H) -

and
24 = eft 4 o7 K — g2k (138)
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In addition to these terms proportional to f(x), each sum in (134) produces
a constant term and these cancel when k is such that

e = 1. (139)

Equation (139) could also have been surmised from translation invariance.
The largest eigenvalue must occur for k = 0, the nodeless eigenvector, but

it is not easy to see this from (136)-(138). The Perron—-Frobenius theorem is
thus useful even for n = 1.

The remarkable fact is that the n = 1 solution can be generalized. We make
the so called Bethe ansatz as follows:

(1) Choose nnumbers {k} = {ky, k5, ..., k,} which are distinct modulo 27;
(2) Denote permutations of # objects by

1, 2, .., n
P= ;
P1,P2, ..., Pn
(3) Let 2(P) be a complex valued function defined on the permutations.
(4) Define

S(xgs o x,) = ZP:‘)I(P) exp [i EZ& kpjxj]. (140)

The sum is on the n! permutations. Note that (140) is defined only as indi-
cated in (83).

When (140) is inserted into (89) one term proportional to f comes from
each sum as before. That is

A=AR+AL

Ag =exp[N(Vy — K, + H)] Hllx(ka K,,K,, H)
=

Ap=exp[N(Vy — K; — K, — H)] HllL(kj; K, K,, H) (141)
j=

and y =1 - 2n/N.

Next, there are unwanted terms that come from the fact that we have Z*
instead of Z, i.e. terms that come from such forbidden points as y, = y, = x;
in Z. For an arbitrary choice of {k} these cancel in each sum separately if
2(-) is chosen correctly as follows: Let P and Q be two permutations which
differ only in the jth and (j + 1)th position, i.e.

kps ooy kp} = {016, 0}
{le, rery an} = {..., q,p, n.}
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where kp; = p = kogj+1) and kpj+1y = g = kg;. Then, for every such pair,
we require that

A(P) = A(Q)B(p, 9). (142)
where

_ 1+ exp[4H + i(p +¢q)] — 24 exp (2H + ip)
1+ exp[4H + i(p + ¢q)] — 24 exp 2H + iq)

= B(q,p)"". (143)

If n is large, (142) obviously represents far more equations than the n! un-
knowns 2(-). They can all be satisfied, nevertheless, by defining

B(p,q) = — exp [—i0(p, 9)] (144)
with 0(p, q) = — 0(q, p) and then setting

AB) = (- exp |- 5 T Olkn k)| (145)

i
2i<1

where (—)F is the signature of P.

Finally, each of the sums in (89) have unwanted terms associated with the
fact that T has a beginning, y, = 1, and X, has an end, y, = N. These
terms cancel each other if, for every pair of permutations, P and Q, of the

form
1, 2, ..., n
p= ,
(P], P2, .., Pn)
1, 2, ...,n—1, n
0=
P2,P3,..., Pn, Pl
A(P) = A(Q) exp (ikpN). (146)
Using (143)-(145), this is accomplished if

exp (ik;N) = 1;[1 Bk, k), j=1,..,n (147)

#Jj
Again, (146) could have been surmised by translation invariance.
Conclusion: Any set {k} of n numbers distinct modulo 2n satisfying (147)

will, when inserted into (141), yield an eigenvalue of the transfer matrix. It is
important that the k’s be distinct, otherwise (145) implies that f (X) vanishes
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identically. (Strictly speaking, one has to check that f(X) does not vanish
identically even when the k’s are distinct.)

The reader is invited to verify the above statements for #n = 2 where the
algebra is elementary. To prove that the pattern holds for arbitrary n is not
easy. At the present time we can only offer an unilluminating inductive proof
(¢f. Lieb, 1967b, where a proof, the generalization of which is trivial, is given
for the ice case). The conclusion we have reached is the same as for the
Heisenberg model, the only difference being in the dependence of A on {k}.
In view of the proof in Section IV.D that the transfer matrix commutes
with the Heisenberg Hamiltonian it would appear that the unwanted terms
must, a fortiori, cancel and no proof is required. This would indeed be so if
each term in (140) were linearly independent. That they are not for large n
follows from the remark that there are n! plane waves in (140) whereas we
are in a space of dimension only (¥). Consequently, we can not even be
sure that f(X) is non-zero even when {k} is distinct modulo 2. To elucidate
this question we consider the 4 = 0 case which, while not particularly im-
portant physically, is the only case for which (147) can be solved in simple
form.

Henceforth we shall adopt the notation

z(y) = lim N~ 'In A(y) —

N- o

= lim N !'In [max (Ag, L)] —Vy (148)

N-w

where A is, of course, the largest eigenvalue as in (76), so that the free energy
per vertex, &, is given by

1
—BF = lim ——InZ = max [z(y) + Vyl. 149
B s MN -1<y<1[(y) y] (149)
Since z(y) is symmetric and concave in y, for H = 0, then
—BF =2(0) forV =0,H = 0. (150)

4 =0 Case: Here B(p,q) = — 1 so that e™" =1 for all j (take n odd for
convenience). Also, A(P) = (—)* so that f(X) is a determinantal function.
We conjecture, and will verify, that as in the # = 1 case we want the k’s to be
as small as possible. Hence

kj=(2j —n—Dx/N. 4=0 (151)
Sf(X) is essentially a Vandermonde determinant in this case and hence

f(X) = nsm N % 4o (152)
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which is certainly a positive function in the region defined by (83). Hence
the Bethe ansatz leads to the largest eigenvalue.
The condition 4 = 0 means that

e?K2 — g2K1 4 (153)

so that K, > max (K, 0) = 0. Hence we should think of this system as
basically antiferroelectric (more on this in Section V). We also note that
Az = — 41, a condition that is not true in general. As the two products in
(141) are identical, except for a minus sign when 7 is odd, A, is determined
from (141) by the sign of K, + 2H. The reader can puzzle out for himself
what happens in the limit K; + 2H = 0.

Using (148) and (141) one can see that while A and A, are of opposite
sign, the larger one is always positive. It is then easy to pass to the thermo-
dynamic limit:

1 fe h(K,—2H k
z(y) = — K, + max(H, —K{ —H) + Z_j dk In [COS (K4 )+cos ]
TJ-e

cosh(K; +2H)—cos k
A=0 (154)

with Q = 1n(1 — y). This expression appears to be non-analytic at Ky + 2H
= 0. However, when K, + 2H = 0 the integrand has a singularity and it is
not hard to follow the contours and prove that: z(y) is real analytic in K, H
and y for —1< y <1. In other words, the two expressions in (154) are
analytic continuations of each other. At y = + 1, z(y) ceases to be analytic
when K, + 2H = 0. This property, that A, and Ay appear to be quite differ-
ent but really define one analytic function, is one that we shall meet again
in Section V in connection with the passage from the KDP model (K, > 0)
to the IKDP model (K; < 0).

It is easy to verify explicity that z(y) is concave in y; this is a general
thermodynamic requirement. It is clear from (93) that & is symmetric under
(H,V)— (—H, —V) (and in H and V separately if K; = 0). The concavity
implies that (149) has a unique solution given by

sin izz—y = cosh K, cosh 2H tanh 2V
+ sinh K, sinh 2H. A=0 (155)

Note that if K; # 0, a horizontal field alone can produce a vertical polari-
zation. For sufficiently large (H, V) the maximizing y can “stick” at +1.
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A simple calculation yields y = + 1 for

%, . cosh (V — H) x, . sinh (V — H)
e 2 —————Lore' { —————=
sinh (V + H) cosh (V + H)

while y = — 1 for 4=0

Ki s cosh (H — V) x, . Sinh (H—V)

= § —— 156b
sinh (H+ V) ore cosh(H + V) ( )

These equations (to be discussed further in Section V, eqn. (355a, b)) define
curves in the (H, V) plane along which a phase transition (as a function of
field) to the completely ordered ferroelectric state takes place. This occurs
despite the fact that the system is intrinsically an antiferroelectric.

The A4 = 0 case, and only this case, can also be solved by a completely
different technique—the Pfaffian method. This was first noticed by Wu (cf.
Lieb, 1967c) but Baxter (1970b) showed how one could also solve the prob-
lem in a staggered quadrupole field, s, as given on the last line of Table 1.
His result for K; = 0 (to which we shall return in Section V.H.1) is

1

—BF =
f 812

ffd() d¢ In[2 cosh 28s — 2 cos (0 + i2H) cos (¢ + i2V)],

4 =0. (157

Baxter’s calculation can presumably be generalized to K; # 0. The depen-
dence of & on s is very interesting and, generally speaking, the behaviour in a
staggered field for arbitrary A is the outstanding unsolved problem for the
ferroelectrics.

We also note that for the F model K, = H =0, K, = $In2 and

1 /2
2(0) = —1In2 — ;f In tan (k) dk
0

2426
T

= 0-2365482 ..., 4=0 (158)

where G is Catalan’s constant (Gradshteyn and Ryzhik, 1965; p. 529).
Our detour through the 4 = 0 case was intended to convince the reader of
the correctness of the Bethe ansatz and to illustrate the general features of
the calculation we are about to undertake for arbitrary A. In the remainder
of this section we shall carry the calculation as far as the analog of (154) and
in Section V shall discuss the physical consequences of it. When H # 0O the
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function 0 is not real for real (p, q) so that {k} is complex. The papers of
C. P. Yang (1967) and Sutherland, Yang and Yang (1967) explore this ques-
tion, but since the details of their calculation have not yet appeared we shall
restrict ourselves to H = 0 in this section. In Section V we shall mention some
of their conclusions.

The calculation is complicated by the fact that the range of 4 is naturally
divided into three parts: 4 < —1, —1< 4 <1, and 4 >1. The point
A = — 1 requires special treatment, too. The range 4 > 1, however, can be
handled by a simple argument as will be seen presently. To avoid having to
write each equation three times we have arranged the formulas in Table II
and will refer to a line in the Table as (Table IL. -). The equation we are trying
to solve, (147), is the same as for the Heisenberg model and what we present
here is borrowed from Yang and Yang (1966a, b, ).

We write 4 as in (Table II.1) and consider (p, g) in the range (Table 11.2).
Then 0, defined in (145), is

Asin [(p — 9)/2] ] H=0. (159

6(p,q) = 2tan™" [COS [(p +q)2] — dcos [(p — 9)/2]

In (Table IL3), 0 is a uniquely defined, continuous, antisymmetric function
of (p, q). For the largest eigenvalue we look for a solution to (147) of the
form

Nk = @ —n—Dz = ¥ 00k k. (160)
=1

Yang and Yang prove that a unique solution to (160) exists, with {k} in
(Table I1.2), provided 2n < N (or y > 0). This solution has the property
that if k is in {k} so is —k. A problem that has not been discussed so far is
what happens when 2n > N? (Recall that for 4 = 0 there was no difficulty).
Henceforth, we shall restrict our attention to y > 0 because V > 0 implies
that (149) is maximized for y > 0, since z(y) is symmetric. We can then rely
on symmetry in V to infer the free energy for V' < 0. Yang and Yang also
prove that this solution for {k} leads to a positive eigenvector (except pos-
sibly for finitely many A). It is important to note that {k} depends only on 4
and not on K, and K, separately.

What happens for 4 > 1? Here {k} becomes complex, in general, but notice
that (Table II. 2) tells us that all k; = O when 4 = 1. This is consistent with
(147) and (143) since B(0,0) = +1 for 4 =1, (Set 4 =1 and expand in p
and g). In other words,

fX)=1 ford=1 | (161)
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Then Az = A, =1 and
z(y) = — K, + max (0, — K;) independent of y. (162)

It is easy to see under what circumstances 4 =1 can be realized. Since

04 K
[ 1_A=l_ —Ki(a2Ky 2K
3K, e le7MM(e*t + e 1) (163a)
and 4 =1 means that
ekt =1+ e*2, (163b)

one sees that K; > 0 implies K; > K, (vertices 1 and 2 preferred) and
04/0K, > 0. Similarly, K, < 0 implies K, < 0 (vertices 3 and 4 preferred)
and 04/0K, < 0 for 4 > 1. In either case, the model is intrinsically ferro-
electric. These facts are shown in Fig. 13. Now note that: (i) eqn (1) implies

-2

Fic. 13. Constant 4 plot in the (K;, K;) plane. The three curves 4 = 4 1 are symmetric
with respect to the line K, = K.

that z(y) is convex and non-increasing in (K, K,) and thus is also convex
and non-increasing in the limit N — oo ; (ii) If we subtract g; from all energies
ey, ..., € then z(y) - z'(y) = z(y) + K, and z'(y) is convex in (Kj, K,),
non-increasing in K, and non-decreasing in K ; (iii) In the thermodynamic
limit the right side of (162) is a lower bound to z(y) for all 4 because it can
be achieved, for K; > 0, by a single configuration composed of a spiral band
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of type 1 vertices and a spiral band of type 2 vertices in the relative propor-
tions (1 + »):(1 — y). The two bands are separated by spiral columns of type
5 and 6 vertices, but these contribute nothing in the thermodynamic limit.
For K, < 0 one uses bands of vertices 3 and 4. Thus, if we fix K, and use
(i) and (iii) for positive K, and (ii) and (iii) for negative K; we conclude:

Equation (162) is true for all A > 1 and all y. Thus, the system is completely
“frozen’ into vertex 1 or 4 when 4 > 1 and there is no need to solve eqn
(147) in this case. Nagle (1969), using an idea of Takahashi (1941), gave a
rigorous proof of this “freezing” when K, = 0, but presumably his proof can
be generalized. He also found an exact formula for the latent heat, to which
we shall return in Section V.

Returning to (160) for 4 < 1, we now make a crucial assumption: As #,
N — oo with y fixed (non-negative) the n numbers {k} lie in some interval
(=0, Q), in (Table I1.2), and fill it densely, without gaps, so that one may
introduce a positive, integrable density function p(g) in this limit. More pre-
cisely, for each (k, p) in (Table II. 2) with p > k

lim N-!{number of £’s in (k, p)} = f * p(g)dg, (164)
n/NZ;(Olo—)‘) *
Q
[ raa=a-p), (165)
and
(@) >0 for —Q<g<Q. (166)

Yang and Yang (1966b) claim to have a proof of these assertions, but it has
not yet appeared. One easily deduces that (160) is equivalent to
rQ
t=2np(p) - | TLD (g1 g i)
but it is essential to understand that this is true if and only if p is in (—Q, Q).
We expect this equation to have a unique solution, that the solution is positive
and, in view of the Yang-Yang proof that for every k in {k} there is also
a —k, that the solution is symmetric. We also expect that as Q increases
from O to @ — p, y decreases monotonically from 1 to 0. All these facts are
proved by Yang and Yang.
Section V will be devoted to the solution of (167). We conclude here
with a formula for the free energy (148-150), in terms of p(g). Our only
problem is to decide which of A, or Ay is larger. We compute

11— e**Ki2{|Ap(k; Ky, Ky, O) — e ™5 A (k; Ky, Ko, 0)I2}
= 4sinh K,[— 24 + cosh K, + cosk]. (168)
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If K, > 0 the right side is positive since 4 <1 and since cosk > 4 when
k| < m— p (or |k| < = for 4 < —1). Furthermore, N > n so that

|Agl > |A] for K, >0
| ARl < |4, forK, <0
| Ag| = 4] for K, = 0. (169)

The second inequality follows from an obvious symmetry in K.
Our conclusion, then, for 4 <1 and H = 0 is:

Q
2(3) = —K, + max (0, —K,) + } f 0@

< In {(211 —n)? +21 - 224 — p) cosq] d (170)
1+#%° —25cosq
where

n = elkil (171)
and 24 =n + 7~ + e**7%1_ Various special cases are obtained as follows:
Ice K,=K,=0,4=1%. (172a)
F model Ki=0,K,=K>0,4=1-1e%, (172b)

KDP model Ki=K>0,K, =0,
or K;=K,=K<0,4==%¢l, (172¢)

IKDP model Ki=K<0,K, =0,
or K;=K,=K>0,4=1e ¥, (172d)
IF model Ki=0,K,=K<0,4=1-1¢%X, (172¢)

We emphasize that p(q) and Q depend on 4 and y through (165, 167).

V. Ice Rule Ferroelectric Models on a Square Lattice
A. Transformation of the integral equation

We now face the task of solving the integral equation (167) subject to the
constraint (165). The free energy is then obtained by using (149), (150) and
(170). It is unfortunate that the kernel of (167) is not a difference kernel,
otherwise we could think in terms of Fourier transforms. However, it is
possible to transform the kernel to a difference kernel by introducing an
appropriate change of variable [originally due to Hulthén (1938) and to
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Walker (1959)], and the solution can then be obtained in closed form in
some cases. We now list these transformations in (Table I1.4). The range b
of the new variable o increases as y decreases as shown in (Table IL.6, 7),
and attains the maximum value (Table IL5) at y =0 (Yang and Yang,
1966b). We write

R(@)da = 27p(p)dp. (173)

Then the integral equation (167) and the constraint (165) become,
respectively,

b
RG) = 0) - [ K= R3S (1742)

n(l —y)= fbe(cx)doc, (174b)

with é(o) and K(o — f) defined in (Table I1.9) and (Table I1.11). We note
that now we have a difference kernel in the integral equation (174a).
Therefore we can solve (174a) by a Fourier series (4 < —1) or Fourier
transform (—1 < 4 <1) when y = 0. Our general convention in this regard
is shown in (Table I1.12). Furthermore, if one introduces (173) and the
parameters ¢, 0, and o, defined by (Sutherland ez al., 1967)

e = (1 + ne")/(e" + 1), 0<¢o<p, 4] <1, (175)
e® = (1 + neh)/(e* + n), 0<06, <4, 4< -1, (176)
a0 =(n— D20+ 1), 0<ap <3, 4=-1, a7

where # = e/¥l, it is readily seen that (170) reduces to
1 b
z(y) = —K, + max (0, — K,) + e J R(&) C(e)du (178)
—b

with C(«) given by (Table I1.16). Later on we shall need the Fourier series
(for 4 < —1) and the Fourier transform (for —1 < 4 < 1) of C(«). These
results are listed in (Table I1.17). Using (172), one obtains the following
values for ¢, 0, and o, and the ranges of u and A:

Ice A=1 ¢,=0, p=32m (179a)
F Model —1<4<4, ¢o=0, O<pu<in
—o<d< -1, 0,=0, 0>A>0
d=—1, ay=0. (179b)
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KDP model 341, ¢po=3u—-2n, dn<u<n (179)
IKDP model 0<4<d, ¢po=2n—-3pu In<pu<in (179d)
IF model <4<, ¢o=3u—-2n 2n<pu<n (17%)

In all models, infinite temperature corresponds to y = %=, i.e. 4 = 1. For
the F model, x4 decreases monotonically as the temperature is lowered until
n=0at Ty or 4 = —1. Then we pass to the 4 < —1 region and A increases
monotonically to infinity at zero temperature. For KDP, u increases mono-
tonically until u = wat Ty or 4 = 1. For T < T, we are in the 4 > 1 region
analyzed in Section IV.E. For IKDP, u decreases monotonically with tem-
perature and g =47 at T = 0. The F and KDP models have the same
transition temperature, Ty:

8/kTO = Ko == In 2. (180)

In the next section we are going to solve (173, 174) when y = 0 for 4 < 1.
We shall find that this solution, Rq(x), is not analyticin 4 at A = — 1, This
feature is, however, peculiar to the y = 0 case and otherwise we can state
the following:

THEOREM: R(®), considered as a function of A and y, is real analytic in A and
yforl>=y>0and A <1.(See Yang and Yang, 1966b, p. 331.)

COROLLARY : z(y) is real analytic in the temperature and in y provided 0 < y < 1
and A < 1.

B. Solution in the case y = 0. (Douglas B. Abraham, Department of
Mathematics, Massachusetis Institute of Technology, Cambridge,
Massachusetts, U.S.A.)

1. Closed Form Expressions for the Free Energy

When y = 0, the variable o attains its maximum range (Table I1.7) and we
can solve (174a) by a Fourier series or Fourier transform. Here use is made
of the important fact that K(« — f) is 2n-periodic for 4 < —1. Relevant
transforms are given in (Table I1.13, 14). The solution Ry(x) at y =0 is
given in (Table IL.15). [The subscript zero denotes y = 0.]

Before we proceed to substitute Ry(a) into (178) to obtain z(0), we remark
that the expression for Ry(«) for 4 < —1,

0

Ro(w) = % e™sechnl, 4 < —1 (181)

can be identified as a Jacobian elliptic function. We follow the notation of
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Milne-Thomson (1964) on the elliptic functions. First we define the nome
g = ¢~ * and obtain (use eqn (16.23.3) of Milne-Thomson, 1964)

Roy(e) =1 +2 Z + — - cos na
K K
_ _dn(___"‘ m) d< -1, (182)
T T

Here dn is one of the Jacobian elliptic functions whose parameter m is
defined by

A=znK/K (183)
and
/2
=f do(l — msin?0)~ %, (184a)
0
/2
=f do[1 — (1 —~ m)sin2 0] %. (184b)
0

An equivalent expression which exhibits Ry(x) for 4 < —1 in a power
series in A7 can be obtained by introducing Jacobi’s imaginary trans-
formation [eqn (16.20.3) of Milne-Thomson, 1964]

dn(u|m) = de(—iull — m). (185)

Thus, upon using the Fourier expansion of the elliptic function dc given by
eqn (16.23.7) of Milne-Thomson (1964), we find

oL 2n 2 . exp[—(n + Dr?/A]
7, sech { 2,1J R 2 Gl e s re ey

Ro(2) =

cosh [(2n+1)%], |Re (2)] <27 (1862)

The obvious advantage of (186a) is that it is very rapidly convergent for
small A whereas (181) is not. Another formula of similar type is

T 2 T
=— — 2 186b
Ry(e) 57 n=z_wsech ( 7 (0 + nn)) (186b)
which may be derived as follows: From the known properties of dn(-),
Ro(a) is a doubly periodic meromorphic function with periods 2z and 4iA.
In the fundamental parallelogram there are poles at i and 3iA with residues
—1i and i respectively. The sum in (186b) converges absolutely and uniformly
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in any compact subset of the o plane that contains none of the above poles
and is a doubly periodic function with these same properties. The difference
between the two sides of (186b) must therefore be an entire doubly periodic
function which can only be a constant. To show this constant is zero we
consider Ro(«) — (7/24) sech [7n«/24], which is holomorphic in a neighbour-
hood of « =iA, then set « =i and note that (186a) and (186b) are both
identically zero. (186b) converges even faster than (186a) for | Re(x)| > =
and, moreover, does not have such a restricted domain of convergence. (186b)
was also discovered by Yangand Yang [1966b, eqn (B5)] by a different method
and it is incredible that the expansion (186b) of the dn function does not
seem to appear commonly in the elliptic function handbooks.

