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CHAPTER 2

Canonical Models

We saw in Section ?? that the basic objects of the moduli theory of higher
dimensional varieties are the canonical models of varieties of general type. The
aim of this Chapter is to study these canonical models, and, more generally, log
canonical models of pairs.

Section 1 is a summary of the relevant results of the Minimal Model Program or
Mori’s program. The main result, which we do not prove here, is that for a smoth
projective variety of general type X , its canonical ring

∑
m≥0H

0
(
X,OX(mKX)

)

is finitely generated. Thus its canonical model

Xcan := Projk
∑

m≥0

H0
(
X,OX(mKX)

)

is a projective variety.
Examples of the various singularities occurring in the Minimal Model Program

are given in Section 2.
Section 3 gives a rather detailed classification of log canonical surface singular-

ities. Strictly speaking, little of it is needed for the general theory, but it is useful
and instructive to have a thorough understanding of a class of concrete examples.

Divisorial log terminal singularities are investigated in Section 4. Roughly
speaking, these form the largest well-behaved subclass of log canonical singularities.
We prove that they are rational and many important sheaves on them are Cohen-
Macaulay (120).

Section 5 studies adjunction, a method to relate the properties of a divisor
D ⊂ X to properties of a neighborhood of D in X . This is a very important tool
that allows induction on the dimension in many cases. The higher codimensional
generalizations of these results involve the log canonical centers of a pair (X,∆).
These are studied in more detail in Section 6.

Cohomological properties of log canonical singularities are investigated in Sec-
tion 7. The main result (???) implies that if X is proper and log canonical then
the natural map

Hi(Xan,C) ։ Hi(Xan,OXan) is surjective with a natural splitting.

This implies that Kodaira vanishing holds for varieties with log canonical singular-
ities and that being CM is deformation invariant for families of stable varieties.

1. Canonical singularities and canonical models

Singularities of the Minimal Model Program.

In this section, our main interest is in varieties over a field of characteristic
zero, but everything works over an arbitrary perfect base field. (Some results about
surfaces over imperfect fields are in Section 2.)
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4 2. CANONICAL MODELS

The definitions and results are all local in the étale or analytic topology, hence
they carry over to algebraic and complex analytic spaces.

For most applications, the definition of the canonical class and canonical sheaf
given in (??) is sufficiently general, but we need the following more general version
as well.

Definition 1 (Canonical class and canonical sheaf II.). Let B be a regular
base scheme. (In practice, we use only the cases when B is the spectrum of a field
or of a DVR.)

Let X → B be a scheme of finite type over B of pure dimension n that satisfies
the following condition:

(1) There is an open subscheme X0 ⊂ X and an embedding ι : X0 →֒ PNB
such that
(a) Z := X \X0 has codimension ≥ 2 in X , and
(b) ι(X0) is a local complete intersection in PNB .

(In this book we use only three special cases of this. First, if X is normal and
quasi-projective then Z = SingX works. Second, in dealing with stable varieties, we
consider schemesX that have ordinary nodes at some codimension 1 points. Finally.
we occasionally use the dualizing sheaf for nonreduced divisors in a nonsingular
scheme.)

Let I denote the ideal sheaf of the closure of ι(X0). Then I/I2 is a locally free
sheaf on ι(X0) and, as in [Har77, 8.20], we set

ωX0 := ι∗
(
ωPN

B
⊗ det−1

(
I/I2)

)
. (1.2)

Finally define the canonical sheaf of X as

ωX := j∗ωX0 , (1.3)

where j : X0 →֒ X denotes the open embedding. (Strictly speaking, one should
indicate B and denote it by ωX/B instead. However, most of the time we can only
handle the case when B is the spectrum of a field of charactersitic 0, thus there
is little to gain by adding B to the notation.) If X is reduced, the corresponding
linear equivalence class of Weil divisors is denoted by KX . (If X0 is smooth over B,
then one can define ωX using differentials as in (??). In general, differential forms
give a different sheaf.)

Note that while [Har77, 8.20] is a theorem, for us (1.2–3) are definitions.
Therefore we need to establish that ωX does not depend on the projective embed-
ding chosen. This is easy to do by comparing two different embeddings ι1, ι2 with
the diagonal embedding

(ι1, ι2) : X0 →֒ PN1

B ×B PN2

B .

We also need that ωX is the relative dualizing sheaf ωX/B. If X itself is projective, a
relatively short discussion is in [KM98, Sec.5.5]. For the general case see [Har66,

Con00].)

Definition 2 (Discrepancy I.). Let X be a normal variety over a field k such
that mKX is Cartier for some m > 0. Suppose f : Y → X is a birational morphism
from a smooth variety Y . (We do not assume that f is proper. Thus we usually
start with a proper birational morphism f∗ : Y ∗ → X and let Y ⊂ Y ∗ denote the
open subscheme of smooth points.) Let E ⊂ Y be an irreducible divisor and e ∈ E
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a general point of E. Let {yi} be a local coordinate system at e ∈ Y such that
E = (y1 = 0). Then, locally near e,

f∗
(
local generator of OX(mKX) at f(e)

)
= y

c(E,X)
1 · (unit) · (dy1 ∧ · · · ∧ dyn)

⊗m

for some integer c(E,X). The rational number a(E,X) := 1
mc(E,X) is called the

discrepancy of E with respect to X . It is independent of the choice of m.
We refer to any such E as a divisor over X . The closure of f(E) ⊂ Y is called

the center of E on X . It is denoted by centerX E.
Assume that f ′ : Y ′ → X is another birational morphism and E′ ⊂ Y ′ an

irreducible divisor such that the rational map f−1 ◦ f ′ : Y ′ → X 99K Y is an
isomorphism at the general points e ∈ E and e′ ∈ E′. Then we see from the
definition that a(E,X) = a(E′, X) and centerX E = centerX E

′. Because of this,
in discrepancy considerations, we frequently do not distinguish E from E′.

If f : Y → X is a birational morphism then mKY is linearly equivalent to

f∗(mKX) +
∑

i

(m · a(Ei, X))Ei,

where the Ei are the f -exceptional divisors. We can formally divide by m and write

KY ∼Q f∗KX +
∑

a(Ei, X)Ei.

A basic property of discrepancy is that it is positive when X is smooth.

Proposition 3. Let X be a smooth variety over a field k. Then a(E,X) ≥ 1
for every exceptional divisor E over X.

Proof. Let f : Y → X be a birational morphism, Y normal, E ⊂ Y an
exceptional divisor and e ∈ E a general point. Choose local coordinates (y1, . . . , yn)
near e ∈ Y and (x1, . . . , xn) near f(e) ∈ X . Then

f∗
(
dx1 ∧ · · · ∧ dxn

)
= Jac

(x1, . . . , xn
y1, . . . , yn

)
dy1 ∧ · · · ∧ dyn,

thus a(E,X) is the order of vanishing of the Jacobian along E. Hence a(E,X) ≥ 0
and, by the inverse function theorem, a(E,X) = 0 iff f is locally invertible at f(e).
Thus a(E,X) ≥ 1 for every exceptional divisor E. �

Notation 4. Let X be a normal scheme. For a Weil divisor D, OX(D) is a
rank 1 reflexive sheaf. The correspondance D 7→ OX(D) is an isomorphism from
the group Cl(X) of Weil divisors modulo linear equivalence to the group of rank 1
reflexive sheaves.

The product of two reflexive sheaves L1, L2 is given by
(
L1⊗L2)

∗∗, the double
dual or reflexive hull of the usual tensor product. For powers we use the notation

L[m] :=
(
L⊗m

)∗∗
.

Note further that if L is a reflexive sheaf and D =
∑
aiDi a Weil divisor then L(D)

denotes the sheaf of rational sections of L with poles of multiplicity at most aiDi.
It is thus the double dual of L⊗OX(D).

More generally, let X be a reduced, pure dimensional scheme. Let Cl∗(X) de-
note the group of Weil divisors, none of whose irreducible components are contained
in SingX , modulo linear equivalence. (Thus, ifX is normal, then Cl∗(X) = Cl(X).)
As before, D 7→ OX(D) is an isomorphism from Cl∗(X) to the group of rank 1 re-
flexive sheaves that are locally free at all codimension 1 points of X .
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The definition (2) can be generalized to pairs (X,∆) such that KX + ∆ is
Q-Cartier:

5 (Pairs). Mori’s program was originally conceived to deal with smooth pro-
jective varieties. Later it became clear that one needs to handle certain singular
varieties and also add a divisor to the basic object. Next we define a rather general
set-up where the basic definitions make sense and fundamental results hold.

Assumption 5.1. Our main interest is in pairs (X,∆) where X is a normal
variety over a field k and ∆ =

∑
aiDi is a linear combination of distinct prime

divisors. We allow the ai to be arbitrary rational numbers.

Assumption 5.2. More generally, we also consider pairs (X,∆) where X is
a reduced, pure dimensional scheme of finite type over a regular base scheme B
satsifying (1.1) and ∆ =

∑
aiDi is a linear combination of distinct prime divisors

none of which is contained in SingX . As in (1), we write ωX and KX instead of
ωX/B and KX/B.

Note that if mai is an integer for every i then ω
[m]
X (m∆) is locally free outside

a codimension 2 subset Z ⊂ X .

Definition 6 (Discrepancy II.). Let (X,∆) be a pair as in (5). Assume that
m(KX + ∆) is Cartier for some m > 0. Equivalently, m∆ has integral coefficients

and ω
[m]
X (m∆) is locally free.

Suppose f : Y → X is a birational morphism from a nonsingular scheme Y .
Let E ⊂ Y denote the exceptional locus of f and Ei ⊂ E the irreducible exceptional
divisors. Let

f−1
∗ ∆ :=

∑
aif

−1
∗ Di

denote the birational transform of ∆. There is a natural isomorphism of invertible
sheaves

ιY \E : ω
[m]
Y

(
mf−1

∗ ∆
)
|Y \E

∼= f∗
(
ω

[m]
X

(
m∆)

)
|Y \E . (6.1)

Thus there are rational numbers a(Ei, X,∆) such that m ·a(Ei, X,∆) are integers,
and ιY \E extends to an isomorphism

ιY : ω
[m]
Y

(
mf−1

∗ ∆
)
∼= f∗

(
ω

[m]
X

(
m∆)

)(∑
im · a(Ei, X,∆)Ei

)
. (6.2)

By definition a(Di, X,∆) = −ai and a(D,X,∆) = 0 for any divisor D ⊂ X which
is different from the Di. The rational number a(E,X,∆) is called the discrepancy
of E with respect to (X,∆). As in the ∆ = 0 case, a(Ei, X,∆) depends only on Ei
but not on f .

Notation 7. The pull-back and the discrepancies can be conveniently pack-
aged into any of the 3 equivalent forms:

KY + f−1
∗ ∆ ∼Q f∗(KX + ∆) +

∑
Ei:exceptional a(Ei, X,∆)Ei, or

KY ∼Q f∗(KX + ∆) +
∑

Ei:arbitrary a(Ei, X,∆)Ei, or

KY + ∆Y ∼Q f∗(KX + ∆) where f∗∆Y = ∆.

Note, however, that these formulas do not show that the isomorphisms in (6.1–2)
are canonical.

We frequently refer to these formulas by saying, for instance: “write KY ∼Q

f∗(KX + ∆) +A.” In this case it is understood that A is chosen as above. That is,
we have to make sure that A =

∑
i a(Ei, X,∆)Ei. It is very useful to know that we
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need to check this only for non-exceptional divisors since, essentially by the Hodge
index theorem (31), a numerically trivial exceptional divisor is in fact trivial.

8 (Real coefficients). One can also define discrepancies for pairs (X,∆) where
X is a normal variety and ∆ =

∑
aiDi is a linear combination of distinct prime

divisors with real coefficients, as long as the pull-back f∗(KX + ∆) can be defined.
The latter holds of KX + ∆ is a linear combination of Cartier divisors with real
coefficients. (Unlike in the rational case, this is weaker than assuming that a real
multiple of KX+∆ be Cartier.) If (X,∆) is lc (or klt, ...) then there are arbitrarily
small rational perturbations ∆′ of ∆ such that KX + ∆′ is Q-Cartier and (X,∆′)
is also lc (or klt, ...). All the results of this section work for real divisors. See
[BCHM06] or [Kol08, Sec.4] for some foundational issues.

The basic example is the following “log smooth” version of (3).

Proposition 9. Let X be a smooth variety over a field k and ∆ =
∑
Di a nc

divisor. Then a(E,X,∆) ≥ −1 for every divisor E over X.

Proof. Let f : Y → X be any birational morphism, Y smooth. Let E ⊂ Y be an
exceptional divisor, e ∈ E a general point and choose local coordinates (y1, . . . , yn)
such that E = (y1 = 0).

Assume first that (X,∆) is snc near f(e). Let (x1, . . . , xn) be local coordinates
on a neighborhood U ∋ f(e) such that ∆ ∩ U = (x1 · · ·xr = 0). A local generator
of OU (KU + ∆) is given by

σU :=
dx1

x1
∧ · · · ∧

dxr
xr
∧ dxr+1 ∧ · · · ∧ dxn.

Near e, we can write f∗xi = yai

1 · ui where ui is a unit. Thus

f∗ dxi
xi

=
d(yai

1 · ui)

yai

1 · ui
= ai

dy1
y1

+
dui
ui
.

Since dy1 ∧ dy1 = 0, we obtain that

f∗σU =
dy1
y1
∧ ωn−1 + ωn,

where ωn−1 is a regular (n − 1)-form and ωn is a regular n-form. Thus f∗σU is a
section of OY (KY + E) near E and so a(E,X,∆) ≥ −1.

The general nc case is obtained by using a suitable étale neighborhood of f(e)
instead of a Zariski neighborhood. �

The discrepancies measure the singularities of a pair (X,∆) together. Large
discrepancies indicate that (X,∆) is mildly singular and negative values indicate
that (X,∆) is more singular.

When ∆ = 0, we measure the singularities of X and when X is smooth, we
measure the singularities of ∆, but the interplay between X an ∆ is quite subtle.
In general, the discrepancies have the following obvious monotonicity property:

Lemma 10. Notation as in (6). Assume that ∆′ is effective and Q-Cartier.
Then a(E,X,∆) ≥ a(E,X,∆+∆′) for every divisor E over X, and strict inequality
holds iff centerX E ⊂ Supp ∆′. �

11 (Regular schemes). The basic lemmas (3) and (9) both hold for regular
schemes X as in (1), but they need a different proof since differential forms do not
give sections of ωX .
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The easiest is to compute first what happens if we blow up a regular subvariety
Z ⊂ X . The formula given in [Har77, Exrc.II.8.5] is correct in general and the proof
suggested there also works. (The set up in [Har77, Exrc.II.8.5] tacitly assumes that
X is over a perfect field.) As in [KM98, 2.31], by induction this gives the result
for all exceptional divisors using [KM98, 2.45].

The following lemma reduces, in principle, any discrepancy computation to the
case when X is smooth and Supp ∆ is a snc divisor (assuming that resolution of
singularities holds).

Lemma 12. [KM98, 2.30] Let f : Y → X be a proper birational morphism.
Let ∆Y (resp. ∆X) be Q-divisors on Y (resp. X) such that

KY + ∆Y ∼Q f∗(KX + ∆X) and f∗∆Y = ∆X .

Then, for any divisor F over X,

a(F, Y,∆Y ) = a(F,X,∆X). �

Note that even if we are interested in the ∆X = 0 case, ∆Y is almost always
nonzero and contains divisors both with positive and negative coefficients.

Next we define the 6 classes of singularities that are most important for the
minimal model program.

Definition 13. Let (X,∆) be a pair where X is a normal scheme of dimension
≥ 2 and ∆ =

∑
aiDi is a formal sum of distinct prime divisors. (We allow the ai

to be arbitrary rational numbers.) Assume that m(KX + ∆) is Cartier for some
m > 0. We say that (X,∆) is

terminal
canonical

klt
plt
dlt
lc






if a(E,X,∆) is






> 0 for every exceptional E,
≥ 0 for every exceptional E,
> −1 for every E,
> −1 for every exceptional E,
> −1 if centerX E ⊂ non-snc(X,∆),
≥ −1 for every E.

Here klt is short for “Kawamata log terminal”, plt for “purely log terminal”,
dlt for “divisorial log terminal” and lc for “log canonical”. The set of points where
(X,∆) is not snc is denoted by non-snc(X,∆).

(The frequently used phrase “(X,∆) has terminal etc. singularities” may be
confusing since it could refer to the singularities of (X, 0) instead.)

Each class contains the previous one, except canonical does not imply klt if ∆
contains a divisor with coefficent 1. The key point is to show that if a(E,X,∆) ≥ −1
for every exceptional E then a(E,X,∆) ≥ −1 for every E [KM98, 2.31]. This last
claim fails if dimX = 1 since there are no exceptional divisors at all. If dimX = 1
then (X,

∑
aiDi) is terminal/klt iff ai < 1 for every i. The other 4 concepts all

coincide and they hold iff ai ≤ 1 for every i.
Warning on effectivity. In final applications, the above concepts are useful only

if ∆ is an effective divisor, and in the literature, frequently the definitions assume
that ∆ ≥ 0. However, in some inductive proofs, it is very convenient to allow ∆ to
contain some divisors with negative coefficients. (See (12) for a typical example.)
The usage is inconsistent in the literature, probably even in this book.

Each of these 6 notions has an important place in the theory of minimal models:
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(1) Terminal: Assuming ∆ = 0, this is the smallest class that is necessary to
run the minimal model program for smooth varieties. The ∆ 6= 0 case
appears only infrequently.

(2) Canonical: Assuming ∆ = 0, these are precisely the singularities that
appear on the canonical models of varieties of general type. This class is
especially important for moduli problems.

(3) Kawamata log terminal: The proofs of the vanishing theorems seem to
run naturally in this class but it is not suitable for inductive proofs.

If ∆ = 0 then the notions klt, plt and dlt coincide and in this case we
say that X has log terminal (abbreviated to lt) singularities.

This class is also easy to connect to analysis. IfM is a smooth complex
manifold and f is a meromorphic function and ∆ := (f = 0) − (f = ∞),
then (M, c∆) is klt iff |f |−c is locally L2, see [Kol97, 3.2].

(4) Purely log terminal: This class was invented for inductive purposes. We
do not use it much.

(5) Divisorial log terminal: These are the singularities we obtain if we start
with an snc pair (X,∆) and run the MMP. These are much better behaved
than log canonical pairs.

(6) Log canonical: This is the largest class where discrepancy still makes
sense. It contains many cases that are rather complicated from the coho-
mological point of view. Therefore it is quite hard to work with. However,
these singularities appear naturally on the stable varieties at the boundary
of our moduli spaces, hence they can not be ignored.

For basic examples illustrating the nature of these singularities see Section 2.

Given (X,∆), the most important value for us is the minimum of a(E,X,∆)
as E runs through various sets of divisors. We use several versions:

Definition 14. The discrepancy of (X,∆) is given by

discrep(X,∆) := inf
E
{a(E,X,∆) : E is an exceptional divisor over X }.

(That is, E runs through all the irreducible exceptional divisors of all birational
morphisms f : Y → X .)

The total discrepancy of (X,∆) is defined as

totaldiscrep(X,∆) := inf
E
{a(E,X,∆) : E is a divisor over X }.

(That is, E ⊂ Y runs through all the irreducible exceptional divisors for all bira-
tional morphisms f : Y → X and through all the irreducible divisors of X .)

One problem with the above definitions is that one needs to check discrepancies
on all possible birational maps to X . By (12), the computation of discrepancies
can be reduced to smooth varieties with snc divisors. In the latter case, there is an
explicit formula:

Lemma 15. [KM98, 2.31] Let X be a smooth variety and ∆ =
∑
aiDi a nc

divisor. Assume that ai ≤ 1 for every i. Then

discrep(X,∆) = min
{

1,min
i
{1− ai}, min

Di∩Dj 6=∅
{1− ai − aj}

}
.

In particular, −1 ≤ discrep(X,∆) ≤ 1 and

discrep
(
X,

∑
iaiDi

)
= discrep

(
X,

∑
i:ai>0aiDi

)
. �
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Corollary 16. Let X be a normal variety over a perfect field k such that
KX is Q-Cartier and f : Y → X a resolution of singularities. Write KY ∼Q

f∗KX +
∑
aiEi where the sum runs over all f -exceptional divisors Ei. Then

(1) X is canonical iff ai ≥ 0 for every i.
(2) X is terminal iff ai > 0 for every i.
(3) If X is canonical then discrep(X) = min

{
1,mini{ai}

}
.

Proof. Since a(Ei, X) = ai, the conditions are necessary. Conversely, assume
that ai ≥ 0. If F is an exceptional divisor of f then a(F,X) equals the coefficient of
F in

∑
aiEi, hence positive by assumption. If F is any divisor that is exceptional

over Y , then, by (12), a(F,X) = a(F, Y,−
∑
aiEi) and, using (10) and (3) we

obtain that a(F, Y,−
∑
aiEi) ≥ a(F, Y ) ≥ 1. �

The proof of the version with boundary is the same:

Corollary 17. Let X be a normal variety and ∆ =
∑
djDj a Q-divisor such

that KX + ∆ is Q-Cartier. Let f : Y → X be a log-resolution of singularities.
Write KY ∼Q f∗(KX + ∆) +

∑
aiEi. Then

(1) (X,∆) is log canonical iff ai ≥ −1 for every i.
(2) (X,∆) is klt iff ai > −1 for every i. �

(Note that by our conventions the birational transforms f−1
∗ (Dj) are among

the Ei with coefficient ai = −dj. Thus the restrictions on the ai imply that dj ≤ 1
(resp. dj < 1) for every j. A formula for discrep(X,∆) is in [KM98, 2.32])

In (??) we saw examples of singular rational surfaces whose canonical class is
ample. Thus, for singular varieties, the plurigenera are not birational invariants.
The following result shows that canonical singularities form the largest class where
the plurigenera are birational invariants.

Proposition 18. Let X be a normal projective variety such that KX is Q-
Cartier and ample. Let f : Y 99K X be a birational map from a nonsingular proper
variety to X. Then X has canonical singularities iff

H0(X,OX(mKX)) = H0(Y,OY (mKY )) for every m ≥ 0.

Proof. Let Y ′ be a normal, proper variety and Y ′ → Y a birational morphism
such that the composite g : Y ′ → Z is a morphism.

Pick m such that mKX is Cartier and write mKY ′ ∼ g∗(mKX) + A where A
is g-exceptional. Then

H0
(
Y,OY (mKY )

)
= H0

(
Y ′,OY ′(mKY ′)

)

= H0
(
X, g∗

(
OY ′(mKY ′)

))

= H0
(
X,OX(mKX)⊗ g∗OY ′(A)

)
.

If A ≥ 0 then g∗OY ′(A) = OX hence the last term equals H0(X,OX(mKX)). If A
is not effective then g∗OY ′(A) ( OX , thus, for m≫ 1,

H0
(
Y,OY (mKY )

)
= H0

(
Y ′,OY ′(mKY ′)

)
( H0

(
X,OX(mKX)

)
.