We have made this little detour because: (a) As A = 0 is the critical point,
it is desirable to have a well behaved series for Ro(«) for small A; (b) there is
undoubtedly a deep connection between elliptic functions and the ice problem
which we only glimpse by this example. Here is a topic for further research.*

We now return to (178) for an explicit expression of z(0) which, according
to (150). is proportional to the free energy for zero external field. Sub-
stituting (Table I1.7) and (Table I1.15) into (178), one finds

°© do
z(0) = —K, + max (0, — K,) + %f_ cosh

1 [cosh 2uo — cos 2u — ¢g)

- A 1
cosh 2ux — cos ¢, ]’ I<a<l (187a)

~#sinh n(A — 6,)
ncoshni

I

—K, + max (0, —K) + 4[4 — 0] + ¥ °
n=1

b

4< -1 (187b)

F(% — 300) I'(& + Sotp)
I = $0) TG+ 3o0)”

I

= 1.

—K, + max (0, —K;) + In
(187¢)

Here, use has been made of (Table II.17) and the definite integral (Gradshteyn
and Ryzhik, 1965, p. 581)

oo 2 2,2 3 1
J In (a® + b* x%) dx=21n2r(4+2]a/bl)+1n(%]b|)

o cosh mx ' +3%lab))
(187d)

* Added in proof. See Baxter (1971b, 1972) for more recent results in this connection.
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in deriving (187b, ¢). Formula (187b) was obtained from Table (1I.14, 17)
using Parseval’s theorem. We also recall from (162) and discussions given
there that

z(0) = ~K, + max (0, —K;), 4= 1. (188)

2. Summary of Main Results

Since —z(0)/B is the free energy for z = v = 0 (see (150)), we are now in a
position to study the thermodynamic properties of the ice rule models in the
absence of an external field. The remainder of this section is devoted to this
analysis while the analytic properties of z(0) in the complex T-plane will be
given in the next section. For the reader’s convenience, we first summarize
below the main results on the thermodynamics. Readers who are not interested
in the details of the analysis may omit the portion of this section beginning
with (199).

Evaluation of Integrals in Special Cases

The integral in (187a) may be evaluated in terms of elementary functions for
the ice, KDP and IKDP cases. The results are:

(i) Ice Problem
Wehave K, = K, =0, 4=4%, p=4%nand¢,=0. Hence

©  da ln[ cosh (4ne/3) + %}
cosh (4na/3) — 1

=3In4%. (189)

-2

The integral in (189) was first evaluated by Lieb (1967b) and can also be
obtained by setting 4 = 4 in (192) below. On combining (150) and (3) we
obtain for square ice

20 =+

- cosh 7o

Weg. 1ce = (£)*/? = 1-5396007...,
(190)

the result quoted in (4).

(ii)) KDP model
We have K, =K >0, K, =0, 0or K; =K, =K<0,$<4<1, ¢o=3u
— 2n and ¥ < p < 7. Hence
® do [ cosh 2uo — cos p ]
cosh 2o — cos 3u |’

2(0) = 2 max (0, — K) + %Jﬁ P n

ETVRIY (1912)
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Also from the discussion in Section IV.E we know that
z(0)=0, 4>1. (191b)

The integral (191a) can be evaluated (Glasser, 1969) by applying Parseval’s
theorem to the Fourier transforms (Table I1.14, 17).
The result is:

. 2u 72
z(0) =In —— cot (-—— +2max (0, —K), 1 <4< 1. (192)
7 sin p 2u

(iii) IKDP model
We have Ky =K <0, K, =00r Ky =K, =K>0,0<4<1, ¢ =2n
—3pand $7 < u < %7 Hence

20) = K_’_lj‘“’ do [coshZ,uoc——cosS,u
- 4

, 0< 4. 193
-« coshma | cosh2pue — cos Su] S5 (199

The integral in (193) can also be evaluated in exactly the same way as for
KDP (Abraham et al., 1970a, b and 1971). The result is also given essentially
by the expression (192), namely,

2u n? .
z(0) = In [nSiIl,LLCOt (2M )] 2max (0,K), 0<4<3. (199

Thus we see explicitly that the free energies for KDP and IKDP are
analytic continuations of each other despite the different expressions (191a)
and (193). It is natural that this should be so, otherwise there would be a
singularity at infinite temperature (K = 0).

Conjecture: In general, even when K, # 0 and y # 0, z(y) given by (178)
is real analytic in K, at K; = 0 (except when K, = 0 corresponds to the
critical point 4 = —1 and at the same time y = 0).

Nature of the Phase Transitions

The nature of the phase transition in the absence of a field is now briefly
summarized. We see from (187a-d) that, for a given assignment of ¢, and
€;, a phase transition occurs at those values of T for which 4 = +1. It is
clear from (138) or Fig. 13 that in every case only one transition is realized.
In fact the 4 =1 (or 4 = —1) transition is always associated with the
intrinsically ferroelectric (or antiferroelectric) model defined by € >0 (or
€ <0). (Seeeqn (94).) If we write uy = 0y = @, Uy = 03 = W, U3 = O5 = wg
where w; are the vertex weights, the condition 4 = +1 for determining the
transition temperature T, is always equivalent to the expression

Uy + Uy + uy = 2max {uy, uy,u3}, T =T, (195a)
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%o

Ferroelectric Antiferroelectric Ferroelectric

- -r/2 o] /2 L
IF KDP IKDP F IKDP KDP IF

FiG. 14. Plot of scaled transition temperature 7, against the angle @ in the (g4, €,) plane;
0 = — tan~ (g, /e,), and a constant value of (g,2 -+ &,2)'/? is assumed with 7o = kT/(e;>
+ £,2)Y/2, This plot is obtained from Fig. 13.

We plot T, in Fig. 14 as a function of orientation § = tan™? (¢ /¢,) in the
(g4, &,) plane. The two regions & 2 0 of the (e, &,) plane are shown once again
in Fig. 15 with various special cases indicated. The critical behaviour turns
out to be quite different in the two regions:

(i).e<0.
This is the intrinsically antiferroelectric case (region II of Fig. 15) because
vertices (5) and (6) are favoured. The transition occurs at 4 = —1. As we
€2
F
@
IKDP
IKDP KDP
€
@)
kop IF

FiG. 15. The (¢4, &2) plane is decomposed into two regions separated by a heavy line,
which display different critical behaviour.
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shall see below, the transition is of infinite order. This means that all deriva-
tives of the free energy with respect to temperature are bounded and agree
on both sides of the transition temperature, but that the free energy is not
real analytic at T;,. The free energy has an asymptotic expansion which is the
same above and below T, and is given by (272). For the F model (K, =0,
K, = K) this expansion reduces to (Lieb, 1967c)

z2(0) 2 —K +21In [ 21;%))] + ,21 —-25181))' B,, (1 — Ey) u®,  (195b)

where B, and E, are the Bernoulli and Euler numbers. By direct differentiation

of (195b), we find the internal energy, U, and the specific heat, C, for the F
model at T:

U =1,
(F model) (196)
C = k(In2)* 2%,
(i).£>0,¢ #£0

This is the intrinsically ferroelectric case because one of the polarized
vertices (1)-(4) is favoured. The transition occurs at 4 = 1 in region I of
Fig. 14, and is of first order. The free energy is a constant for T < T, as
given by (188). By direct differentiation of (187a), we may compute the
internal energy U and the specific heat C. In particular, we find the latent
heat Land the singular behaviour of C as follows:

1
L= lim U=%[§+(|81|—§)—-],

T-To+ Ho

¢ g%(no ~ D (LIK T (1 - Ty/TY Y%, T = Ty+,
(197
where 1o = exp (le|/k T,).

(iii). £>0,¢, =0,¢, <0

This is the IF model for which a ferroelectric transition occurs at absolute
zero. The free energy has an essential singularity at T = 0, since

4 =1-=texp(—|e, |/kT). (198)

Nevertheless, all the derivatives of the free energy with respect to T on the
real positive T-axis vanish as T — 0+
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(iv).e, =6, >0o0re, =0,¢, <0
From Fig. 15, this is the IKDP model. The free energy has an essential
singularity at T = 0, but all temperature derivatives vanish as T — 0.
There is no ordered state.

To conclude our summary on the thermodynamic properties, in Figs.
16-18 we plot the internal energy U and specific heat C for some typical
cases. In Fig. 16 U and C are shown for the F model. In Fig. 17 we plot U

06
C/k Ule
i
04 -
o2
1 ] 1
00 | 1/in2 2 3 4

kT/e

Fi1c. 16. Energy and specific heat per vertex, U and C, of the Fmodel (¢, = 0,6, =& > 0)
in zero field. The transition temperature is Ty = ¢/(kln 2).

o7

«F 0 (KDP)
06

o
(4]
¥

L%
A
T

(U—e2)/e;

1
i
!
1
i
!
1
i
i
1
i
t
i
1
i
i
!

1 ] 1 1 1
0 | 2 3 4 5 6

kT/¢

02

Fic. 17. Bnergy per vertex, U, of the intrinsically ferroelectric models.
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for two ferroelectric cases, & > 0, ¢, = 0 (KDP) and &, = 0-6 ¢, > 0. The
specific heats in these two cases are shown in Fig. 18.

o2 T

€2=0(KDP)

ca=0'6¢I|
Ol

C/k

1 1
o} [ 2 3 4 5
kT/q;

TG, 18. Specific heat per vertex, C, of the intrinsically ferroelectric models.

3. Analytic Properties of the Function ¢()
Consider the integral in (187a):

o dx cosh2ux — cos 2u — ¢,)
=1
() 4,{;,0 cosh (mx) [ cosh 2ux — cos ¢, ] (199)
where ¢o(w) is defined by (175)
i 1+ ne*
ipo(w) — = TNV
e i o" (200)
as a function of the complex variable p which we write as
b= py + i, (201)

In the range — 1 < 4 < 1, which corresponds to 0 < u; < =, (187a) gives
z(0) = —K, + max (0, —K,) + &(p). (202)

Clearly there is a single independent variable in the physical problem; obvious
choices for this are yu or T. Thus # depends on 7, or indirectly on u. Several
remarks are relevant in this connection.

(1) For the F and IF cases, the problem is much more simple since = 1
for all T; thus ¢o(u) = 0. Theorem 1 below discusses the analytic properties
in the u plane for this case.
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(2) For the KDP and IKDP cases, the function @(u) can be evaluated in
terms of elementary functions (Glasser, 1969).

(3) The physical properties of the model are evidently all obtained by
considering a small neighbourhood of the real positive temperature axis or
the equivalent region of the u-plane. Theorem 2, below, is the analogue of
Theorem 1, below, when 7 is regarded as an independent real positive variable.
This result is then generalized to allow 7 to be in a small sector about the
real positive (y — 1) axis.

THEOREM 1. Consider the case ¢, =0orn = 1:

(1) () can be analytically continued to the entire p-plane, except the
line u, = 0, p; < 0, which is a natural boundary.

(2) o(1) = o(w. (203)
(3) Forreal 2 > 0,

I[D(L) + B(— i)] = i + 3 nt e tanh (n). (204)

n=1

T his should be compared with eqn (187b).

(4) For all u except points on the real axis,

D) — D(—p) = ;f 2(—31 ( : (23: D ) —im (205)

Proof. The integrand in (199) with ¢, = 0 has simple poles at
xom)=@m+3i, n=0, +1,.. (206)
and logarithmic branch points at

£ (n) = +i + ng (207a)

x,(n) = 1;3 n=0, +1, ... (207b)

As p moves away from the real axis, the branch points move in the x-plane.
Evidently &(x) may be analytically continued to the entire u-plane, except
the negative real p-axis; in that case, the contour of integration is pinched
by the branch points against the singularities x,(n), for all rational values
of u.
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Since ®(p) is real analytic and real on the line segment (u, = 0, 0 < y,
<), the Schwarz reflection principle gives (203), the second part of
Theorem 1.

In order to derive (204) and (205), and prove that (u, =0, yu, <0) is a
natural boundary, ®(u) may be rewritten, using the Parseval formula, as

© dx sinh px sinh (z — wx

D(p)y =1
(W) =73 —o X cosh px sinh 7x

(208)

provided 0 < p; < m. (This result may be extended to other strips, but this
will not be needed here.)
In this case, the integrand has simple poles at

p(m)=@m+ Hmilp, n=0, +1,... (209)
Dpo(n) = ni, n=+1, +2,... (210)

As p rotates, the poles p,(n) rotate synchronously and impinge upon the
real axis when p = il. An elementary, but tedious, calculation shows that

AR m & (=1)"exp[—n* (n + $)/1]
D(il) = 3 +nZ,1n Ye " tanh (nd) + ln;) 0T DS (o E D

@11)

Using (2) of Theorem 1, one readily obtains (204) from (211) and, using
Section 1.442 of Gradshteyn and Ryzhik (1965), the result

B(iA) — B(—il) = —in + 4i i%ﬁ—)l— coth (—’fﬁ}ﬁ)—) (212)

According to the identity theorem for analytic functions, the analytic
continuation of @(y), whenever it exists, must satisfy the equation

(—1) n? (2n+1)
1 cot( 2 )

S(p) — (=)= —in + 2 i (213)

The series above represents an analytic function in the finite yu-plane except
for the line p, = 0, upon which there are simple poles at the points p,,
given by

o = 7(2r + 1)/2s (214)

where r and s are any integers. In order to prove that the real axis is a natural
boundary, we have to consider the approach to u, = 0 along a line

p=n2r + 1)/25 + i iy, (215)
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This gives

ap(=1y & (=1
ty 7(2r + 1?40 (20 + 1)°

where G(u,, o) can be bounded. The sum of the series is the Catalan
constant, which is non-zero. The intercepts of the lines given by (215) with
the real axis form a dense set of points in R. Thus the line {y, =0, —c0 <
1y < 0} is a natural boundary. This completes the proof of Theorem 1. The
physical interpretation will be described later.

When # > 1, intuition suggests that a similar theorem should hold.
Singularities of @(p) arise again because motion of the branch points at

() — P(—p = + G(pp, o) (216)

X, () = 2i(l — ¢o/20) + nmilp (217a)

and
X, (M) = +ido/2u + nmilp, n=0, +1,.. (217b)
as p varies, causes the contour of integration to pinch the stationary poles at
xogm)=m+Di, n=0, =£1,.... (218)

It is clear that the motion of the branch points has an epicyclic character
(see Fig. 19) which arises from the dependence of ¢, on p. It should also be
noted that singular behaviour of ®(u) is given by the branch peints of ¢,(u)
at

u=ilK;|+@rn+Dzn, n=0, +1.. (219)

Imx

Fic. 19. Motion of the branch points in the complex plane of the integration variable x.
The set x,* () is shown. The point a) is ¢o(x)/24. The line of branch points makes an angle
(— arg p) with the vertical direction.



398 E. H. Lieb and F. Y. Wu

The nature of the mapping ¢o(4) may be obtained conveniently by
considering lines parallel to the axes in the p-plane. In this way, ¢,(u) can
be investigated on a family of polygonal arcs, along which the possibility of
pinching may be examined. If w = €*° and z = ¢, (200) becomes

1+ 9z
n+z

W = (220)

which is a bilinear transformation. The line L, = {u=p; +iu,: 0< u, <27}

corresponds to acircle |z | =e™ "2, whereas L, = {p=p; +ip,: —00<p, <o}

corresponds to a half line from the origin of argument p, in the z-plane.
The line L, maps into

w—n"1t

=g ek
— n ‘e 22D

which is a circle of Apollonius with inverse points # and ™, centre w,, and
radius p; given by

_nTt =k

W= (222)
k(g —=n7Y

P = ll—kZI H (223)

with k = n~ e #2,

The mapping of the line L,, extended to infinity on both sides of the origin,
may be obtained by using the theorem that any bilinear transformation maps
circles into circles (a line is regarded as a degenerate circle) inverse points
into inverse points and complementary domains into complementary
domains. Consider the inverse points

zy = +ie. (224)
The associated inverse points in the w-plane are given by
wi = —ie " (1 +ine™)/(1 —ine ™) (225)

and
wewo = 1. (226)

Thus

Wy = et (227



8. Two-dimensionai ferroelectric models 399

where 0 is a real angle. The equation of the circle is

o We nt. (228)
w— w_
The centre w, and radius p, are given by
241
w2=cos(9+i(zz+ 1)sin9 (229)
and
p, = 2ncosB/(n® — 1. (230)

Evidently the centre lies on the line through w, and w_, as expected on
geometrical grounds. Typical circles are shown in Fig. 20.

A8
/2N

{a) (b)

FiG. 20. Typical circles of Apollonius:

@) {(w— 5~ YH/(w — )| = = e~ #2, The point w, is the centre.
() |[(w — w)/(w — w.)| = 5~ *. The point w, is the centre.

Using the above results, the reader may convince himself, if he so desires,
that there is a region of the p-plane defined by —0 < argu <46, with
0 > 7/2, for which the motion of the branch points does not cause the
contour of integration to pinch against the poles x,(u) of (218). Thus @(u)
may be analytically continued to this sector. With more delicacy, the argu-
ment may be extended further into the domain —=n < arg ¢ < 7, but this
will not be needed here. As with the F model, the quantity ®(i2) — ¢(—id)
will be calculated, but its analytic continuation will not be required.

First, since @(p) is real analytic on 0 < yy < 7, by the Schwarz reflection
principle

() = 2w (231)

in the domain of analyticity. Using the Persaval transform of &(u), one
obtains

o(4) = 3 "—""ng;c_ [ sinh (x — p)x sinh (u — qﬁo)x}

- (232)
cosh px sinh znx

(Y
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for 0 < u; < m. By employing the same argument as for the F case (only the
residues at the poles are changed), one may obtain the result for 4 > 0:

A—0, & e ™ sinh(A— Oy)n
P(id) =
) 2 n;l n cosh (n4)

& (=1 cos [(w0,/)(n + P)]
n=o(n + %) sinh [(z*/A)(n + )]

where 0, is given by (176). Equation (233) then gives

exp[—— (1 + ] (233)

™

e~ sinh (A — )n
1 A cosh (nl)

oG + o(-im1 =221 4 5 £ @34)

and

(=1)" cos[(n,/A)(n + )] exp[ — (z*/A)(n + JL)]
o(n+3%) sinh [(7*/A)(n + $)]

1B — D(—id)] = zz
(235)

Once again, the identity theorem requires that wherever ®(y) is analytic,
it must obey the equation

O(p) — P(—p) =

—in + 4 f 2(]11)"1 cos( %0 oy + l))c t(i@%ﬂ) (236)

This series represents an analytic function; the occurrence of the function
¢o(u) complicates convergence questions. The singularities include branch
points arising from those of ¢y(y), and a dense set of poles on the real axis at

u=nr + 1)/2s, 237
as was found for the F case above. In this case the residue is

4 (=1 & (=1°

Rlu = Qr+ 1)/2s] = ERE Z NerEwTe cos[smd, (W(2n + D].
(238)
The sum of this series vanishes only if
spo (W2n+ 1) =k + 4. (239)

If this relationship is not satisfied, then [®(n) — &(— )] has a natural
boundary on p, = 0. The argument may be extended to include complex
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values of # in a sector about the positive real axis in the (5 — 1) plane. In
this case, the previous argument shows that the singularities of ®(u) spread
out over a sector about the negative real p-axis.

The results may be summarised in a theorem, the statement of which could
undoubtedly be strengthened by more detailed analysis of the series in (236):

THEOREM 2: If the variable n satisfies n > 1, then for all such values

(1) &(p) may be analytically continued to a sector S of the u-plane given by

—Grn+d)<argu<@En+4d), 6>0. (2402)

There are singularities at the branch points of ¢,(1) given by
=Tl K|+ @n+ D, n=0, =+1,.... (240b)
@ o@= o(n). (241)

(3) For >0

~n% sinh (A — Oy)n
n coshni

1O + S(—in)] = 2 "2' 0o, i © (242)

(4) W henever the series converges, we have

0 -1\ 2
() — D(—p) = ——in—f—4”;0 2(n _:)1 cos( n¢°(2’;+ ) ) X

cot (-’fz—%i‘i)) (243)

T he series has a natural boundary unless (237) and (239) are satisfied.

This theorem allows one to consider those cases when 4 = —1 is attained
for real positive T  then satisfies the condition of the theorem.

The function &(u) may be evaluated in closed form for the particular

functional relationship #(y) which obtains for KDP and IKDP. Equation
(232) may be rewritten as

O(p) = J1 (W) + J2(w) (2449

where

Ji(w) = %J. ~d—;c— [sech ux](e™#o* — ¢ ~Cr—dox)
0

i ( rqa +i)raé - %:s)) (245)

Il =3)I'G+%9)
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with

s=1—o/p. (246)
The integral J,(uw) is given by

Ty = f e sinh (o) sinh (1 — do)x.  (247)

o x cosh (ux)sinh (mx)
The evaluation of this integral is given below for KDP and IKDP.

(1) KDP: ¢pp=3u—2n,3n <y, <nforT >0and s =2n/u — 2.
A simple manipulation gives

cosh nx cosh 2ux

® dx
— o ATRX o h _
Jo(w Zfo pall sinh (3u n)x[ cosh jox

cosh 27x sinh px

]. (248)

sinh 7x

Each integral may be evaluated in terms of I' functions by reference to a
table of Laplace transforms given by Glasser (1969). Use of the reflection
formula

I'z)I'(1 — z) = mwcosec nz (249)

then gives the remarkably simple result

o(w) = In [n 821’; - cot (-2’%)] (250)

(2) IKDP: ¢y =27 —3p, dn < u<4nforT >0and s = 4 — 2n/u.
In this case

sinh 4ux cosh nx

° dx —nX o
Jo(w) = ZJ‘O —x—e sinh 27 — 3p)x [ cosh ox

cosh 4px cosh mx

sinh ©x

]. (251)

This integral may be evaluated in the same way as for KDP, giving

®(w) = In [n 32:1 - cot (%)] (252)

which, surprisingly enough, is the analytic continuation of the KDP result.
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4. Origin of the Phase Transition

Critical behaviour arises firstly because of the singularities of the function
@(u) on the segment of the real axis given by 0 < g, < n. It was shown in
the previous subsection that the low-temperature behaviour is given by
(@(i2) + @(—iA))/2, with A > 0. In Theorem 2 it was shown that the only
physically relevant singularity is at u = 0, which corresponds to 4 = —1.
The second source of critical behaviour is the dependence of u on 4; u(4)
has branch points at 4 = +1. It is important to decide what values of 4 can
be realised on the real temperature axis for a given assignment of vertex
energies. This is summarised in the following theorem:

THEOREM 3. If the temperature T is real and positive, then v = 1 and

(1) For no values of &, and ¢, can both A = +1 and A = —1 be realised.