This takes care of all sufficiently divisible values of m. The rest follows from (20).
�

An essentially identical proof, using n-forms with poles along divisors shows
the following:



1. CANONICAL SINGULARITIES AND CANONICAL MODELS 11

Proposition 19. Let X be a normal projective variety and D an effective
Q-divisor such that KX + D is Q-Cartier and ample. Let f : Y 99K X be a
birational map from a nonsingular proper variety to X and DY a nc divisor on Y
such that f∗(DY ) = D and every irreducible component of Ex(f) appears in DY

with coefficient 1. Then (X,D) is log-canonical iff

H0
(
X,OX(mKX+⌊mD⌋)

)
= H0

(
Y,OY (mKY +⌊mDY ⌋)

)
for every m ≥ 0. �

Lemma 20. Let X be a normal variety, D a Q-divisor and m a positive integer
such that mD is an integral divisor. Let s be a rational section of OX(⌊D⌋). Then
s is a regular section of OX(⌊D⌋) iff sm is a regular section of OX(mD).

Proof. Since X is normal, it is enough to check this at the generic point of
every divisor. So pick a prime divisor E ⊂ X and assume that E has coefficient r
in D. Let s have a pole of order n along E. Then s is a regular section of OX(⌊D⌋)
along E iff n ≤ ⌊r⌋ and sm is a regular section of OX(mD) along E iff mn ≤ mr.
Since n is an integer, these are equivalent. �

Minimal and Canonical Models.

21 (Canonical models). Let X be a smooth projective variety over a field k.
Its canonical ring is the graded ring

R(X) = R(X,KX) :=
∑

m≥0

H0
(
X,OX(mKX)

)
.

The canonical ring depends only on the birational equivalence class of X , and
conversely, for varieties of general type, the canonical ring determines the birational
equivalence class of X .

If the canonical ring is finitely generated, then

Xcan := Projk R(X,KX)

is called the canonical model of X (or of its birational equivalence class).
For various reasons, we are also interested in minimal models of X . These

are varieties Xmin that are birational to X , have terminal singularities and nef
canonical class. More generally, Xw is a weak canonical model of X if Xw has
canonical singularities, nef canonical class and is birational to X . Thus canonical
and minimal models are also weak canonical models.

Theorem 22. [Rei80] Let X be a smooth, proper variety of general type such
that its canonical ring R(X,KX) is finitely generated. Then

(1) its canonical model Xcan is normal, projective, birational to X,
(2) the canonical class KXcan is Q-Cartier and ample,
(3) Xcan has canonical singularities, and
(4) H0

(
X,OX(mKX)

)
∼= H0

(
Xcan,OXcan(mKXcan)

)
for every m ≥ 0.

Proof. Since
∑
m≥0H

0(X,OX(mKX)) is finitely generated, there is an r >

0 such that
∑

m≥0H
0(X,OX(mrKX)) is generated by H0(X,OX(rKX)). Thus

D := rKX satisfies the assumptions of (23). Therefore, there is a birational map
φ : X 99K Z to a normal variety and a very ample Cartier divisor H on Z such
that H ∼ φ∗(D) and φ∗ : H0(Z,OZ(mH))→ H0(X,OX(mD)) is an isomorphism
for every m > 0. Thus Z = Xcan.
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Since the push forward of the canonical class by a birational map is the canon-
ical class, we see that

rKZ ∼ φ∗(rKX) ∼ φ∗(D) ∼ H.

Thus KZ is Q-Cartier and ample. Z has canonical singularities by (18). �

Proposition 23. Let X be a proper, normal variety and D a Cartier divisor
on X. Assume that

∑
mH

0
(
X,OX(mD)

)
is generated by H0

(
X,OX(D)

)
and that

h0
(
X,OX(mD)

)
> cmdimX for some c > 0. Let φ : X 99K PN denote the map

given by |D|. Let Z be the closure of φ(X) and |H | the hyperplane class on Z.
Then

(1) φ is birational,
(2) Z is a normal,
(3) Z \ φ

(
X \ Bs |D|

)
has codimension ≥ 2 in Z,

(4) every divisor in Bs |D| is contracted by φ and
(5) φ∗|D| = |H |.

Proof. Let X ← X ′ → Z be the normalization of the closure of the graph of φ
with projections π and φ′. Set D′ := π∗D. ThenX ′ andD′ satisfy our assumptions.
Moreover, Bs |D′| = π−1 Bs |D| implies that it is enough to show the conclusions
for X ′ and D′. To simplify notation, assume from now on that φ is a morphism,
|D| = φ∗|H | + F and F is the base locus of |D|. Since

∑
mH

0
(
X,OX(mD)

)
is

generated by H0
(
X,OX(D)

)
, we conclude that

H0
(
Z,OZ(mH)

)
= H0

(
X,OX(mD)

)
> cmdimX .

In particular, dimZ = dimX and φ is generically finite.
Let p : Z ′ → Z be the normalization of Z in X . For large m, m(p∗H) is very

ample on Z ′, but

H0
(
Z,OZ(mH)

)
⊂ H0

(
Z ′,OZ′(m(p∗H))

)
⊂ H0

(
X,OX(mD)

)
= H0

(
Z,OZ(mH)

)
.

Thus Z = Z ′ is normal, proving (1) and (2).
Let B be any irreducible divisor on X such that φ(B) is a divisor. We can view

OZ
(
φ(B)

)
as a subsheaf of the sheaf of rational functions. It has thus an inverse

image OZ
(
φ(B)

)
·OX which is a coherent subsheaf of the sheaf of rational functions

on X . Thus there is a φ-exceptional divisor E such that

OZ
(
φ(B)

)
· OX ⊂ OX(B + E).

Let H0 be a Cartier divisor on Z that vanishes along φ(E) but nor along φ(B).
Then, for some m0 > 0,

OZ
(
φ(B)−m0H0

)
· OX ⊂ OX(B + E −m0φ

∗H0) ⊂ OX(B)

and these 3 sheaves agree generically along B.
Take now m ≫ 1 such that OZ

(
mH + φ(B) −m0H0

)
is generated by global

sections. Then OX(mφ∗H + B) has a global section that does not vanish along
B. In particular, such a B is not in the base locus of |mφ∗H + B|. Since |mD| =
|mφ∗H |+mF , we see that B is not in F = Bs |D|.

Thus φ
(
Bs |D|

)
has codimension ≥ 2 in Z, which implies (3) and (4). Finally

φ∗|D| = φ∗φ
∗|H |+ φ∗F = |H |, proving (5). �
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Canonical Models of Pairs.

Next we generalize these notions to pairs (X,∆) and to the relative setting.
The guiding principle is that the (log) canonical ring

R(X,KX + ∆) :=
∑

m≥0

H0(X,mKX + ⌊m∆⌋)

should play the role of the canonical ring.

Aside. Note that ⌊A+B⌋ ≥ ⌊A⌋ + ⌊B⌋ for any divisors A,B, thus, for any
divisor D, R(X,D) :=

∑
m≥0H

0(X, ⌊mD⌋) is a ring. In particular, the canonical

ring is indeed a ring. On the other hand, Ru(X,D) :=
∑
m≥0H

0(X, ⌈mD⌉) is, in

general, not a ring. However, ⌈A+B⌉ ≥ ⌊A⌋+ ⌈B⌉, thus Ru(X,D) is an R(X,D)-
module.

A new twist is that while it is straightforward to define when (Xc,∆c) is a
canonical model, it is harder to pin down when is (Xc,∆c) a canonical model of
another pair (X,∆). The main reason is that (Xc,∆c) carries no information on
those irreducible components of ∆ which are exceptional for X 99K Xc.

Given a pair (X,∆), what should its canonical model be?
First of all, it is a pair (Xc,∆c) which is canonical (24). Second, Xc should

be birational to X . More precisely, there should be a birational map φ : X 99K Xc

which is a contraction. (That is, φ−1 does not contract any divisors.) Then the
only sensible choice is to set ∆c := φ∗∆.

However, these conditions are not yet sufficient, as shown by the next example.
Let (Y, 0) be log canonical with ample KY and f : X → Y a resolution with

exceptional divisors Ei. Write

f∗KY ∼Q KX +
∑

i

biEi where bi = −a(Ei, X, 0).

For some 0 ≤ ci ≤ 1, set ∆X :=
∑
ciEi. Then f∗∆X = 0. As in (18) and (19),

we see that the two rings

∑
m≥0H

0(Y,mKY ) and
∑

m≥0H
0
(
X,mKX + ⌊m∆X⌋

)

agree only if ∆X ≥
∑

i biEi, that is, if ci ≥ bi for every i.
Not that this problem did not occur in the canonical case. Indeed, if (X, 0)

is canonical then bi = −a(Ei, X, 0) ≤ 0 and on X we take ∆X = 0. Thus ∆X ≥∑
i biEi is automatic.

By contrast, in the log canonical case, we only assume that bi = −a(Ei, X, 0) ≤
1, hence the condition ci ≥ bi is nontrivial.

Keeping this example in mind, we see that we have to compare the discrepancies
of divisors with respect to the canonical model and the discrepancies with respect
to the original pair.

The discrepancy inequality should hold for all divisors, but it turns out (see
(30)) that it is enough to require it for φ-exceptional divisors (26.5).

Eventually we also need these concepts in the relative setting, that is, over
rather general base schemes.
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Definition 24. Let (X,∆) be a pair as in (6) and f : X → S a proper
morphism. We say that (X,∆) is an

f -weak canonical
f -canonical
f -minimal




 model if (X,∆) is






lc
lc
dlt




 and KX + ∆ is






f -nef.
f -ample.
f -nef.

Warning 25. Note that a canonical model (X,∆) has log canonical singulari-
ties, not necessarily canonical singularities. This, by now entrenched, unfortunate
terminology is a result of an incomplete shift. Originally everything was defined
only for ∆ = 0. When ∆ was introduced, its presence was indicated by putting
“log” in front of adjectives. Later, when the use of ∆ became pervasive, people
started dropping the prefix “log”. This is usually not a problem. For instance, the
canonical ring R(X,KX) is just the ∆ = 0 special case of the log canonical ring
R(X,KX + ∆).

However, canonical singularities are not the ∆ = 0 special cases of log canonical
singularities.

Definition 26. Let (X,∆) be a pair as in (5) such that X is normal and
KX + ∆ is Q-Cartier. Let f : X → S be a proper morphism. A pair (Xw,∆w)
sitting in a diagram

X
φ

99K Xw

f ց ւ fw

S

is called a weak canonical model of (X,∆) over S if

(1) fw is proper,
(2) φ is a birational contraction, that is, φ−1 has no exceptional divisors,
(3) ∆w = φ∗∆,
(4) KXw + ∆w is Q-Cartier and fw-nef, and
(5) a(E,X,∆) ≤ a(E,Xw,∆w) for every φ-exceptional divisor E ⊂ X .

As in (7), write

KX + φ−1
∗ ∆w ∼Q φ∗

(
KXw + ∆w

)
+

∑
ia(Ei, X

w,∆w)Ei, (26.5.a)

where the Ei are φ-exceptional. Note that by (3), ∆ = φ−1
∗ ∆w + ∆ex where ∆ex is

the φ-exceptional part of ∆. We can thus rewrite the above equation as

KX + ∆− φ∗
(
KXw + ∆w

)
∼Q ∆ex +

∑
ia(Ei, X

w,∆w)Ei. (26.5.b)

We can thus restate (5) as

(5’) ∆ex +
∑

ia(Ei, X
w,∆w)Ei is effective.

A weak canonical model (Xm,∆m) = (Xw,∆w) is called a minimal model of
(X,∆) over S if in addition to (1–4), we have

(5m) a(E,X,∆) < a(E,Xm,∆m) for every φ-exceptional divisor E ⊂ X .
Equivalently, if ∆ex +

∑
ia(Ei, X

w,∆w)Ei is effective and its support
contains all φ-exceptional divisor.

A weak canonical model (Xc,∆c) = (Xw,∆w) is called a canonical model of
(X,∆) over S if, in addition to (1–3) and (5) we have

(4c) KXc + ∆c is Q-Cartier and f c-ample.
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Warning 27 (Pull-back by rational maps). If g : X 99K Y is a dominant
rational map then one can define the pull back maps g∗ : CDiv(Y ) → WDiv(X)
and g∗ : Pic(Y )→ Cl(X). Note, however, that if h : Y 99K Z is another dominant
rational map then usually (h ◦ g)∗ 6= g∗ ◦ h∗.

A simple example is the following. Let Y = P2, h : Y 99K P1 the projection
from a point y ∈ Y and g : X := ByY → Y the blow up with exceptional curve E.

Then h ◦ g : ByY → P1 is a morphism.
Let D ⊂ P1 be any effective divisor. Then (h◦g)∗D consists of the correspond-

ing fibers of ByY → P1 and it never contains E. By contrast, h∗D consists of a
bunch of lines through y and so g∗(h∗D) contains E with multiplicity degD.

(27.1) Note, however, that if h is a morphism, then (h ◦ g)∗ = g∗ ◦ h∗.

Next we investigate when different choices of ∆ lead to the same models.

Proposition 28. Let π : X ′ → X be a proper birational morphism of normal
varieties. Let ∆ and ∆′ be Q-divisors on X and X ′ such that π∗∆

′ = ∆. Assume
that

(1) a(E,X ′,∆′) ≤ a(E,X,∆) for every π-exceptional divisor E ⊂ X ′.

Then

(2) Every weak minimal model of (X,∆) is also a weak minimal model of
(X ′,∆′).

(3) Every canonical model of (X ′,∆′) is also a canonical model of (X,∆).
(4) If all inequalities are strict in (1) then every weak minimal model of

(X ′,∆′) is also a weak minimal model of (X,∆).

Proof. Let (Xw,∆w) be a weak minimal model of (X,∆). If E is any divisor on
X ′, then a(E,X ′,∆′) ≤ a(E,X,∆) (and equality holds of E is not π-exceptional).
Thus, by (30.1), a(E,X ′,∆′) ≤ a(E,X,∆) ≤ a(E,Xw,∆w). The other assump-
tions in (26) hold automatically, hence (Xw,∆w) is also a weak minimal model of
(X ′,∆′).

Conversely, let (X ′w,∆′w) be a weak minimal model of (X ′,∆′) and φ′ : X ′ 99K

X ′w the corresponding birational map. set φ := φ′ ◦ π−1 : X 99K X ′w. Note that
φ is a contraction iff the following assumption is satisfied.

(5) Every π-exceptional divisor E ⊂ X ′ is contracted by φ′.

If this holds, then ∆′w = φ′∗∆
′ = φ∗∆, thus the assumptions (26.1–4) are satis-

fied. Furthermore, if F ⊂ X is φ-exceptional, then a(E,X,∆) = a(E,X ′,∆′) ≤
a(E,X ′w,∆′w), thus (26.5) also holds and so (X ′w,∆′w) is a weak minimal model
of (X,∆).

Thus it remains to prove that (3) and (4) both imply (5). As in (26.5.b) we
have

KX′ + ∆′ ∼Q φ′
∗(
KX′w + ∆′w

)
+ F1,

where F1 is effective and supported on the φ′-exceptional locus. By our assumptions

KX′ + ∆′ ∼Q π∗(KX + ∆) + F2,

where F2 is effective and supported on the π-exceptional locus. Subtracting these
two from each other, we obtain that

F1 − F2 ∼Q π∗(KX + ∆)− φ′
∗(
KX′w + ∆′w

)
.

Note that π∗(F1 − F2) = π∗F1 is effective and F1 − F2 is π-nef since KX′w + ∆′w

is f ′w-nef. Thus, by (31), F1 − F2 is effective.
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Assume now that (4) holds. Then the support of F2 contains all π-exceptional
divisor. These are the all contained in SuppF1 ⊂ Supp Exφ′, proving (5).

Finally, in order to prove (3), assume to the contrary that there is a π-exceptional
divisor E that is not φ′-exceptional. Then E appears in F1 with coeffficient 0 and in
F2 with coeffficient ≥ 0. Since F1−F2 is effective, this is only possible if E appears
in F2 with coeffficient 0 and them, by (31.2), φ′

∗(
KX′w + ∆′w

)
|E is numerically

π-trivial. Since KX′w + ∆′w is f ′w-ample, this implies that E is φ′-exceptional.
Thus (3) implies (5) and we are done. �

Lemma 29. Consider a diagram as in (26).

X
φ

99K Xw

f ց ւ fw

S

Let ∆1,∆2 be Q-divisors on X such that ∆1 ∼Q ∆2. Assume that
(
Xw, φ∗∆1

)
is

an f -weak canonical (resp. f -canonical, F -minimal) model of (X,∆1).
Then

(
Xw, φ∗∆2

)
is also an f -weak canonical (resp. f -canonical, f -minimal)

model of (X,∆2).

Proof. By assumption there is an m ≥ 1 and a rational function h on X such
that ∆1 −∆2 = 1

m (h)X where (h)X denotes the divisor of h on X . Thus

φ∗∆1 − φ∗∆2 = 1
m (h)Xw .

In particular, KXw + φ∗∆2 is Q-Cartier (resp. f -nef or f -ample) iff KXw + φ∗∆2

is. As in (26.5.b), write

KX + ∆i − φ
∗
(
KXw + φ∗∆i

)
∼Q ∆ex

i +
∑
jaijEj . (29.1.i)

By definition,
(
Xw, φ∗∆i

)
is an f -weak canonical (resp. f -minimal) model of (X,∆i)

iff the right hand side of (29.1.i) is effective (resp. effective and with support Ex(φ)).
Subtracting the equations (29.1.i) from each other we obtain that

∆ex
1 +

∑
ja1jEj ∼Q ∆ex

2 +
∑

ja2jEj .

Thus, a multiple of their difference is a function divisor (g)X . Since these divisors
are φ-exceptional, we see that (g)Xw = 0. Thus g is a regular function on Xw,
hence on S and also on X . Therefore

∆ex
1 +

∑
ja1jEj = ∆ex

2 +
∑
ja2jEj . (29.2)

This completes the proof. �

Next we consider results that connect properties of (X,∆) and of its weak
canonical models.

Proposition 30. Let φ : (X,∆) 99K (Xw,∆w) be a weak canonical model.
Then

(1) a(E,Xw,∆w) ≥ a(E,X,∆) for every divisor E and the inequality is strict
if (Xw,∆w) is a weak minimal model and φ is not a local isomorphism at
the generic point of centerX E,

(2) totaldiscrep(Xw,∆w) ≥ totaldiscrep(X,∆) and
(3) discrep(Xw,∆w) ≥ min

{
discrep(X,∆), a(Ei, X,∆) : i ∈ I

}
where the

{Ei : i ∈ I} are the φ-exceptional divisors.
(4) If (X,∆) is lc (resp. klt) then so is (Xw,∆w).
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Proof. Fix E and consider any diagram

Y
g ւ ց h

X
φ

99K Xw

f ց ւ fw

S

where (Xw,∆w) is a weak canonical model and centerY E is a divisor. Write

KY ∼Q g∗(KX + ∆) + E1, and
KY ∼Q h∗(KXw + ∆w) + E2.

Notice that a(E,Xw,∆w)− a(E,X,∆) is the coefficient of E in E2 − E1. Set

B := g∗(KX + ∆)− h∗(KXw + ∆w) ∼Q E2 − E1.

Then −B is g-nef and g∗B = g∗(E2 − E1) is effective by (26.5). Thus E2 − E1 is
effective by (31).

If (Xw,∆w) is a weak minimal model and φ is not a local isomorphism at
the generic point of centerX E then centerX E ⊂ Supp g∗(E2 − E1), thus E ⊂
Supp(E2 − E1) by (31.2).

Since discrep(Y,D) is the minimum of all discrepancies of divisors which are
exceptional over Y , we see that the φ-exceptional Ei are taken into account when
computing discrep(Xw,∆w) but not in the computation of discrep(X,∆). �

The next lemma is useful in many situations.

Lemma 31. [KM98, 3.39] Let h : Z → Y be a proper birational morphism
between normal schemes. Let −B be an h-nef Q-Cartier Q-divisor on Z. Then

(1) B is effective iff h∗B is.
(2) Assume that B is effective. Then for every y ∈ Y , either h−1(y) ⊂ SuppB

or h−1(y) ∩ SuppB = ∅.

Thus if B is also h-exceptional then B is numerically h-trivial iff B = 0. �

Next we consider a result that makes it easy to decide when two pairs have the
same canonical rings.

Theorem 32. Let f1 : X1 → S and f2 : X2 → S be proper morphisms of
normal schemes and φ : X1 99K X2 a birational map such that f1 = f2 ◦ φ. Let ∆1

and ∆2 be Q-divisors such that KX1
+ ∆1 and KX2

+ ∆2 are Q-Cartier. Then

f1∗OX1
(mKX1

+ ⌊m∆1⌋) = f2∗OX2
(mKX2

+ ⌊m∆2⌋) for m ≥ 0

if the following conditions hold:

(1) a(E,X1,∆1) = a(E,X2,∆2) if φ is a local isomorphism at the generic
point of E,

(2) a(E,X1,∆1) ≤ a(E,X2,∆2) if E ⊂ X1 is φ-exceptional, and
(3) a(E,X1,∆1) ≥ a(E,X2,∆2) if E ⊂ X2 is φ−1-exceptional.

Proof. Let Y be the normalization of the main component of X1 ×S X2 and
gi : Y → Xi the projections. We can write

KY ∼Q g∗1(KX1
+ ∆1) +

∑
E a(E,X1,∆1)E, and

KY ∼Q g∗1(KX2
+ ∆2) +

∑
E a(E,X2,∆2)E.
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Set b(E) := max{−a(E,X1,∆1),−a(E,X2,∆2)}. By (20), it is sufficient to prove
that

fi∗OXi
(mKXi

+ ⌊m∆i⌋) = (fi ◦ gi)∗OY (mKY +
∑
E⌊mb(E)⌋E) (32.4)

holds for i = 1, 2 and any sufficiently divisible m > 0. Observe that

KY +
∑

E b(E)E ∼Q g∗1(KX1
+ ∆1) +

∑
E

(
b(E) + a(E,X1,∆1)

)
E, and

KY +
∑

E b(E)E ∼Q g∗1(KX2
+ ∆2) +

∑
E(b(E) + a(E,X2,∆2)

)
E.

Note that
∑

E

(
b(E) + a(E,Xi,∆i)

)
E is effective by the definition of b(E). Fur-

thermore, if E is not g1-exceptional then either φ is a local isomorphism at the
generic point of E (and thus b(E) = −a(E,X1,∆1) = −a(E,X2,∆2)) or E ⊂ X1

is φ-exceptional (and thus b(E) = −a(E,X1,∆1) ≥ −a(E,X2,∆2)). A similar
argument applies to g2. Therefore

∑
E

(
b(E) + a(E,Xi,∆i)

)
E is effective and gi-

exceptional for i = 1, 2, Thus, for sufficiently divisible m > 0,

(fi ◦ gi)∗OY (mKY +
∑

Emb(E)E)
= fi∗gi∗OY

(
g∗1(mKX1

+m∆1) +
∑

E

(
mb(E) +ma(E,X1,∆1)

)
E

)

= fi∗OXi
(mKXi

+m∆i),

giving (32.4). �

Applying (26) to X1 = X and X2 = Xw gives the following.