(2) If ey > max (0, ¢,), then —o0 < A < % for real T, whereas if ¢, < max
0,8, + < 4 < 0. If e; = max (0, &), then 0 < A < ; there is no singular
behaviour in this case.

The theorem can be proved along the lines of (162) et seq. The (e, &,)
plane is divided as shown in Fig. 15, and the temperature T, at which
A = +1 is realised is plotted as a function of angle in the (g, &,) plane in
Fig. 14.

In the following the critical behaviour at 4 = —1 and 4 =1 will be
obtained.

(i) Asymptotic Behaviour of ®(u) near yu = 0: 4 = —1 transition

From (234), the low temperature free energy near the transition temperature
may be obtained from the series

YDA + D(—iA) = — At + A ), F(nd, 1) (253)
n=0
where the parameter ¢ is defined by

t=1—0p/h

and

e™¥ sinh (tx)
x coshx ’

Flx,1) = (254)

An asymptotic expansion in powers of A may be obtained by the Euler-
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Maclaurin summation formula (see, e.g. Haynsworth and Goldberg, 1964,
p. 806), which is

M 1 M A
L F(uhs1) == | FGo,0)dx + 3(FQ, 1) + FOML 1)

Z (2 )’ (F(Zn 1) (M}») F(Zn-l) (0))B2n/12n—1
AZN M-1

—— By Y F®M (A 4+02), 0<6<1. (255)
(2N)' =0

In order to evaluate the derivatives F?"~1(0,¢) we relate F(x,t) to the
generating function for the Euler polynomials E,(x) (Haynsworth and
Goldberg, 1964; p. 804):

e(2;.—1):: 0 (ZX)”
= . 25
iy =2 B lxl <) (256)
Thus one obtains
12 () [ t ) ( t )
Pt =503 S () - E(- 7)) 1x1< (s7)
from which
22n-—1 t —t
(2n—1) = ) .
F ©, 1) o [Ez,,( 3 ) Ez,,( 2 )] (258)
The integral in the first term is approximated exponentially well by
® F(1+%:t)1"(%—%t))
F(x,t)dx =1 . 2
Jo 7 oo =i Ty )

This result is obtained by reference to a table of Laplace transforms (Glasser,
1969). Thus

@G + B(—id)) =1

n(T(l +3ct)1”(%~%t))
r(t—3)rG+4)

N— 122n B
+ % o [Ean (1) — E5 0] 51— 202 4 002", (260)

This series has zero radius of convergence, as expected since
((w) + B(— u)) has a natural boundary on the negative real u-axis. Never-
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theless, it defines a C* function bothin A at A = 0, and in 5 near 5, at A = 0;
the differential coefficients are obtained by term differentiation of (260).

The asymptotic expansion of @(p) in a suitable neighbourhood of p =0
will now be considered, along the lines of Yang and Yang (1966b). First, let
a region S be defined by the prescription.

lpl<r, —6<argu<é
with
0=4n+¢e &>0.
From Theorem 2, the path of integration in the x-plane can be deformed to
the line L which is the set of points x: x = e~ */?, —o0 <t < oo. There are

no singularities in the x-plane in a neighbourhood of this line.
The function G(u, x) defined by

sinh (m — px sinh (u — ¢o)x

261
cosh ux (261)

G(p, x) =

which occurs in the integrand of @(yu) in (232) has the following properties:

(1) For all xe L, G(u, x) is analytic in p for pe S. Thus the mean value
theorem gives
G(p, x) = EO ¢;(x) 1 + g, (x) wt (262)
i=
where v
g.(x) < M, (263)
for all xe L.

(2) The functions g,(x) and ¢;(x) are even, and

9.(0) = ¢;(0) = 0. (264)
It follows that
() = ZO d; f + 0" ) (265)
i=

where

d = %fj’ _g()dx (266)

i » Xsinh mx "
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The d; must grow sufficiently fast to make the radius of convergence of (265)
zero. The function @(u) is C* with respect to | u| along any radial line in
S at u = 0. The differential coefficients with respect to u and # at the point
(1 = 0, n = n,) are evidently obtained by term by term differentiation of the
asymptotic series.

The coefficients d; are readily obtained by using (244). The second term
of this equation may be written as

Ty = J‘ ————[exp (Zny) _ -t cosh (1 — s)izos—h;osh a+ s)y‘ 267

By using the generating function (256) and the relation (Haynsworth and
Goldberg, 1964)

E,(1 —x) = (=1)"E,(x) (268)

one obtains

120 = [ [exo (22£) <1] 7§ s 1) - B0

@

(269)
Finally, the standard integral

4 fon (22) o] e
— lexp (==} -1 m= M B, 270
foy p p y 1, H"B, (270)

gives the result

© 2n

(i 2"].

o LEn—49) = E(4)] By | 2

(271)

Thus &(p) has the asymptotic expansion

LA +39IG-19] 2 2~ 1
F(l . %:S) F(% + %:S):l Z 2 )' [E2n )"‘ E2n(fs)] X

mm=m[

m{ﬂfﬁ

I ] (272)

valid for | u| < 4n. Evidently &(u) may be written

P(w) = O(ud). (273)

Using the preceding general remarks about the asymptotic series, it is clear
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that ®(u) belongs to the class C* under differentiation with respect to u? at
p =0 along any radius through p =0 in the sector —d <argu <J,
8 = n/2 + ¢, &> 0. Further, by the implicit function theorem, p® is an
analytic function of 4 in a neighbourhood of A = —1. Thus one concludes
that even though ®(u) is not analytic at u = 0, which corresponds to the
critical point, nevertheless all temperature derivatives of z(0) exist at T = T,
and are continuous and bounded there. This concludes the proof of the
assertion that the F type models in region II of Fig. 15 have phase transitions
of infinite order. This is associated with antiferroelectric ordering in which
the unpolarised vertices 5 and 6 are favoured in the low-temperature region.

(ii) 4 =1 Transition

In a neighbourhood of p = n, ®(y) has the Taylor expansion (provided
n>1

_ (n- D X -1 Y
P(p) = =D JO dx sech (2H) (1 + coshx)™! + 0(z — p)
_ (r—w? 2(r — 2
=41 {1 + 2L o - } 274)

The function ®(u) depends on f through p(4) and through #. Thus

do au) d® on do
—_ =) — 4+ —— 275
7= (), & o @ @71
where
ia_'”_z .1 if’_ (276)
o  sinp dp

The last expression is evidently singular at u = n. Nevertheless, the internal
energy U, at B, is finite whereas the specific heat diverges; in particular

d4

U0=8F

o lzm=n] =t em

and the singular part of the specific heat is

C= %(’10 — DA (LT (1 = To/T)™ 2 (278)

In Section IV.E it was shown that if an energy &, — max (0, —¢,) is added
to each vertex, then

z(0)=0for T < T,
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Thus the phase transition at 4 = 1, which occurs in region I of Fig. 15, is
of first order, and has a ferroelectric character, provided # # 1. The IF case,
for which &, = 0, &, < 0, is special since 5 = 1 for all T, and (274) no longer
holds. Instead, we have the Taylor expansion

o) = "L 14 - w(t- =) + 0t - | em

valid for |7 — pu| < =,
Use of (275) and (276) gives

U(B) = ezl exp (=B le, 1) {1 + O[exp (— B e, NI} (280)

Thus U and all its derivatives with respect to T along the real positive T
axis vanish as T — 0, even though z(0) has an essential singularity in the T
plane at T = 0 coming from the function

A(T) =1 —%exp(~|e, |/kT). (281)

C. Analytic properties of the free energy in the complex T-plane (Douglas
B. Abraham, Department of Mathematics, Massachusetts Institute of
Technology, Cambridge, Massachusetts, U.S.A.)

In the previous section it was shown that the behaviour of the free energy
when y = 0 is related to the analytic properties of the function $(u) in the
complex p-plane. It is important to recall that &( ) also contains temperature
dependence through the parameter #. Analytic structure of the free energy
in the complex T-plane arises for the following reasons:

(1) Singularity of @ in the u and y-planes.

(2) The mapping 4 = —cos u. (282)
(3) The mapping (138)
24 = exp (Bey) + exp (—fe;) — exp [(2¢; — &1)B]. (283)

This third mapping is elementary for KDP, IKDP, F and IF; further, it is
easy to locate the singularities of &(y) in these cases. The Riemann surface
may then be constructed by considering carefully the way the p-plane maps
onto the 4 Riemann surface. This mapping is shown in Fig. 21. First, the
temperature Riemann surfaces will be obtained for KDP and F. This will be
followed by a short discussion of the general case, which shows that KDP and
F are typical of regions I and II in Fig. 15, at least in a neighbourhood of
the real positive temperature axis. (Further details may be found in Abraham
et al. (1972).)
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1. F model

From Theorem 1 of Section V.B, it is clear that the only singularity of @(u)
in the finite y-plane is a natural boundary on the negative real p-axis (see
Fig. 22). On the 4 Riemann surface, this corresponds to a natural boundary
on the segment of the real A axis from —1 to 1, but only for the sheets
A_,, n=1,2,.... The low temperature free energy is (except for an
additional term of —K, + max (0, —K;)) given by the mean value of
@ () across thecut on —1 > 4 > —c0.

The wplane
o @
a. al, q q), a, az
Sg S. St Su Su
2 - ¢} T 2 3T
l by by by bilb, by

“' by o o bz s
Ag @ Ag Ag
FiG. 21. The mapping 4 = — cos u. The loci on the 4 sheets corresponding to lines in

the u-plane are shown.

The mapping onto the f-plane is easy, since in the I case

gg=0ande, =¢
and
4 =1 — Lexp(2ef) (284)

from (283). The f-Riemann surface has the same singularity structure as the
A surface, except that the fundamental strip

0<Imp < nife (285)

is repeated periodically throughout each sheet. The cuts (£1, & 00) become
(— oo + mij2e, oo + 7if2¢) and (In 2)/e < f < oo. The natural boundaries
ond_,n=1,2,...mapinto (— oo, (In2)/¢e) on f_,. The Riemann structure
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Imu
®
-1 -1 1 bt m
T=0
T"“To
T T T T T T e 27 Rep

f T=0 el
3 i u i

(b) {c)

FiG. 22. (a) Analytic structure of the F model in the u-plane. The dashed line denotes a
natural boundary, Physical values of the temperature are plotted. For the low temperature
region, the mean value (®@A) + ®(—id))/2 should be taken, (b) and (c) show physical
and unphysical sheets of the 4 Riemann surface. Again, a dotted line indicates a natural

boundary.

g
wile
wikhe
> ImB
In2/¢ Rep .
———————— i .
Tile

——-——_—*_
In2/¢ Reg

FiG. 23. The f-Riemann surface for free energy of the F model. The heavy lines denote
branch cuts; the dashed lines denote natural boundaries.
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in B is shown in Fig. 23. A simple invertive transformation then gives the
T-structure of Fig. 24. The free energy for T < T, is evaluated by taking
the mean across the cut from 0 to T,. Thus it is perhaps slightly surprising
that the phase transition at T; is of infinite order.

2. KDP Case
From (250), the high temperature behaviour for KDP is given by

2
d(uw) =1In [%—f‘— cosec (i cot (21“—)] (286)

This function has logarithmic branch points at
wm =nn, up,(m)=mn/n n=+2,43,...

The plane may have cuts +7(1/2|#], 1/2(|n| + 1)) and cuts from p = nn
to oo parallel to the imaginary axis. The line u = n= clearly corresponds to
the two edges of the positive (negative) cut if n is odd (even). The small
branch cuts between the points u = u,(n) map onto 4; and 4_; only.

ImT

)

——— ——— —

FiG. 24. The temperature Riemann structure for the free energy of the F model. The dashed
lines, which denote natural boundaries, are absent for N = I, I1, .... The heavy lines are
branch cuts.



412 E. H. Lieb and F. Y. Wu
The mapping onto the -Riemann structure is given by
4 =1%exp(fe), e,=0, & =e. (287)

which is periodic in 8 with period 27i/e. The sheets P and fy are shown in
Fig. 25. fy does not have the small branch cuts, as was shown above. The
cuts (£ 1, £ co) in 4 map into ((In 2)/e, o0) and ((ir + In 2)/e, 00 + infe).
The behaviour on the principal sheet of the T-structure is indicated in Fig.
26. There is a branch cut on (0, Tp). Below T, the KDP system is described
by the different function @ = 0.

3. The General Case—F Transitions

In region II of Fig. 15, the value 4 = —1 occurs once in a suitably small
neighbourhood of the real positive T-axis, and 4 = +1 does not occur
therein. This follows from theorem 3 of Section V.B, and the analyticity
properties of A(T). By the same arguments as were used in the pure F case,
there is a Riemann surface in 7. Considering points near the real axis in the
first sheet, Tj, there is a branch cut from 0 to T,. The low-temperature free
energy is again obtained from the mean of & across the cut. On T.,, there
are singularities in the strip —1 < Re (4) < 1 which are not necessarily
confined to the real 4 axis, but which become a natural boundary as T— T~

Img

\

O 025/ | In2/
[o

/e

2rile

(4} wile &) ()

)
© in2/e Rep

FiG. 25. Riemann structure for the high temperature behaviour of the KDP model in the
inverse temperature plane. The structure is periodic with period 2xife. For fi?, cuts (1)
and (2) are of second order and (3) and (4) are of infinite order. For Bu® cuts (3) and (4)
are absent, but (1) and (2) are of infinite order.
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4. The General Case—KDP T ransitions

The extension of the preceding remarks on the general F model to region I
of Fig. 15 is obvious. On the first sheet of the T-Riemann surface, sufficiently
near the real positive T-axis, the only analytic feature will be a branch cut
from 0 to T, which arises from the mapping u — 4.

Thus one may conclude that the structure of the Riemann surface in T
given by KDP and F is typical of the general behaviour (in a neighbourhood
of the real positive T-axis of the first sheet).

D. Behaviourof z(y) aty @ 1— andy = 0+

For a complete description of the thermodynamic properties of the ice rule
models we need to know z(y) for 0 < y < 1 [¢f. (149)]. Now z(y) given by
(178) depends on the solution of the integral equation (174a). Unfortunately,
(174a) cannot be solved in closed form for arbitrary y, except in the zero
temperature limit or when 4 = 0. Nevertheless, all physically interesting
information can be extracted by examining the behaviour of z(y) near y = 0
and y = 1. It is our purpose in the present section to study this behaviour.

ImT

ei/m

@ @

(2)

Fic. 26. Riemann structure for the high temperature free energy of the KDP model in the
complex temperature plane. The numbers correspond to those in Fig. 25. The physical
sheet is shown.
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First, a closed expression can be obtained for z(y) in the zero temperature
limit. It is convenient at this point to recall the definition (94)
e=max (0,&) —&; = 3(e; + | &) — &, (288)
such that & > 0 (or & < 0) for an intrinsically ferroelectric (or antiferroelectric)
model. One then sees from (138) that

limd =+, §>0, &g #0
T-0

=1, &>0, g =0 (IF model)
= —00, 5<0. (289)

It is also to be noted that & = 0 implies the IKDP model {(see Fig. 15) for
which

im4=0, =0, (290)
T-0

For & > 0, the intrinsically ferroelectric model, we have, from (162) and
(289), the result

lim 7' z(y) = —¢, + max (0, —g,), &> 0. (291)
T-0
For & < 0 one can deduce from (178), (174b) and the limiting expression
lim B~ C(a) = —4é, (292)
T-0
that
lim 7' z(y) = —¢; + |y]& (6<0,¢ #0) (293)

T-0

Thus B~!z(y) has a cusp at y = 0 with an initial slope & As we shall see
presently, the cusp actually exists for all 4 < —1.

We now proceed to investigate generally the behaviour of z(y) near y = 1
and y = 0. We shall regard R(«) as defined for all « in (Table IL.5) (even
|a| > b) by means of the right hand side of (174a). The following
formulas prove to be useful. First, by directly differentiating (178) with
respect to y, we obtain

I O 1 db
20) =4 f _, RO) Ce)do + 5 R(B) C) o (2942)

P B LA 1 ﬂ
z"(y) = Z;J—b R(o) C()da + o R(d) C(b) O

1 d db
3 a [R(b) c®) ?1?]’ (294b)
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etc. where we have used the fact that the functions R and C are even in .
In (294), R and R are the partial derivatives of R(x) with respect to y, and
are given by differentiating (174a) and (174b), namely,

R(a) = — J‘: K(a — B)R(B)dB — [K(x — b) + K(o + b)] R(b) %’ (295a)

b
-7 =f R(x)da + 2R(b) z—i, etc. (295b)
~b

1. Expansion aty = 1
Since y = 1 implies b = 0 (Table 1L.6), (295) is simple to solve yielding at
y=1,

R(0) = ()
R(e) = nK(®),
R(@) =0, (296)

R(a) = n®K" (0)/482(0), etc.

Note that K'(x), C'(«) refer, of course, to derivatives with respect to o.
Using these results and the relation C’(0) = 0, one obtains from (294)
(assuming that the quantities below are finite)

Z'(1) = —C(0),
z’(1) =0, (297)
Z2""(1) = — = C"(0)/16£%(0), etc.
It is then easy to verify that we have, for all 4 < 1 and ¢; # 0,

—24
ﬁi_.ﬁ_)d),

z'(1) = -—%ln(
n—1

n’(n® + 1 — 2 A)(n — 4)
4% + 1 —24)% (n — 1)?

z'"(1) = > 0. (298)

Furthermore,
= [—/2£ (0)]y + 0(»?). (299)
The expansion of z(y) at y = 1 now reads
z(y) = —K, + max (0, —K,) + z’/(D(y — 1) + Lz’ ()(y — 1)* + 0(y — D*.
(300)
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We note that the slope of z(y) at y = 1 is negative finite for ¢; # 0.

For the pure F (and IF) model (g, = 0), (297, 298, 299) are nonsense
since C(0) is infinite. To get an asymptotic expansion we have to treat the
integral of C(«) more carefully. For small b

1 b b 2
Z;f_bR(oc) C()do = R(O)—n~ {1 + In—b— +1n|1~ 42 |}' (301)

Using (Table I1.9) and (299) we obtain finally

1—y 41 — 4)
z(p) = —-K, + 3 {1 +lnm] + o(1 — ). (302)
Thus, z(p) for the pure F model, and for this model only, has an infinite
slope at y = 1. This infinite slope is exhibited in Fig. 29 below.

The function z(y) near y = 1 is miraculously analytic in 4 for 4 < 1
despite what one might have thought from the different routes leading to
(300) and (302). This is consistent with the theorem quoted at the end of
Section V.A.

Remark : One other case for which z(y) has infinite slope at | y| = 1 is that
of infinite temperature. This can be seen from (298) by noting that 4 — 1
and n— 1.

2. Expansion at y = 0
(i 4< -1
When y =0 and 4 < —1, we have b = = (Table 11.7) and both £(x) and

K () are 2n-periodic. Therefore (295) can be solved by Fourier series. One
finds after some manipulation.

©  (-1C
20 = 41+ R)C@ + 5 (L + R § o0,
2(0) = 0,
gy TA+R) T, g (=yn*C, |
70 = - Hr2m [C @+ ¥ 271 + K, %) )
etc.
z(y) — z(0) = 2'O)y + $2""(0)y* + 0(*) (304

where K, and C, are the Fourier coefficients of K(x) and C(x) given in
(Table I1. 13, 17),

Ro(m)=1% Y (—1)ysechni, (Table IL15)

n=~-w0
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and we have explicitly used the result C'(n) = 0. Also,
n — b = [7/Ro(m)]y + 0(»?). (305)

The initial slope of z(y) at y = 0 is seen to be non-zero and is given by

2(0) = — E(L — 0,), (306)
where
con _ 1. cosh 3(4 + ¢) ® (=1"e”*"sinh ng
2@ =h 10—¢) - ;1 ool | #1<34007)

An alternate expression of Z(¢) is (Sutherland, et al. 1967)

)= 194 § CUrsinh g

X e |81 <A only. (307b)

0

The identity of (307a, b) can be established by introducing the relation
< (_ l)n -2
In(2coshx) =x — ) —e ™ x> 0.
n=1

The expression (307a) converges faster and in a larger domain, however, and
is more suitable for numerical computations.

It can also be shown that the Z function is related to the Jacobian elliptic
function nd:

2($) = cosh™? [nd (%—qu ‘ - m)] (307¢)

where the nome ¢ = e™* of nd is related to the parameter 1 — m through
(183, 184a, b). The expression (307¢c) can be obtained by combining (16.23.6)
with (16.24.6) of Milne-Thomson (1964) and introducing some elementary
identities between the elliptic functions. The function nd[(1/7) K¢ |1 — m],
as a function of ¢, has periods 24 and 4xi with poles at A + ni and A + 3mi
in the fundamental rectangle. The zeros are at i and 37, but more important-
ly for small ¢ the function behaves as 1 + (1 — m)(K¢/m)?. Since cosh™ x)
has a square root branch point at x = 1, Z(¢) is analytic at ¢ = 0 but is odd
in ¢. Using this and other elementary properties of the nd function it can be
shown that

E(@)=— E(—¢); EA-¢)=E@A+¢); E(+ 4= E(P)
Combining (306) and (307c), we find
2'(0) = —cosh™ [nd (u|1 — m)] <O, (308a)
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where 1 9
uE—T-t-K(/l——OO):K’(I -70) <K.

Similarly we find from (303), (182) and (307c) that
0) [ |’
Z/// o EII }' —_— 0
0= |g5) =a-o

= —m*m(l —m) *nd* (|1l —m)sn(u|1—m)<0O. (308b)

The last inequality follows from the fact that sn (u|1 — m) > 0 for u < 2K'.
For the F model (&; = 0) we have 0, = 0,u = K'. Hence, explicitly,

z'(0) = — cosh™! (m™%), (308¢)
27(0) = — 7%(1 — m)~%, F model, (308d)

We shall need these formulas in Section V.E.