Corollary 33. Let (X,∆) be a pair as in (26) and fw : (Xw,∆w) a weak
canonical model. Then f∗OX(mKX + ⌊m∆⌋) = fw∗ OXw (mKXw + ⌊m∆w⌋) for
every m ≥ 0. �

The following is a straightforward generalization of (22).

Theorem 34. Let (X,∆) be a pair as in (5) with X normal and f : X → S a
proper morphism. Asume that its (relative) canonical ring

R(X/S,KX + ∆) :=
∑

m≥0

f∗OX
(
mKX + ⌊m∆⌋

)

is a finitely generated sheaf of OS-algebras and KX + ∆ is big on the generic fiber
of f . Then

(1) Xcan := SpecS
∑

m≥0 f∗OX
(
mKX + ⌊m∆⌋

)
is normal, projective over S

and there is a natural birational map φ : X 99K Xcan,
(2) The class KXcan+∆can is Q-Cartier and ample over S where ∆can := φ∗∆.
(3) (Xcan,∆can) is the unique canonical model of (X,∆).
(4) Push-forward by φ gives an isomorphism

∑

m≥0

f∗OX
(
mKX + ⌊m∆⌋

)
∼=

∑

m≥0

f can
∗ OXcan

(
mKXcan + ⌊m∆can⌋

)
.

(5) If (X,∆) is log canonical then so is (Xcan,∆can). �

Proposition 35. Let (X,∆) be a pair as in (26). Then any two minimal
models of (X,∆) are isomorphic in codimension one.

Proof. Let φi : X 99K Xm
i be two minimal models. We need to show that φ1

and φ2 have the same exceptional divisors. We can choose g : Y → X such that
hi : Y → Xm

i are both morphisms. We obtain that

KY + ∆Y ∼Q h∗i (KXm
i

+ ∆m
i ) + Zi,
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where Zi is effective and SuppZi contains all exceptional divisors of φi by (26.5m).
Combining the two formulas we get

h∗1(KXm
1

+ ∆m
1 )− h∗2(KXm

2
+ ∆m

2 ) ∼Q Z2 − Z1.

Applying (31) to h1 : Y → Xm
1 (resp. h2 : Y → Xm

2 ) we obtain that Z2−Z1 (resp.
Z1 − Z2) is effective. Thus Z1 = Z2 and so φ1 and φ2 have the same exceptional
divisors. �

Existence of Canonical Models.

Let us start with a very general form of the minimal model conjecture.

Conjecture 36 (Minimal Model Conjecture). Let f : X → S be a proper
morphism between normal schemes or algebraic spaces with generic fiber Xgen (over
f(X)). Let ∆ be an effective R-divisor on X such that (X,∆) is lc. Then

(1) (X,∆) has a minimal model (Xm,∆m) iff the restriction of KX+∆ to the
generic fiber Xgen is pseudo effective (that is, it is numerically equivalent
to a limit of effective Q-divisors). Furthermore, if X is Q-factorial then
one can choose Xm to be Q-factorial.

(2) (X,∆) has a canonical model iff the restriction of KX +∆ to Xgen is big.

37 (Known special cases). The minimal model conjecture (36) is known in
many instances.

Surfaces 37.1. The full conjecture is known if dimX ≤ 2. If X is smooth
over a field k, this is the classical theory of minimal models, see [BPVdV84,
Sec.III.4]. The general case can be established along the same lines using resolution
of singularities [Sha66] and general contractibility criteria for curves on surfaces
[Lip69].

Threefolds 37.2. The conjecture is known if dimX ≤ 3 and S is essentially of
finite type over a field of characteristic 0. The case when X is terminal and ∆ = 0
is due to [Mor88]. The first part in the klt case was proved by [Sho92]. A different
proof and a seminar-style work out of both parts in the lc case is in [K+92]. Very
little is known in positive characteristic [Kol91]. Some cases when dimS = 1 are
proved in [Kaw94, Kaw99].

4-folds 37.3. The conjecture is known if dimX ≤ 4, S is essentially of finite
type over a field of characteristic 0 and KXgen

+ ∆gen is effective. The first part is
due to [Sho06] and the second part follows from this and [Fuj00].

5-folds 37.4. The first part of the conjecture is known if dimX ≤ 5, S is
essentially of finite type over a field of characteristic 0 and KXgen

+∆gen is effective
[Bir07].

n-folds 37.5. The conjecture is known if S is essentially of finite type over a
field of characteristic 0, (X,∆) is klt and KXgen

+ ∆gen is big [BCHM06]. When
S = Spec C, X is canonical and ∆ = 0, the existence of the canonical model is also
in [Siu08].

38 (MMP and Moduli problems). In our approach to the moduli of varieties of
general type, we need (36) when (X,∆) is dlt and S is either the spectrum of a field
or of a Dedekind ring. While it would be convenient to allow arbitrary Dedekind
rings, it is enough to consider Dedekind rings that are localizations of finite-type
algebras over a field or over Z.
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Currently these cases are known only if

(1) dimX ≤ 4, and
(2) S is over a field of characteristic 0.

MMP is a very active research area, and the first of these restrictions may be
removed in the near future.

By contrast, very little work has been done about the cases when S has positive
or mixed characteristic.

39 (Some dlt cases). There are some cases when the existence of dlt minimal
models can be reduced to the klt case using (29).

(39.1) Assume that (X,∆ =
∑

i≥0 diDi) is dlt and D0 is ample. Then, for

0 < ǫi ≪ ǫ0 ≪ 1,
∑
i ǫiDi is still ample, hence linearly equivalent to 1

mH where H

is a general member of a very ample linear system
∣∣m

(∑
i ǫiDi

)∣∣. Thus

∆ǫ := 1
mH +

∑

i≥0

(di − ǫi)Di ∼Q ∆

and (X,∆ǫ) is klt. Thus by (29), a weak canonical model φ : (X,∆ǫ) 99K (Xw,∆w
ǫ )

is also a weak canonical model of (X,∆).
(39.2) Let (X,∆) be an arbitrary dlt pair with X projective. Pick any ample

divisor H and apply the above arguments to (X,∆ + ǫH) for ǫ > 0. Conjecturally,
for 0 < ǫ≪ 1, a weak minimal model of (X,∆+ ǫH) is also a weak minimal model
of (X,∆), but this is not known. However, as we let ǫ → 0, we obtain a sequence
of minimal models which function as better and better approximations of a weak
minimal model of (X,∆) (whose existence is not known).

The following method gives us great flexibility in choosing a birational model.

40 (Picking birational models). Let (X,∆) be a pair such that X is quasi-
projective, ∆ =

∑
j∈J djDj where 0 ≤ dj ≤ 1 and KX + ∆ is Q-Cartier. (We do

not assume that (X,∆) is lc.) Let f : Y → (X,∆) be a log resolution that is a
composite of blow-ups of centers of codimension at least 2 and {Ei : i ∈ I} the
f -exceptional divisors. Pick a rational number 0 ≤ ci ≤ 1 for every i.

Then there is a proper birational morphism g : Xmc → X with exceptional
divisors {Ei : i ∈ Imc} for some Imc ⊂ I such that

(1) Xmc is a minimal model for a suitable
(
Y,

∑
c′iEi

)
for some c′i < ci,

(2)
(
Xmc, g−1

∗ ∆ +
∑

i∈I ciEi
)

is dlt,
(3) a(Ei, X,∆) ≤ −ci for every i ∈ Imc,
(4) if a(Ei, X,∆) ≤ −ci for some i ∈ I then Imc 6= ∅,
(5) Xm is Q-factorial and
(6) there is a divisor B =

∑
biEi such that −B is g-nef and bi > 0 for every

i ∈ Imc.

In applications the key question is the choice of the coefficients ci. Varying the
ci gives different models Xmc. Let us see how this works in some examples.

Corollary 41 (Dlt models). Let (X,∆) be as in (40). Then there is a proper
birational morphism g : Xm → X with exceptional divisors Ei such that

(1)
(
Xm, g−1

∗ ∆ +
∑
Ei

)
is dlt.

(2) a(Ei, X,∆) ≤ −1 for every i.
(3) Xm is Q-factorial.
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(4) If (X,∆) is lc then KXm + g−1
∗ ∆ +

∑
Ei ∼Q g∗(KX + ∆).

(5) If (X,∆) is not lc then there is an exceptional divisor Ei such that a(Ei, X,∆) <
−1.

Proof. Choose ci = 1 for every i and apply (40).
Only the last statement needs proof. If there is no such divisor, then a(Ei, X,∆) =

−1 for every i, hence KXm + g−1
∗ ∆ +

∑
Ei ∼Q g∗(KX + ∆). By (1),

(
Xm, g−1

∗ ∆ +∑
Ei

)
is dlt, hence lc, and by (12) so is (X,∆); a contradiction. �

Corollary 42 (Q-factorial models). Let (X,∆) be dlt. Then there is a proper
birational morphism g : Xqf → X such that

(1) Xqf is Q-factorial,
(2) g is small, that is, without g-exceptional divisors and
(3)

(
Xqf , g−1

∗ ∆
)

is dlt.

Proof. By (???) we can take a log resolution f : Y → (X,∆) such that every
f -exceptional divisor has discrepancy > −1. Pick all ci = 1 and apply (40) to get
g : Xqf → X . By (40.3), all the f -exceptional divisors get killed, hence g : Xqf → X
is small. �

Corollary 43 (Extracting one divisor). Let (X,∆) be klt and E an excep-
tional divisor over X such that a(E,X,∆) ≤ 0. Then there is a proper birational
morphism g : XE → X such that

(1) XE is Q-factorial and
(2) E is the sole exceptional divisor of g.

Proof. Pick any log resolution Y → X such that E = E0 is a divisor on Y .
Choose all ci = 1 except c0 = 0 and apply (40). By (40.3–4) the only divisor that
survives is E. �

44 (Proof of (40)). We claim that there is an effective f -exceptional divisor
C such that −C is f -ample. For one blow-up, the exceptional divisor is relatively
anti-ample. The rest follows by repeatedly appying [Laz04, 1.7.10].

If H is sufficiently ample on X then H ′ := f∗H − C is ample on Y . Write
C =

∑
γiEi and set γi = 0 and ci = −ai(Ei, X,∆) for the non-exceptional Ei.

Note that

KY +
∑

ciEi + ηH ′ = KY +
∑(

ci − ηγi
)
Ei + ηf∗H.

By (39.1) there is a Q-factorial minimal model g : Xmc → X for (Y,
∑
ciEi +

ηH ′). In particular, (Xmc,
∑
ciE

m
i ) is dlt. By (29), g : Xmc → X is also a minimal

model for (Y,
∑(

ci − ηγi
)
Ei). In particular, KXmc +

∑
(ci − ηγi)Emi if g-nef. By

the definition of discrepancies, KXmc −
∑
a(Ei, X,∆)Emi is g-trivial. Hence their

difference

−B :=
∑(

ci + a(Ei, X,∆)− ηγi
)
Emi

is g-nef. By our choice, g∗B = 0, hence B is effective by (31.1). Thus a(Ei, X,∆) ≤
−ci + ηγi if Ei is a divisor on Xmc. Since these Ei are among the finitely many f -
exceptional divisors, by choosing 0 < η ≪ 1, we get that in fact ai(Ei, X,∆) ≤ −ci.

Assume that Imc = ∅, that is, g is small. Then (X,∆) is a weak minimal model
of

(
Y,

∑
(ci − ηγi)Ei

)
. By (30) then ci − ηγi > a(X,∆, Ei) for every i ∈ I, proving

(40.4). �
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2. Examples of log canonical singularities

The simplest examples of terminal, canonical etc. singularities are given by
cones. (See (56) for our conventions on cones.) Cones are rather special, but
illustrate many of the difficulties that appear when dealing with these singularities.

The next lemma follows directly from (62). In most of the subsequent examples
we choose X to be smooth. Then the assumptions that X be terminal (resp.
canonical, ...) are all satisfied.

Lemma 45. Let X be normal, projective, H an ample Cartier divisior on X and
Ca(X,H) the corresponding affine cone (56). Let ∆ be an effective Q-divisor on X
and ∆Ca(X,H) the corresponding Q-divisor on Ca(X,H). Assume that KX + ∆ ∼Q

r ·H for some r ∈ Q. Then
(
Ca(X,H),∆Ca(X,H)

)
is

(1) terminal iff r < −1 and (X,∆) is terminal,
(2) canonical iff r ≤ −1 and (X,∆) is canonical,
(3) klt iff r < 0 (that is, −(KX + ∆) is ample) and (X,∆) is klt,
(4) lc iff r ≤ 0 (that is, −(KX + ∆) is nef) and (X,∆) is lc. �

Both of the next two results are proved by an easy case analysis.

Corollary 46. Let B be a smooth curve and L an ample line bundle on B.
Then Ca(B,L) is

(1) terminal iff g(B) = 0 and degL = 1 (Ca(B,L) is an affine plane),
(2) canonical iff g(B) = 0 and degL ≤ 2 (Ca(B,L) is an affine plane or a

quadric cone),
(3) log terminal iff g(B) = 0 (Ca(B,L) is a cone over a rational normal

curve) and
(4) log canonical iff g(B) = 1 (or (3) holds). �

The easiest higher dimensional case is the following:

Corollary 47. Let X ⊂ Pn be a smooth complete intersection of hypersurfaces
of degrees (d1, . . . , dm). Then C(X) = Ca

(
X,OX(1)

)
and it is

(1) terminal iff
∑
di < n,

(2) canonical iff
∑
di ≤ n,

(3) log canonical iff
∑
di ≤ n+ 1. �

In constructing a moduli theory for varieties of general type, one needs to pay
special attention to two properties.

48 (Rational and Cohen-Macaulay singularities). Being Cohen-Macaulay, or
CM, is a somewhat technical but very useful condition for schemes and coherent
sheaves; see [Mat86, Sec.17], [Har77, pp.184–186]. Roughly speaking the basic
cohomology theory of CM coherent sheaves works very much like the cohomology
theory of locally free sheaves on a smooth variety. Indeed, let X be a projective
scheme of pure dimension n over a field k and F a coherent sheaf on X . By the
Noether normalization theorem, there is a finite morphism π : X → Pn. Then

• Hi(X,F ) = Hi(Pn, π∗F ) and
• F is CM iff π∗F is locally free.

One can use these to develop the duality theory for projective schemes, see [KM98,
Sec.5.5].
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Let X be a normal variety over a field of characteristic 0. We say that X has
rational singularities iff Rif∗OY = 0 for i > 0 for every resolution of singularities
and f : Y → X . It is actually enough to check this for one resolution, or even for one
proper birational f : Y → X such that Y has rational singularities. See [KM98,
Sec.5.1] for an introduction to rational singularities and Section 4 for further results.
(In positive characteristic one also needs to assume thatRif∗ωY = 0 for i > 0, which
is automatic in characteristic 0; see [KM98, 2.68].)

Using the Leray spectral sequence Hi(X,Rjf∗OY ) ⇒ Hi+j(Y,OY ) we obtain
that Hi(X,OX) = Hi(Y,OY ). More generally, for any vector bundle E on X

Hi(X,E) = Hi(Y, f∗E).

Thus, many cohomology computations on the singular variety X can be reduced to
a computation on the smooth variety Y .

Rational implies CM, but this is not obvious; see [KM98, 5.10].

It is easy to decide when a cone considered in (45) is CM:

Corollary 49. Let X be a smooth, projective variety over C and L an ample
line bundle on X.

(1) If −KX is ample (that is, X is Fano) then Ca(X,L) is CM and has
rational singularities.

(2) If −KX is nef (for instance, X is Calabi-Yau), then
(a) Ca(X,L) is CM iff Hi(X,OX) = 0 for 0 < i < dimX, and
(b) Ca(X,L) has rational singularities iff Hi(X,OX) = 0 for 0 < i ≤

dimX.

Proof. By assumption ωX⊗L−m is anti-ample for m ≥ 1, and even for m = 0 if
−KX is ample. Hence, by Kodaira vanishing and by Serre duality, Hi(X,Lm) = 0
for i > 0 and m ≥ 0 in case (1) and m > 0 in case (2). Thus in (59) we only need
the vanishing of Hi(X,L0) = Hi(X,OX) for 0 < i < dimX . This proves (1) and
(2.a) while (2.b) follows from (61). �

The following examples are proved by a straightforward application of (49).

Example 50 (Log canonical but not CM). The following examples show that
log canonical singularities need not be rational, not even CM. The claims follow
directly from (49) and hold for every ample line bundle L.

(1) A cone over an Abelian variety A is CM iff dimA = 1.
(2) A cone over a K3 surface is CM but not rational.
(3) A cone over an Enriques surface is CM and rational.
(4) A cone over a smooth Calabi-Yau complete intersection is CM but not

rational.

While not related to any of our questions, the following example shows that
one of the standard constructions, the taking of the canonical cover, can also lead
to more complicated singularities.

Example 51 (Canonical covers). Let x ∈ X be a normal singularity over C

and assume that KX is Q-Cartier. Then there is a smallest m > 0 such that mKX

is Cartier near x. By replacingX with a smaller neighborhood of x, we may assume
that mKX ∼ 0. Let Xsm be the smooth locus of X . Thus L := OXsm(KXsm) is a
line bundle such that Lm is the trivial line bundle onX0. Thus c1(L) ∈ H2(Xsm,Z)
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is m-torsion and so it corresponds to a degree m étale cover π0 : X̃0 → X0 such
that (π0)∗L is trivial. Extend π0 to a ramified finite cover π : X̃ → X , called the
canonical cover or index 1 cover of X . Then KX̃ = π∗KX is Cartier. For a purely
algebraic construction see [KM98, 2.49].

For the singularities of the MMP, the canonical cover X̃ is usually simpler
than the original singularity X . Nonetheless, here are 4 examples to show that
the canonical cover X̃ can be cohomologically more complicated than X ; see also
[Sin03].

1. Let S be a K3 surface with a fixed point free involution τ . Thus T := S/τ is
an Enriques surface. A cone Ca(T ) over the Enriques surface T is CM and rational.
By (62) the canonical class of Ca(T ) is not Cartier but 2KCa(T ) is Cartier. Its
canonical cover is a cone over the K3 surface S which is CM but not rational.

2. Let S be a K3 surface with a fixed point free involution τ as above. Then τ
acts as multiplication by −1 on H2(S,OS). By the Küneth formula, (τ, τ) acts as
multiplication by −1 on H2(S × S,O) and as multiplication by 1 = (−1) · (−1) on
H4(S × S,O). Set X := (S × S)/(τ, τ). Then hi(X,OX) = 0 for 0 < i < 4, hence
a cone over X is CM. Its canonical cover is a cone over S × S which is not CM.

3. Let A be the Jacobian of the hyperelliptic curve y2 = x5 − 1 and τ the
automorphism induced by (x, y) 7→ (ǫx, y) where ǫ is a 5th root of unity. The space
of holomorphic 1-forms is spanned by dx/y, xdx/y. Thus τ acts on H1(A,OA)
with eigenvalues ǫ, ǫ2 and on H2(A,OA) = ∧2H1(A,OA) with eigenvalue ǫ3. Set
S := A/〈τ〉. Then Hi(S,OS) = 0 for i = 1, 2, hence a cone over S is a rational
singularity. Its canonical cover is a cone over A, which is not CM.

4. Let Sm be a K3 surface and σm an automorphism of order m whose fixed
point set is finite and such that σm acts as multiplication by ǫm on H2(Sm,OSm

)
where ǫm is a primitive mth root of unity. (Such Sm and σm exists for m ∈
{5, 7, 11, 17, 19} by [Kon92].) By the Küneth formula, (σm, σm) acts as multipli-
cation by ǫm on H2(Sm×Sm,O) and as multiplication by σ2

m on H4(Sm×Sm,O).
Set Xm := (Sm × Sm)/(σm, σm). Then hi(Xm,OXm

) = 0 for 0 < i ≤ 4, hence a
cone over Xm is rational.

By (62) the canonical class of Ca(Xm) is not Cartier but mKCa(Xm) is Cartier.
Its canonical cover is a cone over Sm × Sm which is not even CM.

Perturbing the boundary.

Starting with a lc pair (X,∆), it is frequently very useful to perturb ∆ in order
to increase the disrepancy of the pair (X,∆). By (10), we need to decrease ∆ if we
want to increase the disrepancy. This is not possible if ∆ = 0 to start with, but
for most lc pairs (X,∆) such that (X, 0) is klt outside Supp ∆, there is a divisor
0 ≤ ∆′ ≤ ∆ such that (X,∆′) is klt.

However, the following series of examples show that this is not always the case.

Proposition 52. Let X be proper and E ⊂ X an irreducible Q-Cartier divisor
such that KX + cE ∼Q 0 for some 0 < c ≤ 1 and E|E is not Q-linearly equivalent
to an effective divisor.

Let ∆ be an effective Q-divisor on X such that KX + ∆ ∼Q 0. Then ∆ = cE.

Proof. Write ∆ = (c − γ)E + ∆′ where ∆′ is effective, its suport does not
contain E and γ ∈ Q. Then ∆′ ∼Q γE which shows that γ ≥ 0. Restricting to E
we get γ

(
E|E

)
∼Q ∆′|E . This is a contradiction, unless γ = 0 and ∆ = cE. �
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Corollary 53. Let (X, cE) be as in (52). Let H be an ample Cartier divisor
on X and Y := Ca(X,H) the affine cone over X with vertex v. Let ∆Y be an
effective Q-divisor on Y such that (Y,∆Y ) is lc. Then v is an lc center of (Y,∆Y ).

Note that, in contrast with (52), we do not claim that ∆Y = cCa(E,H |E)
and this is not at all true. In fact, if X is smooth then Ca(E,H |E) determines an
(infinite dimensional) linear system whose only base point is at v. If D is a general
member, then (Y, cD) is lc. Or we can take r general members D1, . . . , Dr and then(
Y, cr (D1 + · · ·+Dr)

)
is lc.

Proof. Let π : Y ′ → Y be the blow-up of v and identify its exceptional divisor
with X . We can write

KY ′ + (1 − ǫ)X + π−1
∗ ∆Y ∼Q π∗

(
KY + ∆Y )

where ǫ ≥ 0 since (Y,∆Y ) is lc. Restricting to X gives KX + ǫH + ∆′ ∼Q 0 where
∆′ := π−1

∗ ∆Y |X is effective. Thus, by (52), ǫH + ∆′ = cE. Since H can move, this
is only possible if ǫ = 0, that is, if v is an lc center of (Y,∆Y ). �

Here are some examples where the assumptions of (52) are satisfied.

Example 54. Let E3 ⊂ P2 be a smooth cubic and Q ⊂ E3 a set of at least
10 points. Set X := BQP2 and let E be the birational transfrom of E1. Then
KX + E ∼ 0 and E2 < 0.

Let C6 ⊂ P2 be a rational sextic with 10 nodes and Q ⊂ C6 the set of nodes.
Set X := BQP2 and let E be the birational transform of C6. Then KX + 1

2E ∼ 0

and E2 = −4.

Example 55 (Non-lc deformations of lc singularities). Let (X,E) be as in (54).
Let p ∈ X be a point, Xp := BpX the blow up with projection πp : Xp → X and
Ep ⊂ Xp the birational transform of E. If p ∈ E then

(
Xp, Ep

)
is still lc and

KXp
+ Ep ∼ 0.

On the other hand, if p is not on E, we claim that there is no effective Q-
divisor ∆p on Xp such that KXp

+ ∆p ∼Q 0. Indeed, this would imply that KX +
(πp)∗∆p ∼Q 0 hence (πp)∗∆p = E by (52). But p 6∈ E, a contradiction.

By taking cones over these surfaces, we get a flat family of 3-fold singularities
Ca

(
Xp, Hp

)
such that

(
Ca

(
Xp, Hp

)
, Ca

(
Ep, Hp|Ep

))
is lc if p ∈ E,

but if p 6∈ E, then
(
Ca

(
Xp, Hp

)
,∆p

)
is not lc, no matter what ∆p is.

Auxiliary results on cones.

56 (Cones). Let X ⊂ Pn be a projective scheme and f1, . . . , fs ∈ k[x0, · · · , xn]
generators of its homogeneous ideal.

The classical affine cone over X is the variety Ca(X) ⊂ An+1 defined by the
same equations (f1 = · · · = fs = 0). The closure of the classical affine cone is the
classical projective cone over X , denoted by Cp(X) ⊂ Pn+1(x0: · · · :xn:xn+1). It is
defined by the same equations (f1 = · · · = fs = 0) as X . (Thus xn+1 does not
appear in any of the equations.)

Assume that X is normal (resp. S2). Then Ca(X) is normal (resp. S2) iff
H0(Pn,O(d)) → H0(X,O(d)) is onto for every d ≥ 0 (cf. [Har77, Exrc.II.5.14]).
Therefore, it is better to define cones for any ample line bundle as follows.
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Let X be a projective scheme with an ample line bundle L. The affine cone
over X with conormal bundle L is

Ca(X,L) := Spec
∑

m≥0

H0(X,Lm),

and the projective cone over X with conormal bundle L is

Cp(X,L) := Proj
∑

r≥0

(∑r
m=0H

0(X,Lm) · xm−r
n+1

)
.

Note that if X ⊂ PN and L = OX(1) then there is a natural finite morphism
Cp(X,OX(1)) → Cp(X) which is an isomorphism away from the vertex. If X is
normal then Cp(X,OX(1)) is the normalization of Cp(X) but Cp(X,OX(1)) →
Cp(X) is an isomorphism only if

H0(PN ,OPN (m)) ։ H0(X,OX(m)) is onto ∀ m.

In particular, the m = 0 case shows that X has to be connected.
An advantage of the general notion is that if X is normal (resp. S2) then

Ca(X,L) and Cp(X,L) are also normal (resp. S2).
The natural resolutions (blowing up the vertex) are given by

BCa(X,L) := SpecX
∑
m≥0L

m

in the affine case and by

BCp(X,L) := ProjX
∑

r≥0

(∑r
m=0L

m ⊗Om−r
X

)
= ProjX

∑
r≥0 S

r
(
L+OX

)

in the projective case.
Assume that we have a flat family of varietiesXt ⊂ Pn. Flatness is equivalent to

requiring that dimRd(Xt) be independent of t for d≫ 1; see [Har77, III.9.9]. On

the other hand, since dimRd
(
Cp(X,L)

)
=

∑d
i=0 dimRi(X), the projective cones

Cp(Xt) form a flat family iff

dimRd
(
Cp(Xt)

)
=

∑d
i=0 dimRi(Xt)

is independent of t for d ≫ 1. Since the dimRi(Xt) are upper semi continuous
functions of t, his implies that dimRi(Xt) is independent of t for every i ≥ 0. This
is a source of many interesting examples.

57 (Deformation to the cone over a hyperplane section). Let X be projective,
L ample with a nonzero section s ∈ H0(X,L) and zero set H := (s = 0). Consider
the deformation π : Y → A1

t where

Y := (s− txn+1 = 0) ⊂ Cp(X,L)× A1
t .

If t 6= 0 then we can use xn+1 = t−1s to eliminate xn+1 and obtain that Yt ∼= X .
If t = 0 then the extra equation becomes (s = 0), thus we get the fiber Y0 =
Cp(X,L) ∩ (s = 0). How does this compare with the cone Cp

(
H,L|H

)
?

The answer is given by the m = 1 case of the next result.

Proposition 58. Let X be a projective scheme with ample line bundle L and
H ⊂ X a Cartier divisor such that OX(H) ∼= Lm for some m > 0. The following
are equivalent

(1) Cp
(
H,L|H

)
is a subscheme of Cp(X,L).

(2) H1(X,Ld) = 0 for every d.
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Proof. Let s ∈ H0(X,Lm) be a section defining H and consider the beginning
of the exact sequence

0→ H0(X,Ld−m)
s
→ H0(X,Ld)

rd→ H0(H,Ld|H)→
H1(X,Ld−m)→ H1(X,Ld).

(58.3)

The restriction maps rd : H0(X,Ld) → H0(H,Ld|H) give a natural morphism
Cp

(
H,LH

)
→ Cp(X,L) which is an embedding iff the rd are all surjective.

If H1(X,Ld−m) = 0 for every d then the rd are all surjective.
Conversely, assume that H1(X,Ld−m) 6= 0 for some d. By Serre vanishing,

the set of such values d is bounded from above. Thus we can find a d such that
H1(X,Ld−m) 6= 0 but H1(X,Ld) = 0. Then (58.3) shows that rd is not surjective
hence Cp

(
H,L|H

)
is not a subscheme of Cp(X,L). �

By iterating this argument, we obtain the following.

Corollary 59. Let X be projective, CM and L an ample line bundle on X.
Then Ca(X,L) is CM iff Hi(X,Lm) = 0 ∀ m, ∀ 0 < i < dimX. �

Remark 60. A sheaf version in terms of local cohomologies is the following.
As in (63) let F be a coherent sheaf on X without 0-dimensional embedded points
and Ca(F,L) the corresponding sheaf on Ca(X,L). Let v ∈ Ca(X,L) be the vertex.
Then, for i ≥ 2,

Hi
v

(
Ca(X,L), Ca(F,L)

)
∼=

∑

m∈Z

Hi−1
(
X,F ⊗ Lm

)
.

For F = OX we recover (59).

Proposition 61. Let X be projective with rational singularities over a field of
characteristic zero and L an ample line bundle on X. Then Ca(X,L) has rational
singularities iff Hi(X,Lm) = 0 ∀ m ≥ 0, ∀ 0 < i ≤ dimX.

(Note that m is arbitrary in (59) while m ≥ 0 in (61). In characteristic 0, the
vanishing for m < 0 is guaranteed by Kodaira’s theorem.)

Proof. Let p : BCa(X,L) → Ca(X,L) be the blow-up of the vertex with
exceptional divisor E ∼= X . Since BCa(X,L) is a P1-bundle over Ca(X,L), it
has rational singularities. As noted in (48), Ca(X,L) has rational singularities iff
Rip∗OBCa(X,L) = 0 for i > 0.

Let I ⊂ OBCa(X,L) be the ideal sheaf of E. By construction,

OBCa(X,L)/I
m ∼= OX + L+ · · ·+ Lm−1,

hence, by the Theorem on Formal Functions,

Rip∗OBCa(X,L) =
∑

m≥0

Hi(X,Lm) for i > 0. �

Proposition 62. Assume that X is normal, projective and L is an ample line
bundle on X. Then

(1) Pic
(
Ca(X,L)

)
= 0 and

(2) Cl
(
C∗
a(X,L)

)
= Cl(X)/〈L〉 where C∗

a(X,L) := Ca(X,L) \ (vertex) is the
punctured affine cone.

Let ∆X be a Q-divisor on X. By pull-back, we get a corresponding Q-divisor
∆C∗

a(X,L) on C∗
a(X,L) and its closures ∆Ca(X,L) on Ca(X,L) and ∆BCa(X,L) on

BCa(X,L). Assume that KX + ∆X is Q-Cartier. Then
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(3) KBCa(X,L) + ∆BCa(X,L) ∼ π∗(KX + ∆X) − E where π : BCa(X,L) →
X is projection from the vertex and E is the exceptional divisor of p :
BCa(X,L)→ Ca(X,L).

(4) m
(
KCa(X,L) +∆Ca(X,L)

)
is Cartier iff OX(mKX +m∆X) ∼= Lr for some

r. If this holds then

KBCa(X,L) + ∆BCa(X,L) ∼Q

(
− r
m − 1

)
E.

Proof. By construction, π : BCa(X,L) → X is an A1-bundle over E ∼= X ,
hence Cl

(
BCa(X,L)

)
= Cl(X) and Pic

(
BCa(X,L)

)
= Pic(X). If M is any line

bundle on Ca(X) then p∗M |E is trivial, hence p∗M is trivial and so is M , proving
(1).

The class group of the punctured cone C∗
a(X,L) ∼= BCa(X,L) \E is computed

by the exact sequence

Z
[
OBCa(X,L)(E)

]
→ Cl

(
BCa(X,L)

)
→ Cl

(
C∗
a(X,L)

)
→ 0.

Since OBCa(X,L)(E)|E ∼= L−1, we obtain (2).
The projection π : C∗

a(X,L) → X is a Gm-bundle. If t is a coordinate on
Gm = Spec k[t, t−1] then the 1-form dt/t is independent of the choice of t since
d(ct)/ct = dt/t. Thus O

(
KC∗

a(X,L)/X

)
is the trivial bundle and so

KC∗

a(X,L) + ∆C∗

a(X,L) = π∗(KX + ∆X).

Thus KBCa(X,L)+∆BCa(X,L) ∼ π
∗(KX+∆X)+mE for some m and the adjunction

formula gives that m = −1.
Combining with the earlier results, we see that mKCa(X,L) + m∆Ca(X,L) is

Cartier iff mKC∗

a(X,L) +m∆C∗

a(X,L) is trivial iff OX(mKX +m∆X) ∼= Lr for some
r. Then π∗(KX + ∆X) ∼Q −

r
mE, proving (4). �

63 (Cones of sheaves). Let F be a coherent sheaf on X without 0-dimensional
embedded points. Then ∑

m∈Z

H0(X,F ⊗ Lm)

is a coherent module over
∑

m≥0H
0(X,Lm). Thus it corresponds to a coherent

sheaf Ca(F,L) on the affine cone Ca(X,L).
As before, it is easy to see that Ca(F,L) is CM iff

Hi(X,F ⊗ Lm) = 0 ∀ m, ∀ 0 < i < dimX. (63.1)

As an example, consider the case when S := (xy − zt = 0) ⊂ P3. The affine
cone is X := Ca(S,OS(1)) = (xy − zt = 0) ⊂ A4, Let A := (x = z = 0) and
B := (x = t = 0) be two planes on X .

Claim 63.2. OX(nA +mB) is CM iff either n = m (and then OX(nA +mB)
is locally free) or |n−m| = 1 (in which case OX(nA+mB) is not locally free).

Proof. Let LA := (x = z = 0) and LB := (x = t = 0) the corresponding lines.
Then OX(nA+mB) is the cone over OS(nLA +mLB) and OS(1) ∼ LA +LB. By
(63.1) we need to check when

H1(S,OS((n− r)LA + (m− r)LB)) = 0 ∀r.

By the Küneth formula,

H1(S,OS((n− r)LA + (m− r)LB)) = H1(P1,O(n− r)) ⊗H0(P1,O(m− r))+
H0(P1,O(n− r)) ⊗H1(P1,O(m− r)).
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If |n−m| ≥ 2 then we get a nonzero term for r = max{n,m}. Otherwise we always
get zero.

3. Surface Singularities of the Minimal Model Program

In this section we study the surface singularities that appear in the minimal
model program. While our main interest is over fields of characteristic zero, the ar-
gument we present works in arbitrary characteristic and even for excellent surfaces.
The few foundational questions needed for this generality are discussed at the end
of the section.

The results give a rather complete description of log canonical surface singu-
larities in terms of the combinatorial structure of the exceptional curves on the
minimal resolution (64). In the theory of minimal models this seems to be the most
useful. Also, it turns out, the answer is independent of the characteristic.

One can then go further and determine the completed local rings of the singular-
ities. Most of these have been worked out in characteristic 0 but subtle differences
appear in positive characteristic [Lip69]. We will not discuss this aspect here.

Theorem 64 (Log minimal resolution of surface pairs). Let Y be a 2-dimensional,
normal, excellent scheme, Bi ⊂ X distinct, irreducible Weil divisors and ∆ :=∑
biBi a linear combination of them with 0 ≤ bi ≤ 1 for every i.
Then there is a proper birational morphism f : X → Y such that

(1) X is regular,
(2) KX + f−1

∗ ∆ is f -nef,
(3) multx f

−1
∗ ∆ ≤ 1 for every x ∈ X,

(4) f−1
∗ ⌊∆⌋ =

∑
i:bi=1 f

−1
∗ Bi is regular, and

(5) we can choose either of the following conditions to hold:
(a) the support of Ex(f) + f−1

∗ ⌊∆⌋ has a node (101) at every point of
Ex(f) ∩ f−1

∗ ⌊∆⌋, or
(b) KX + (1− ǫ)f−1

∗ ∆ is f -nef for 0 ≤ ǫ≪ 1.

Proof. Resolution is known for excellent surfaces (cf. [Sha66]), hence there is
a proper birational morphism f1 : X1 → Y such that X1 is regular, the support of
f−1
∗ ⌊∆⌋ is regular and the support of Ex(f) + f−1

∗ ⌊∆⌋ has only nodes.
If KX1

+ (f1)
−1
∗ ∆ is not f1-nef then there is an irreducible and reduced excep-

tional curve C ⊂ X1 such that C · (KX1
+ (f1)

−1
∗ ∆) < 0. Since C · (f1)−1

∗ ∆ ≥ 0,
this implies that C ·KX1

< 0. By the Hodge Index Theorem (95), (C ·C) < 0, thus
ωC is anti-ample.

If we are in characteristic 0, then C is geometrically reduced and every geomet-
ric irreducible component of C is a smooth rational with self intersection −1. Thus
we can contract C by Castelnuovo’s theorem. Furthermore, (C ·(f1)−1

∗ ∆) < 1 which
shows that we do not contract any curve which meets f−1

∗ ⌊∆⌋ and the multiplicity
of the birational transform of ∆ is still ≤ 1 at every point. Thus, after contracting
C, we get f2 : X2 → Y and the conditions (3–4) still hold. We can continue until
we get f : X → Y as required.

There is only one case that forces us to choose between the two alternatives in
(5). If

C · (KX1
+ (f1)

−1
∗ ∆) = 0 but C · (KX1

+ (1− ǫ)(f1)
−1
∗ ∆) < 0
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then we can still contract C but the image of ⌊∆⌋ may pass through a singular
point of Ex(f). So we have to decide which alternative we want. Both have some
advantages.

We check in (99) that Castelnuovo’s contraction theorem holds even if C is not
geometrically reduced. The rest of the argument then goes as before. �

65 (Dual graphs). Let X be a regular surface and C = ∪Ci a proper curve
on X . It is frequetly very convenient to represent the curve C by a graph Γ
whose vertices are the irreducible components of C and two vertices are connected
by an edge iff the corresponding curves intersect. For exceptional curves, the self-
intersection numbers (Ci ·Ci) are negative, and usually we use the number −(Ci ·Ci)
to represent a vertex and add the arithmetic genus of Ci as extra marking. We
write the intersection number (Ci · Cj) on an edge if this number is different from
1. This graph, with various extra information added, is called the dual graph of the
reducible curve C = ∪Ci. A dual graph is called negative definite if the intersection
form (Ci · Cj) is negative definite.

For log canonical singularities, most of the exceptional curves Ci are smooth and
rational and the dual graphs have few edges, so the picture is rather transparent.

Let det(Γ) denote the determinant of the intersection matrix of the dual graph.
This matrix is the negative of the intersection form, hence positive definite for
exceptional curves. For instance, if Γ = {2 − 2 − 2} then

det(Γ) = det




2 −1 0
−1 2 −1

0 −1 2



 = 4.

Let B be another divisor on X which does not contain any of the Ci. The
extended dual graph (Γ, B) has an additional vertex connected to Ci if (B ·Ci) 6= 0.
The new verties are repesented by the intersection number (B · Ci).

One can also think about (extended) dual graphs as combinatorial objects,
without reference to any particular collection of curves. (Although one can see
that every (extended) dual graph arises from a collection of curves on a smooth
projective surface over C.)

66. Let f : X → Y be a log minimal resolution constructed in (64), y ∈ Y a
point and Γ = Γ(y ∈ Y ) the dual graph of the curves red f−1(y) = ∪iCi. Since
the intersection matrix (Ci · Cj) is invertible, there is a unique ∆ = ∆(y, Y,B) :=∑
djCj such that

(
∆ · Ci

)
= −

(
(KX + f−1

∗ B) · Ci
)

∀i. (66.1)

Using the adjunction formula, we can rewrite these equations as

(
∆ · Ci

)
= (Ci · Ci) + 2− 2pa(Ci)−

(
f−1
∗ B · Ci

)
∀i. (66.2)

Note that these equations make sense for any extended dual graph (Γ, B), even if
the graph does not arise from a collection of curves on a surface.

By (64.2) the right hand side of (66.1) is always≤ 0 for a log-minimal resolution.
Therefore, we call an extended dual graph (Γ, B) log-minimal if the right hand sides
of (66.2) are all ≤ 0.

A simple linear algebra lemma (97.5) gives the following.
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Claim 66.3. Let (Γ, B) be a connected, negative definite, log-minimal extended
dual graph. Then the system (66.2) has a unique solution ∆ =

∑
djCj . Further-

more

(1) either dj = 0 for every j,
(2) or dj > 0 for every j. �

If KY + B is Q-Cartier (which will always be the case for us) then dj is the
negative of the discrepancy a(Cj , Y, B) defined in (6). Therefore, an extended
dual graph (Γ, B) is called numerically canonical (resp. numerically log terminal
or numerically log canonical) if it is connected, negative definite, log-minimal and
dj ≤ 0 for every j (resp. dj < 1 for every j or dj ≤ 1 for every j).

67 (Numerically log canonical). Let Y be a normal, excellent surface and B an
effective Q-divisor. We say that (Y,B) is numerically log canonical at a point y ∈ Y
if there is a log minimal resolution f : X → Y as in (64) such that the extended
dual graph of f−1(y) = ∪iCi is numerically log canonical.

The notion of a numerically log canonical pair is a temporary convenience. It
is more general than log canonical in 3 aspects.

We assume the discrepancy condition a(Ei, Y, B) ≥ −1 only for those curves
that appear on a given resolution. Even over C, this leads to a few extra cases
which are, however, easy to enumerate.

By working directly on X , we do not worry at the beginning whether KY +B
is Q-Cartier or not. This turns out to be automatic in the surface case.

In positive and in mixed characteristic, we work with regular schemes instead
of smooth schemes. The whole minimal model program is very geometric in nature,
so it may be quite unnatural to consider schemes which are regular but not smooth.
In the relative setting, however, such fibers inevitably appear. My sole aim here is
to note that some of the basic results hold for regular surfaces. These results are
needed for the study of semi stable morphisms in positive and mixed characteristics.

It may well turn out, however, that in higher dimensions regular schemes are
too pathological for a meaningful minimal model program.

68 (Plan for the classification). Instead of giving a direct classification of germs
of log canonical pairs (y ∈ Y,B), we aim to develop a description of numerically
log canonical extended dual graphs.

This approach is relatively quick and the answer is independent of the charac-
teristic. A disadvantage is that it is not always easy to go from the dual graph to
the actual surface germ (y ∈ Y ). Fortunately, it turns out that for our applications
the extended dual graph contains all the necessary information.

First we classify the terminal and canonical cases geometrically. Then we de-
scribe the cases when the boundary B contains some curves with coefficient 1. This
is the most important case for our moduli problems.

Finally we study the dual graps combinatorially, essentially by trying to solve
the system of equations (66.2). A full solution seems hopeless, but we are able to
get a good understanding of how the solutions change if we change the dual graph.
Ultimately, we end up with a short list.

69 (Classification using index 1 covers). The traditional classification of log
canonical surface singularities over C proceeds as follows.



32 2. CANONICAL MODELS

If KS is a Cartier divisor, then every curve appears in the discrepancy divisor
∆ with integral coefficient. Thus, by (66.3), either ∆ = 0 (and hence Γ is Du Val),
or ∆ =

∑
Ci, the sum of all curves in Γ

Thus the system of equations (66.2) becomes

#(neighbors of Ci) = 2− 2pa(Ci) ∀i.

We have 2 possibilities. Either Γ consists of a single elliptic or nodal rational curve
(as in (77)) or Γ consists smooth rational curves, each with 2 neighbors (as in
(77.3)).

In characteristic zero, the covering method of Reid shows that every lc surface
singularity is a quotient of a lc surface singularity whose canonical class is Cartier,
see [Rei80]. Thus one can classify all lc surface singularities by describing all group
actions on the singularities listed in (71) and (77).

In positive characteristic this method has problems when the characteristic
divides the order of the group. For partial results, see [Kaw94] with corrections in
[Kaw99].

Note that quotients of A2 by Z/p can be very pathological in characteristic p;
see [Art75].

Terminal and canonical pairs.

Let (s ∈ S,B) be the germ of a normal surface pair that is numerically canon-
ical. By definition, this means that ∆ := ∆(s ∈ S,B) defined by the equations
(66.2) contains every curve with ≤ 0 coefficient. On the other hand, by (66.3), ∆
conatains every curve with ≥ 0 coefficient. Thus ∆ = 0.

Theorem 70. (s ∈ S,B) is numerically canonical iff

(1) either s ∈ S is regular and multsB ≤ 1,
(2) or s /∈ SuppB and there is a resolution f : T → S such that OT (KT/S) ∼=

f∗OS (cf. (71)).

Proof. Let (s ∈ S,B) be numerically canonical with minimal resolution f :
T → S satisfying the alternative (64.5.b). Thus KT +f−1

∗ B is numerically f -trivial
and KT +(1−ǫ)f−1

∗ B is numerically f -nef. Thus −f−1
∗ B is numerically f -nef. This

can happen only in two degenerate ways: either f is an isomorphism or B = 0. In
the latter case, the isomorphism OT (KT/S) ∼= f∗OS follows from (75).

Conversely, assume that S ∈ S is regular and multsB ≤ 1. Then a(E1, S,B) =
1−multsB ≥ 0 as above. If E is any other execeptional curve over S then by (12)
and (10)

a(E,S,B) = a(E,S1, π
−1
∗ B + (multsB − 1)E1) ≥ a(E,S1, π

−1
∗ B).