Since 4 < —1 only for & < 0 and low temperature, we conclude that the
intrinsically antiferroelectric model is characterized by the appearance of a
cuspinz(y)aty = 0for 4 < —1. It is easy to verify from (306) that the cusp
disappears, i.e., z'(0) » 0, as 4 — —1. In fact, as we shall see from (321),
z’(0) vanishes identically for 4 = —1. These situations are exhibited in
Figs. 28 and 29 below.

i) —1<4d<1
When y =0and —1 < 4 < 1, we have b = co (Table I1.7). We must under-
take a perturbative study of the integral equation (174a). Since our discussions
follow closely that of Yang and Yang (1966b), we shall only point out the
differences and use their results without repeating the detailed analysis.

The physical quantity of interest in the case of the Heisenberg chain (Yang
and Yang, 1966b) is the ground state energy

A4 sinp

10y = -5 -5

fb E@R@@da, —1<4<1 (309)
~b

which can also be written (see (24c) of Yang and Yang, 1966b) as

~

ﬂw—ﬂ®=J

® sin u

Ro(o0) B(e) R(e)dex (310)

- 0

and
B@w=1 |a|>b (311)

=0 o] <b.
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For our case, we can derive an analogous formula which is outlined
schematically as follows:

R=¢(—K(1-BReR=(01+K1'¢+K(1+K)"'BR<

R=R,+ BR— (1 + K)"!'BR. (312)

z(y) — z(0) =%JC[(I — B)R — Ryl = —Zln—fc(l + K)"'BR

- f “ D) B() R(@)da, (313)
where

e’ da

D) = — - f” o

T8 )ow 1+ R()

1 (= . ‘
-5 fo cos (ap) sinh [(1 — ¢o)y] sech (W)Ty

_ 1 [cosh (mot/2 ) + cos (neho/20)
T 4m . cosh (mot/2 ) — cos (n¢0/2u)}

= — "' cos (npo/2w[e™ ™/ + O(e™3™2#)]. (314)
The integral in (314) can be found in Gradshteyn and Ryzhik (1965, p. 513)

and the asymptotic expansion is obvious. The analogous formula pertinent
to (310) is

sin p Ry(e) = sin p [e~™/2k 4 O(e™3™/2m)], (315)
2n 2p

Since the dependence of R(x) and b on y is independent of the model, we
can compare (315) and (310) with (314) and (313) to obtain the leading order
in the expansion of z(y):

z2(y) — 2(0) & [—2p cos (no/2)/m sin p][f () =/ (0)]

or

cos (n¢o/21y* + o(»?). (316)

2) - 20) = £

The latter formula is taken from Yang and Yang (1966b) and is based on a
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complicated solution of a Wiener-Hopf equation which we shall not
reproduce here.* Another formula of interest is the dependence of b on y:

exp (—nb/2p) = (constant)y + o(p), (317

where “constant” depends on p but not on y. This completes the derivation
of the expansion of z(y) near y =0 for — 1 <4 < 1. We note, in
particular, that the slope of z(y) at y = 0 is zero. This fact is exhibited in
Figs. 27-29 below.

-l T<T, + y

FiG. 27. Schematic plot of 8~'z(y) for the intrinsically ferroelectric model with & > 0.
The dotted curve is the locus of all points with a given slope and the dashed curve denotes
z(y) at T = oo,

(i) 4 = -1
When y = 0 and 4 = —1, we again have b = oo (Table I1.7) and it is again
necessary to perform a perturbative study of the integral equation. The
discussion is similar to that of the case —1 < 4 < 1. Here we give only the
key formulae.

In the case of the Heisenberg chain the factor (2m) ™ sin u is replaced by
(4m)~! and we have

LRo(oc) = 4[e”™ 4+ 0(e™3™)]. (318)
4n

Yang and Yang (1966b) give the result
2

S -1 = —%—yz[l + 0(y*/ln y)]. (319)

* Eqn (16) of Lieb, 1967d is wrong by a factor of 2.
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For the ferroelectrics (4m) ™! Ry(«) is replaced by (compare with (314))
_ L » sinhyd — o)
4r J_w y cosh 3y

Il

D(o) erdy

]

1 In [cosh oz + cos (0g7) ]
4r cosh anm — cos (agm)

I

- %cos (oom) [~ + O(e™*™)]. (320)
B z2(y)—z(1)]

zZy),T=0 _.-- N‘\\f") @

Fi1G. 28. Schematic plot of B~ *z(y) for the intrinsically antiferroelectric model with ¢ < 0
but &; # 0. The slope of z(y) at y = 4 1 is finite at all temperatures. The dotted curves
(1) and (2) are, respectively, the loci of all points with some fixed slope whose magnitude
is smaller and greater than |¢|. The dashed curve denotes z(y) at T = oo,

It follows then that
2(7) = 2(0) = — -cos (womy? [1 + 002 p], 4=—1  (321)
It is easily seen from the result

= 20, (322)

that the coefficient of y? in (321) agrees with that in (316) by taking the
limit 4 | —1.
The dependence of b on y is

exp (— nb) = (constant)y + 0(—1;1%—) (323)

7
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Summary
Using the above results and the fact that z(—y) = z(y) when H = 0, we can

now plot B! z(y) schematically for various temperatures. This is shown in
Figs. 27-29. One obvious difficulty is that ! z(y) = 0 when T = oo for all
y # 1. However, z(y) is perfectly finite in that case so we have adopted
the somewhat unusual expedient of plotting z(y) itself in these figures when
T = oo. These are the dashed curves labelled T = co. The dotted curves in

these figures will play a role in the next section.
For T = o0, z(0) = $1n (%) and the slope of z(y) is infinite at [y | = 1.

Also, z(+1) = 0.
For T =0, B~!z(y) is piecewise linear as given in (291) and (293).

In general z(y) is concave in y and

B lz(+1) = — &, + max (0, — ¢,), allT (329)

since b = 0 when y = 1. In our graphs we plot 87! [z(») — z(1)].
ﬁ"[z(y)-z(l)]

o
.

7
I}
+
1
[}
!
i
!
i
1
'
]
]
'
)
1

y

Fi1G. 29. Schematic plot of 8~ *z(y) for the intrinsically antiferroelectric model with & < 0
and &, = 0. The slope of z(y) is infinite at y = 4 1 at all non-zero temperatures. The dotted
curve is the locus of all points with fixed slope whose magnitude is smaller than |g|. The

dashed curve denotes z(y) at T = co.

There are five cases:
(a) ¢ = max (0,&,) — &, > 0, &; # 0 (Fig.27)
This is the intrinsically ferroelectric case with positive 4 and lim 4 = co.
T-0

Therefore for T < T,, corresponding to 4 > 1, B! [z(y) — z(1)] remains
zero for all y. For T > T, z(0) is given by (187a) and B~ * [z(y) — z(1)] =

0(y?). The slope at | y| = 1 is finite.
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(b) £ <0, g, # 0 (Fig. 28)
This is the intrinsically antiferroelectric case with 4 < 4 and lim 4 = — co.
T-0
Therefore for T > T, corresponding to 4 > —1, z(y) has the same behaviour
as in the region T > Ty in (a). However, for T< T, (4 < —1) a cusp
appears at y = 0 with f7'z(y) eventually becoming a straight line with
slopegat T = 0(4 = — ).

(©) £ <0, g, = 0 (F model, Fig. 29)
This is the antiferroelectric F model. The behaviour of z(y) is the same as
in the intrinsically antiferroelectric case with the exception that z'(1) = — o
for all temperatures. However, 8! [z(y) — z(1)] does tend to a straight line
at T = 0.

(d) £ >0, ¢ = 0 (IF model)
For small y, z(y) is similar to case (a) except that T, = 0 because $ < 4 < 1
for all T. For | y| near 1, z(y) has an infinite slope as in case (c).

(e) € = 0 (IKDP model)

Again T, = 0 since 0 < 4 < % and, for all y, z(y) is as in case (a) for all
T > To = 0.

E. Thermodynamic properties when h = Oand v # 0O
We are now ready to discuss the thermodynamic properties of the general
ice-rule models in the presence of an external field. In this section we shall
consider a vertical field only. By restricting the external field to a single
component, we are able to make simple comparisons with the properties of
the Ising model. The general features of the thermodynamic behaviour of
our model is presumably unchanged when a horizontal field is also present.
Some results pertaining to this general situation will be given in Section
V.F.

Referring to (149), we see that the free energy &, which yields the
thermodynamic properties of the system, depends on the optimum choice of
y obtained by solving

()= -V = — P (325)

Bearing in mind that z(y) is symmetric and concave, we need only consider
V = 0. On the basis of the theorem quoted in Section V.A, a phase transition
can occur only when the optimum choice happens to be y=0or y = 1.
The behaviour of the model near the transition temperature then follows
from the behaviour of z(y) near y = 0 and y = +1. It is therefore convenient
to discuss the cases (a)-(e) of the last section corresponding to Figs. 27-29
separately. :



424 E. H. Lieb and F. Y. Wu

(a) € =max (0,&,) — ¢, > 0,¢, # 0 (Fig. 27)
We saw from Fig. 27 that in this case the slope of z(y) is zero at y = 0 and
non-zero at y = +1 for T > T, where Tj, is the temperature corresponding
to 4 = 1. Therefore in zero field (v = 0) the optimum choice is always y = 0
and & = —B~'z(0). With a positive vertical field, v, the optimum choice for
y are located on the dotted curve which is the locus of all points having slope
= —v in Fig. 27. As the temperature decreases from infinity, we come down

along the dotted line and reach perfect polarization y = 1 at some temperature
T.(v) > T, such that

ZZ(MN)=-V, T=T.,v). (326)

Wheny =1, % = — & + max (0, — ¢) — v. If T < T,(v) then y continues
to “stick” at I because —kTz’(1) decreases as T decreases. This can be proved
for all T and all choices of ¢; and ¢, by differentiating (298). Therefore
T,(v) is the transition temperature for a ferroelectric (y = 1) transition.
Upon using (298), the critical condition (326) can be rewritten as

24=e"A -+ A +1n), T=T). (327)

One sees explicitly from (327) that the transition temperature T,(v)
increases as v increases. This is in contrast to the ferromagnetic Ising model
where a non-zero external field removes the phase transition. Qur result that
T,(v) increases with v is, however, in agreement with the experimental finding
(Reese, 1969) that the transition of KH,PO, (KDP) is indeed shifted to
higher temperatures under an external field. The linear shift in T, for small v,
as can be seen from (327), also agrees with the experimental indications
(Reese, 1969). We plot in Fig. 30 the phase diagram for the KDP model
(e, =0, &y > 0). The y = +1 phases are bounded by the curves defined by

F1G. 30. Phase diagram for the KDP model (¢, = ¢, &, = 0) with a vertical field v. The
phase boundaries meet at 7' = Ty = ¢/(kIn2).
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(327). The initial slopes of the boundary for small v is

do/dT, = +kln2 atv =0.

(b) € = max (0,¢,) — &, <0,8, #0

We saw from Fig. 28 that for § < 0 and &, 0 z(y) has zero slope at y = 0
for T > T,, and has a finite, but non-zero derivative at y = 0 for T < To,
where T, is the temperature corresponding to 4 = —1. f7'z’(0) becomes
more negative as T decreases from Ty, and reaches a finite value £ (cf. (293))
at zero temperature. (The above assertion is undoubtedly true, but we have
not done the analysis. We leave this as an unsolved problem for the reader.)

On the other hand the slope of z(y) at y = 1 is always finite and decreases
in magnitude as the temperature decreases until f ") =8at T=0
(cf. remark following (326)). Therefore, to find the optimum choice of y we
proceed, with v = 0, along the y-axis and obtain, as before, # = —f~ 1 2(0).
But with v % 0 we proceed in Fig. 28 along the dotted curves which are the
loci of all points with a given fixed slope. Curve (1) is the locus of all points
with a fixed slope greater than &, whereas curve (2) represents the locus of
all points having a fixed slope less than & in Fig. 28. For 0 < v < —§, we
come down along the dotted curve (1) as the temperature decreases from
T = oo and eventually reach the cusp at a temperature 7T,.(v) whose initial
slope is precisely —v. Further lowering of the temperature reduces the slope
and y “sticks” at zero. We have an antiferroelectric phase transition occuring
at T.(v) defined by B~'2z'(0) = — v, or, using (306),

V=5804=0) v< —5 T =T, (328)

Clearly T.(v) decreases from the zero field value, Tj, as v increases from
zero, and reaches absolute zero when v reaches the “critical” value | £|. This
is similar to the corresponding situation expected for an antiferromagnet, as
seen from the exact solution of a super-exchange antiferromagnetic Ising
model (Fisher, 1960). We plot in Fig. 31 the phase diagram of a particular
intrinsically antiferroelectric model with &, = 2¢; = 2¢ > 0. The antiferro-
electric y = 0 phase is bounded by the curves (328).

For v > —&, however, the optimum choice can never be y = 0. Instead,
we come down along the dotted curve (2) in Fig. 28 until we reach the point
y =1 at a temperature T,(v) again defined by (326, 327). Further lowering
of the temperature has no effect on the optimum value of y and we thus have
a ferroelectric transition.

Summarizing the above results for the intrinsically antiferroelectric model,
we see that a non-zero external field has the effect of reducing the transition
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temperature until the antiferroelectric transition disappears (T,(v) = 0) at
v = —¢&. Further increase of the field changes the nature of the transition so
that a ferroelectric transition begins to appear at a gradually rising T,(v),
which can be made arbitrarily large, and the model is now ferroelectric. This
is a unique feature of the antiferroelectric model, not shared by the antiferro-
magnet, but is what we expect from energetic considerations. Using the
vertex energies (93), one easily sees that (for 4 = 0) v > — & implies either e,
or e, is favoured and we then have a ferroelectric ground state. These y = +1
phases are also shown in Fig. 31 by the cross-hatched areas with boundaries
given by (327).

2 7
| _y=l
|
y=0 To
s o
-1
| —y=-I
- ] 1
20 | 2
kT/¢

FIG. 31. Phase diagram for the intrinsically antiferroelectric model &, = 2, = 2¢ > 0
with a vertical field v. The transition temperature at v = 0 is

~1
Ty — a[kln (‘/5; 1)] .

It is interesting to investigate the behaviour of the phase boundaries near
T =0and T = T,. Plainly the slope of the boundaries vanishes exponentially
at T = 0. In fact we find for the ferroelectric phase boundary (327)

kT
v=[el+—exp(=fle), T =0+, (329)

and for the antiferroelectric phase boundary (328)
v=|&| —kTexp(—fle ), T =0+. (330)
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At T, — the behaviour of (328) is more subtle and requires careful analysis.
It is now convenient to use the expression (307¢) for Z. Near T, we have
A — 0 hence, from (176), A — 0, — [2/(n + 1)A]. Furthermore, in (307¢c)
4 — 0 implies m — 1, K’ - n/2 and K — n?/21. We thus have

V~—-cosh‘1[nd(—~—f—'1 —m)], T=T,—. (331)
n+1
Now for m = 1 we have from eqns (16.3.3) and (16.13.3) of Milne-Thomson
(1964)

nd(u|l —m) =1+ 4(1 — m)siny, m=1.

It follows then that

T
V= (1 —mtsi , T ~T,—, 332
(= misin(Tg) T (33)
since 2
e Kein—2
24 1—m

where the last expression is taken from eqn (17.3.26) of Milne-Thomson
(1964). We finally obtain

vg4kTsin(
n +

n o= 24
1

oc exp [ —(constant)(T, — T)™?], T = T,—, (333)
which also vanishes exponentially.

() E= —¢, <0, ¢ = 0 (F model)

This model is characterized by the fact that z(y) has an infinite slope at
y = +1 at all temperatures, while the behaviour of z(y) for small y is the
same as in case (b). Therefore, as the field v increases from zero, the transition
temperature decreases the same as in case (b) and reaches T, = 0 when
v = —& However, since the y = 1 transition never occurs, the transition
temperature remains zero for all v > —& and the complete ferroelectric
polarization never appears. Thus the phase diagram which we plot in Fig. 32
looks much like that of an antiferromagnet in a direct magnet field. We can
also understand from an energetic consideration why the y = +1 polarized
phases never occur for the F model in the absenceof a horizontal field. For in
this case vertices of types (1) and (4) have equal energy, and are both favoured
when v > —&. Since the ground state composed of vertices of types (1) and
(4) is highly degenerate, a phase transition never materializes.
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The phase boundaries in Fig. 32 is given by
V=521, v< -8 (334)

Unlike case (b), these boundaries have finite slope at small T. Using (307b),
we can compute this slope:

v = kT[—%A + ) (—;11) tanhnl] (335)
n=1
_, dv o (—1)"
1__ = == - .
dT T=0 ,,Zl n 1112

The behaviour at T, — is the same as (333) with y = 1.

To

]
15

kT/¢

FiG. 32, Phase diagram for the F model &; = 0, ¢, = ¢ with a vertical field v. The transi-
tion temperature at v = 0 is Ty = &/kln2.

(d) € =max (0,¢,) — ¢, > 0, &; = 0 (IF model)
No transition of any kind occurs when 4 = 0 because 4 < 1 always, whereas

the slope of z(y) is infinite at | y| = 1. Consequently there is no “sticking”
at |y| =1 and there are no singularities at y = 0. This is the inverted F

model.
(e) & = 0 IKDP model)

A phase transition can occur only with a non-zero field and is of the | yl=1

type as given by (327). The phase diagram is similar to Fig. 30, but with
To = 0.
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Summarizing the above results, we see that there are essentially two kinds
of phase transitions in the presence of a vertical field. The y =1, or the
ferroelectric transition, occurs for £ >0 and ¢, # 0 and for § <0, & #0
withv > —&. In this case the system “sticks” at y = 1 (complete polarization)
for T < T,. On the other hand the y = 0, or the antiferroelectric transition,
occurs for £ < 0 and v < —&, and the system “sticks” at y = O (zero polar-
ization) for T < T..

Let us now discuss the thermodynamic properties in the transition region
for these two cases separately.

(i) Ferroelectric (y = 1) transition

For the ferroelectric transition we have y = 1 for T < T,. At T =~ T+, we
use (149) in conjunction with (300) to yield, for y near 1,

y =1 - [a(T)/b(T)]"? (336a)
where, for V > 0,
aT)= —V + 3 (l’Lnl—Tl—zi) >0, (336b)

n*(n? + 1 — 2nd)(n — 4)

SGE 7 1= 24)%(1 = 1) > 0. (336¢)

B(T) =

The square root in (336a) is caused by the fact that d’z/dy? = O at | y| = 1.
It follows then that

—BF =V + 2La(T)P?BIH(THIV?, T =T+
(337)
=7, T<T,.

The transition temperature, T, is of course, given by a(T,) = 0. The internal
energy, U, is computed as

U=i(ﬁf)g—v—(%)

12 9q a\3? b
1 _— ~
7 ; ( ) T T+

— + pu— s
op b op (338)
= — 7, T<T,.

The essential point to notice is that 7 > 1 and 4 < 1 imply that a(T') and
b(T) are real analytic in T. a(T,) = 0 characterizes the transition temperature
and near that point a(T) has a non-vanishing slope while b(T) is always
positive. Consequently U is now continuous at T, and the transition is without
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a latent heat. Further differentiation of U leads to the behaviour of the
specific heat
Cxc (T -T) Y, Tx=T+ -
(339)
=0, T<T,.

These conclusions contrast with the zero field result of Section V.C. The
transition is now second order although the specific heat singularity remains
unaltered.

(i) Antiferroelectric (y = 0) transition

For the antiferroelectric transition we have y = 0 when T' < T,(v). Therefore
the thermodynamic properties are identical to those with v = 0 on the low
temperature side of T,(v). This is a truly striking result because it means that
although the field greatly modifies the thermodynamics above T.(v), as we
shall soon see, it has literally no effect on the free energy below T.(v). Of
course the region below T,(v) diminishes as v increases, but the presence of
that region is in marked contrast to the Ising model situation.

On the high temperature side of T,(v) we must use the small y expansion
of z(y), namely (304), in maximizing — B given by (149). Thus we find

¥ = [e(T)/d(T)] (340)
with
o(T)y=V + zZ’(0) = 0, (341a)
aAT) = — 32"(0) > 0 (341b)

where z'(0) and z"’(0) have been given in (308). It follows then that

—BF = 2(0) + 2[c(T)PP*BA(TH]?, T = T, +
(342)
= z(0), , T<T,

The transition temperature is again defined by ¢(T,) = 0. Once again, by
direct differentiation, we see that the internal energy is continuous (no latent
heat) at T, while the specific heat diverges as (T — T,)" "2 at T,+.

Having discussed the thermodynamic properties, we conclude with a
description of the dependence of polarization on field for the various models
at fixed temperatures.

(a) Intrinsically Ferroelectric Model £ > 0, &, # 0

The situation is exhibited in Fig. 33 where various isotherms are shown. The
polarization “sticks” at y = 1 at the field v(T) specified by (327). Therefore
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the isotherm moves towards the right as T increases. For T < Ty,
however, a spontaneous polarization appears at zero field and the isotherm
for T < T, becomes a step function. For T > T, the isotherm near the upper
edge is given by (336a) and has a vertical tangent at y = 1; namely

y 1= {B[o(T) - dl/b(D}"?, y=i-. (343)

Near y = 0 the isotherm approaches the origin linearly. We find from (149)
and (316) that

y=qv, y=0+ (344a)

T=TC(V|)
T<T,
VA

T=Te (Vz)

!
1
1
1
]
i
i
[
!
|
v

\ vz

FiG. 33. Vertical polarization vs. vertical field for the intrinsically ferroelectric model
(¢ > 0). (Schematic plot.)

where the polarizability, ¥, is given by

"o ) (344b)

=% - u)sec( 2p

At high temperatures, we have u—3%m, ¢do— 0 and (344b) takes the
Curie form

6
y = ;—(kT)"l, T — 0. (345)

As T - T,+, we have u — 7 and x diverges. To compute this divergence to
leading order in T — T, we note from (175) that as 4 —» 1, u— m, ¢o = 7.
If we define § = [k(T — Tp)]'/? then m — p is analytic in 6 near § = 0 with
a linear leading term; cos (7¢o/2p) has the same property with leading term
(m — w)/(n — 1). Consequently,

x=A(T — To)™ ' + B(T — T) Y + C+..., Tx=T, (346a)
where A, B and C are constants. For the KDP model

A=2/kln2, KDP. (346b)
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(b) Intrinsically antiferroelectric model § < 0, &, # 0

The isotherms in this case are shown in Fig. 34 which should be compared
with Fig. 31. At T =0, we have y = 0 for v < |&| and y = 1 for v > | §|;
y is therefore a step function. For 0 < T < T, it requires a non-zero “critical’’
field to produce a net polarization, and the polarization saturates at y = 1
when the field reaches the value v(T) > | £| defined by (327). For T > T,
however, it is possible to produce a net polarization with an infinitesimal v.
The fact that a non-zero field is required to produce polarization when T < T,

y

(o]

T=
T<T, V¥

F1G. 34. Vertical polarization vs. vertical field for the intrinsically antiferroelectric model
(¢ < 0) with ¢; # 0. (Schematic plot.)

means that the system is “locked in”, despite what one might think from the
infinite order phase transition described in Section V.C. This state of affairs
is strikingly different from the Ising ferromagnet.