Since multp π
−1
∗ B ≤ multπ(p)B ≤ 1, we are done by induction on the number of

blow ups necessary to reach E. �

Example 71 (Du Val singularities). Consider case (70.2) over an algebraically
closed field. If the exceptional curves are Ei, then their self intersections are com-
puted from (Ei ·Ei) = (KT +Ei) ·Ei = 2pa(Ei)− 2. By (95), (Ei ·Ei) < 0, hence
pa(Ei) = 0, Ei ∼= P1 and (Ei · Ei) = −2. Since the intersection form is negative
definite, this implies that (Ei · Ej) ∈ {0, 1} for i 6= j.

The classification of such dual graphs is easy to do by hand and it has been
done many times from different points of view. The first time probably as part of
the classification of root systems of simple Lie algebras; giving rise to their names.
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The corresponding singularities are called Du Val singularities or rational double
points or simple surface singularities. See [KM98, Sec.4.2] or [Dur79] for more
information. (The equations below are correct in characteristic zero. The dual
graphs are correct in every characteristic.)

An: x
2 + y2 + zn+1 = 0, with n ≥ 1 curves in the dual graph:

2 − 2 − · · · − 2 − 2

Dn: x
2 + y2z + zn−1 = 0, with n ≥ 4 curves in the dual graph:

2
|

2 − 2 − · · · − 2 − 2

E6: x
2 + y3 + z4 = 0, with 6 curves in the dual graph:

2
|

2 − 2 − 2 − 2 − 2

E7: x
2 + y3 + yz3 = 0, with 7 curves in the dual graph:

2
|

2 − 2 − 2 − 2 − 2 − 2

E8: x
2 + y3 + z5 = 0, with 8 curves in the dual graph:

2
|

2 − 2 − 2 − 2 − 2 − 2 − 2

The reduced boundary.

For a log canonical pair (S,B =
∑
biBi), the singularities of SuppB can be

arbitrary if the coefficients bi are small. By contrast, if the bi are bounded from
below, we end up with a restricted class of singularities. In the exreme case, when
all the bi equal 1, we show that B has only ordinary nodes. The following theorem
is a more precise version of this assertion.

Theorem 72. Let (S,B+B′) be numerically lc and B =
∑
Bi a sum of curves,

all with coefficients 1. Then, for any s ∈ S,

(1) either B is regular at s,
(2) or B has a node (101) at s, SuppB′ does not contain s and there is at

least 1 exceptional divisor E with discrepancy 1 whose center is s.

Proof. The question is local on S. Fix a point s ∈ S and let f : T → S be a
log minimal resolution as in (64.5.a).

Write KT + BT + ∆T + f−1
∗ B′ ∼Q f∗(KS + B + B′) where BT := f−1

∗ B is
regular by (64.4). Note that ∆T =

∑
diCi is effective by (66.3), f -exceptional and

thus 0 ≤ di ≤ 1 for every i. We can rewrite the linear equivalence as

−BT ∼Q KT + ∆T + f−1
∗ B′ − f∗(KS +B +B′). (72.3)

Pushing forward the exact sequence

0→ OT (−BT )→ OT → OBT
→ 0,
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we get the exact sequence

OS ∼= f∗OT → f∗OBT
→ R1f∗OT (−BT ).

By the general Grauert-Riemenschneider vanishing theorem (98), eitherR1f∗OT (−BT ) =
0 or ∆T = C1+· · ·+Cn where the Ci are all the exceptional curves and s /∈ SuppB′.
We consider these two possibilities separately.

Case 1. If R1f∗OT (−BT ) = 0 then the composite

OS → OB →֒ f∗OBT
is surjective.

Thus B ∼= BT and so B is regular.
Case 2. Otherwise we prove that B has a node at s. We can drop B′ and

rewrite (72.3) as

−BT −∆T ∼Q KT − f
∗(KS +B). (72.4)

Then R1f∗OT (−BT −∆T ) = 0 and, as above, we get that Is,S = f∗OT (−∆T ) →
f∗OBT

(−∆T |BT
) is surjective. By (64.4), OBT

(−∆T |BT
) is the ideal of the closed

points of BT . In particular,

OB(−s) = f∗OBT

(
− red f−1(s)

)
. (72.5)

Since
(
Ci · (KT + BT +

∑
Ci)

)
= 0 for every i, the adjunction formula gives

that

degωCi
= −

∑
j 6=i(Ci · Cj)− (Ci ·BT ) ∀ i. (72.6)

Assume first that we are over an algebraically closed field. Then each Ci ∼= P1 and
the dual graph is

B1 − C1 − · · · − Cn − B2

Thus B has 2 irreducible components and, by (72.5), the 2 branches intersect
transversally.

Essentially the same argument works in general, but one has to be more careful,
especially over imperfect fields.

We have already dealt with the second condition of (101.1).
Let k(s) be the residue field of s ∈ S. In order to apply (101.1) we need to

show in addition that

(BT ·∆T ) = dimk(s)

(
OBT

/OBT
(−∆T |BT

)
)
≤ 2.

By (100), for each i, the right hand side of (72.6) has either 1 nonzero term or
2 nonzero terms which are equal. This gives two possibilities for the dual graph:

B1

r
− C1

r
− · · ·

r
− Cn

r
− B2 or

B1

r
− C1

r
− · · ·

r
− Cn

where r denotes the intersection numbers. The curves Ci for i ≤ n in the first case
(resp. i ≤ n− 1 in the second case) are as in (100.3.b) and in the second case the
last curve Cn can be of type (100.3.a). Thus

(B1·C1) = (C1·C2) = · · · = (Cn−1·Cn) =

{
dimk(s)H

0(Cn,OCn
) in case (100.3.b),

2 dimk(s)H
0(Cn,OCn

) in case (100.3.a).

Working through the exact sequences

0→ OCi
(−Ci ∩ Ci+1)→ OCi+···+Cn

→ OCi+1+···+Cn
→ 0
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we conclude that H0(OC1+···+Cn
) = H0(OCn

). From (72.4) and (98) we infer that
R1f∗OT (−∆T ) = 0, hence k(s) ∼= H0(O∆T

) ∼= H0(OCn
).

Thus, in both cases, (BT ·∆T ) ≤ 2. �

Remark 73. We have also proved that in case (72.2), the extended dual graph
is

• − c1 − · · · − cn − • (73.1)

where • denotes a component of B. As a degenerate case we allow • − • which
corresponds to the simple normal crossing point

(
(xy = 0),A2

)
.

Conversely, for any c1, . . . , cn ≥ 2 the singularities with this dual graphs are lc.
The discrepancies are −1 for the n vertices marked ci.

We will see later that in case (72.2) the extended dual graph is either

• − c1 − · · · − cn (73.2)

or
2

�

• − c1 − · · · − cn
�

2

(73.3)

In the latter case, the discrepancies are −1 for the n vertices marked ci and −1/2
for the two vertices marked 2.

As a corollary, using the description of the deformations of nodes given in
(101.2) we obtain the following, which gives a complete description of the codimen-
sion 1 behavior of fibers in semi stable families (???).

Corollary 74. Notation and assumptions as in (72). Assume in addition
that B is a Cartier divisor. Then either B and S are both regular at s, or B has a
node at s and S has a double point of embedding dimension 3 at s.

Furthermore, if S is over an algebraically closed field k of characteristic 0, then
the completion of Os,S is isomorphic to k[[x, y, z]]/(xy− zn) and B̂ = (z = 0). �

First examples of log canonical singularities.

Proposition 75. Let (y ∈ Y,B) be a numerically log canonical surface germ,
f : X → Y a log minimal resolution with exceptional curves Ci. Let ∆ := ∆(y ∈
Y,B) be the discrepancy divisor as in (66). Then

(1) either y 6∈ SuppB and ∆ =
∑

iCi (cf. (77)),
(2) or (y ∈ Y ) is a rational singularity, that is, R1f∗OX = 0.

Proof. Note that KX + f−1
∗ B + ∆ has zero intersection number with every

exceptional curve. Thus the Grauert-Riemenschneider vanishing (98) applies to
L = OX and gives (2), unless f−1

∗ B · Ci = 0 for every i (and hence y 6∈ SuppB)
and every exceptional curve appears in ∆ with coefficient 1. �

Proposition 76. Let (y ∈ Y ) be a rational surface singularity and f : X → Y
a log minimal resolution with exceptional curves Ci.

(1) Let L be a line bundle such that degCi
L = 0 for every i. Then f∗L is

locally free and L ∼= f∗(f∗L).
(2) Y is Q-factorial at y. More precisely, det(Γ)D is Cartier for any Weil

divisor D on S, where Γ is the dual graph of f−1(y).
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Proof. If Z is any 1-cycle with support in f−1(y), then

R1f∗OX → H1(Z,OZ)→ R2f∗OX(−Z) = 0

shows that H1(Z,OZ) = 0. Thus, by [Mum66, Lect.24], Pic(Z) ∼= Pic(redZ) and
a line bundle M on Z is determined by the degrees degCi

M for Ci ⊂ Z. Hence if
(L ·Ci) = 0 for every i then L|Z ∼= OZ for every Z. By the formal function theorem,
f∗L is locally free at y. Thus the natural map f∗(f∗L)→ L is an isomorphism.

Let D be any Weil divisor on S and f−1
∗ D its birational transform on X . By

the Hodge index theorem (95) and by Kramer’s rule, the system of equations

∑
iai

(
Ci · Cj

)
=

(
f−1
∗ D · Cj

)
∀ j

have a unique solution and det(Γ) · ai ∈ Z. Apply the fist part to L = OX
(
det(Γ) ·

f−1
∗ D+

∑
(det(Γ) ·ai)Ci

)
to get that OX

(
det(Γ) ·D

)
is locally free, hence det(Γ) ·D

is Cartier. �

Next we discuss the main examples of surface singularities that are lc but not
lt.

Example 77 (Numerically elliptic/cusp singularities). By definition, these are
the singularities (p ∈ S,B) where B = 0 and every exceptional curve appears in
∆ := ∆(y ∈ Y,B) with coefficient 1.

One should treat elliptic/cusp singularities as one class, but traditionally they
have been viewed as two distinct types. For these singularities one can write the
equations (65.1) as

degωCi
= −

∑
i6=j(Ci · Cj).

The usual approach distinguishes 2 solutions:

(1) Γ consists of a single curve C with degωC = 0. These are called numer-
ically (simple) elliptic. If we are over an algebraically closed field, then
there are 3 subcases:
(a) a smooth elliptic curve (called a simple elliptic singularity),
(b) a nodal rational curve, or
(c) a cuspidal rational curve (two more blow ups show that this is not

lc).
(2) Γ consists of at least 2 curves Ci with degωCi

< 0 for every i. These are
called numerically cusp1 singularities. (Usually case (2.b) is also consid-
ered a cusp singularity.)

The distinction between (simple) elliptic and cusp singularities is made mostly
for historic reasons, and over a nonclosed field k the two concepts are mixed to-
gether. Indeed, we can have a cusp over k̄ where the Galois group of k̄/k acts
transitively on the exceptional curves. In that case, we have a numerically elliptic
singularity over k but a cusp over k̄.

For a cusp over an algebraically closed field, every curve Ci is smooth, rational
and intersects the rest with multiplicity 2. Thus the dual graph is a circle of smooth

1Cusps of curves and cusps of surfaces are quite unrelated. Usually there is no danger of
confusion.
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rational curves:
cn − · · · − cr+1

� �

c1 cr
� �

c2 − · · · − cr−1

(77.3)

where n ≥ 3. The n = 1, 2 cases are somewhat special. For n = 2 we have 2 curves
which intersect at 2 distinct points. For n = 1 we get a nodal rational curve; this
was already considered above.

The intersection form is negative definite if at least one of the ci ≥ 3, as shown
by the vector

∑
Ci (97.4.2).

There are also 2 degenerate cases. 2 curves can be tangent at a point or 3 curves
can meet in 1 point. These are numerically log canonical but not log canonical.

Example 78 (Z/2-quotient of a cusp or simple elliptic). For any c1, . . . , cn ≥ 2,
with at least one ci ≥ 3, the singularities with dual graphs below are lc, where •
denotes a component of B with coefficient 1.

The discrepancies are −1 for the n vertices marked ci and − 1
2 for the vertices

marked 2.
2 2

� �

c1 − · · · − cn
� �

2 2

(78.1)

(The name comes from the fact that, when the characteristic is different from 2, the
corresponding singularity is a Z/2-quotient of a cusp (for n ≥ 2) or a Z/2-quotient
of a simple elliptic singularity (for n = 1).)

Classification of log canonical singularties, I..

In what follows, we classify lc surface germs (s ∈ S,B) by focusing on the dual
graph, following the method of Alexeev [K+92, Sec.2]. Besides working in any
characteristic, this approach is also better at dealing with the boundary B.

79 (Classification method). Let (s ∈ S,B) be a surface singularity, f : T → S
a log minimal resolution as in (64) with exceptional curves Ci and Γ = Γ(s ∈ S,B)
the extended dual graph (65) of the curves

∑
Ci and f−1

∗ B. More generally, we
consider all connected, numerically log canonical extended dual graphs (Γ, B).

In what follows, we consider the equations (66.2) and try to find conditions
on the right hand side which force dj > 1 for some j. This would then show that
(Γ, B) is not lc.

We will identify various small subsets of the equations which lead to a contra-
diction, no matter what the remaining equations are. After 3 such steps we are left
with only a handful of cases. These will then be studied more carefully.

We use the following form of (97.4):

Claim 79.1 If (∆ ·Ci) ≤ (∆′ ·Ci) for every i then ∆ ≥ ∆′. Furthermore, if one
of the inequalities is strict then ∆ ≫ ∆′. (That is, ∆ − ∆′ contains every curve
with poisitive coefficient.) In particular, if (∆ · Ci) ≤ 0 for every i then −∆ is
effective. �

As a first application, we see how ∆(Γ, B) changes if we change B.
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79.2 (Changing B.) From (79.1) we see that if B′ � B then ∆(Γ, B′) ≪
∆(Γ, B).

The most important comparison is the following.

79.4 (Passing to a subgraph.) Let (Γ′, B′) be graph obtained from (Γ, B) by
deleting some vertices and edges. Let J (resp. J ′) be the set of vertices in Γ (resp.
Γ′). If ∆(Γ, B) =

∑
j≥J djCj then, for every i ∈ J ′,

(∑

j∈Γ′

djCj ·Ci
)

= (Ci ·Ci)− degωCi
− (B′ ·Ci)−

(∑

j 6∈Γ′

djCj ·Ci
)
−

(
(B −B′) ·Ci).

Thus we see that ∆(Γ′, B′) ≤
∑

j∈Γ′ djCj and in fact

∆(Γ′, B′)≪
∑

j∈Γ′

djCj ,

unless dj = 0 for every j ∈ J \ J ′. That is, when (Γ, B) is canonical.
In particular, if (Γ′, B′) is not log terminal then (Γ, B) is not log canonical. As

a first consequence we obtain the following (which also follows from (75)).

Corollary 79.4 Let (Γ, B) be a log canonical extended dual graph not yet enu-
merated in (77). Then every Ci is a smooth rational curve and Γ is a tree. �

79.5 (Increasing ci.) Let Γ′ be the graph obtained from Γ by changing c1 =
−(C1 · C1) to c′1 > c1. All other intersections are unchanged. Let C′

i denote the
curves in Γ′.

If ∆(Γ, B) =
∑
djCj then

(∑
djC

′
j ·C

′
i

)
= (C′

i ·C
′
i)−degωCi

−(B′·C′
i)−

{
(1− d1)(c

′
1 − c1) if i = 1, and

0 if i > 1.

Thus if d1 < 1 and c′1 > c1 then ∆(Γ, B) ≪ ∆(Γ′, B′). In particular, we see that
if in the dual graph (78) we increase any of the vertices marked 2, then we get a
dual graph that is not log canonical. By (79.4), any dual graph containing such a
subgraph is also not log canonical.

We can summarize our results as follows:

Corollary 80. Let Γ be a log canonical extended dual graph not yet enumer-
ated in (77), (78) or (73). Then every Ci is a smooth rational curve and one of
the following holds.

(1) (Cyclic quotient) ⌊B⌋ is smooth and (Γ, ⌊B⌋) is

• − c1 − · · · − cn or c1 − · · · − cn

(2) (Other quotient) ⌊B⌋ = 0 and Γ is a tree with 3 branches:

◦ − · · · − ◦ − · · · − ◦
|
...
|
◦

We deal with the resulting 2 classes separately.
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Cyclic quotients and the different.

Definition 81 (Cyclic quotients). Let k be a field and fix natural numbers
1 ≤ a, b ≤ r. Consider a Z/r-grading of k[x, y] given by w(xnym) = an + bm
mod r. Let Ra,b := {f ∈ k[x, y] : w(f) = 0} denote the ring of degree 0 elements.
We use the notation

A2/ 1
r (a, b) := Speck Ra,b.

To explain this notation, assume first that chark 6 |r and let µr = 〈ǫ〉 be the group
of rth roots of unity. The above grading is equivalent to a µr-action given by
(x, y) 7→ (ǫax, ǫby). Then Ra,b is the ring of invariants of this action. (If char k|r
then µr is a nonreduced group scheme and Ra,b is still a ring of invariants of a
µr-action.)

Note that R1,b contains the functions u := xr, v := yr, w := xr−by. This easily
shows that, if (b, r) = 1, then R1,b is the normalization of the hypersurface ring

k[u, v, w]/
(
wr − ur−bv

)
.

The latter ring is normal iff b = r − 1.

Theorem 82. Let k be an algebraically closed field and (y ∈ Y ) a normal
surface singularity over k whose dual graph is

c1 − c2 − · · · − cn−1 − cn.

Then an étale neighborhood of (y ∈ Y ) is isomorphic to

A2/
1

Dn

(
1, Dn−1)

where the Dr are computed as in (83).

Definition 83. Given a sequence c1, c2, . . . , let Mr = Mr(c1, . . . , cr) denote
the intersection form of the dual graph

c1 − c2 − · · · − cr−1 − cr.

For instance, for r = 5 we get

M5(c1, . . . , c5) =




c1 −1 0 0 0
−1 c2 −1 0 0

0 −1 c3 −1 0
0 0 −1 c4 −1
0 0 0 −1 c5




Set D0 := 1 and Dr(c1, . . . , cr) := detMr(c1, . . . , cr) for r ≥ 1. Expanding by the
last column we see that the Dr satisfy the recursions relation

Dr = crDr−1 −Dr−2. (83.1)

These in turn imply that

Mr · (D0, D1, . . . , Dr−1)
t = (0, . . . , 0, Dr)

t. (83.2)

By induction one also sees that gcd(Dr, Dr−1) = 1 for every r.
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It is easy to see by induction that the Dn are also computed by the following
continued fraction

Dr

Dr−1
= cr −

1

cr−1 −
1

cr−2 −
1

c3 −

. . .
1

c2 −
1

c1

(83.3)

This makes it possible to enumerate all chains with a given determinant d. For
any 0 < e < d with (d, e) = 1, compute the above continued fraction expansion of
d/e. These give all such chains.

For instance, the cases det(Γ) ∈ {2, 3, 4, 5, 6} give the possibilities

det(Γ) = 2 ⇔ Γ is 2
det(Γ) = 3 ⇔ Γ is 3 or 2 − 2,
det(Γ) = 4 ⇔ Γ is 4 or 2 − 2 − 2,
det(Γ) = 5 ⇔ Γ is 5 or 2 − 2 − 2 − 2 or 2 − 3 or 3 − 2,
det(Γ) = 6 ⇔ Γ is 6 or 2 − 2 − 2 − 2 − 2.

84 (Proof of (82)). Let f : X → Y be the minimal resolution and C1, dots, Cn ⊂
X the exceptional curves. As in (83), set

Dr := detMr(c1, . . . , cr) and D∗
r := detMr(cn, . . . , cn+1−r).

By working in a suitable étale neighborhood, we can pick (nonproper) curves
C0, Cn+1 such that C0 intersects only C1 and Cn+1 intersects only Cn, both with
multiplicity 1. Set D−1 = D∗

−1 = 0. By (83.2), both of the line bundles

OX
(
−

∑n+1
i=0 Di−1Ci

)
and OX

(
−

∑n+1
i=0 D

∗
n−iCi

)

have degree zero on the exceptional curves C1, . . . , Cn. Hence, by (76), in a neigh-
borhood of Ex(f) they are both trivial. Thus, as subsheaves on OX , they are
generated by functions v (resp. u) such that

(v) =
∑n+1

i=0 Di−1Ci and (u) =
∑n+1

i=0 D
∗
n−iCi.

Set b := Dn −Dn−1 and consider

(ubv) =
∑n+1

i=0 Bi−1Ci where Bi−1 =
(
Di−1 + bD∗

n−i

)
.

Note that the two highest coefficients are Bn = Dn + bD−1 = Dn and Bn−1 =
Dn−1 + bD0 = Dn. Using (83.1) for both sequences, the recursion

Br−2 = crBr−1 −Br

shows that all the coefficients in (ubv) are divisible by Dn. Thus there is a function
w such that

(w) =
n+1∑

i=0

Bi−1

Dn
Ci.

Since wDn and ubv have the same divisors, the functions u, v, w are related by
an equation wDn = (invertible)ubv. We can set v′ := (invertible)v to obtain the
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simpler equation wDn = ubv′. Thus we obtain a morphism

(u, v′, w) : Y → Spec k[u, v′, w]/(wDn = ubv′)

which then factors through the normalization

π : Y → A2/
1

Dn

(
1, Dn−1).

We are left to prove that π is étale at y. Since k[u, v′, w]/(wDn = ubv′) has degree
Dn over k[u, v′], it is enogh to prove that (u, v′) : Y → Spec k[u, v′] also has degree
Dn at y. Equivalently, that the intersection number of their divisors

(u) · (v) =
(∑n+1

i=0 Di−1Ci
)
·
(∑n+1

i=0 D
∗
n−iCi

)
= 1.

As we noted, Cn+1 intersects only Cn and (v) has 0 intersection with the curves
C1, . . . , Cn. Thus

(∑n+1
i=0 Di−1Ci

)
·
(∑n+1

i=0 D
∗
n−iCi

)
= Dn

(
Cn+1 ·

∑n+1
i=0 D

∗
n−iCi

)

= Dn

(
Cn+1 · Cn

)
= Dn.

This completes the proof of (82). �

Cyclic quotients also play a key role in the general adjunction formula.

85 (Adjunction). Let S be a normal surface and B ⊂ S a curve such that (S,B)
is lc. By (72), B is a nodal curve and by (80), there are three types of singularities
of the pair (S,B):

(1) (Cyclic, plt) As in (73.2), p ∈ B is smooth and S has a cyclic quotient
singularity at p. This is the only case when (S,B) is plt at p.

(2) (Cyclic, lc) As in (73.1), p ∈ B is a node and S has a cyclic quotient
singularity at p.

(3) (Dihedral) As in (73.3), B is smooth at p and S has a dihedral quotient
singularity at p.

Let f : T → S be a minimal log resolution of (S,B) as in (64) and BT ⊂ T the
birational transform of B. Write

f∗(KS +B) ∼Q KT +BT +
∑

p∆p,

where ∆p is supported on f−1(p). By the projection formula,
(
(KS +B) ·B

)
=

(
f∗(KS +B) ·BT

)

=
((
KT +BT +

∑
p∆p

)
·BT

)

= 2pa(BT )− 2 +
∑
p

(
∆p ·BT

)
.

For the cases (85.2–3), the divisor ∆p was computed in (73). For both of these, the
curves intersecting BT have coefficient 1 in ∆p. Next we compute the discrepancies
for (85.1).

Claim 85.4. For the singularity • − c1 − · · · − cn the discrepancy divisor is

∆ =

n∑

i=1

(
1−

Di−1

det(Γ)

)
Ci.

In particular, B ·∆ = 1− 1
det(Γ) .
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Proof. By the adjunction formula,

(
(K +B + C1 + · · ·+ Cn) · Cj

)
=

{
0 if j < n, and

1 if j = n.

Thus, using (83.2), we conclude that

((
K +B + C1 + · · ·+ Cn −

1

det(Γ)

n∑

i=1

Di−iCi

)
· Cj

)
= 0 ∀i.

This gives the fiormula for ∆. The only curve in ∆ that intersects B is C1 and its
coefficients is 1− D0

det(Γ) = 1− 1
det(Γ) . �

Putting these together, we obtain that
(
(KS +B) ·B

)
= 2pa(BT )− 2 +

∑
cyclic, plt

(
1− 1

det(Γp)

)
+

+2 ·#{cyclic lc points}+ #{dihedral points}.

Since BT is the normalization of B, pa(BT ) = pa(B)−#{nodes} and the nodes of
B correspond to the cyclic lc points. Thus we have proved the following general
adjunction formula:

Theorem 86 (Adjunction formula). Let S be a normal surface and B ⊂ S a
curve such that (S,B) is lc. Then
(
(KS+B)·B

)
= 2pa(B)−2+

∑

p: cyclic and plt

(
1− 1

det(Γp)

)
+#{dihedral points}. �

87 (Different I.). As stated, (86) is only an equality of two numbers. However,
by looking at its proof, we get a canonical isomorphism of two sheaves. If U ⊂ S is
an open subset such that U and B ∩ U are both smooth then taking the Poincaré
residue gives a canonical isomorphism

ωU (B)|U∩B
∼= ωU∩B. (87.1)

(We discuss this in greater detail in (121).) Next we study this isomorphism near
the singular points.

Choose m > 0 such that mKS and mB are both Cartier. Then ω
[m]
S (mB)|B is

a line bundle and the proof in (85) shows that there is well-defined Q-divisor DiffB
called the different, supported on the points where S is singuar, such that the mth
power of (87.1) extends to an isomorphism

ω
[m]
S (mB)|B ∼= ωmB

(
mDiffB

)
. (87.2)

We can restate and refine (86) as a computation of the different:

DiffB =
∑

p: cyclic and plt

(
1− 1

det(Γ(p))

)
[p] +

∑

p: dihedral

[p]. (87.3)

For later purposes, we also study the different when (S,B) is not log canonical
and we take into account the influence of another effecive Q-divisor B′ which has
no components in common with B. Since the singularities of B can be now quite
complicated, we compute everything on the normalization B̄ → B.

Going through the above arguments again, if mKS +mB + mB′ is a Cartier
divisor, we obtain a different DiffB̄(B′) such that

ω
[m]
S (mB +mB′)|B̄

∼= ωmB̄
(
mDiffB̄(B′)

)
. (87.4)
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We can not give a precise formula for DiffB̄(B′), but we can compare it to the
discrepancies a(C, S,B +B′) of exceptional curves.

Claim 87.5. Let S be a normal surface and B ⊂ S a reduced curve with
normalization B̄ → B. For a point p ∈ B, let p̄ ∈ B̄ denote any preimage. Let B′

be an effecive Q-divisor that has no components in common with B and assume
that m(KS +B +B′) is a Cartier divisor for some m > 0.

Let f : T → S be a log resolution of (S,B + B′) and, as in (64), write KT +
BT +B′

T +∆ ∼Q f∗(KS +B+B′) where BT , B
′
T ⊂ T are the birational transforms

of B,B′. Note that BT = B̄. Define the different as

Diff B̄(B′) := (B′
T + ∆)|B̄.

Then Diff B̄(B′) is independent of the choice of f . Furthermore:

i) If (S,B+B′) is lc at p, then the coefficient of [p̄] in the different DiffB̄(B′)
is the negative of the smallest discrepancy of (S,B +B′) above p.

ii) If (S,B + B′) is not lc at p then the coefficient of [p̄] in the different
Diff B̄(B′) is greater than 1.

A far reaching generalization of this will be given in Section 4.

Proof. By the usual adjunction formula,

f∗(KS +B +B′)|B̄ −KBT
=

(
B′
T + ∆

)
|BT

= DiffB̄(B′).

Hence Diff B̄(B′) is independent of the choice of f and the coefficient of [p̄] in
DiffB̄(B′) equals the local intersection number

(
BT ·B′

T + ∆
)
p̄
.

Write ∆ =
∑
diCi, where di ≥ 0 by (66.3). Assume that (S,B+B′) is not log

terminal at p ∈ S, that is, dr ≥ 1 for some Cr ⊂ f
−1(p).

Choose a chain of exceptional curves C1, . . . , Cr−1 ⊂ f−1(p) such that BT
intersects C1 at p̄ and Ci intersects Ci+1 for i = 1, . . . , r − 1. Write

KT +BT +B′
T + ∆ = KT +

∑r−1
i=1 diCi + ∆′,

and compute the intersection numbers
((∑r−1

i=1 (di − 1)Ci
)
· Cj

)
=

= −
(
KT + ∆′ · Cj

)
−

((∑r−1
i=1Ci

)
· Cj

)

= −
((
KT + Cj

)
· Cj

)
−

((
∆′ +

∑
i6=jCi

)
· Cj

)

= −2pa(Cj) + 2−
((

∆′ +
∑

i6=jCi
)
· Cj

)
.

If 2 ≤ j ≤ r− 2, then at least 2 of the other Ci intersect Cj , hence the last term is
≥ 2. If j = 1 or j = r − 1, then at least 1 of the other Ci intersect Cj and either
BT or drCr intersect Cj with multiplicity ≥ 1. Thus

((∑r−1
i=1 (di − 1)Ci

)
· Cj

)
≤ 0 for j = 1, . . . , r − 1,

hence, by (79.1),
∑r−1

i=1 (di − 1)Ci is a semi positive vector and positive if dr > 1.
Since (

BT ·B
′
T + ∆)p̄ ≥

(
BT · d1C1)p̄ ≥ d1,

we have proved (ii) and also (i) in case (S,B +B′) is not log terminal.
If (S,B +B′) is log terminal then so is (S,B) and we are in case (85.1).
Write ∆ =

∑
i(1 − ǫi)Ci and drop p from the notation temporarily. It is

convenient to set ǫ0 = 0 and ǫn+1 = 1.
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We can rewrite
(
Ci · (KT +BT +B′

T + ∆)
)

= 0 as

−2 + ǫici + 1− ǫi−1 + 1− ǫi+1 + (Ci · B
′) = 0 for i = 1, . . . , n.

The latter can be rearranged to

ǫi =
ǫi−1 + ǫi+1

ci
−

(Ci · B′
p)

ci
≤
ǫi−1 + ǫi+1

ci
.

Since ci ≥ 2, we conclude that ǫi is a convex function of i. Since ǫ0 = 0 we see that
either ǫ1 < 0 or 0 ≤ ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫn.

In the first case, (S,B+B′) is not log canonical. Otherwise, a(C1, S,B+B′) =
−1 + ǫ1 is the smallest disrepancy and the coefficient of [p̄] in DiffB̄(B′) equals the
local intersection number

(
BT ·B

′
T + ∆

)
p̄

=
(
BT · (1− ǫ1)C1

)
= 1− ǫ1. �

Other quotients.

88. Let (Γ, B) be a tree with 1 fork where the components of B intersect only
the leaves. That is, the dual graph is

B1 − Γ1 − c0 − Γ2 − B2

|
Γ3

|
B3

(88.1)

The fork is denoted by C0 and, for i = 1, 2, 3, the curves on the branches are indexed
as (

C0 − Γi − Bi

)
=

(
C0 − Ci1 − · · · − Cin(i) − Bi

)
.

We allow the degenerate case when some Γi is empty. The curves Cin(i) are called

leaves and the curves Cij for 0 < j < n(i) are called intermediate. Set cij = −(Cij ·C
i
j)

and βi = (Cin(i) ·Bi).

Theorem 89. Notation as above. Then (88.1) is numerically log canonical iff

1− β1

det(Γ1)
+

1− β2

det(Γ2)
+

1− β3

det(Γ3)
≥ 1. (89.1)

Proof. Let Σi :=
∑

j C
i
j denote the sum of all curves in Γi with coefficient 1

and ΣΓ := C0 +
∑

iΣ
i the sum of all curves in Γ.

Write the discrepancy divisor as ∆ = a0C0 +
∑
i ∆i where ∆i involves only the

curves in Γi. Thus ΣΓ −∆ ∼Q KΓ + ΣΓ +B and for every exceptional curve C we
have (

(ΣΓ −∆) · C
)

= −2 + #{neighbors of C}+ (B · C).

In particular,

(
(ΣΓ −∆) · C

)
=





1 if C = C0 is the fork

0 if C = Cij is intermediate, and

βi − 1 if C = Cin(i) is a leaf.

Using Di
j = detM(bi1, . . . , b

i
j), consider the Q-divisor

Di :=
1

det(Γi)

(
Di

0C1 + · · ·+Di
n(i)−1Cn(i)

)
,
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where det(Γi) = Di
n(i) is the determinant of Γi. Therefore, by (83.2),

(
(ΣΓ −∆−

3∑

i=1

(1− βi)D
i) ·C

)
=

{
1−

∑3
i=1

1−βi

det(Γi)
if C is the fork

0 if C is any other curve.
(89.2)

Thus, if (89.1) holds then ΣΓ−∆−
∑3
i=1(1−βi)D

i has ≤ 0 intersection with every
curve. Hence, by (79.1), it is a semipositive vector. Therefore

∆ ≤ ΣΓ −
3∑

i=1

(1− βi)D
i ≤ ΣΓ,

showing that (Γ, B) is numerically lc.

If (89.1) fails then ΣΓ − ∆ −
∑3
i=1(1 − βi)D

i is a negative vector. Thus C0

appears in ∆ with coeffienect > 1, hence (Γ, B) is not numerically lc. �

List of log canonical surface singularities.

Here is a short summary of the results proved so far.

90 (Log canonical, not log terminal).
(90.1) (Simple elliptic) Γ = {E} has a single vertex which is a smooth elliptic

curve with self intersection ≤ −1. B has to be 0.
(90.2) (Cusp) Γ is a circle of smooth rational curves, ci ≥ 2 and at least one of

them with with ci ≥ 3. The cases n = 1, 2 are somewhat special. B has to be 0.

cn − · · · − cr+1

� �

c1 cr
� �

c2 − · · · − cr−1

(90.3) (Z/2-quotient of a cusp or simple elliptic) Γ has 2 forks and each branch is
a single (−2)-curve. We have ci ≥ 2 and B has to be 0.

2 2
� �

c1 − · · · − cn
� �

2 2

(90.4) (Other quotients of a simple elliptic) The dual graph is

Γ1 − c0 − Γ2

|
Γ3

with 3 possibilities for
(
det(Γ1), det(Γ2), det(Γ3)

)
:

(Z/3-quotient) (3,3,3)
(Z/4-quotient) (2,4,4)
(Z/6-quotient) (2,3,6).

In all cases, B has to be 0.

91 (Log terminal). Here B can be nonzero.
(91.1) (Cyclic quotient)

c1 − · · · − cn
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(91.2) (Dihedral quotient) Here n ≥ 2 with dual graph

2
�

c1 − · · · − cn
�

2

(91.3) (Other quotients) The dual graph is as in (90.4) whith 3 cases for(
det(Γ1), det(Γ2), det(Γ3)

)
:

(Tetrahedral) (2,3,3)
(Octahedral) (2,3,4)
(Icosahedral) (2,3,5).

Boundary with coefficients ≥ 1
2 .

Here we classify all log canonical surface pairs (S,B) where B =
∑
βiBi and

βi ∈ {1,
1
2} for every i.

This method essentially also classifies all pairs (S,B) such that βi ≥
1
2 for at

least one value of i. Indeed, in this case we can replace (S,
∑
βiBi) by (S,

∑
β∗
iBi)

where β∗
i = 1

2⌊2βi⌋ is the “half integral round down.”
The main remaining interesting issue is the following. Given a lc pair (S,

∑
β∗
iBi),

for which values of βi ≥ β
∗
i is (S,

∑
βiBi) also log canonical. In almost all instances

our formulas give the answer, but some case analysis is left undone.
As before, we consider the dual graph of the log minimal resolution, and we

show that the Bi can be replaced by (−2)-curves such that the resulting new dual
graph is still lc. We then read off the classification of the pairs (S,B) from the
classification of all lc dual graphs.

92 (Problems with small coefficients). Let S be a smooth or log terminal surface
and C an arbitrary effective curve on S. It is easy to see from the definition that
(S, ǫC) is klt for all 0 ≤ ǫ ≪ 1. Thus a classification of all possible lc pairs (S,B)
would include a classification of all curve singularities on smooth or log terminal
surfaces. This is an interesting topic on its own right but not our main concern
here.

For a pair (S,C), the optimal bound on ǫ depends on S and C in a quite subtle
way. See [KSC04, Sec.6.5] for the case when S is smooth. The general case has
not yet been worked out.

For several reasons, the most important fractional coefficients are 1 and 1− 1
n .

These are all ≥ 1
2 , exactly the value where our classification works.

93 (Replacing B by (−2)-curves). Let (Γ, B) be an extended lc dual graph.
Write B = B′ +

∑
j

1
2Bj where we do not assume that the Bj are distinct.

Usually Bj intersects exactly one curve Ca(j) and the intersection is transverse.
However, Bj may intersect

∑
Ci at an intersection point or it may be tangent to

some Ci. Keeping these in mind, we construct a new dual graph (Γ∗, B′) as follows.
For each i, set d(i) := (Ci·

∑
j Bj) and introduce d(i) new verticesCi1, . . . , Ci,d(i).

The intersection numbers are unchanged for the old vertices, cij = −(C2
ij) = 2 and

(Ci · Cij) = 1. No other new intersections.

93.1 Claim. If (Γ, B) is lc then (Γ∗, B′) is also lc.
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Proof. Let ∆ =
∑n

i=1 diCi be the discrepancy divisor. Thus

(∆ · Ci) = 2− ci − (Ci ·B) = 2− ci −
1
2d(i)− (Ci · B

′).

Set ∆∗ =
∑n
i=1 diCi + 1

2

∑
Cij . Then

(
(∆∗+B′)·C

)
=

{
2− ci − (Ci · B) + 1

2d(i) = 2− ci − (Ci ·B′) if C = Ci, and

di −
1
2 (C2

ij) ≤ 0 = 2− cij if C = Cij .

Thus, by (79.1), ∆(Γ∗, B′) ≤ ∆∗ and so (Γ∗, B′) is also lc. �

If B is integral, then we attach at least two (−2)-curves to Ci. There are very
few cases when a lc graph contains two (−2)-leaves attached to the same curve.
This establishes the completeness of the list in (73).

94 (Log canonical, B contains a half integral divisor).
We classify these by the following scheme:

(1) (Two fork case) This happens when
(a) Γ is not cyclic and there is a 1

2Bi ≤ B which intersects a C which is
not a leaf.

(b) Γ is cyclic and there are 1
2Bi + 1

2Bj ≤ B which intersect a C which
is not a leaf.

(c) Γ is cyclic and there is a 1
2Bi ≤ B which intersects a C which is not

a leaf with multiplicity 2.
(2) (One fork case)

(a) Γ is not cyclic and every 1
2Bi ≤ B intersect a leaf.

(b) Γ is cyclic and there is only one 1
2Bi ≤ B that intersects a C which

is not a leaf.
(3) (Triple intersection point case) There is a 1

2Bi ≤ B which intersects Γ at
a singular point.

(94.1) (Two fork case) Either all ci ≥ 2 or n = 1 and c1 = 1 with dual graph

⊛ ⊛

� �

c1 − · · · − cn
� �

⊛ ⊛

where ⊛ can be a (−2)-curve, a component of B with coefficient ≥ 1
2 or it can be

missing entirely.
An interesting special case is

2 − c1 − 3
|
Bi

For c1 = 1 this is the minimal log resolution of the planar cusp. In all cases, the lc
threshold is 5/6, that is (S, 5

6B) is lc.

If there is a 1
2Bi ≤ B which intersects a C which is not a leaf with multiplicity

2, we get the special case

2 − c1 − 2
||
Bi
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(94.2) (One fork case) In all other cases without triple intersections, the dual
graph is

B1 − Γ1 − c0 − Γ2 − B2

|
Γ2 − B3

where Bi appears in B with coefficient βi which is either 1
2 or 0. We allow the

degenerate possibility that some Γi is empty.
If at least 2 of the Γi are empty, then we are in a special instance of the two

fork case.
Next we enumerate the other possibilities.
From (89), we get the log canonicity condition

1− β1

det(Γ1)
+

1− β2

det(Γ2)
+

1− β3

det(Γ3)
≥ 1.

(3 components) Here all βi = 1
2 and so we get

1

det(Γ1)
+

1

det(Γ2)
+

1

det(Γ3)
≥ 2.

This is only possible if one of the det(Γi) is 1 and the others are 2. This gives the
dual graph

⊛ − 2 − c0 − 2 − ⊛

|
⊛

(2 components) The condition is

1

det(Γ1)
+

2

det(Γ2)
+

1

det(Γ3)
≥ 2,

where det(Γ2) ≥ 2 since otherwise we are in the two fork case.
This gives the dual graph

⊛ − 2 − c0 − 2 − ⊛

|
2

(1 component) The condition is

2

det(Γ1)
+

2

det(Γ2)
+

1

det(Γ3)
≥ 2,

where det(Γ1), det(Γ2) ≥ 2. If det(Γ1) = det(Γ2) = 2 then we are in the two fork
case.

Otherwise, the only possibilities are

Γ1 − c0 − 2 − ⊛

|
2

with det(Γ1) ∈ {3, 4}, and

Γ1 − c0 − Γ3 − ⊛

|
2

with det(Γ1) = det(Γ3) = 3.

(94.3) (Triple intersection cases)
These are the cases when B passes through the intersection point of 2 curves

Cj . The procedure of (93) tells us to attach (−2)-curves to both of these Cj . This is
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a strong restriction, and all such cases have been enumerated above. We just need
to look at the cases when the components of B are attached to a pair of intersecting
curves. This can happen in only a few cases.

A separate treatment of these possibilities is needed, however, since not all
the remaining cases are lc. We have encountered a similar problem in (77). All
curves in the dual graph have discrepancy ≥ −1 but a further blow up may show
that (S,B) is not lc. These cases were enumerated by hand and we get only the
following possibilities

2 − b
|
⊛

with 2 ≤ b ≤ 5,
3 − 3
|
⊛

or
2 − 2 − 2

|
⊛

Auxiliary results.

Here we prove three well know results on birational maps of surfaces: the Hodge
index theorem, the Grauert-Riemenschneider vanishing theorem and Castelnuovo’s
contraction theorem. Instead of the usual setting, we consider these for excellent
2-dimensional schemes.

First we prove the Hodge index theorem. That is, we show that the intersec-
tion matrix of the exceptional curves of a proper morphism of surfaces is negative
definite.

Theorem 95 (Hodge index theorem). Let X be a 2-dimensional regular scheme,
Y an affine scheme and f : X → Y a proper and generically finite morphism with
exceptional curves ∪Ci. Then the intersection form (Ci · Cj) is negative-definite.

Proof. It is enough to consider all the exceptional curves that lie over a given
y ∈ Y . Then all the curves considered are proper over the residue field k(y), so the
intersection numbers

(Ci · Cj) := degk(y)OX(Ci)|Cj

are defined as usual. Note the obvious property that

(Ci · Cj) ≥ 0 for i 6= j. (95.1)

By (96), there is an effective f -exceptional Cartier divisor. An easy argument
(97.4), using only (95.1) and bilinear algebra, shows that the intersection form is
negative-definite. �

Lemma 96. Let f : X → Y be as in (95). Then f is projective and there is an
effective f -exceptional Cartier divisor W on X such that −W is f -ample.

Proof. For each exceptional curve Ci ⊂ X let Ui ⊂ X be an open affine subset
such that Ci ∩ Ui 6= ∅. Let Hi ⊂ Ui be an effective divisor which intersects Ci
such that Ci 6⊂ Hi and let H̄i ⊂ X denote its closure. Then H :=

∑
H̄i has

positive intersection number with every exceptional curve, hence it is f -ample. Its
push-forward f(H) ⊂ Y is an effective Weil divisor on Y ; it is thus contained in
an effective Cartier divisor D since Y is affine. Write f∗(D) = H +D′ +W where
W is effective, f -exceptional and D′ is effective without f -exceptional irreducible
components. Then

(W · Ci) = (f∗D · Ci)− (H · Ci)− (D′ · Ci) ≤ −(H · Ci) < 0,

so −W is f -ample. �
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97 (Remarks on quadratic forms). Fix a basis C1, . . . , Cn in a real vector space
V . Let B( , ) be a bilinear form on V . We usually write (Ci · Cj) instead of
B(Ci, Cj). We are interested in the cases that look like the intersection form of a
collection of curves on a surface. That is, we impose the following:

97.1 Assumption. (Ci · Cj) ≥ 0 if i 6= j.

97.2 Notation. A vector
∑
aiCi is called semipositive if ai ≥ 0 for every i and

positive if ai > 0 for every i. Given two vectors A =
∑
aiCi and A′ =

∑
a′iCi,

write A ≤ A′ iff ai ≤ a′i for every i and A ≪ A′ iff ai < a′i for every i. Set
Supp(

∑
aiCi) := {Ci : ai 6= 0}.

We say that B( , ) is decomposable if we can write {1, . . . , n} = I ∪ J such
that (Ci · Cj) = 0 whenever i ∈ I and j ∈ J . Decomposable forms correspond to
disconnected sets of curves.

97.3 Lemma. Let B( , ) be an indecomposable bilinear form satisfying (97.1).
Assume that there is a positive vector W =

∑
wiCi such that (Ci ·W ) ≤ 0 for

every i with strict inequality for some i. Let Z be any vector such that Z 6≤ 0.
Then there is curve Cj such that (Cj ·Z) < 0 and Cj has positive coefficient in Z.

Proof. Choose the maximal a ∈ R+ such that azi ≤ wi for every i. Then∑
(wi − azi)Ci is semipositive; set I := {i : wi − azi > 0}. If I = ∅ then Z = 1

aW
and Cj exists by assumption. Otherwise I 6= ∅, and since B( , ) is indecomposable,
there is an index j such that wj − azj = 0 and (Cj · Ci) > 0 for some i ∈ I. Then

(
Cj ·

∑
(wi − azi)Ci

)
≥ (wi − azi)(Cj · Ci) > 0.