The isotherms are again given by (343) near y = 1 — where they have
vertical tangents. The behaviour of the isotherms at small y is somewhat
different. For T < Ty, the initial tangent is vertical and, according to (340),
the polarization behaves as

y = A{Blv = oD}, y=0+, T <T,. (347)

For T > T,, we find as in case (a) that the polarizability y is given by (344b).
However for the antiferroelectric models now under consideration we have
—1 < 4 < 4 (see Fig. 13), 0 < u < %n, hence g is always finite. Using (322)
and (177) we find at T,

2 [alne—1) ]
- . T=T, 348
Ko = T, 5°° [2('10 T T=T (348)

where 7, is the value of 5 at Ty,

As T increases from T,, x increases initially, but never diverges and
eventually vanishes as 1/T precisely as given by (345).

We draw attention to the anomalous non-uniform behaviour of the
polarization for small field and T near T,. Just above T, the polarization is
linear, while just below T it has a step-function-like behaviour.
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(c) Fmodel£ <0,¢; =0

The F model is a special case of the antiferroelectric model with the unique
property that the polarization never saturates for finite fields. The isotherms
are shown schematically in Fig. 35. For small y, the isotherms behave
exactly as in case (b); namely, given by (347) for T < T, and y = yv for
T = T,. Because ¢, = 0, the polarizability, y, of (344b) now has the simple
expression

2

= m, T = TO (F model). (349)

X

Here, again, T = T, corresponds to u = 0. ykT increases monotonically in
T and never diverges.

y
! —
T=T, —
T=0
=T |_ |
T>To v

€

FiG. 35. Vertical polarization vs. vertical field for the F model (¢; = 0, &, = ¢ > 0.)
(Schematic plot.)

The behaviour of the polarization near y = 1 can be obtained from (302)
and (149). We find

y1— 4—(1—”_—-Z)exp (—2Bv), y=1—. (350)

This behaviour of y for large v is the same as for the Ising model (ferro- or
antiferromagnetic) and is characteristic of any system with an energy gap for
“turning over a spin”. However, among the ferroelectrics it occurs only for
the F and IF models. ‘

(d) IF Model £ > 0,¢; =0

There is no phase transition for the IF model when 4 = 0, and the polarization
never saturates. Near y = 1—, the polarization behaves as (350) which
approaches y = 1 exponentially. For small y, the polarization rises linearly
in v as in (344a) for all temperatures. However, as T— 0 we have utn,
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¢o(= 3u — 27) | = and hence the following behaviour of the polarizability:

P %eﬂ"', T = 0 (IF model). (351)

The situation is demonstrated in Fig. 36.

Y

v

Fic. 36. Vertical polarization vs. vertical field for the IF model (¢; =0, &, < 0).
(Schematic plot.)

(e) IKDP model £ =0

There is no transition for v = 0. For v > 0 a y = 1 transition occurs at a
temperature T'(v) defined by (327), which increases from T (0) = 0 mono-
tonically in v. Therefore the situation is identical to case (a) but with T, = 0.
However, as T —» T, = 0, the polarizability is found to behave as

2
Yo = ;{];:Fem’ T = 0 (IKDP model). (352)

F. Transition temperature when A # O and v # 0

In Section V.E. we gave a complete description of the ice rule ferroelectric
models when v # 0 but 2 = 0. We saw that a verticle field caused all phase
transitions to become second order and that the transition temperature, T,
increased for the ferroelectric and decreased for the antiferroelectric. In the
latter case T, vanishes for a finite field such that two of the three pairs of
verticles have degenerate energies. A further increase of field causes the
system to become a ferroelectric (except in the case of the F and IF models)
with a value of T, that eventually becomes infinite for infinite field.}
The properties of the ferroelectric models can be expected to be
qualitatively similar if a horizontal field is also present. The analysis has
been sketched in Sutherland er al. (1967) but as the details have not yet
appeared we shall content ourselves here with a discussion of the dependence
of T, on field. As before, T < T, for the ferroelectric is characterized by the
system “sticking” at y =1 (or y = —1) while the antiferroelectric phase

t This behaviour is completely different from that of the Ising model.
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means y ‘“‘sticks” at zero. Part of what is contained here is based on

Sutherland et al. (

1967).

It is convenient to consider various regions of the # — v plane such that
within each region a given type of vertex (¢f. Fig. 1) is favoured. Using the
expressions of the vertex energies (93), we obtain the following:

£€>0: Regionl: h> —4¢, v>—%¢, h+v>0,
Region 2: 1 v<ile h+v<0
g' h < 281’ 2¢1» + ’ (353a)
Region 3: & > 1¢4, v< —4e, h—v>0,
Region 4: h < —3e;, v > g, h—v<0.
§<0: Regionl: hA>—3¢, v>—1¢, h+v>e,~—¢,
Region 2: 7 < d¢, v < ey, h+v<e — &y,
Region 3: 4 > ley, v< —%g, h—0v>eg,, (353b)
Region 4: h < —1g, v> 1g, h—v< —g,,
Region 5: & —e;, <h+v<eg,—¢g, —&g<h—v<e,.
v v
\ kL
4 . 4 A ) |
1
zlal
" |
2 €
2 '5"1 3 2 3

(c)T<0,e >0

(d)e<0,e <0

Fic. 37. Different regions in the (4, v) plane for the ice rule models. (a) and (b) are the
intrinsically ferroelectric cases including the IKDP (¢ = 0) and IF(¢;, = 0) models; (¢) and
(d) are the intrinsically antiferroelectric cases.
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In (353), the ith region is characterized by e; < ¢; for j # i. Note that the
antiferroelectric region 5 exists only when & < 0. These regions are exhibited
in Fig. 37. We consider the y =1 (or y = —1) and y = 0 transitions
separately.

(a) The Ferroelectric Transition at y = 1

The ferroelectric transition occuring at y = 1 is characterized by a complete
polarization in the vertical direction. Referring to Fig. 1 we see that only the
vertices of types (1) and (4) have a positive vertical polarization. Therefore
the y = 1 transition occurs in either region 1 or region 4 and when the
vertical field is sufficiently positive.

To obtain the temperature at which this transition occurs, we recall from
(81) that y ~ 1 corresponds to n ~ 0 where # is the number of down arrows
of any row of the lattice. The » numbers {k} = {k, ..., k,} appearing in the
Bethe ansatz (140) satisfy (147). For small », at least, we shall suppose that
(147) has a solution, even when H s 0, and that this solution, asin the H = 0
case, has the property that the &’s cluster near the origin in the complex k
plane. Admittedly a rigorous proof is lacking. That being the case, we can
evaluate z(y) to leading order in y — 1 by setting &y, ..., k, = 0 in (141);

—K; 2K>—-K;y __

—e eZH
- }, (3542)

1 e
—]—v-lnAR(y)=Vy—K2+H+%(1—y)ln[ -

1 _ e—Kl—‘ZH

1 eKi _ o2K2=Ki _ o—2H

(354b)
and AQ) = Ag() + AL)

In the thermodynamic limit the system “sticks” at y=1 if A’(1) =0
[¢f. eqns (148, 149)]. We are here making use of the fundamental thermo-
dynamic fact that z(y) must be a concave function of y so that A'(1) > 0
implies that max z(y) occurs at y = 1. This is equivalent to Ax'(1) = 0 if

<1
Ag(1) > AL(lly)l or A (1) 20 if Ax(1) < A.(1). Now Ax(1) = A,(1)
means ¢; + 2k = 0 which is precisely the vertical boundary between regions
1 and 4. Thus, the maximizing y “sticks” at +1 for Agz(1) > 0 in region
1 and A (1) = 0 in region 4. This is the condition

@ +K — 1)V K — 1) = X2, region 1
(355a)
(e™ — X)(e?” — eft) = 2, region 4.
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Eqn (355a) (with equality) also reduces to (327) on taking H =0, as it
should (the first equation is for ¢, > 0 and the second for ¢, < 0). When
& > 0 and &, = 0 (IF model) no transition is possible using one field alone.

(b) The Ferroelectric Transition at y = —1
By symmetry, the maximizing y “sticks” at y = —1 for

(e™2H KL _ 1)(e™ VK — 1) = e**%, region 2 (355b)
(€27 — X)) (72" — eX1) > %2, region 3

(355a, b) reduce to the condition (156a, b) by taking 4 = 0 or e2%* = *** + 1.
The equality sign in (355a, b) defines the temperature T,(4, v) at which
the | y| = 1 transition occurs.

It is interesting to plot the constant T, contours in the s — v plane. We
have done this for two models. In Fig. 38 the T, contours are plotted for the
ferroelectric Slater KDP model. In Fig. 39 the constant T, contours are
plotted for an antiferroelectric model with ¢, = 2¢; = ¢. The transition
temperature in region 5 will be given presently.

-0

Fic. 38. Constant T, contours in the (%, v) plane for the KDP model (¢; = ¢ > 0, &, = 0).
T. is measured in units of ¢/k and T, = 1/(In2) = 1-44 is the transition temperature in zero
field.
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We note that T, = 0 on the boundaries between all regions except those
between regions 1 and 2 (Fig. 37a) or 3 and 4 (Fig. 37b). Along these latter
boundaries T, is not even constant, as is seen from Fig. 38. The one ex-
ceptional case occurs for the IKDP models defined by & = 0. For these
models Figs. 37a and 37c (resp. 37b and 37d) merge into each other and
T, = 0 along the 1-2 (resp. 3-4) boundary. The fact that T, = 0 on the
other boundaries is a consequence of the degeneracy of the lowest vertex
energies.

(¢) The Antiferroelectric Transition at y =0
We have seen in the previous section that, for the intrinsically antiferro-
electric model (¢ < 0) with a vertical field only, the maximizing y “‘sticks’ at
y = 0for T < T,(v) defined by (328). T,(v) is then the transition temperature.
The situation is basically the same when a horizontal field is included. The
transition temperature T,(h, v) is defined as the temperature below which
both the horizontal and vertical polarization x and y ‘stick” at zero.
Sutherland ez al. (1967) have shown that this occurs only for 4 < —1 and
the point x = y = 0 corresponds to a region in the 4 — v plane bounded by
the closed curve parametrically defined as:
H=E&
) (356)

V=58A—-0,+5s), |s|<2i

v/e

v

P
Ao
el
Aoy

2

FiG. 39. Constant T, contours in the (h, v) plane for the intrinsically antiferroelectric
model with &; = 2g, = 2 > 0. T, is measured in units of ¢/k and T = 1/In [3(+/3 + D]=
2-08 is the transition temperature in zero field.
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Here E(¢) is defined by (307a) for |¢| < 34, and 0, is defined by (176).
Therefore, the temperature T,(4, v) at which the x = y = 0 transition occurs
is given precisely by (356). For H = 0 we have s = 0 and (356) reduces to
(328) as it should. If, in addition, we also have ¥ = 0, the transition tem-
perature is 7,(0,0) = T, defined by A = 6, = 0 or 4 = —1. One can also see
from (356) that T,(%, v) — 0 as one approaches the boundary of the antiferro-
electric region 5 defined in (353b). This limit is characterized by
A—2K, — K> 00;0,|K;|—>00;4—0,— 0.

The constant T, contours in this region are plotted in Fig. 39 for the case
g, =28 =e¢.

G. The modified KDP model

In the previous sections we have considered the ice rule models using the
method of the transfer matrix introduced in Section IV.A. The solution is
based on the assumption of the Bethe ansatz which eventually led
us to the integral equation (174a). In general the integral equation cannot be
solved for arbitrary y. For 4 = 0, the kernel of the integral equation vanishes
and the solution is trivial. The solution in this case has been given in Section
IV.E.

An independent method which, when applicable, sometimes provides a
more direct route to the solution of the ferroelectric problem is the Pfaffian
method. In Section VI we shall see that the Pfaffian method can be used
whenever the condition (392) is fulfilled. It is then a simple matter to see
that A = 0 is precisely this solubility condition (392). Thus we are led via
two different routes to the same soluble cases. In this sense the transfer
matrix method with the Bethe ansatz assumption is more powerful because
it also yields solutions for 4 # 0 in many cases.

The condition 4 = 0 (see eqn (153)) means a fixed temperature for given
g, and &,. This solution is limited, although it is interesting because when
A = 0 the problem can be simply solved for arbitrary fields and at the same
time the 4 = 0isotherm is typical of the entire region —1 < 4 < 1. However,
examination of (153) indicates that, for &y = — o0 and ¢, =0, 4 =0 is
valid at all temperatures. This limit is not as pathologic as it sounds and
leads to a physically interesting model which we shall now describe.

The modified KDP model (Wu, 1967, 1968) is specified by the following
conditions on the vertex energies (94):

e, = o, (357)
e; + e, =¢s5+ ¢ (358)

and e,, e, e,, es = eg otherwise being arbitrary. It can be interpreted as the
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Slater KDP model with the additional constraint that type (1) vertices are
forbidden. It is possible to solve this model by taking certain limits in the
general ice rule models (Sutherland et al., 1967). Examination of (94) shows
that the appropriate limits to take are & — — oo, 8, =0, 4-0, h—> —c0
and v - —oo. The manipulation is rather delicate, however, since these
limits are obviously related. Fortunately in this case the Pfaffian approach
is more effective. It suffices to say here that the conditions (357, 358) again
satisfy the solubility condition (392) below. Thus we may simply use (393)
which gives the free energy, &, per vertex as

—BF =lim (MN) *InZ
M~
N—-ow

(i T
= f d@f do In[w,? + w3* + 0% + 2050, cos O + 2,0,

X €os ¢ + 2mw;w, cos (0 — ¢)]
1 T
= EJ‘ d0 In max {w,?, 0,? + w32 — 2,0, cos 0} (359)

where w; = exp (— fle;), and the last expression is obtained by carrying out
the ¢ integration.

Clearly, explicit evaluation of (359) depends on whether Wy, w3 and w,
are the sides of a triangle. For given e,, e; and e,, all distinct, there always
exists a temperature T, defined by

Wy + 03 + 0, = 2max{w,, w3, 0.}, T =T, (360)

such that below T, the maximum w; dominates and there is no triangular
relationship. Under this circumstance we find

—BF = — fmin{e,,e;,¢,}, T < T, (361)

and hence the energy per vertex

0

= 'EE (ﬂ‘g; = min {329 €3, 64}’ T< frc (362)
In other words, the system is in a completely polarized state. Above T,
however, the triangular inequalities @, + w; > w,, w, + w, > w3 and
w3 + w, > w, hold, and the integral (359) cannot be evaluated in closed
form. By differentiating, we find the following expression for the energy,

1
U= p (€20, + €305 + e,0,), T>T, (363)
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where 0; is the angle opposite to the side w; in a triangle whose sides are
0,3, 03 and ,.

We note that the energy U is continuous at T, as the 8’s go to 0 or = smooth-
ly at T,. The specific heat C can now be computed. We find

C=0, T<T,
Coc (T —T) 12, T T,+. (364)

Thus the model exhibits a second-order phase transition with no latent heat.
For the modified KDP model we have

61=OO,
ey =nh+v,
e3=¢—h+v, (365)

e,=¢e+h—uv,
€5 = €g = &.
As in Section V.F it is again convenient to consider various regions of the
h — v plane such that within each region a given type of vertex is favoured.
We find that:
Region 2: h<ieg, v<ie,
Region3: A>1de, h—v>0, (366)
Region4: v>14e, h—v<0,
where the ith region is characterized by e; < e; for j # i. A plot of these
regions is given in Fig. 40. The transition temperature T, is now given
explicitly by
eX = e?H 1 e?, region 2,
e = ek + ¢?”, region 3, 367)
e?V =eX + e?# regiond, T =T,
where K = fe, H = Sh, V = Bv. We observe that T, — co as either | 4| or
|v] = c0. Also T, = 0 on the boundaries between the regions. This is also
a consequence of the fact that the lowest configuration is highly degenerate.
The critical condition (367) should be compared with that of the KDP

model, eqns (355a, 355b). While the conditions of the two models are different
in regions 3 and 4, they are identical in region 2. This indicates that the



442 E. H. Lieb and F. Y. Wu

effect of type (1) vertices is insignificant when vertex (2) is favoured ; namely,
there is not much difference between the regular and the modified models,
at least near the region of the transitions. This is what one expects in-
tuitively because the ice rule dictates that no type (1) vertex can be inserted
in the ground state without affecting at least two chains of vertices running
across the entire lattice.

v

LAY

F1G. 40. Different regions in the (&, v) plane for the modified KDP model.

We can now introduce (365) into (359) to compute the polarizations
x = —0F[0h, y = —0F[0v. One finds complete polarization below T,
namely

(x,y) = (-1, —1), region 2,
= (+1,-1), region3, )} T<T, (368a)
= (-1, +1), region 4.J

Also 2
X = —;93 -1, T>T, (368b)
2
y= ”{94 -1,

where 0; is the same as in (363). In particular we find that in zero field the
polarizations do not vanish,

2
x=y=7t—cos‘1(%eK)—-l, h=v=0. (369)
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This reflects the fact that the modified model lacks the inversion symmetry of
the Slater KDF model.

The phase diagram of this model is best visualised in the 2 — v plane. In
Fig. 41 the heavy curves show the phase boundaries (367) at a given temper-
ature T. These curves move out as T increases and converges toward the
region boundaries as T decreases to zero. It is now possible to investigate
the dependence of the polarization, y, for example, on both 4 and v. Either
(386b) or Fig. 41 shows that as a function of v, for 4 fixed, y increases mono-

v

Fic. 41. Phase boundaries of the modified KDP model at a fixed temperature. The lattice
is completely polarized in the shaded regions. (Schematic plot.)

o /.
g
-

(b)

y

(c) h

NIV

FiG. 42. Vertical polarization vs. external field for the modified KDP model. (a) y as a
function of the vertical field v. (b) y as a function of the horizontal field 4 for v > e,
(c) ¥ as a function of 4 for v < %e. (Schematic plot.)
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tonically from —1 to 1 as shown in Fig. 42a. As a function of 4, for v fixed,
the behaviour of y depends on whether v > 1¢ or v < %e. For v > 3¢, as
shown in Fig. 42b, y decreases monotonically from 1 to —1 as % increases.
For v < Je, however, y increases initially from —1, but never reaches zero,
and eventually returns to the value — 1. This situation is shown in Fig. 42c.
It is easy to compute the maximum polarization in this case,

aue = - tan™Hexpl2(V — H)]} - 1, 670

where H is given by
4l = In (e** — &*"). (371)

These isotherms have vertical tangents at y = +1. The slope is found to
diverge as |v — o | 7Y% or |h— hy|™Y/? as the critical field h, or v, is
approached. This behaviour is similar to that of the regular ice rule models
as given by (343) and (347).

The modified KDP model can also be solved with a staggered field and
the phase diagram in a staggered field is found to be similar to that of the
F model in a direct field. (Wu, 1971a).

Finally, we mention that the modified KDP model is completely equivalent
to the problem of close-packed dimers on a hexagonal lattice. The equivalence
can be most simply established if one treats the modified KDP model by the
method of dimers (Wu, 1968). We shall omit the details here and give only
the result. Let Z;, be the generating function for the close-packed dimer
configurations on a hexagonal lattice of N vertices and having activities
w,, w3 and w, along the three principal axes. Then

lim N"'InZ,= — 1pF (372)
N-oow
where fF is given by (359). The existence of a phase transition for the
hexagonal dimer lattice was first pointed out by Kasteleyn (1963). The
number of close-packed dimer configurations on a hexagonal lattice can be
computed from this generating function by setting w, = w; = w, = 1. The
result has been given in (23).

H. Other ice rule models
1. The F Model with a Staggered Field when A = 0

As we have remarked earlier in Section IV.E (see also Section VIII), one of
the outstanding unsolved problems for the ferroelectrics is the problem of
inclusion of a staggered field. However, at a particular temperature corres-
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ponding to 4 = 0, the partition function can be evaluated in closed form
.using the method of Pfaffians (Baxter, 1970b). For the Rys F model 4 = 0
corresponds to the temperature

T = 2¢/kIn2 = 2T, (373)

Baxter’s expression of the free energy of the F model with both direct and
staggered fields at this temperature has been given in (157). We refer the
readers to Baxter (1970b) for detailed analysis and quote here only the main
findings:

(1) For a non-zero staggered field, s, there is no direct polarization unless
the direct fields are sufficiently large. Thus, although T'(= 2T,) lies above the
critical temperature T, of the zero-field F model, application of a staggered
field makes the direct polarization behave similarly to the T' < T case.

(2) In zero direct fields, the staggered polarizability, 62 /s> diverges as
In| s | near s = 0indicating a non-analytic transition from positive to negative
staggered fields. & is analytic in s when s $ 0. Further, at 5 =0 the
correlation between two vertical arrows on the same row a large distance

r apart are found to decay only as r 2.

(3) Complete direct polarization, and zero staggered polarization, can be
achieved by applying sufficiently strong, but finite, direct fields in both the
horizontal and vertical directions. However, if one of these fields is zero,
complete polarization is achieved only when the other is infinite.

2. The Ferrielectric Model

There is one example of a staggered model that can be solved generally
(provided the horizontal field is zero) and this model—the ferrielectric model
—is not without physical interest. The vertex energies are chosen to be con-
stant within any row, but alternate from row to row. On the odd rows let
the energies be as given in (93). On the even rows make the replacement

g8 = —&; &b =8 —¢& (374)

while / and v remain unaltered. If we add a (trivial) constant energy 2¢, to
every vertex on the even rows, it will be seen that, for zero horizontal field,
the even and odd rows are identical except for the interchanges of vertex 1
with 4 and vertex 2 with 3. Consequently, the value of 4 is the same for all
rows. If we are in the intrinsically ferroelectric situation so that vertex 1, say,
is preferred on the odd rows, then vertex 4 will be preferred on the even rows
and the ordered state will be one in which the polarization is alternately
northeast and northwest on the odd and even rows. (See Fig. 43). Thus, in the
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vertical direction the system appears to be a ferroelectric while in the hori-
zontal direction it appears to be an antiferroelectric. Such systems have been
considered by experimentalists (Jona and Shirane, 1962).

J A A
@ DA D S, N, D, - S

B)f, AT A4 7 L IR

2) N N N (N N, N
DR D D S S |
\
I A A A A A A
/\ ,\ ,\ / Ve /\

FiG. 43. The ordered state of the ferrielectric model in which the vertex energies alternate
from row to row. The case in which vertex (1) is preferred on odd rows and vertex @) is
preferred on even rows is shown here. The dashed arrows are the net polarization at each
vertex.

The astounding fact is that all thermodynamic properties of the ice rule
JSerrielectric without horizontal field are exactly the same as for the ferroelectric
model before we prescribe the alternation given by (374). This is so for all ¢,
and ¢,. The reader may feel that this result can be simply verified by estab-
lishing an energy preserving isomorphism between configurations for the
two models. If such an isomorphism exists we have been unable to find it.

We are not able to solve the problem when a horizontal field is present,
even if there is no vertical field and even if we rotate the lattice by 90°. We
leave this as a challenging unsolved problem which we believe is in the realm
of the possible. In the following we shall always assume % = 0.

Returning to Section 1V.C we note that DY, (97), is the same for all rows
and satisfies (91). If we use a * to designate quantities on the even rows we
see that

eV DF(X, Y)DR*PF (X, Y) = D (Y, X)D, *PP(Y, X), (375)
and the same is true if L and R are interchanged. Thus, from (91),
Nt = (376)
where ¥ means adjoint. Now, if M is even for convenience,
Z = Tr(T TYM? 377

and we require the largest eigenvalue of T T. On the other hand, since
4 = 4, (142, 143) show that every eigenvector of T of the Bethe ansatz
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form is also an eigenvector of T. Moreover, the eigenvalues are essentially
the same since Az = 4,e*'V and A, = Aze***". This remark proves the
assertion that & is the same for the ferroelectric and ferrielectric models
except that the latter has an additional term ;.

As a by-product we are thus led to the following:

Conjecture: T is a normal matrix, i.e. [T, T'] = 0.

If we knew that T had a complete set of eigenvectors and if all were of the
Bethe type, the conjecture would be proved. The conjecture is consistent
with the assertion of Section IV.D that [T, H] = 0 where H is a Hermitian
linear Hamiltonian. If all the eigenvalues of H were non-degenerate the
conjecture would also be proved. The conjecture is certainly true when

= 0 because the discussion given prior to (151) easily generalizes to the
following: Any set {k} in which the k’s are distinct and of the form
2n(integer)/N (n odd) or 2n(integer)N + n/N (n even) satisfies (147). These
sets generate a complete orthonormal set of determinantal eigenfunctions.

The significance of the conjecture is that T would have a spectral
decomposition:

TRV = 3 Ak R T (378)

with the {;} orthonormal but the {A;} not necessarily real. The spectral
decomposition would be useful for discussing correlation functions to which
we shall turn in the next section.

1. Correlation functions when 4 = 0

Of the many correlation functions that can be defined, we shall restrict
ourselves here to the correlation of two vertical arrows separated by r = (a, b),
with a and b integers, i.e.

G(r) = Coo” 0,°). (379)

The evaluation of G in general defies analysis, even when the arrows are on
the same row, because the maximum eigenvector (140) is too complicated.
For 4 = 0, however, the calculation can be performed because all eigenvectors
of T are determinantal, as remarked in Section V.H; this was done by
Sutherland (1968). On thermodynamic grounds the point 4 = 0 is not
atypical. Although we have no proof, we are convinced that the following
statements about G(r) are qualitatively valid for the entire region
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—1 < 4 < 1. Since T has the form (378) we can easily derive, for M — 0,
that

2N

1 A \P
G = 3 <0loy?>jlar10) (Z—) : (380)

where the {|j>} are a complete set of orthonormal determinantal eigen-
functions and |0) is the one with maximum eigenvalue. Although the
eigenfunctions are determinants only in the region (83) we can note that the
inner products in (380) always involve the product of two determinants so
that we can ignore the restriction (83) and pretend the particles are fermions.
In that case

o7 =2tc,— 1= -%sz,j d, expli(k — q)a] — 1, (381)
k q

where the {c,} are fermion operators and the {d,} are their Fourier transforms.
The evaluation of (380) is well known from solid state physics except for the
following remarks:

(1) Since y =1 — 2n/N is invariant we can evaluate G for each y subspace
separately. The appropriate y to use is determined by (149).

(2) One possible intermediate state in (380) is [0)> and this comes from
the diagonal term in (381). It gives rise to a term y2. The other relevant
states are obtained by promoting a “particle” of momentum k in the “Fermi
sea” | k| < 4n(l — y) to a momentum ¢ in the complement of the “Fermi
sea”. The factor A;/A, is then simply Agx(q; K, K, H)/Ag(k; Ky, K,, H)
since, as we remarked in Section IV.E, Az = —4; when 4 = 0.

In the usual way we pass from sums to integrals as N — oo and obtain,
for fixed y,

G,(a,b) =y* + 21,1, (382)
where

1 _J‘%"U‘Y) [ exp (2H + K + ik) — 1
e exp (K,) + exp (2H + iK)

b
] exp(—ika) dk,

—4mn(1-y)

I — J‘%"(”W[ exp (K;) + exp QH + ig)
gn(i-y) L exp QH + Ky +ig) — 1
I, is the integral over the “Fermi sea” while I, is the integral over its comple-
ment.
When b = 0 (arrows on the same row)

]b exp (iga) dg. (383)

G,(a,0) = y* — {—;Zsin [1‘21 (1 - y)] }2. (384)
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This is an unusual result for several reasons.

(1) The non-constant part of G decays asymptotically with a power law
instead of an exponential;

(2) In a field (so that y # 0), the periodicity of G is unrelated to that of
the lattice;

(3) With no field, y = 0 and G = 0 when b is even;
(4) In all cases, G never exceeds its asymptotic value.

For further details the reader is referred to Sutherland (1968). For large
r = (a® + b*"? he asserts that:

(1) G,(r) — »* decays as r~* with an angle dependent factor;
(2) For the F model in zero field (y = 0) the asymptotic form is

2 2
Go(x) ~ [;z—r sin r,b] , a-+ beven

2 2
~ - {——cosnﬁ] , a-+ bodd (385)

r

where (r,V) is the polar coordinate representation of (a, b). The fact that
|Go(r)] has a logarithmically divergent spatial integral is consistent with the
logarithmically divergent zero field staggered susceptibility mentioned in
Section V.HI.

J. List of constants
We list here some constants pertaining to the ferroelectric models.

KDP Model
s/kT, =1In2 = (0-693147180...

Lvr-w =33- 5}{‘/3 — 1 = 0-690040324...
&

1

—U(T =Ty+)=1}

1

= S(T'=Ty+)=1In2 = 0-346573590...

—S(T=w) =3kn% = 0-431523108...
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F Model
elkT, =1In2 = 0-693147180...
1 3 _
—C—U(T = 00) =%+T~%J3 = (0-619919351...
1 .
_e— U(:' = To) = ’l‘
1
= C(T = T,) = 28(In 2)* = (-29894854...

%S(T =T,) = 2In[TE)/T@] — $1n2 = 0-3210966...

1
TC—S(T =o0) =3In$ = 0-431523108...
Ice Model
Average fraction of types (5) plus (6) vertices
~(3 1
=./3 (—— ——-) — 3 = 0-380080648... .
2 =z

In these expressions S is the entropy per vertex. Some of these constants
have been given in the text; others can be obtained directly by differentiating
(192), the free energy of the KDP model in zero field. The average fraction
of types (5) and (6) vertices was first evaluated by Wu and reported in Ref.
74 of Lebowitz (1968). A typographical error of a missing square root sign
was contained in the expression quoted there, however.

V1. General Lattice Model on a Square Lattice

Up to now we have considered the ice rule ferroelectric models defined on a
square lattice. The ice rule has the important consequence that the number of
down arrows along a row of vertical lattice bonds is conserved; this in turn
allows us to use Bethe ansatz for the solution.

In Section II.D we introduced the general ferroelectric model which in
general does not obey the ice rule. This means that we must now consider
all sixteen vertices shown in Fig. 10. This is a much more difficult problem
to solve and, needless to say, no general solution is known to date. It is
possible, however, to learn a great deal about the behaviour of these models
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by some general considerations as well as particular consideration of a
number of soluble cases which shall concern us in this section.

A. The eight vertex problem

The eight vertex problem is a first step generalization of the ice rule models
by inclusion of the vertices of types (7) and (8), in addition to the six ice rule
vertices (¢f. Fig. 10). The partition function in this problem has been given
in (25).

First we can write down a number of symmetry relations on the partition
function without actually solving the problem (Fan and Wu, 1970). Because
vertices (5) and (6) or (7) and (8) occur in pairs globally, we may take
Ws = W = a, W; = wg = b and observe the relation

Z = Z(a, b) = Z(—a, b) = Z(a, —b). (386)

If we reverse all horizontal arrows and then look at the lattice in a mirror
we deduce that

Z(a, b) = Z(b, a). (387)

Let us now temporarily disregard the weights a and b and write Z = Z,,34,

where each subscript é(=1, 2, 3, 4) stands for the dependence on the vertex

weight w,. Since Z, being a sum over all configurations, is invariant if the

vertical or horizontal arrows be reversed in the enumeration of the con-
figurations, we have the obvious symmetry relation

Z=Z334= Z3s12 = L3143 = Zs32:. (388a)
Futhermore, by rotating the lattice 90° we also obtain
Zi23a = Zyga3 = Z3a21 = Z3134 = Z431,- (388b)

Note that these are symmetry relations involving the interchanging of the
vertex weights w4, w,, w; and w,; no changes between the weights w,, w,,
w3, w4 and s, wg, @4, @y are involved.

If the vertex weights satisfy

w1=w2=u1, w3=w4=u2,

Ws = W = Uz, D7 = Wg = Uy, (339)

which can be considered as the basic eight vertex problem without a field, it
is then possible to obtain symmetry relations which involves interchanges
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between the first four and last four weights. From a consideration of revers-
ing all arrows along some zigzag paths, one obtains (Fan and Wu, 1970)

Z = Z(uy, up; us, ug) = Z(ug, uy; Uy, Uy). (390)

Another useful symmetry relation can be obtained by applying to the series
expansion of the partition function a rearrangement procedure, known as
the weak graph expansion. (See the discussion on the application of the weak
graph expansion method to the ferroelectric models by J. F. Nagle elsewhere
in this book.) One finds (Wu, 1969b)

Z(uy, uy; Us, Uy) = Z(%(ul +uy + Uz +ouy), g+ ouy — uy — uy);
gy —up + us — uy), 3y — up — uy + uy)).  (391)

It must be remembered from (386) that Z is also invariant under the replace-
ment u; — —u; for any one 7. In fact, further iterations of (391) yield precisely
relations differing from (391) only by these sign changes. If we substitute
Uy = u, = uz =1 and u, = 0 into (391), the left-hand side is Z, of (3). The
right-hand side is (3)VZ(1, 4, 1, 1). Recalling the interpretation of Z in terms
of polygons as given in Section IL.B and Fig. 10 we deduce formula (18).

Having discussed the symmetry relations of the partition function Z, we
now ask under what condition can Z be evaluated in closed form? A partial
answer to this question has been provided by Hurst and Green (1964) from
a somewhat different point of view. In their consideration of the most gen-
eral planar Ising lattice, they introduce a sublattice at each vertex of a simple
square lattice. In the high temperature hyperbolic tangent series expansion
of this extended Ising model, each sublattice carries a weight which depends
on the “terminal configuration” of the sublattice. One then has precisely an
eight vertex problem. Hurst and Green obtained the following condition
under which this problem is solvable with the Pfaffian method:

CDICOZ + w3w4 = C()s(l)é + 607608. (392)

In the S-matrix formulation (Hurst and Green, 1960) of the eight vertex
problem, this condition is equivalent to the consideration of a non-interacting
many-fermion system (Fan and Wu, 1969). Therefore we shall refer to (392)
as the free-fermion condition and the model satisfying (392) as the free-fermion
model.

The Free-Fermion model

The partition function of the free-fermion model was first evaluated by Hurst
and Green (1963). It has also been rederived by the S-matrix method (Fan
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and Wu, 1969) and by the method of dimers (Fan and Wu, 1970). The ex-
pression of the free energy & is

1 ki ok
—BF = f dBJ dé In[a + 2b cosf + 2¢ cos b

3
87 -z

+ 2fcos (0 — @) + 2g cos (0 + ¢)], (393a)
where

a=w?+ w0, + w0® + o’

b =w0; — 0,0y,

C = W0, — W03, (393b)
[ = w30, — w04,

g = w,0; — @sW.

As one easily checks, the symmetry relations derived earlier hold for this
solution.

Before we proceed to discuss the thermodynamics of this free-fermion
model, we pause to ask what the free-fermion models of interest are. Since
the vertex weights are Boltzmann factors w; = exp (—fle;), a meaningful
model requires the following identity to hold:

{er + ey 65 + e} = {es + eg, €7 + €3} (394)

Therefore the modified KDP model is an example of the free-fermion model.
Also we have shown in Section IL.D that the eight vertex model is completely
equivalent to an Ising model with 2 and 4 body interactions. In particular
the square lattice Ising model with first-neighbour interactions —J;, —J,
and second-neighbour interactions —J, —J' is equivalent to an eight vertex
model with energies

el=—“J1"J2"‘J“‘J,, 62=J1+J2—J'—-J',
ey =J —Jy T, en= —JrI I+ T, (395)
es=36=J’—J, e7=eS=J_J,.

These values are obtained by setting Jo = J, = 0 in (29). Clearly (395) does
not satisfy the condition (394), consistent with the well-known result that
the next-neighbour Ising model cannot be solved using the Pfaffian method.
However, these energies do satisfy the free-fermion condition if we put one
of the second-neighbour interactions, say, J' = 0. The resulting Ising lattice
is a triangular one with three parameters J,, J, and J. Thus the free-fermion
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model, which is also specified by three energy parameters, is equivalent to
the Ising model on a triangular lattice.

It is not necessary, of course, to restrict our considerations to the condition
(394). In fact, for any eight vertex problem, the free-fermion condition is
always satisfied at a temperature defined by (392). Thus we can evaluate the
partition function of the general eight vertex problem at one fixed tempera-
ture. For the ice rule models, (392) together with e; = e¢g = oo lead to pre-
cisely the expression given by (149) and (154).

We now return to the expression (393) of the free energy. One of the two
integrations can be carried out to yield

=5 =4 | domn tateos) + [0os 1) (396)

where A(x) and Q(x) are, respectively, polynomials linear and quadratic in x.
The analytic properties of & depend on whether or not Q(x) is a complete
square for all T. The main results are summarized below (Fan and Wu, 1970):

(a) Q(x) is a complete square

We have either the modified KDP model or the physically uninteresting
cases which show no phase transition

{es, e,} = {e3, e} for which —F = 1 In[2(w,* + w,?)], (397a)
{es, e3} = {ey, e4} for which —BF = I In[2(w,* + w;* + w,w;3)]. (397b)

(b) Q(x) is not a complete square

The model is equivalent to an Ising model on a triangular lattice. The transi-
tion temperature is given by

(Di + CDZ + (D3 + (D4 = 2max {(1)1, CO2, 603, 0)4}, T = Tc' (398)

The specific heat diverges as In |T — T,|, as compared with the inverse square
root singularity (364) of the modified KDP model. The energy can be express-
ed in terms of complete elliptic integrals. However, the explicit expressions
are different for temperatures above and below a certain temperature which
is different from T,. This temperature turns out to coincide with the disorder
temperature T}, of the antiferromagnetic triangular Ising lattice (Stephenson,
1969 and 1970). Nevertheless, T}, is an analytic point and is defined by the
condition

0, + 0; = Wy + O, (399)

where w, < w; < 0, < o, are the vertex weights w,, w,, w; and w, arranged
according to their magnitudes. This condition is equivalent to setting Q(x)
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in (396) to be a complete square (Stephenson, 1969) which can be realized
for anisotropic antiferromagnetic triangular Ising lattices only.

The polarizations can also be computed for the free-fermion model.
One finds that the polarization is continuous and does not saturate in a
finite field.

Other Exact Results

There are very few exact results on the general eight vertex problem. For the
basic eight vertex problem without a field* defined by (389), Sutherland (1970)
was able to locate the transition temperature using an argument similar to
that of Kramers and Wannier (1941); the argument is based on two plausible
assumptions. We saw in Section IV.D that the transfer matrix of the basic
eight vertex problem commutes with the Hamiltonian of a one-dimensional
spin system. While the eigenvalues are different, the largest eigenvectors,
which determine the nature of the long-range order, are the same in these
two systems. It is then plausible to assume that the singularity in the free
energy for the ferroelectric problem corresponds to the singularity in the
ground state energy of the spin system. If one further assumes the uniqueness
of this singularity (Kramers and Wannier, 1941), it is then possible to deter-
mine its location. Sutherland considers the ferroelectric (vertices 1, 2 or 3, 4
favoured) and the antiferroelectric (vertices 5, 6 or 7, 8 favoured) cases separ-
ately. However we see from (390) that these two cases are actually equivalent
when there is no field. In fact, Sutherland’s conjecture on the transition
temperature can be put in the following symmetric form:

g+ Uy + Uy +ouy = 2max {ug, uy, g, gy, T =Ty (400)
This relation reduces, of course, to the result (195a) of Section V.B for the ice
rule models in the absence of an external field when one of the u’s is set
equal to zero. We also note the striking resemblance to the critical condition
(398) for the free-fermion model.
It is interesting to investigate the equivalent Ising lattice. (See also Wu,
1971b). For the basic model let
e, =€, =28, €3 =€,=28,, €5=e;==¢; €;=ez==¢. (401)
It is then easy to see from (30) that the corresponding Ising lattice has a
four-body interaction:
Jo=—1(e; + &, + &5 + &),
Jy=J, =0,
Jo=3(—ey + & + &5 — &), C (402
J =3(—8 + & — & + &),
Jo=21(—¢; — &, + &5 + &4).

*Added in proof. The basic eight vertex problem without a field has been solved by
Baxter (1971b, 1972).
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The four-body interaction J, vanishes if we have the further constraint
& + & = &5 + &4 (403)

The Ising lattice now decomposes into two independent simple square lattices
with interaction J' = $(—g; + &3), J = }(¢, — &;). Consequently the model
is now exactly soluble. The critical condition sinh |28J] sinh |28J} =1
reduces, of course, to (400) upon introducing (403). Furthermore, the free
energy for the basic ferroelectric model specified by (401, 403) is given by

F = =& + &) + Frin(J, I). (404)

A special case is the modified F model (Wu, 1969b) with &, = ¢, = ¢, g3 =0,
&4 = 2¢, which can be considered as the Rys F model modified by introducing
vertices (7) and (8) with energy 2e. We see that the infinite order transition
of the I model now goes over to an Ising type transition with a logarithmic
singularity in the specific heat. The transition temperature is given by

To

=1/In(y2 +1) = 113459 .... (405)

B. The sixteen vertex problem

The partition function Z for the sixteen vertex problem has been given in
(25). Again, as in Section VI.A, we may obtain a number of symmetry rela-
tions for Z by some general considerations. From the fact that Z, being a
sum over all configurations, is invariant if the arrows in a given direction are
reversed in the enumeration of the configurations, we obtain

Z=17(1,23,4,506,7,8;9,10,11, 12,13, 14, 15, 16)
=27(3,4,1,2,8,7,6,5;11,16,9, 14, 15, 12, 13, 10)
=2724,3,2,1,7,8,5,6;15,12,13,10, 11, 16,9, 14)
=Z(2,1,4,3,6,5,8,7;13,14,15,16,9,10, 11, 12), (406)

where each numeral ¢ stands for the dependence on the weight w,. Also Z is
invariant if all horizontal arrows are reversed and at the same time left and

right are interchanged (looking in a mirror), and similarly for the vertical
arrows. We find

Z=12(1,2,3,4,7,8,5,6;9,12,11, 10, 13, 16, 15, 14)
=27(1,2,3,4,8,7,6,5;11,10,9, 12, 15, 14, 13, 16)
=2Z(1,2,4,3,5,6,8,7;12,11, 10,9, 16, 15, 14, 13)
=Z(1,2,4,3,6,5,7,8;10,9, 12, 11, 14, 13, 16, 15). (407a)
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By rotating the lattice 90°, we also obtain from (406)
Z=12(1,2,43,7,8,6,5;10,11, 12,9, 14, 15, 16, 13)
=Z7Z(3,4,2,1,6,5,7,8;16,9,14,11,12,13, 10, 15)
=27(4,3,1,2,5,6,8,7;12,13, 10, 15, 16, 9, 14, 12)
=7(2,1,3,4,8,7,5,6;14,15,16,13,10,11,12,9). (407b)

We can also apply the weak graph series expansion to Z and obtain the result
that Z is invariant under the change w; — w;’, where, in an obvious notation,

0" = o, + 0+ 03+ 04+ 05+ 0+ 07+ 0+ 0o+ @10+ 0+ 0,
+ 03+ 04+ 05+ D6]
0, =3 (1 +24+3+4+54+6+7+8) — (9+104+114+12+13+14+15+16)]

03’ = H(1+2+3+4) — (5+6+7+8) + (10+ 12+ 14-+16)

— O+11+13+15)]
0y = 31 +24+3+4) — (5+6+7+8) — (10+12+14+16) '

+ (9+11+13+15)]
05" = 3[(14+2+546) — 3+4+7+8) — (9+12+13+16)

+ (10+11+14+15)]
06" = 3[(1+2+5+6) — 3+4+7+8) + (9+12+13+16)

— (10+11+14+15)]
w0 = H(1+2+7+8) — 3+4+5+6) — (9+10+13+14)

+ (11+12+415+16)]
0g' = 3[(1+2+7+8) — (3+4+5+6) + (9+10+13+14)

— (11+412+15+16)]
Wy’ = 2[(2+3+5+7) — (1+4+6+8) — (10+11+12+13)

+ (9+14+15+16)]
W10’ = HQ+4+6+7) — (1+3+5+8) — (9+11+12+14)

+ (10+13+15+16)]
011 = H[2+3+6+8) — (1+4+5+7) — (9+10+12+15)

+ (11+13+14+16)]
@1, = HQ+4+5+8) — (1+3+6+7) — (O+10+11+16)

+ (12+13+14+15)]

013" = Q2+3+5+7) — (14+4+6+8) + (10+11+12+13)

— (9+14+15+16)]
01 =3HQ+4+6+7) — (1+3+5+8) + O+11+12+14)

— (10+13+15+16)]
15" =3(Q2+3+6+8) — (1+4+5+7) + (9+10+12+15)

— (11+13+14+16)]
w16 = HQ2+4+5+8) — (1+3+6+7) + (9+10+11+16)

— (12+13+4+14415)].