Thus a(Cj · Z) = (Cj ·W )− (Cj · (W − aZ)) < 0. �

97.4 Claim. Let B( , ) be bilinear form satisfying (97.1).

(1) B( , ) is negative definite iff there is a semipositive vector W =
∑
wiCi

such that (Ci ·W ) < 0 for every i.
(2) If B( , ) is indecomposable, then it is negative definite iff there is a

semipositive vector W =
∑
wiCi such that (Ci ·W ) ≤ 0 for every i and

strict inequality holds for some i.

Proof. Consider the function f(x1, . . . , xn) = (
∑
xiCi ·

∑
xiCi) on any cube

0 ≤ xi ≤ N . Since
∂f
∂xj

(Z) = 2(Cj · Z),

we see from (97.3) that f strictly increases as we move toward the origin parallel
to one of the coordinate axes. Thus f has a strict maximum at the origin and so
(Z · Z) < 0 for any semipositive vector Z 6= 0.

Any Z can be written as Z+−Z− where Z+, Z− are semipositive with disjoint
supports. Then

(Z · Z) = (Z+ · Z+) + (Z− · Z−)− 2(Z+ · Z−) ≤ (Z+ · Z+) + (Z− · Z−),

and we have seen that the last 2 terms are ≤ 0 with equality only if Z = 0.
The converse follows from the next, more general result. �

97.5 Claim. Let B( , ) be an indecomposable negative definite bilinear form
satisfying (97.1). Let Z =

∑
aiCi be a vector such that (Z · Cj) ≥ 0 for every j.

Then

(1) either Z = 0 (and so (Z · Cj) = 0 for every j),
(2) or −Z is positive (and (Z · Cj) > 0 for some j).
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Proof. Write Z = Z+ − Z− where Z+, Z− are semipositive with disjoint sup-
ports. If Z+ 6= 0 then (Z+ · Z+) < 0. Hence there is a Ci ⊂ SuppZ+ such that
(Ci · Z+) < 0. Ci is not in SuppZ−, so (Ci · Z−) ≥ 0 and so (Ci · Z) < 0, a
contradiction.

Finally, if ∅ 6= SuppZ− 6= ∪iCi, then there is a curve Ci such that Ci 6⊂
SuppZ− but (Ci ·Z−) > 0. Then (Ci ·Z) = −(Ci ·Z−) < 0, again a contradiction.

�

The following is a strengthening of the Grauert-Riemenschneider vanishing the-
orem for surfaces, using the method of [Lip69].

Theorem 98. Let X be a regular surface and f : X → Y a proper, generically
finite morphism with exceptional curves Ci such that ∪iCi is connected. Let L be
a line bundle on X and assume that there exist Q-divisors N and ∆X =

∑
diCi

such that

(1) L · Ci = (KX +N + ∆X) · Ci for every i,
(2) N · Ci ≥ 0 for every i, and
(3) ∆X satisfies one of the following

(a) 0 ≤ di < 1 ∀i,
(b) 0 < di ≤ 1 ∀i and dj 6= 1 for some j,
(c) 0 < di ≤ 1 ∀i and N · Cj > 0 for some j.

Then R1f∗L = 0.

Proof. Let Z =
∑s

i=1 riCi be an effective integral cycle. We prove by induction
on

∑
ri that

H1(Z,L ⊗OZ) = 0. (98.4)

Using the Theorem on Formal Functions, this implies (98).
Let Ci be an irreducible curve contained in SuppZ. Set Zi = Z − Ci and

consider the short exact sequence:

0→ OCi
⊗OX(−Zi) ∼= OX(−Zi)/OX(−Z)→ OZ → OZi

→ 0.

Tensoring with L we obtain

0→ OCi
⊗ L(−Zi)→ L⊗OZ → L⊗OZi

→ 0.

By induction on
∑
ri, H

1(Zi, L ⊗ OZi
) = 0. Thus it is enough to prove that

H1(Ci,OCi
⊗ L(−Zi)) = 0 for some i. This in turn would follow from

L · Ci − Zi · Ci > degωCi
= C2

i +KX · Ci,

which is equivalent to

N · Ci + (∆X − Z) · Ci > 0.

By assumption, N · Ci ≥ 0 always holds.
If Z 6≤ ∆X the we can apply (97.3) to Z − ∆X to obtain Ci ⊂ SuppZ such

that (∆X − Z) · Ci > 0. This settles case (3.a).
Thus assume that Z ≤ ∆X . If SuppZ = Supp ∆X then Z = ∆X . This can

happen only in case (3.c), but then N · Ci > 0 for some i and we are done.
Finally, if SuppZ 6= Supp ∆X then SuppZ and Supp(∆X − Z) intersect in

finitely many points and this intersection is nonempty in cases (3.b–c). Thus again
there is a Ci ⊂ SuppZ such that (∆X − Z) · Ci > 0. �
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Theorem 99 (Castelnuovo’s contractibility criterion). Let X be a regular sur-
face, f : X → Y a projective morphism and E ⊂ X an irreducible and reduced
curve such that (E ·KX) < 0 and f(E) is 0-dimensional.

Then there is a proper morphism to a regular pointed surface g : (E ⊂ X) →
(z ∈ Z) such that g : X \ E → Z \ {z} is an isomorphism.

Proof. Pick an f -very ample divisor H on X such that R1f∗OX(nH) = 0 for
n ≥ 1. Using the sequences

0→ OX(nH + iE)→ OX(nH + (i+ 1)E)→ OX(nH + (i+ 1)E)|E → 0

we see that

(1) |nH + iE| is very ample on X \ E for n, i ≥ 0,
(2) R1f∗OX(nH + iE) = 0 if ((nH + iE) · E) ≥ −1,
(3) f∗OX(nH+iE) ։ H0(E,OE((nH+iE)|E)) is onto if ((nH+iE)·E) ≥ 0,

and
(4) |nH + iE| is base point free if ((nH + iE) · E) ≥ 0.

By the adjunction formula, degωE = (E ·E)+(E ·KX) is the sum of 2 negative
numbers. Thus, by (100), OX(E)|E ∼= OX(KX)|E are negative generators of PicE.
In particular, for any line bundle L, (L · E)/(E · E) is an integer.

Set m = (H ·E)/(E · E). Then
(
(H +mE) · E

)
= 0,

(
(H + (m− 1)E) · E

)
=

−(E · E) and by (3) there is a curve D ∈ |H + (m − 1)E| which does not contain
E. Since OX(D)|E is a generator of PicE, we conclude that D is regular at D∩E.
By (4) we can choose D′ ∈ |H +mE| disjoint from E. From the sequence

0→ OX((n− 1)(H +mE) + E)→ OX(n(H +mE))→ OD(n(H +mE)|D)→ 0

we conclude that f∗OX(n(H + mE)) ։ f∗OD(n(H + mE)|D) is onto for n ≫ 1.
Moreover, n(H +mE)|D is very ample for n≫ 1.

Let g : X → Z be the morphism given by |n(H +mE)| for some n≫ 1. As we
saw,

(5) g contracts E to a point z,
(6) |n(H +mE)| is very ample on X \ E, and
(7) |n(H +mE)| is also very ample on D.

Thus g(D + (n− 1)D′) = g(E +D+ (n− 1)D′) ⊂ Z is a curve which is regular at
z. It is also a hyperplane section of Z since E + D + (n − 1)D′ ∈ |n(H + mE)|,
thus Z is regular at z. �

Lemma 100. Let k be a field and C a reduced and irreducible k-curve such that
H1(C,OC) = 0 and ωC is locally free. Then

(1) H1(C,L) = 0 for every line bundle L such that degL ≥ 0.
(2) Pic(C) ∼= Z[H ] where H denotes the positive generator.
(3) Furthermore,

(a) either ωC ∼= H−1 and C is isomorphic to a conic,
(b) or ωC ∼= H−2 and C is isomorphic to a line,
both in the projective plane over SpeckH

0(C,OC).

Proof. Since H1(C,OC) is the tangent space to Pic(C) (see [Mum66, Lect.24])
Pic(C) is reduced, hence isomorphic to Z. Let H be the positive generator.

Set K := H0(C,OC) and let r = deg[K : k]. Then χ(OC) = r and by Riemann-
Roch, χ(C,Hm) = m degH + r, hence h0(C,Hm) > 0 for m ≥ 0. From

0→ OC → Hm → (torsion sheaf)→ 0
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we obtain that H1(C,Hm) = 0 for m ≥ 0.
Since H1(C, ωC) 6= 0, this implies that ωC ∼= H−n for some n ≥ 1 and −r =

χ(C, ωC) = −n degH + r.
Since H0(C,H) and H1(C,H) are both K-vector spaces, we see that degH is

a multiple of r, say degH = dr. Thus 2r = ndr and so nd = 2, hence n ∈ {1, 2} as
claimed.

As an easy case of Castelnuovo-Mumford regularity (see, for instance [Laz04,
Sec.1.8]), we see that H is very ample, hence C is a line or a conic in the projective
plane over SpeckK. �

101 (Nodes). We say that a scheme S has a node at a point s ∈ S if its local
ring Os,S can be written as R/(f) where (R,m) is a regular local ring of dimension
2, f ∈ m2 and f is not a square in m2/m3.

101.1 Claim. Let (A, n) be a 1-dimensional local ring with residue field k and
normalization Ā. Let n̄ be the intersection of the maximal ideals of Ā. Assume that
(A, n) is a quotient of a regular local ring. Then (A, n) is nodal iff dimk

(
Ā/n̄

)
= 2

and n̄ ⊂ A.

Proof. If (A, n) is nodal then blowing up n gives the normalization and these
properties are clear.

Conversely, if dimk

(
Ā/n̄

)
= 2 then dimk

(
n̄r/n̄r+1

)
= 2 for every r. Let x, y ∈ n̄

be a k-basis of n̄/n̄2. Then x2, xy, y2 are k-linearly dependent in n̄2/n̄3. The
relation is not a perfect square since

(
n̄/n̄2

)
⊗Ā/n̄

(
n̄/n̄2

)
→

(
n̄2/n̄3

)
is an isomorphism.

Thus x, y generate n and and the resulting relation is not a square modulo n3. �

101.2 Deformation of nodes. Let (B′, n′) be a complete DVR with maximal
ideal n′ and (R,m) a complete, local B′-algebra such that R is flat over B′.

If B′/n′ is perfect, or, more generally, if R/m is separably generated over B′/n′,
then there is a complete DVR (B′, n′) ⊂ (B, n) ⊂ (R,m) such that R is a quotient
of a formal power series ring B[[x1, . . . , xr]] (cf. [Mat86, Sec.29]).

If R/nR has a node at m, then R has dimenson 2 and embedding dimension 3,
hence we can write

R ∼= B[[x, y]]/
(
G(x, y)

)

for some G ∈ B[[x, y]] that defines a node over B/n. That is, there is a quadratic
form q(x, y) := ax2 + bxy + cy2 with a, b, c ∈ B such that

(
∂q
∂x ,

∂q
∂y

)
= (x, y) and G− q(x, y) ∈ nB[[x, y]] + (x, y)3.

Assume now that there are coordinates (xr, yr) such that G−q(xr, yr) ∈ m
r(x, y)+

n. For suitable hx, hy ∈ mr, we can define new coordinates xr+1 := xr+hx, yr+1 :=
yr + hy such that G− q(xr+1, yr+1) ∈ mr+1(x, y)+n. We reapeat this until, at the
end, in suitable coordinates (x∞, y∞),

R ∼= B[[x∞, y∞]]/
(
ax2

∞ + bx∞y∞ + cy2
∞ + d

)
where a, b, c ∈ B and d ∈ n.

If charB/n 6= 2 then this can be further simplified to B[[x, y]]/
(
x2 + cy2 + d

)

where c ∈ B \ n and d ∈ n. If, in addition, B/n is algebraically closed, then to
B[[x, y]]/

(
xy + d

)
.

Finally, if B is a power series ring C[[z]] then we obtain the simplest form

R ∼= C[[x, y, z]]/(xy + zr) for some r ≥ 1.
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4. Rational pairs – JK and SK

One of the early encouraging results about canonical singularities was the, quite
subtle, proof by [Elk81] that they are rational (48).

The aim of this sections is two-fold. First, we give rather general results that
connect CM sheaves and rationality on X with various vanishing results on a reso-
lution of X ′ (111) and (113).

Then we develop a notion of rational pairs (117). This concept seems to capture
the rationality properties of dlt pairs (120).

Note that everything before (119) works in arbitrary characteristic.

Definition 102. Let A be a local ring and M an A-module. We say that M
is Cohen-Macaulay (or CM for short) if depthM = dimM , see [Mat86, Sec.17].

Let X be a noetherian scheme. As in (48), a quasi coherent sheaf F on X is
called Cohen-Macaulay (or CM) if Fx is a Cohen-Macaulay module over OX,x for
all closed points x ∈ SuppF . Note that if X is a closed subscheme of Y then F is
CM as an OX -sheaf iff it is CM as an OY -sheaf.

By Grothendieck’s vanishing theorem (see [Gro67, Sec.3] or [BH93, 3.5.7]) F
is CM at x if and only if

Hi
x(X,F) = 0 for all i 6= dimFx.

X is called CM if OX is. Finally, X is called Gorenstein if OX is CM and its
dualizing sheaf ωX is an invertible sheaf.

Lemma 103. If F is CM at x, then SuppF is equidimensional in a neighbor-
hood of x. In particular, if F is CM and SuppF is connected, then SuppF is
equidimensional.

Proof. Let dmin and dmax denote the smallest and largest dimension of the
components of SuppF containing x. Then by [BH93, 1.2.13],

depthFx ≤ dmin ≤ dmax = dimx SuppF = dimFx.

If Fx is CM, then the two sides of this inequality are equal, forcing that dmin =
dmax. �

Corollary 104. Let x ∈ X be a closed point and

0→ F ′ → F → F ′′ → 0

a sequence of coherent sheaves on X which is exact at x. Assume that SuppF ′ and
SuppF are equidimensional of dimension d in a neighborhood of x.

(1) If F ′ and F ′′ are CM at x, and dimF ′′
x = d, then F is also CM at x.

(2) If F and F ′′ are CM at x, and d − 1 ≤ dimF ′′
x ≤ d, then F ′ is also CM

at x.
(3) If F ′ and F are CM and dimF ′′

x < d, then F ′′ is also CM at x. It follows
that in this case dimF ′′

x = d− 1.

Proof. Follows from the long exact sequence of local cohomology at x and
(102). �
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CM criteria and the ω-dual.

Definition 105. [Har66, AK70, Con00] Let X be a scheme. If X admits a

dualizing complex, it is denoted by ω
�
X . Note that if X is of pure dimension n, the

dualizing sheaf of X is ωX : = h−n(ω
�
X). A relatively straightforward consequence

of the definition of the dualizing sheaf and basic properties of CM rings is that X

is CM if and only if ω
�
X ≃qis ωX [n].

Assumption 106. For the rest of this section we assume that every scheme
admits a dualizing complex and can be locally embedded as a closed subscheme
into a Gorenstein scheme. This holds, for instance, if X is of finite type over a field.

Definition 107. Let F be a coherent sheaf onX with equidimensional support
of dimension d = dimF . We define the ω-dual of F to be the coherent sheaf

d (F) := Ext−dX (F , ω
�
X) = h−d(RHomX(F , ω

�
X)).

Notice that if X is CM and F is locally free, then this agrees with the usual
dual of F twisted by the dualizing sheaf : d (F) ≃ Hom(F , ωX) ≃ F∗⊗ωX . In fact,
something similar holds in general as shown in the next lemma.

Lemma 108. Let F be a coherent sheaf on X with equidimensional support
of dimension d = dimF . Further let Z ⊆ X be a subscheme that contains the

support of F . Then d (F) ≃ Ext−dZ (F , ω
�
Z). In particular, if dimZ = d, then d (F) ≃

HomZ(F , ωZ).

Proof. Let ι : Z → X denote the embedding of Z intoX . Then by Grothendieck
duality and the definition of ωZ ,

d (F) ≃ Ext−dX (F , ω�
X) ≃ h−d(RHomX(F , ω�

X))

≃ h−d(RHomZ(F , ω�
Z)) ≃ Ext−dZ (F , ω�

Z).

If dimZ = d, then Ext−dZ (F , ω�
Z) ≃ HomZ(F , ωZ). Since F is coherent, this also

implies that so is d (F). �

Theorem 109. A sheaf F is CM at x ∈ X if and only if
(
RHomX(F , ω

�
X)

)
x
≃qis d (F)x[ d ].

Proof. We may obviously assume that F 6= 0. First we will show that F is
CM at x ∈ X if and only if

(
ExtiX(F , ω

�
X)

)
x

= 0

for all but a single value of i.
As the statement is local we may assume that X itself is embedded into a

Gorenstein scheme as a closed subscheme. Let j : X →֒ Y be such an embedding
and x ∈ X a closed point. Let N = dimY . Using first that j∗ is exact, then

Grothendieck duality and finally that ω
�
Y ≃qis ωY [N ] we obtain that

RHomX(F , ω�
X) ≃qis Rj∗RHomX(F , ω�

X)

≃qis RHomY (Rj∗F , ω
�
Y )

≃qis RHomY (F , ωY )[N ].
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Then taking cohomology and localizing at x gives that

(
Ext−iX (F , ω�

X)
)
x
≃

(
h−i(RHomX(F , ω�

X))
)
x
≃

(
h−i(Rj∗RHomX(F , ω�

X))
)
x

≃
(
h−i(RHomY (F , ω�

Y ))
)
x
≃

(
h−i(RHomY (F , ωY )[N ])

)
x

≃
(
ExtN−i

Y (F , ωY )
)
x
≃ ExtN−i

OY,x
(Fx, ωOY,x

).

Observe, that the right hand side term in this isomorphism is the dual of H i
x(Y,F)

by local duality [BH93, 3.5.9]. Now as X is closed in Y , F is CM at x over X if
and only if it is CM at x over Y , so by (102) F is CM at x (either over X or over

Y ) if and only if ExtN−i
OY,x

(Fx, ωOY,x
) = 0 for all but a single value of i. This proves

the desired statement.
Denote by d the value of i for which the above group is non-zero. Since [BH93,

3.5.11] implies that ExtN−dimFx

OY,x
(Fx, ωOY,x

) 6= 0, we obtain that d = dimFx. By

the definition of d (F) this completes the proof of the theorem. �

Corollary 110. Let F be a CM sheaf. Then d (F) is also CM, and

RHomX(F , ω
�
X)≃qis d (F)[d].

Furthermore, Supp d (F) = SuppF and d (d (F)) ≃ F .

A special case of this was proved in [KM98, 5.70]. The fact that it is indeed
a special case follows from (108).

Proof. As a direct consequence of (109) we get thatRHomX(F , ω�
X)≃qis d (F)[d].

Then, since ω
�
X is the dualizing complex,

RHom(d (F), ω
�
X)≃qis RHom(RHom(F , ω

�
X)[−d], ω

�
X)≃qis F [d].

This in turn implies that Supp d (F) = SuppF and d (d (F)) ≃ F , and, by (109 again,
that d (F) is CM. �

Theorem 111. Let f : X̃ → X be a proper morphism and G a CM sheaf with

equidimensional support of dimension d = dimG on X̃. Assume that there exist two
integers a, b ∈ Z such that Rif∗G = 0 for i 6= a and Rjf∗(d (G)) = 0 for j 6= b. Then
F := Raf∗G is a CM sheaf on X of dimension d+ a− b with d (F) ≃ Rbf∗(d (G)).

Proof. By assumption,

RHomX(F , ω
�
X)≃qisRHomX(Rf∗G[−a], ω

�
X) ≃

Rf∗RHom eX(G, ω
�
eX
)[a] ≃ Rf∗(d (G))[d + a] ≃ Rbf∗(d (G))[d + a− b].

Then the statement follows from Theorem 109. �

Corollary 112. Let f : X̃ → X be a proper morphism and G a CM sheaf

with equidimensional support of dimension d = dimG on X̃ such that Rif∗G = 0
and Rif∗(d (G)) = 0 for i > 0. Then F := f∗G is a CM sheaf on X of dimension d
with d (F) ≃ f∗(d (G)). �
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Vanishing theorems.

The following is a generalization of [Kov00, Thm.1].

Theorem 113. Let f : Y → X be a proper birational morphism of pure di-
mensional schemes and G a CM sheaf on Y . Assume that

(1) SuppG = Y ,
(2) Rif∗d (G) = 0 for i > 0, and
(3) The natural map ρ : f∗G → Rf∗G admits a left-inverse ρ′ : Rf∗G → f∗G,

that is, ρ′ ◦ ρ is the identity of f∗G.

Then f∗G is a CM sheaf on X and Rif∗G = 0 for i > 0.

(Strictly speaking the automorphism ρ′ ◦ ρ lives in the derived category of
coherent OX -modules, and so it is an auto-quasi-isomorphism, but since f∗G is a
sheaf, h0 of the derived category auto-quasi-isomorphism induces an honest sheaf
automorphism of f∗G.)

Proof. Consider the morphisms ρ and ρ′:

f∗G
ρ

//

≃

44
Rf∗G

ρ′
// f∗G,

and apply the functor RHom( , ω
�
X);

RHom(f∗G, ω
�
X) //

≃

11
RHom(Rf∗G, ω

�
X) // RHom(f∗G, ω

�
X).

Applying Grothendieck duality, (110) and (113.2) to the middle term yields that

RHomX(Rf∗G, ω
�
X)≃qisRf∗RHomY (G, ω

�
Y )≃qisRf∗d (G)[n]≃qis f∗d (G)[n].

(113.4)

This implies that the automorphism of hi
(
RHom(f∗G, ω

�
X)

)
induced by (113.4)

factors through 0 for i 6= d. Therefore

RHomX(f∗G, ω
�
X)≃qisH[n]

for some sheafH and we obtain that the induced automorphism ofH factors through
f∗(d (G)):

H
α

//

≃

44f∗(d (G))
β

// H.

Since f∗(d (G)) is torsion-free and both α and β are generically isomorphisms, it
follows that they are isomorphisms everywhere. In other words, we conclude that

RHomX(f∗G, ω
�
X)≃qisH[n] ≃ f∗d (G)[n]≃qisRf∗d (G)[n].

Finally consider the following sequence of isomorphisms:

f∗G ≃qisRHomX

(
RHomX(f∗G, ω

�
X), ω

�
X

)
≃qisRHomX

(
Rf∗d (G)[n], ω

�
X

)
≃qis

≃qisRf∗RHomY

(
d (G)[n], ω

�
Y

)
≃qis Rf∗RHomY

(
RHomY (G, ω

�
Y ), ω

�
Y

)
≃qisRf∗G.

It follows that Rif∗G = 0 for i > 0. Finally, the statement that f∗G is CM follows
from (112). �

We will only use the following special case of (113) in the sequel.
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Corollary 114. Let f : Y → X be a proper birational morphism and L an
invertible sheaf on Y . Assume that

(1) Y is Gorenstein of dimension n,
(2) Rif∗

(
ωY ⊗ L

)
= 0 for i > 0, and

(3) The natural map ρ : f∗L
−1 → Rf∗L

−1 admits a left-inverse ρ′ : Rf∗L
−1 →

f∗L−1, that is, ρ′ ◦ ρ is the identity of f∗L−1.