(408)
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This relation reduces to (391) if w,,-, = w,, for n=1,2,3,4 and w, =0
forn > 8.

We saw in Section II.D that the most general sixteen vertex problem is
equivalent to an Ising model with 2,3 and 4 body interactions and with an
external magnetic field. Consequently the evaluation of Z in the most general
case is extremely difficult. This equivalence with an Ising model, however,
does provide us with a means to deduce useful information about the ferro-
electrics. In particular, the ferroelectric problem is soluble if the correspond-
ing Ising model has a known solution. Most of our understanding of the
general ferroelectric models is based on this kind of reasonings (Wu, 1969a,
1970). We summarize the main results in the following (see also Wu, 1972):

(1) The modified F model mentioned at the end of the last section is also
soluble if the vertices (9)-(16) are included with an energy &. The energies of
this general F model is given by (33) with E, =E, =E, =¢, E,’ =0,
E,"” = 2¢ and E; = E; = ¢ It is then easy to see from (36) that the corres-
ponding Ising lattice is a simple square one with interactions +Ze and —}e
along the two axes respectively. This general F model therefore has an Ising-
type transition. In particular, the specific heat has a logarithmic singularity
near the transition temperature given by

kTole =1/21n (2 + 1) = 0-567296 .... (409)
(2) If we consider the F model and include other types of vertices with
energies

e; = eg = bg,
eg = elo = e = 316 = ae (410)

but with b = 4a — 2 and arbitrary a, the equivalent Ising interactions can be
computed from (36) with B, =E, =E, =¢, E,) =0, E, = E; = a¢ and
E,"” = (4a — 2)e. We find

Jo = — as,

Jy=J3=J,=0,

J) =~ J,)" = %(Q2a — g, 411
Jy = $(a — 1)e.

The resulting Ising lattice has two-body interactions only, but with crossed
bonds, and is shown in Fig. 44. For a =1 or J, = 0, the Ising model is
exactly soluble; this is the case considered in (1) above. For a # 1, the Ising
model cannot be solved exactly. However, it is generally believed, and strong-
ly supported by results of numerical analysis (Dalton and Wood, 1969), that
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the critical behaviour of the Ising model is essentially unchanged for short-
range two-body interactions. Therefore we may infer that the behaviour
of this class of general antiferroelectrics is the same as the Ising model. In
particular the specific heat exhibits a logarithmic singularity.

p D é<
CQ

C

]
<
[

)

Fic. 44. The equivalent Ising lattice for the general KDP and F models. The dots denote
the spins and the lines denote the interactions.

0

(3) If we consider the KDP model and include other types of vertices
with energies (410) with b = 4a — 2, the equivalent Ising lattice is again that
given in Fig. 44. From (36) and Eg = E, =0, E; = E)) = ¢, E; = E; = as,
E," = (4a — 2)e, we find

Jo = — as,

Ji=J3=J,=0,

J, = J, = }Qa — 1), 412)
J, = — $a — De.

As in (2) above, we conclude that the critical behaviour of this class of general
ferroelectrics is the same as for the Ising model.

Several interesting observations emerge from these results. For both the
KDP and the F models, the inclusion of the energies (410) for finite @ and b
always appears to lead to an Ising-type transition. On the other hand, the
exact solution for @ = b = oo (the ice rule) is known; the F model has a
peculiar infinite order transition and the KDP model has a first-order tran-
sition. Thus the critical behaviour is drastically changed when the ice rule
is relaxed.

Two cases of the general antiferroelectric F model are exactly soluble. For
a = 0, b =2 we have the solution (404). For @ =1, b = 2 the model is
soluble as discussed in (1) above. Furthermore for a = 4, b = 0 we have
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Ty = 0 since (411) reduces to a linear Ising chain. It is then instructive to
compare the behaviour of the specific heat in these soluble cases. In general
we expect the transition temperature to rise with a and b. This is so because,
as a or b increases, the disordered states will carry smaller statistical weights.
As a result, the transtion temperature cannot decrease. This is certainly the
case in these soluble cases as shown in Fig. 45 where we plot the specific
heat. Our result seems to suggest that, as @ — 0, b — o0, the width of the
“spike” in the specific heat eventually disappears. As a consequence, the
phase transition becomes an infinite order one. The dashed curve in Fig. 45
illustrates one residual “spike” expected for some large a and b.

To

15

C/k

05

kT/e

Frc. 45. The specific heat per vertex for the general F model described by &, = 0, ¢, = ¢
and (410). The dashed curve illustrates the residual “‘spike” expected for some large @ and
batkTole = 1/(In2) = 1'44.¢; = eg = beand eo = ... = ¢, = ae. (From Wu, 1969a.)

For the KDP model with the ice rule, however, the specific heat vanishes
identically below T, and has a (T — T,)~ '/ singularity above T, in the limit
a — 00, b — co. This singularity is highly asymmetric about T,. Therefore
at least for some large values of @ and &, the specific heat also has a highly
asymmetric appearance. Furthermore, since the equivalence of the general
ferroelectric model with an Ising model is not restricted to two-dimensional
models, one may then use the experimentally observed critical behaviour of
the ferroelectrics to deduce some useful information on the three-dimensional
Ising model. Thus, if one believes that the model described here adequately
describes the hydrogen-bonded ferroelectrics, then the logarithmic diver-
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gence (Reese, 1969) observed in the heat capacity of KH,PO, (KDP) for
T = T,— may be taken to indicate that the specific heat of the three-dimen-
sional Ising model also possesses a logarithmic singularity (o’ = 0). This is
certainly not far from the value &’ = 1/16 determined by numerical analysis.

Vil. Other Lattice Models (Rodney J. Baxter, Department of Theoretical
Physics I.A.S., The Australian National University, Canberra, A.C.T.,
Australja)

In this section we outline some other lattice models which can also be solved
by using a Bethe-type ansatz for the eigenvector of the transfer matrix.

A. The general three colour problem on a square lattice

As has been pointed out in Section II (and Baxter, 1970c¢), the solution of the
ice model also gives the number of ways of colouring all the faces of a square
lattice with three colours 4, B, C (or simply 1, 2, 3) so that no two adjacent
faces are coloured alike.

We can regard these colours as three types of particles and associate
activities zy, z,, z; with them. The problem then becomes to evaluate the
generating function (grand-partition function)

Z =3 z,"'2,"2"* G(Ny, N, N3), (413)

where G(N, N,, N3) is the number of allowed colourings such that N, faces
are coloured 1, N, are coloured 2, and N, are coloured 3. The summation
is over all non-negative integers N, N,, N such that

Nl +N2+N3=Nt, (414)

where N, is the total number of faces of the lattice.

1. Transfer Matrix

We consider a lattice of M rows and N columns wound on a torus (so that
N, = MN). Using the three-to-one morphism between colourings of the
lattice and ice configurations, we can verify that Z is again given by
(74)-(78). However, the activities z;, z,, z; must now be included in the
transfer matrix, and to specify a colouring ¢ of a row it is necessary to know
not only the locations xy, ..., X, of the down arrows, but also the colour of
one of the faces.

Let 0 (=1, 2, or 3) be the colour of the extreme end face of a row, between
columns N and 1, and let f,(X) be the element of ¥ corresponding to this
state. Then the transfer matrix equation analogous to (78) is

Afo(X) = Dy(X) (Y rfor1(Y) + Yifor (D)} (415)
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where we adopt the obvious modulo 3 convention

Jo+a(X) = 1:(X) (416)

and D (X) is the product of the activities in the row. We find that

Do(X) = (2,222 [] L0x; + j + o) @17)
ji=1
where 22,01

We note also that for the colouring to be consistent with the toroidal bound-
ary conditions, N and » must be such that

N — 2n = 3 x integer. 419)

2. Bethe Ansatz

Some inspection of equations (415)-(417) suggests that the appropriate
analogue of Bethe ansatz for this model is to try

£.0%) = S UE) [] ooy 5+ o), (420)

where {P1, P2, ..., Pn} is some permutation P of the integers {1, 2, ..., n},
and the summation is over all n! such permutations. The coefficients U’ (P)
and the single-particle functions ¢,(x), ..., ¢,(x) are yet to be determined.

We can ensure that the condition (416) is satisfied by requiring that there
exist wave numbers ky, ..., k, such that

¢ (x + 3) = ¢;(x) exp (3ik)) (421)
and
ki+...+k,=0. 422)

Thus ¢;(x) can be regarded as a plane wave modulo 3. The condition (422)
implies that we are seeking a translation—invariant eigenvector of the transfer
matrix, which we expect to correspond to the maximum eigenvalue.

When z, = z, = z; we regain the ice problem and expect the functions
¢;(x) to be pure plane waves. To maintain the analogy between the models
it is convenient to work not with the coefficients 2['(P), but rather a new set

A(P) = W(P)exp {i ; jkpj}. (423)
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When z, = z, = z; these coefficients 2(P) should reduce to those of the ice
model.

Inserting (420) into (415), we find that the right-hand side can be classified
into “wanted’ terms, “unwanted internal terms” and “unwanted boundary
terms” in the same way as the ferroelectric problems. The wanted terms on
both sides of the equation are equal (for n even) provided

A = 2(212223)1\'/3,);1 ces 'y", (424)

where y; and ¢ ;(x) are defined in terms of the wave number k; by (421) and
{ ) dx+1)
NG G+

Equations (421) and (425) form a cubic eigenvalue equation for y; in
terms of k;, the solution of which can be written as y; = y(k;), where

} = ¢;(x + 2). (425)

i

k) = —— 3/2 426
"0 =~ (426)

and the function g = g(k) is defined by
g — 3Sg + 2sin (3k/2) = 0. 427

The constant S is given by

38 =L + {2 + {3

ZpZ3 + 2321 + 2,12,

(428)

(z 12223)2/3

The requirement that the unwanted internal terms cancel again leads to
equations of the form (142), i.e.

AP) = WQ)B(ky, k) (429)

for all permutations P = {...,/, m, ...} and associated permutations Q =
{...,m, 1, ...} (i.e. P and Q differ only in the interchange of two successive
indices). At first sight it appears in this problem that there are three condi-
tions of this type, but some investigation reveals that they are identical, and
that in each case

B(p, q) = — s(q, p)/s(p, 9)s (430)
where

5(p, q) = g(p) exp {i(q + g—)} + g(q) exp {—i(p + —g-)} (431)
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Solving (429) for the coefficients 2(P) and substituting the result into the
condition that the unwanted boundary terms vanish, we obtain the equations

exp (iNkj;) = ] B(k;, ky), j=1,..,n (432)
1: 11

The equations (432) define the k’s, from which the eigenvalue A is given by
(424, 426, 427). Notice that the activities z,, z,, z; enter these equations in a
'non-trivial way only through the single parameter S. Why this should be so

is not apparent.
When z, = z, = z3, S = 1 and (427) has the solution g(p) = — 2sin (p/2).
Substituting this into the above equations, the ice-model results are regained.

3. The Limit N — oo

As with the square lattice ferroelectric niodels, we assume that in the limit
of N large the k’s fill some interval —Q < k < Q, so that the number of k’s
between k and k + dk is Np(k) dk. Setting

B(p,q) = — exp[—i0(p, 9)], (433)

it follows as before that (432) leads to the integral equation (167) for p(k),
namely

1=2np(k)——fQM

A p@ e (434)

while Q is given by the condition (165), namely,

Q
1-n=%=[" @ (439)

Also, in this limit (76) and (424) for Z and A become

1 1

= lim —1InZ = lim —1

z(y) Jlim 51 Jlim — n A(y)
N-ow

= 110 (z2,2;) + f

® B y(&) dk. (436)
Q

Still pursuing the analogy with the ferroelectric models, we look for a
change of variables that reduces (434) to an integral equation with a difference
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kernel and find that one exists, namely a transformation from k to a variable
o defined by

de L

TS 20 437)

where L is a constant.
Choosing « = 0 when k = 0 and writing « as a function of k as «(k), and
k as a function of « as k{a}, we find that

0(p, @) = k{a(p) — «(9)}. (438)

Defining a density function R() such that R(x) da = 2np(k) dk, the integral
equation (434) in the transformed variables becomes

7
RG) = E0) + 5| &a- HRO)I, (439)
where

(0= = 11— g% (@40

(regarding g now as a function of «, rather than k).
Also, (435) and (436) become

n(l—yp) = Jf,, R(a) do, (44D

20) = 4Gz - 3 | RO g’ dx “)
-b
(using (426) and (422)).

4. Solution of the Integral Equation
Eliminating k between (427) and (437), we find that

—— =—{4 — g?(35 — g»)*}V/2 (443)

This equation can be integrated using elliptic functions (Sections 3.147.2 and
8.11-8.15 of Gradshteyn and Ryzhik, 1965). Let u, v, w be the three values of
x which satisfy the cubic equation

x(3S — %2 = 4=0, (444)
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Since S > 1, these roots are real and positive. Choosing them so that

u>vz=w (445)
and letting
= 1{(u — wp}, (446)
we find that
2
(@) = uw sn” (o) (447)

u—w+wsn*(a)
where sn(a) is the usual elliptic sn function (Gradshteyn and Ryzhik, 1965),
with

LUk -

(u—wo
Fourier analyzing, we find that

©  exp (inma/K)

t) =~ )

SN @)

where K is the complete elliptic integral of modulus x, K’ is the complete
elliptic integral of conjugate modulus x’ = (1 — x*)'/2, and
r = exp (—27K'/3K). (450)

Clearly £(«) is periodic with period 2K. Hence when b = K and Q = =/3
the integral equation (439) can be solved by Fourier series, giving

®  exp (inmo/K)

R 451

@ = ,,._}:_‘w rmr" @51

Substituting this result into the condition (441), we find that
n=N[2ory=0, (452)

i.e. there are as many down arrows as up arrows in each row of the lattice.
As with the ice model, we expect this value of x to correspond to the maximum
eigenvalue of the transfer matrix.

We now evaluate the partition function by first Fourier analyzing In {g*(a)},
giving

4nK’ — r?™) cos (nma/K)

Pl

In {g*(0)} = —
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Substituting (451) and (453) into (442) and performing the integration, it
follows that

7K’
0) =11 e
z(0) n(z42,23) + oK
+y o (454)
m=1 m(l + rzm)(l + i‘m + rzm)’
This series can be summed to give
W = lim Z'/MN, (455)
M-
N-w
where
© s 4uow*
W = &%) = (2,2,25) (456)

[ = wyul* — [(v — w)*v]*’

To summarize: the parameter S is defined by (428); u, v, w by (444) and (445);
and the partition function by (455, 456). Thus W is an algebraic function of
the activities zy, z,, z;. We can verify that it is analytic for all real positive
values of z,, z,, z; except when z; = z, = z.

This non-analytic case is equivalent to the ice-model. In particular, if
zy=z,=zz3=1, wefindthat S=1,u=4,v=w=1and

W = (%2 (457)
which is the ice model result (4).

5. Hard Squares Model

If we regard colour 1 as particles and colours 2 and 3 as forming a back-
ground, then we have a model which is similar to hard-square lattice gas
(Gaunt and Fisher, 1965). Letting z be the activity of the “particles”, we set

z, =12, zZy=2z3=1. (458)
The density of particles is then

dinw
dz ’

p=z (459)
and cannot exceed the close-packed value of 3.

Substituting the expressions (458) for the activities into the above equa-
tions, we find that the two smaller roots of (444) cross over as z passes the
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value unity. Thus Wis a different algebraic function of z according to whether
z <1lorz>1. Atz =1 the system undergoes a phase transition from a fluid
to a solid state, the corresponding density being p = 1/3.

Consider W as a function of p. When 0 < p <1/3, W is the positive real
root of the equation

W* — 6*(4 4+ 80 — 2769 )W 2 — 166° = 0 (460)
where
c=1— p; (461)

when 1 < p < 1, W is given very simply by

41~ p)*
W? = | 462
=2, (462)
Both these expressions for W are analytic functions of p throughout the
entire permissible range 0 < p < 4. However, it is apparent that one is not
the analytic continuation of the other. Taylor expanding each expression
about the transition density p = 1/3 gives

W =3In%+3(3p —? + 0{Gp — 1) (463)

the plus sign applying for p > 1/3, the minus sign for p < 1/3. Thus dW/dp
is zero at the transition point and the compressibility is infinite.

10
L b
2 05}
% o5 4
1 1 1 1
s 02 04
p

F1G. 46. Equation of state of: (a) Baxter’s hard-square model; (b) the true hard-square
lattice gas (Gaunt and Fisher, 1965). The circles indicate critical points. (From Baxter,
1970c.)
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The grand-potential In W is plotted in Fig. 46, together with the corres-
ponding function for the true hard-square lattice gas. The two models agree
well at low densities, but there are considerable differences in the transition
region and above.

B. The F model on a triangular lattice

One can formulate ferroelectric-type models on any lattice of even coordina-~
tion number, the analogue of the ice condition being that the number of
arrows into and out of each vertex should be equal (see discussions in Section
I1LLA).

Consider in particular the plane triangular lattice (coordination number 6)
and place arrows on the bonds of the lattice so that there are three entering
and leaving each vertex (Baxter, 1969). There are then 20 possible
configurations of arrows at a vertex. If configurations which differ only by
rotation or reflection are treated alike, they can be classified as follows:
(i) 6 configurations in which the incoming arrows are adjacent, (ii) 2
configurations in which the incoming and outgoing arrows alternate round
the vertex, (iii) 12 configurations containing two incoming arrows directly
opposite one another. Examples of these are shown in Fig. 47.

If we assign interaction energies ¢;, €,, €3, respectively, to these three types
of vertex configurations, then we have the triangular lattice analogue of the
F model. When all three energies are zero, this in turn reduces to a triangular
lattice “‘ice-model”.

NN NN/
N/ /NN

€ €2 3 ««

Fic. 47. Examples of the three types of allowed vertex configurations with corresponding
vertex energies for the triangular lattice F model.

1. Transfer Matrix Equation

Consider a triangular lattice of M rows, each with N/2 vertices (N even),
wound on a torus. Then there are N vertical (i.e. non-horizontal) bonds
between two rows, which we label as in Fig. 48. As with the square lattice,
we can see that if there are n down arrows in any row of vertical bonds, then
there are 7 in every row. Again the partition function is given by (75) and
(76), but the transfer matrix equation is more complicated. For the sake of
clarity we write it down only for the case n = 2 and later state appropriate
generalizations for arbitrary n.
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2 3 4 S N |
FiG. 48. Labelling of the bonds of the triangular lattice.
When #n = 2 the transfer matrix equation is
x1! X2’
Af(xb xl) = Z Z DR(Xa Y)f(ylv J’z)
y1=1y2=x4 -1
x2

N
+ Z Z D (X, V) f(y1,¥2)

yi=xy" =1 y2=x2"—1

- uN_Z i {Ce(xj)f(xj, — 1, xj' — 1)
i=1

+uwf(x;, x; =D + (ow — w)f(x;/ =1, x;)

+ co(x)f(x;, x;)},
where x/ =x;+2 if x;is odd,

= x; +1 if x;is even,

(464)

(465)

u=exp(—fe;), v=exp(—pe;), w=exp(—pe), (466)

c.(x) = w? and ¢co(x) = uv  if x is odd,

c(x) = uv and cp(x) = w?  if x is even,

(467)

Dr(X, Y) = uV~* dg(xy, y)[dr(x2, ¥2) + dp(xy, ¥2)]
D(X,Y) = uN"4[dR(x2, yo) + di(xy, y)1Iw? + dr(x3, ¥2)1 (468)
and dg(x, y), d.(x, y) have the values given in the following table (defining

x' in terms of x according to (465)):

’

!

y<x' -1 y=x-1 y=x y>x
x odd w? uw u?
dg(x, ¥):
X even w? uv uw
x odd uw — w? v — w? 0
dL(xa y) .
X even ur —wr uw — w? 0
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The first two terms on the right-hand side of (464) are clearly analogous
to those occurring in the square-lattice models. The others are correction
terms which subtract off the contributions from the cases when y, < y; and
ensure the correct weight when y, = x; — 1 and y, = x;’. [Note that we are
not using the * convention of eqn (89).]

Equation (464) is valid in the domain 1 < x;, ;" < x,', X, <N, provided
that on the right-hand side we adopt the convention that

f(y, N +1)=f(1, ). (469)

The only other cases are when both down arrows in the upper row point
into the same vertex, so that x,” = x,’. Using the above definitions of Dy,
and Dy, we find that (464) is also valid for these cases, provided

v=?—uw+ wdu (470)
and the values of f(x, x — 1) and f(x, x) we use in (464) are such that
ww[ f(x' — 1, x' = 1) + (', x)] + w? f(x, x' = 1)
— @+ uw —wH)f(x —1,x)=0 471)

for all odd integers x’'.

Clearly (470) is a restriction on the allowed values of the vertex weights
u, v, w. It turns out that we can solve the F model on a triangular lattice only
when this condition is satisfied. Note that this includes the triangular “ice-
model”’, when u, v, w are equal.

2. Bethe Ansatz

We now make a guess at the form of the eigenvector f and substitute it into
the transfer matrix equation (464). The generalization of the resulting equa-
tions to arbitrary # is straightforward, so we consider the general case.

Some inspection of (464) suggests that the appropriate analogue of Bethe
ansatz for this system is

100 = 30 TT 6,05, 472)

where the summation is over all n! permutations P, as in (420). Due to the
difference between odd and even vertical bonds, we cannot expect the
single-particle functions ¢(x), ..., $,(x) to be simple plane waves (as in the
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square lattice F model). Rather we expect them to be plane waves modulo 2,
i.e. there exist wave numbers &y, ..., k, such that

b(x + 2) = ¢;(x) exp (2ik;). (473)

Substituting this form for finto (464), the wanted terms on both sides are
found to be equal provided

A=ut""y " Ly Tt 4749

y;” and y;* being parameters such that
77 ¢;(x) = 21 dr(x, »)¢,(») + C;,
y=

16 = T e )b,0) - ) “75)

for all integers x, the domain of d(x, y) being extended by defining
dp(x, y)= —w? ify<x —1. (476)

The constants C; are to be chosen so as to satisfy (473). Together with
this condition, both the equations (475) form quadratic eigenvalue equations
with eigenvector ¢;(x). It turns out that when the vertex weights satisfy the
restriction (470) these equations can be simultaneously diagonalized, giving

¢,;(x) = exp {i[k; x — (= 1)g,1}, (477)
where g; = g(k;) and the function g(k) is defined by
usink = wsin [g(k)]. 478)
The eigenvalues y ji are then given by

2 ik;
+ u°e

v {[sin (k; + g )I[2sin g, — sin k;]

=2 sin’g;
+ i[sinkJ[1 + cos (k; + g1} 479)

Both the requirement that the unwanted internal terms in the transfer
matrix equation cancel, and the condition (471), lead to equations of the
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form (429). As with the three colouring problem it appears at first sight that
we obtain three such sets of equations, but it turns out that they are in fact
identical. We find that

1+ T(PT(9) + o 'T(q) + (@ —1— 0™ HT(p)

B = S T T + 0 TR + @ = =0T
where
o= wlu (481)
and
T(p) = exp {i[p + g(p)1}. (482)

Again we find that the vanishing of the unwanted boundary terms leads

to the equations
exp (ik;N) = [] B(k;, k) (483)
t;]l

for j=1,...,n, as in (147) and (432). These also ensure that the condition
(469) is satisfied.

The equations (483) determine the k’s. The eigenvalues y ji and A are then
given by the previous equations.

The relations between k;, g;, 7;= can be simplified by expressing them in
terms of T; = T'(k;). We find that

. u+ wT;
€Xp (21[(]) = 71] m‘j—f , (484)
y = W+ wl)uT; +w— u)’ 485)
T, —1
r_ w+wTlu ~ w)T; ~ u]. (486)

i T, — 1
3. The Limit N — o0
Once more we assume that in the limit of N large the k’s fill some interval
—Q < k < Q, with a density function p(k). In this way we regain (433-435),
while (436) is replaced by

2 .2
z(y) =Lii_rgowan =1~I,1_r>r°10wln/1(y)
N-o

=2y —-Dlnu+ 2f.2 p(){lny~ (k)} dk, (487)
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where y =1 — 2n/N and — kTz(y) is the free energy per vertex. y~ (k) is
defined so that y;” = y7(k;), and we have used the fact that the k’s must
occur in pairs k, —k, so thaty;~ ...y,” =y, ... 7,7.

We now look for a transformation from k to a new variable o so as to

reduce (434) to an integral equation with a difference kernel. We find that it is

eiu . ea
T (k) = e for w < 3, (488)
et —e i
= f 3,
R or @ >

where p and A are defined by
w=1+ 2cosu, w <3,
=1+ 2coshi, @ > 3. (489)
For definiteness we require that 0 < u < 2x/3 and 4 > 0.

Introducing a density function R(x) in the new variable, so that R(x) d«
= 27 p(k) dk, the free energy per vertex, —kTz(y), is given by

1 b
z(y)=1nu + ——f R(2)C(x) da, (490)
2n —-b

where

(cosh a — cos 3u)(cosh o — cos2p)
(cosh o — cos u)(cosho — 1)

C(a) = In , <3,
{ }

_ {(COSh 34 — cosw)(cosh 24 — cos “)}, >3 (@9

(cosh A — cos &)(1 — cos &)

The function R(a) and the limit b are determined by the integral equation

b
R(@) = &(o) - f_bK(fx — P R(P)dp (492)

and the condition

n(l—y) = [ ' R(x) da, (493)
-b

Y
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where

sin u sin2u

é(a)=%{ } <3,

cosho — cospu cosha — cos2pu

1 sinh A sinh 24 } 3 494
2{cosh/l—cosoc cosh21 — cosa |’ @z (494)
1 sin3u
K@) = =— ——— :
@) 27 cosha — cos 3 ©<3
1 sinh 34
et . 495
2n cosh3A — cosa’ ®>3 (493)

The integral equation (492) can be solved by Fourier transforms when
b= o and @ < 3, or when b = n and ® > 3. We find that

@0 eikzx
=1 — dk, 3,
Ro(@) Zf_w 2 cosh (kp) —1 @=
-1y . >3 (496)
a="w 2cosh(nid) —1

Substituting these expressions into (493), these values of b are found to cor-
respond to n = 4N. Thus there are as many up arrows as down arrows in
each row of the lattice. As with the square lattice F model, we expect this
to correspond to the largest A of the transfer matrix.

The free energy can now be found by substituting (496) into (490). Perfor-
ming the integration with respect to « then gives

(1+ e )1 — e~

. < 3,
o1+ e k(11— e ™) @

z(0) = Inu + Pﬁm %@

o> 3. (497)

0 (1 + e—nl)(l _ e—an)
=1 2
nuE A nz'l nEe™* —1+e™"

Clearly z(0) has a different form above and below w = 3, so that at this
value the system undergoes a non-analytic phase transition. However, z can
be formally expanded in powers of (w — 3), and the expansions are the same
above and below o = 3. Thus the transition is of infinite order, as in the
square lattice F model.

One special case of particular interest is the triangular “ice model”, in
which # = v = w =1, and hence p = /2. The integral (497) can then be
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evaluated, giving

3 ~
W= \2/° = 2598 ..., (498)
where
W =e"® = lim Z2/MN, (499)
M- oo
N= o0

For w > 3 the expression (497) can be cast into a rather interesting form
by expanding the summand in powers of exp (—n4) and summing term by
term. This gives

_ u @ (1= "1 —172) )3
W - t2(1 —_ t)(l — t2)2 n1=—-[1 { (l . l6n+1)(1 —t6n+2) } > (500)
where
t=exp(—A). : (501)

C. Three colourings of the edges of the hexagonal lattice

Let Z be the number of ways of colouring the bonds of the hexagonal lattice
with three colours 4, B, C, so that no two bonds at a vertex have the same
colour. This problem can be thought of as a kind of dimer problem, in which
two of the colours are two types of dimers, and we require that there be one
and only one dimer of each type at every vertex (Baxter, 1970a).

Alternatively, one can show (by an argument similar to that relating the
ice problem on a square lattice to a three colouring problem) that 4Z is the
number of ways of colouring the faces of the hexagonal lattice with four
colours so that no two adjacent faces have the same colour.

Returning to the original formulation of the problem as a colouring of
bonds, draw the lattice as in Fig. 49 and suppose it to be wound on a torus.
Then one can verify that the number of vertical bonds of a given colour
must be the same in each row of the lattice. The transfer matrix for this pro-

F1G. 49. The hexagonal lattice.



8. Two-dimensional ferroelectric models 477

blem therefore breaks up into diagonal blocks, and one can specify the state
¢ of a row by giving the locations x;, x,, ... of the B— and C-coloured bonds,
and be specifying which are coloured C.

In this way one can set up transfer matrix equations similar to the ferro-
electric models, but complicated by the fact that there are two types of
“down arrows” to consider. It turns out that the equations can be solved by
an ansatz similar to that used in the short-range, one-band model for electron
correlations (Lieb and Wu, 1968), and to that used in a two-component
one-dimensional system of fermions with delta-function interaction (Gaudin,
1967a, b and C. N. Yang, 1967).

While in principle straightforward, the necessary extensions of the Bethe
ansatz take us well beyond that needed for the ferroelectric problems, so we
content ourselves with stating the result (Baxter, 1970a), namely

© (3 —1)?
2/N ( . »)
V4 | I . 3n(3n—2) = 146099 ..., (502)

where N is the total number of sites in the lattice (N large).

D. Ice rule ferroelectric models with non-constant weights

As a final example of lattice models in satistical mechanics that can be solved
by the transfer matrix—Bethe ansatz technique, we return to the square
lattice and consider ferroelectric problems in which the Boltzmann factors
w; = exp (— Pe,) are allowed to vary from vertex to vertex (Baxter, 1971a).

Such a generalization includes any alternating square-lattice model, some
of which are known to be soluble by an appropriate Bethe-type ansatz, while
others appear intractable. It is therefore interesting to consider the most
general problem and seek the conditions under which a solution can be
obtained.

1. Transfer Matrix

As with the regular ferroelectric problems, consider a lattice of M rows and
N columns, wound on a tours. Let w;(I, J), where j =1, ...,6, be the six
possible Boltzmann factors of the vertex in row I and column J. Since these
vary from row to row we must define a transfer matrix TV for each row and
the analogue of the equation (75) for the partition function Z is

Z = Trace {THT® .. T} =32 ... Ay, (503)

where 4, ..., 4, and a set of 2¥-dimensional vectors ™), ..., ¥® are defined
by

APUED = TOPO (504)
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forI=1,..., M, and Y™M*D = ¢ The summation in (503) is over all the

2"V independent solutions of (504).

The number n of down arrows in each row is of course still conserved,

and just as (77) becomes (90), so does (504) become

Afre1(Xpy ooy X)) = ZRDIR(X» Y fi(Yis s Vo)

+ ZLDIL(X’ Y)fI(yo "~>yn),

(505)

the summations ) , )", having the meaning given in Section IV.B. Defining

N
ﬁl = H wl(Iﬂ J)s
J=1

N
Hr= .11:[1 604(1, J)>

_ os(, J) =t 0,1, K)

9 = ST ot Ky
ws(1, J) 7=t w,(I,K)
] ==
i) =500 D) o,y
" - wl(I’J)CUZ(I’ J)
T w1, 0) we(L, JY
_ 603(1, J) (04(1, J)
UI’J B C05(‘[9 J) COG(I, J)’

Ur(J, J) =1+ (u; — D6(J = ),
VI(J, J,) = l -+ (DI'J - 1)5(] - J/),

we find that the coefficients in (505) are

DA(X,Y) =& n (91U = 12 YIViGon 1))

DAX,Y) =1, H (GO 7V 1 9}

(choosing x, <1, x,,; > N).

(506)

(507)

(508)

(509)

(510)

(511)

(512)

(513)

(514)
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2. Bethe-Type Ansatz
We now make the ansatz

Filows e %) = T UP) H b0 X)), (515)

the summation having the same meaning as in (140), (420) and (472). We
find that this can be made to satisfy (505) provided:
_ 1\2
@ (g ¥ 000 =17y g2, (516)

Uralrr

where 4 is some constant, independent of I and J. Setting
24 = —t —1t71 517

we can then find parameters p; 5, Ky,5, %7, Br,5» ¥1,5 Such that

(I, J) = k1,1 = tpy o, 1Brs

(I, J) = x;(1 = tpr,)/{or,sBrs}

w31, J) = x1,5(prs — D)otr,s/Brs

(I, J) = k1, (prs — OBs/or,s (518)

ws(I, J) = 11,71 = Oprivis

ws(l, J) = k1,,(1 = 3)fyy,s.

If 4 =0 the partition function Z can be evaluated by Pfaffians (Baxter,
1970b). Failing this, we further require that:

(ii) There exist quantities pj, ¢; such that

D1y = P10y, (519)

oy 0
(i) Vr,a+1Yr+1,0%,0%1,5 + 1ﬁ1,1+ Brev,a+1 =1, (520)
YraPr+1,0+ 1%+ 1,0% +1,7+ 1ﬁI,JﬂI+ 1,J

for all values of I and J.

Substituting (515) into (505) and using the above three conditions on the
vertex weights, we find that the wanted terms on both sides of the transfer
matrix equation cancel provided there exist parameters zy, ..., z, such that

A= ﬁm—z” { ﬁ

opz—1

t—t"1pz;

ﬁ — ez } (521)

j=1 pz;—1
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and
i, J) = er 3 ;(J), (522)
where
o s Bry -
ey = *1,171,1%,5 P17 k2 (523)
ﬁl,ﬁu K=1

‘/’i(J)=, 1 lelltzj~ax

O-J_ jK=1taK_Zj

(524)

Since the single-particle functions ¢;(I, x) are no longer plane waves, the
wave numbers ki, ..., k, of the regular ferroelectric models no longer occur
naturally. If we wish, we can introduce them by regarding the toroidal
boundary conditions as equivalent to a periodicity every N lattice columns
and requiring that

¢;(I, x + N) = ¢ (1, x) exp (iNk)). (525)
Using (522)-(524), we then find that k; and z; are related by

. N tz.— ¢
eVt = H™? —— 526
KI;Il tog — zZ; ( )
where N
H = H OCI,J. (527)

J=1

Ll

At first sight H appears to depend on I, but it can be shown from (520)
that this is not so. Similarly, the quantity

M
V=11 Brs (528)
I=1

is independent of J. H and ¥ can be thought of as Boltzmann factors arising
from applying horizontal and vertical electric fields, respectively, to the lattice.

With the normalizations implied by (521) and (522), the coefficients 2,(P)
are independent of I. Dropping the suffix I, the unwanted internal terms in
the transfer matrix equation are found to vanish provided

A(P) = W(Q)B(zp, 2, (529)

where P and Q are permutations related as in (429), and

t7lz — ¢z
B(Z, Z,) = — m. (530)
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Finally, the unwanted boundary terms vanish provided

eiNkj = H B(Zj, Zi)’ (531)
1: 11
or, more explicitly,
-2 1B (- ﬁ"“ (532)
K=110 oy et tz

J

forj=1,..,n
Using (521) and the relations between the various Boltzmann factors, we
see that

Dy oy = VN7, ﬁ {H {Jﬁl (1- tplaj)}{ﬁ t—t"tpz; }

Jj=1 pIZ]_l

+H™!

r——m,

JII;VII (pro; — t)} { 1 t—:l—_———tp’z"} } (533)

=1 pzy—1

where

M N
=[] IT %10 (534)
I=1J=1

The equations (532) determine z, ..., z,. Substituting these values into
(533) gives Ay ... Ay The partition function Z is then obtained by summing
Ay ... Ay over all independent solutions of (532) and all values of # from 0
to N.

Note that the field weights a; ;, f; ;, y; ; enter the final equations only via
H and V. Thus the partition function is independent of local variations in
the fields, so long as the condition (520) is satisfied.

3. Eguations as Polynomial Identities

It is illuminating to introduce two polynomials, of degree N and #, respec-
tively:

N

5@ =[] @— oy (535)
J=1

0() = H @-z). (536)

The equations (532) can then be written as

I'z)=0 forj=1,..,n (537



482 E. H. Lieb and F. Y. Wu
where

@) = (- OV 2HS(t " *2)Q(t%2) + H 'S(t2)Q(t ~*2). (538)

Clearly I'(z) is a polynomial of degree N + n. Further, n of its zeros coin-
cide with those of Q(z). Thus Q(z) must be a factor of I'(z), and there exists
an Nth degree polynomial R(z) such that

I'(z) = R(2)Q(2). (539)
Using the definitions (535) and (536), we can write (533) as

- Mo (—1)p T (p;™ ")
— N-2n
A idy=V Z, 1I=I1 ) s (540)

so from (538) it follows that
M
Apedag = VT2 Z, IIl {(=0"p"R(ps™ D} (541)

Thus (538) and (539) can be regarded as identities defining the polynomials
Q(z) and R(z). Once these are known, 4, ... 4, is given by (541).

4, Ordered F Model State

With such a general system a great variety of thermodynamic states are
possible. We do not attempt to consider all of these, but focus attention on
one—the ordered F model state. In this case we can obtain the partition
function Z for an infinite lattice by a simple trick.

As afirst step, suppose all the weights ws (I, J), wg(I, J) are much greater than
allw (I, J), ..., w4(I, J). Then the system will tend to assume one of two ordered
states, in which either all vertices on the sublattice with I + J even are in
configuration 5 and all vertices with I + J odd are in configuration 6, or
vice versa. These are the ordered states that occur in the F model.

If this is so then it follows from (516) that 4 is large, so we can choose
|] < 1. Assuming that H and o, ..., oy are of order unity, we see that when
N = 2n, (532) has solutions such that z, ..., z, are distinct and of order unity,
the equation becoming

" + (— 1)nH—2_a_1L_Gl
Zy ... 2y

~0 (542)

for j =1, ..., n. Regarding this as an nth degree polynomial equation with
roots zy, ..., z,, We see that
Gy ...0
Zy .z, 72N (543)

Z4 .. 2y
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and hence
zy ...z, £ H (0, ... o). (544

Thus there are two such solutions of (532), corresponding to which sign we
choose in (544). This reflects the fact that there are two possible ordered
states for the lattice. For a large lattice (with V of order unity) these two
solutions dominate the summation in (503), and it is unnecessary to consider
any others.

Now do perturbation theory on either solution. Using the definitions of
0(z) and S(z), we can write (542) as

St 1z) —2 S(2)
007 07D = (543)

when z =z, j=1,...,n. Supposing |z| ~ 1 and expanding in increasing
powers of ¢, we find that to order "~ ! or less, the left-hand side of this
equation is a polynomial of degree n, with leading coefficient unity. Further,
its zeros are those of Q(z), so that when |z| ~ 1,

) _, S(t2)
0(z) ~ ) 2 o0 (546)
Thus from (538),
I'(z) ~ HQ(2)Q(t™22)Q(t72), (547)
and hence from (540)
o 2o 17 [—oypimo (22) o [ 12
AIW;LM_ZOII;L [( t)pIHQ{ Pr }Q{Pl }] (548)

We can regard (546) as an approximate polynomial identity, true for all z,
provided we replace the first (second) term on the right-hand side by the
first # terms of its expansion in decreasing (increasing) powers of z. When
lz| < ¢72 only the contributions to this polynomial from the first term are
significant, so that

L St ')
RGN

Q(z) (549)

When |z| < #2, the contributions from the second term dominate, giving

-2 S(tz)
0@~ ™ Gy

Letting z = 0 in (550), we regain (543). Thus (543) and (544) are in fact
accurate to order "%,

(550)
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Replacing z by 7%z, t 7%z, t~°z, etc. in (549), we obtain a sequence of
recursion relations between Q(z), Q(t ™ %z), Q(t~*z), etc. Using the known
large z behaviour of Q(z) and S(z), we can solve these relations to obtain

N
Q(t 22y~ t 2" H F(o,/2) (551
J=1
when |z| > 1, where
o) 4m lZ
Fe) = Ij S (552)

Similarly, replacing z by t%z, t*z, etc. in (550), we obtain
N
Q) = (=1)"z, ...z, J[_Il F(z/o)) (553)

when [z] <1
Substituting these results into (548), we therefore have

M

n N 1
Aoy =Zy |1 {Hz1 A {—?—} JH1 F(p;o,) F [ 5

=1 107

] } (554)

Providing M is even, we see that it does not matter which sign we choose
for zq ...z, in (544). Thus the two ordered states are degenerate and, using
(518),

M N %
217 17 L f)“’é(f Y by F (——1 ) (555)

I=1J=1 —t Pi1%;

When M is large this result is accurate to order "~ . Taking the thermo-
dynamic limit when N and » become infinitely large, we expect it to be exact
provided 7 is less than some critical value (and H, V, pq, ..., Par> O1 -.., Oy
are of order unity). For the regular F model we can verify that (555) is in
fact correct provided 4 < — 1 and ¢ < 1.

Note that in this state Z is independent of H and V. Thus there is no
polarization unless sufficiently strong electric fields are applied.

In a sense it is unfortunate that the two ordered F-model states are degen-
erate. This means that it is impossible to put on a staggered electric field so
as to resolve this degeneracy and still satisfy the conditions (516), (519) and
(520). If it could be obtained, the solution of the staggered field problem
would give considerable information concerning the nature of the F model
phase transition and related problems (Nagle, 1969b).
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VIil. Unsolved Problems

The following is a partial list of problems for further research. Some of them
are “loose ends” of the analysis in the text, while others require breakthrough
in technique.

1. The conjecture in Section V.B, p. 390 following equation (194), that the
free energy is analytic in K, at K; = 0.

2. The conjecture in Section V.H, p. 447 that the transfer matrix is normal
for the ice rule models.

3. The solution of the two-dimensional ferrielectric model in a horizontal
field (Section V. H).

4. In Section V. I we give the correlation function between vertical arrows
when 4 = 0. One problem is to evaluate the correlation between vertical and
horizontal arrows. A more difficult problem is to extend the calculation to
A # 0. One can also try to calculate the correlation between vertex types at
different vertices.

5. Establish the equivalence of free and periodic boundary conditions for
the ice rule models (Section III).

6. Answer the four questions on the “canonical ensemble” posed in Sec-
tion III. C, p. 361.

7. Find a non-trivial linear Hamiltonian that commutes with -the transfer
matrix for the sixteen vertex problem (goal 2 of Section IV. D, p. 367). Do
same the for the Baxter models of Section VIL

8. Evaluate the F model free energy in a staggered field for 4 # 0 (cf.
Sections IV. E and V. H). Generally, the solution of any model with variable
vertex weights (beyond that given in Section VII. D) would be useful.

9. Solve the triangular lattice F model for all temperatures, i.e. without the
restriction on the weights given by (470).

10. Solve the ice rule models for other lattices, e.g. the Kagome lattice. In
particular, what is the value of W for the Kagome lattice?

11. It has been conjectured by Wu (1969a) that, for the general ferroelectric
model, the transition temperature cannot decrease if any vertex energy other
than the lowest one is increased. It would be useful to establish this con-
jecture.

12. Is there an analogue of the Griffiths—Kelly-Sherman inequalities for the
ferroelectric models?

13. If the above problems are solved, there are still the general eight and
sixteen vertex models. The former would yield, among other things, the
solution to the crossed bond Ising model and the latter would contain the
solution of the Ising model in a non-zero magnetic field.
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Glossary of Principal Symbols

%os

p,

SR ARRST SR EE

.
-

E(9),

’

BB Rl

=

oS

§§

defined by (177)

=1/kT

specific heat per vertex

polarizability

polarizability at T = T,

defined by (138)

vertex energy

energy parameters, cf. (93) and Table I

= max (0, &;) — &,, cf. (94)

= exp | K]

free energy per vertex

correlation function at a fixed y, cf. Section V. I
= Bh

magnetic field (in (38-42) only)

Hamiltonian (in (28) and (34) and Section IV.D only)
horizontal electric field

Boltzmann constant

= fe

= Pe,

= fe,

defined by 4 = — cosh 4, cf. Table 11, line 1
eigenvalues of the transfer matrix, cf. (75)

the largest eigenvalue of the transfer matrix, cf. (76)
a lattice domain (in Section III only)

defined by 4 = — cos g, cf. Table 11, line 1
number of rows in a square lattice

number of columns in a square lattice

number of down arrows in a row

vertex weight

defined by (175)

defined by (307)

staggered field

entropy

temperature

critical temperature in the absence of external fields
critical temperature when external fields are present
defined by (176)

internal energy

= fov

vertical electric field

defined by (3)
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X, horizontal polarization per horizontal bond

¥, vertical polarization per vertical bond

Z, partition function

Zo, partition function at T = o0 also as defined by (534),
(Section VIL.D only).

Zp, dimer generating function

z(A), — B defined by (43)

z(y), defined by (148)
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