Then Rif∗L−1 = 0 for i > 0. �

It is through the condition (114.2) that the characteristic 0 assumption enters
into many of the applications. For the first 2 cases of the next vanishing theorem
see [KM98, 2.64]. The last case follows from this by a simple induction. A more
general version is in [Fuj08, ??].

Theorem 115. Let Y be a smooth variety over a field of characteristic 0,
f : Y → X a proper morphism and L a Z-divisor on Y . Assume that L ∼Q,f M+∆
where M is an f -nef Q-divisor and ∆ =

∑
aiDi an snc divisor with 0 ≤ ai ≤ 1 for

every i. Assume that one of the following holds:

(1) ai < 1 for every i and f is birational,
(2) ai < 1 for every i and M is f -big,
(3) ai ≤ 1 for every i and M is f -big on every lc center (130) of (X,∆).

Then Rif∗
(
ωY (L)

)
= 0 for every i > 0. �

Rational pairs.

Definition 116. Let (X,D) be a pair such thatD is an integral divisor. We say
that (X,D) is a normal pair (resp. seminormal pair) if there exists a log resolution
(resp. log semi-resolution (???)) f : (Y,DY ) → (X,D) such that the natural map
OX(−D)→ f∗OY (−DY ) is an isomorphism.

Definition 117. Let (X,D) be a pair such that D is a reduced integral divisor.
Then (X,D) is said to be a rational pair (resp. semirational pair) if there exists a
log resolution (resp. log semi-resolution) f : (Y,DY )→ (X,D) such that

(1) OX(−D) ≃ f∗OY (−DY ),
(2) Rif∗OY (−DY ) = 0 for i > 0, and
(3) Rif∗ωY (DY ) = 0 for i > 0.

We check in (119) that these properties hold for every log resolution (resp. log
semi-resolution).

Note that (X, ∅) is a rational pair if and only if X has rational singularities
according to the usual definition [KM98, 5.8].

Note that [ST08] defines a notion of rational singularities of pairs (X,D) such
that ⌊D⌋ = 0. We are, however, particularly interested in the case when D is an
integral divisor. Investigating the relationship between the two definitions is left to
the interested reader.

Lemma 118. Using the notation of (117) the conditions (117.1-3) are equivalent
to the following:

(1) OX(−D)≃qisRf∗OY (−DY ), and

(2) ωX(D)≃qisRHomX(OX(−D), ω
�
X)[n].
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Proof. Easily, (117.1-2) are equivalent to (118.1). Let n = dimX . Then
Grothendieck duality yields that

RHomX(OX(−D), ω
�
X) ≃qis RHomX(Rf∗OY (−DY ), ω

�
X)

≃qis Rf∗RHomY (OY (−DY ), ω
�
Y )≃qisRf∗ωY (DY ).

Thus Rif∗ωY (DY ) = 0 for i > 0 iff RHomX(OX(−D), ω
�
X) is quasi-isomorphic to

its degree −n cohomology, which is HomX(OX(−D), ωX) ∼= ωX(D). �

Lemma 119. Let X be a scheme of finite type over a field of characteristic
0. Then the definition of a pair being rational (resp. semirational) as in (117) is
independent of the log resolution chosen.

Proof. Let us check this first in case (Y,B) is an snc pair and g : (Z,A) →

(Y,B) a log resolution. Note that (118.2) is clear since ω
�
X = ωX [−n].

We check (118.1) using induction on dimX . Let B = B1 + B+ where B1 is
irreducible and denote the corresponding decomposition on Z by A = A1 + A+.
Notice that then (A1, A+|A1

)→ (B1, B+|B1
) is a log resolution. Then considering

the short exact sequence,

0→ OZ(−A+)→ OZ(−A)→ OB1
(−A|B1

)→ 0,

shows that snc pairs are rational by induction on the dimension of Y and the
number of components of B. Now if B′ ≤ B is any effective divisor, then (Y,B′) is
again snc, hence rational. Therefore the desired statement follows.

Next let (X,D) be any pair and fi : (Yi, Di) → (X,D) two log resolutions.
Then there exists an snc pair (Z,A) and common log resolutions gi : (Z,A) →
(Yi, Di) such that f1 ◦ g1 = f2 ◦ g2. Notice that (g1)

−1
∗ D1 = (g2)

−1
∗ D2, so one can

use the same A for both g1 and g2. Therefore

R(f1)∗OY1
(−D1) ≃qis R(f1)∗R(g1)∗OZ(−A)

≃qis R(f2)∗R(g2)∗OZ(−A)≃qisR(f2)∗OY2
(−D2).

By (118) this proves the desired statement. �

One of the main applications is the following, see [KM98, 5.25] and [Fuj08,
4.14].

Theorem 120. Let X be a scheme of finite type over a field of characteristic
0, D a Z-divisor and L a Q-Cartier Z-divisor. Assume that (X,∆) is dlt for some
effective Q-divisor ∆ and D ≤ ⌊∆⌋. Then

(1) OX is CM,
(2) OX(−D − L) is CM,
(3) ωX(D + L) is CM,
(4) if D + L is effective then OD+L is CM, and
(5) (X,D) is rational.

Proof. All the statements are local, so we may assume that X is quasi-
projective. Observe that (120.2) implies (120.1) by choosing D = L = 0 and (120.3)
by (110). (120.1) and (120.2) imply (120.4) using (104) for the exact sequence

0→ OX(−D − L))→ OX → OD+L → 0.

We prove (120.5) by checking the conditions of (114) with L = OY (−DY ). By
[KM98, 2.43] there exists an effective Q-divisor ∆′ such that ⌊∆′⌋ = 0 and (X,D+
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∆′) has dlt singularities. Replacing ∆ with D+∆′ we may assume that ⌊∆−D⌋ =
0.

By (???) there is a log resolution f : (Y,∆Y ) → (X,∆) such that every ex-
ceptional divisor has discrepancy > −1. That is, every exceptional divisor appears
in ∆Y with coefficient < 1. Thus we can write ∆Y = DY + A − B where A is
exceptional with ⌊A⌋ = 0 and B is exceptional and integral. Thus

B −DY ∼Q KY − f
∗(KX + ∆) +A.

Since f∗(KX + ∆) is numerically f -trivial and ⌊A⌋ = 0, Rif∗OY (B −DY ) = 0 for
i > 0 by [KM98, 2.68].

Now B is an effective exceptional divisor, so we obtain that the composition,

OX(−D) //

≃qis

11
Rf∗OY (−DY ) // Rf∗OY (B −DY )

≃qis
// f∗OY (B −DY )

is a quasi-isomorphism. This shows that (114.3) holds.
By construction, OY is f -big on all log canonical centers of (Y,DY ). It is also

obviously f -nef and f -big, hence we obtain by (115) that Rif∗ωY (DY ) = 0 for
i > 0, which is (114.2). Thus (114) implies that Rif∗OY (−DY ) = 0 for i > 0,
proving (120.5).

Next let f : (Y,DY ) → (X,D) be a log resolution and G := OY (−DY ). Then
d (G) = ωY (DY ) and so the L = 0 case of (120.2) follows from (112) and the
definition of rationality (117).

Finally, we reduce (120.2) to the case when L = 0. Let us start with the
additional assumption that mL ∼ 0 for some m > 0. Let π : X ′ → X be the corre-
sponding cyclic cover. Then (X ′, π∗(D)) is dlt (cf. [KM98, 5.20]) and OX(−D−L)
is a direct summand of π∗OX′(−π∗D). Thus OX(−D−L) is CM if OX′(−π∗D) is
by [KM98, 5.4] (cf. (112)). Now observe that the assumption mL ∼ 0 always holds
locally on X and being CM is a local property, so we may assume that L = 0. �

5. Adjunction

Adjunction is a classical method that relates the canonical class of a variety
and the canonical class of a divisor. It is a very useful tool that allows lifting
information from divisors to the ambient variety and facilitates induction on the
dimension.

Definition 121 (Poincaré residue map I.). Let X be a smooth variety over a
field k and S ⊂ X a smooth divisor. Let

RS : ωX(S)→ ωS

(or RX→S if the choice of X is not clear) denote the Poincaré residue map. It can
be defined in two equivalent ways.

(Local definition.) At a point s ∈ S ⊂ X choose local coordinates x1, . . . , xn
such that S = (x1 = 0). Then

dx1

x1
∧ dx2 ∧ · · · ∧ dxn

is a local generator of ωX(S) = ΩnX(S). Set

RS
(
f ·

dx1

x1
∧ dx2 ∧ · · · ∧ dxn

)
= f |S · dx2 ∧ · · · ∧ dxn. (121.1)
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It is easy to check that RS is independent of the local coordinates.
(Global definition.) View ωX and ωS as dualizing sheaves as in [Har77, III.7].

Then

ωS = Ext1X(OS , ωX).

By applying Hom( , ωX) to the exact sequence

0→ OX(−S)→ OX → OS → 0

we get a long exact sequence

HomX(OX , ωX)→ HomX(OX(−S), ωX)→ Ext1X(OS , ωX)→ Ext1X(OX , ωX)

and the last term is zero since OX is locally free. Thus we get the usual short exact
sequence

0→ ωX → ωX(S)
RS→ ωS → 0. (121.2)

Note that this sequence is exact wheneverX is CM and S ⊂ X has pure codimension
1. In particular, if ωX(S) is locally free near S then

ωX(S)|S = ωS . (121.3)

(Note that ωS can be locally free even if ωX(S) is not locally free. As an example,
take X = (xy − zt = 0) ⊂ A4 and S = (x = z = 0).) In many of our applications
KX + S and KS are not Cartier but m(KX + S) and mKS are Cartier for some
m > 0. By taking tensor powers, we get maps

R⊗m
S :

(
ωX(S)

)⊗m
→ ω⊗m

S ,

but we really would like to get a corresponding map between locally free sheaves

ω
[m]
X (mS) :=

((
ωX(S)

)⊗m)∗∗ ?
99K

(
ω⊗m
S

)∗∗

=: ω
[m]
S . (121.4)

As we saw in (87), no such map exists in general, not even if X is a normal surface.
One needs a correction term, called the different (87.3).

Our next aim is to extend the definition of the different (and of the Poincaré
residue map) to all dimensions. This does not seem always possible and in (122)
I tried to list the minimal set of assumptions. They are somewhat numerous, but
rather mild and satisfied in two important special cases:

– if X is normal and S′ → S is the normalization of a divisor,
– if (X,S + ∆) is lc or slc and S′ = S.

Definition 122 (Different II.). Consider schemes and divisors over a perfect
field k satisfying the following conditions.

(1) X is a reduced, pure dimensional scheme.
(2) S ⊂ X is a reduced subscheme of pure codimension 1 and X is smooth at

all generic points of S.
(3) D is a Q-divisor on X such that X is smooth at all generic points of D

and no irreducible component of S is contained in SuppD.

(4) For some m > 0, the rank 1 reflexive sheaf ω
[m]
X (mS +mD) is locally free

at all codimension 1 points of S.
(5) S′ is a reduced, pure dimensional scheme such that ωS′ is locally free in

codimension 1.
(6) π : S′ → S is a finite birational morphism (that is, finite and birational

over each irreducible component).
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By assumption, there is a closed subscheme Z ⊂ X of codimension 2 such that
S and X are both smooth at every point of S \ Z, π : (S′ \ π−1Z)→ (S \ Z) is an
isomorphism, ωS′ is locally free on S′ \ π−1Z and SuppD ∩ S ⊂ Z.

Thus the Poincaré residue map (121) gives an isomorphism

RS : ωX(S)|(S\Z)
∼= ω(S\Z).

Taking mth power gives an isomorphism

RmS : π∗ω
[m]
X (mS +mD)|(S′\π−1Z)

∼= ω
[m]
S′ |(S′\π−1Z).

By assumption, both ω
[m]
X (mS+mD)|S′ and ω

[m]
S′ are locally free in codimension 1

(on S′). Therefore

HomS′

(
π∗ω

[m]
X (mS +mD), ω

[m]
S′

)

is a rank 1 reflexive sheaf, locally free in codimension 1 and RmS defines a rational
section. Hence there is a (not necessarily effective) divisor DS′ which is Cartier in
codimension 1 such that

RmS′ : π∗ω
[m]
X (mS +mD) ∼= ω

[m]
S′

(
DS′

)
. (122.7)

We formally divide by m and define the different of D on S′ as the Q-divisor

DiffS′(D) := 1
mDS′ . (122.8)

We write the formula (122.7) in terms of Q-divisors as

(KX + S +D)|S′ ∼Q KS′ + DiffS′(D). (122.9)

As in (7), the formula (122.9) has the problem that it indicates only that the two
sides are Q-linearly equivalent, whereas (122.7) is a canonical isomorphism.

Note that if KX + S and D are both Q-Cartier, then DiffS′(0) is defined and

DiffS′(D) = DiffS′(0) +D|S , (122.10)

but in general the individual terms on the right do not make sense. If S itself is
Cartier, then (121.3) implies that DiffS′(0) = 0.

Proposition 123. Assume that (X,S + D) is lc and S′ → S is either the
identity or the normalization π : S̄ → S. Then:

(1) The different DiffS′(D) is defined and it is an effective divisor.
(2) Diff S̄(D) +KS̄/S = π∗ DiffS(D).

Proof. Note that the different involves only divisors on X and on S′, hence its
computation involves only points of codimension 2 on X . Therefore we can localize
at the generic point of a divisor E ⊂ S. Thus we may assume that dimX = 2. For
lc surfaces the different was computed in (87.3–5) and it is effective.

By (72), S is either smooth or has a node at the generic point of E and E 6⊂
SuppD. In the first case π is an isomorphism near E and (2) is clear. If S has a
node at the generic point of E then DiffS(D) = 0 and Diff S̄(D) is the sum of the
2 preimages of the node (87.5). Thus Diff S̄(D) = −KS̄/S , proving (2). �

124 (Different and discrepancies). Let (X,S+D) be a pair. Let f : Y → X be
any proper birational morphism and SY := f−1

∗ S. As in (7), writeKY +SY +DY ∼Q

f∗(KX + S +D) and assume that DiffS(D) and DiffSY
(DY ) are both defined. By
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(122.9),
(
KY + SY + DY

)
|SY
∼Q KSY

+ DiffSY
(DY ) and (KX + S + D)|S ∼Q

KS + DiffS(D). Thus

KSY
+ DiffSY

(DY ) ∼Q f∗
(
KS + DiffS(D)

)
. (124.1)

Note that by (123),

KS̄ + Diff S̄(D) = π∗
(
KS + DiffS(D)

)
,

thus it matters very little whether we work with S or S̄. It is somewhat easier to
use S̄.

If SY is smooth (or normal) then f |SY
: SY → S factors through the normaliza-

tion as fS : SY → S̄, and by (87.5) Diff S̄(D) = (fS)∗
(
DiffSY

(DY )
)
. In particular, if

f : Y → X is a log resolution, then DiffSY
(DY ) = DY |SY

and we have the simpler
formula

KSY
+DY |SY

∼Q f∗
S

(
KS̄ + Diff S̄(D)

)
and Diff S̄(D) = (fS)∗

(
DY |SY

)
. (124.2)

In order to get additional information, note that by further blowing up we may
assume that f−1

∗ D is disjoint from SY and if Ei is an exceptional divisor of f that
intersects SY then centerX Ei ⊂ S. Note, however, that if Ei is f -exceptional,
Ei ∩SY need not be fS-exceptional. For such a resolution, (7) and (124.2) give the
following.

Claim 124.3. Let f : Y → (X,S + D) be a (semi)resolution as above and
SY := f−1

∗ S the birational transform of S.

a) Let E ⊂ Y be an exceptional divisor and ED any irreducible component
of E ∩ SY . Then a

(
ED, S̄,Diff S̄(D)

)
= a(E,X, S +D).

b) Let F ⊂ SY be an exceptional divisor and FX the divisor obtained by
blowing up F ⊂ Y . Then a

(
F, S̄,Diff S̄(D)

)
= a(FX , X, S + D) and

centerS F = centerX FX .
c) Using the notation in (14),

totaldiscrep
(
S̄,Diff S̄(D)

)
=

= mini
{
a(Ei, X, S +D) : Ei is f -exceptional and Ei ∩ SY 6= ∅}. �

The condition Ei ∩ SY 6= ∅ in (124.3.c) is rather difficult to control since it
is not birational invariant. In order to get something that is visibly birational in
nature, we consider the following variants of the discrepancy (14).

Definition 124.4. Let (X,∆) be a pair and Z ⊂ X a closed subscheme. Define

discrep(center ⊂ Z,X,∆) := infE{a(E,X,∆) : centerX E ⊂ Z}, and
discrep(center∩Z 6= ∅, X,∆) := infE{a(E,X,∆) : centerX E ∩ Z 6= ∅},

where, in both cases, E runs through the set of all exceptional divisors over X .
Both of these have a natural totaldiscrep version.

Finally, if E is a set of divisors over X then inserting the conditions E 6∈ E
means that we take the infimum over all divisors that are not in E . For instance, if
[S] denotes the set of divisors corresponding to the irreducible components of some
S ⊂ X , then

totaldiscrep(E 6∈ [S], center∩S 6= ∅, X,∆)

denotes the infimum of all a(E,X,∆), where E runs through all divisors over X
whose center has nonempty intersection with S, except the irreducible components
of S.
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Using this notation, the above arguments established the following:

Lemma 125. Let X be a normal variety and S a reduced divisor on X. Let
D be an effective Q-divisor that has no irreducible components in common with S.
Assume that KX + S +D is Q-Cartier and let S̄ → S denote the normalization.

Then for every divisor ES over S̄ there is a divisor EX over X such that

a
(
EX , X, S +D

)
= a

(
ED, S̄,Diff S̄(D)

)
and centerX EX = centerS ED.

In particular,

totaldiscrep
(
S̄,Diff S̄(D)

)
≥ discrep(center ⊂ S,X, S +D

)

≥ totaldiscrep(E 6∈ [S], center∩S 6= ∅, X, S +D). �

Note that if totaldiscrep
(
S̄,Diff S̄(D)

)
> −1, then, by (72), S is normal in

codimension 1 and by (120), S itself is normal. Thus, in these cases, we do not
worry about the normalization and write (S,DiffS(D)) instead.

The above lemma (or similar results and conjectures) is frequently referred to
as adjunction if we assume something about X and obtain conclusions about S,
or inversion of adjunction if we assume something about S and obtain conclusions
about X .

The main theorem in the subject (126) asserts that the inequalities in (125)
are equalities. A special case of it was conjectured in [Sho92, 3.3] and extended to
the current form in [K+92, 17.3]. The hard part is to establish the converse: we
assume something about the lower dimensional pair

(
S,DiffS(D)

)
and we want to

conclude something about the higher dimensional pair
(
X,S +D

)
.

The surface case was proved in (87.5).
For applications the following two special cases are especially important.

(1) [K+92, 17.4] If totaldiscrep
(
S,DiffS(D)

)
> −1 then

totaldiscrep
(
E 6∈ [S], center∩S 6= ∅, X, S +D

)
> −1.

(2) [Kaw07] If totaldiscrep
(
S̄,Diff S̄(D)

)
≥ −1 then

totaldiscrep
(
center∩S 6= ∅, X, S +D

)
≥ −1.

Both of these have been proved without using any form of the MMP and these
have been important tools in higher dimensional birational geometry. The simplest
proof of (1) is in [KSC04, Sec.6.4].

It was also observed in [K+92, 17.9–12] that (126) is implied by the full MMP
for dlt pairs and this is essentially the proof that we present below. The only twist
is that currently the MMP is known for klt pairs but not for dlt pairs.

Theorem 126. Notation and assumptions as in (125). Then

totaldiscrep
(
S̄,Diff S̄(D)

)
= discrep

(
center ⊂ S,X, S +D

)

= totaldiscrep(E 6∈ [S], center∩S 6= ∅, X, S +D).

In particular,

(1) If
(
S,DiffS(D)

)
is canonical then

(
X,S + D

)
is canonical near S. (In

this case S has to be disjoint from D.)
(2) If

(
S,DiffS(D)

)
is klt then

(
X,S +D

)
is plt in a neighborhood of S.

(3) If
(
S̄,Diff S̄(D)

)
is lc then

(
X,S +D

)
is lc in a neighborhood of S.

Remark 127. The assumption that KX + S +D be Q-Cartier is quite impor-
tant. Let C be a smooth projective curve. By taking a cone over C × Pn, we get a
normal variety Xn+2 which contains a smooth divisor S ∼= An+1. There is only an
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isolated singular point at the vertex and, for n ≥ 1, DiffS(0) is the zero divisor. In
particular,

(
S,DiffS(0)

)
is even terminal. Nonetheless, if g(C) ≥ 2 then (X,S) is

not lc. In fact, (X,∆) is never lc, no matter how we choose a Q-divisor ∆.

As a first application of (126) we obtain that discrepancies behave well in flat
families.

Corollary 128. Let X be normal and D an effective Q-divisor on X such
that KX +D is Q-Cartier. Let f : X → B be a flat, proper morphism to a smooth
curve such that every irreducible component of D dominates B. Set Xb := f−1(b)
with normalization X̄b → Xb. Then

(1) b 7→ totaldiscrep
(
X̄b,DiffX̄b

(D|Xb
)
)

is lower semi continuous.

(2) The set
{
b ∈ B :

(
X̄b,DiffX̄b

(D|Xb
)
)

is klt (resp. lc)
}

is open in B.

(3) If D = 0 then
{
b ∈ B : Xb is canonical

}
is open in B.

Proof. Fix 0 ∈ B and set c = totaldiscrep
(
X0,DiffX̄0

(D)
)
. By (126), there is an

open neighborhoodX0 ⊂ U ⊂ X such that totaldiscrep(E 6∈ [X0], U,X0+D|U ) ≥ c.
Let f : Y → X be a log resolution of (X,X0 + D) and write KY + ∆ ∼Q

f∗(KX + X0 + D). For general b ∈ B, Xb is contained in U and, by Bertini’s
theorem, Yb := f−1(Xb)→ Xb is a log resolution of (Xb, D|Xb

) and KYb
+ ∆|Yb

∼Q

f∗(KXb
+D|Xb

). Thus totaldiscrep
(
X̄b,DiffX̄b

(D)
)
≥ c, proving (1) and (2). Note

that (Y, 0) is canonical iff totaldiscrep(Y, 0) = 0, hence (1) also implies (3). �

129 (Proof of (126)). Note that totaldiscrep
(
S̄,Diff S̄(D)

)
≤ 0 (since every

divisor on S̄ has discrepancy ≤ 0) and totaldiscrep(E 6∈ [S], X, S+D) ≤ 0 as shown
by blowing up a divisor on S along which S and X are smooth. Thus both sides in
(126) are in {−∞} ∪ [−1, 0].

By (125), totaldiscrep
(
S̄,Diff S̄(D)

)
≥ totaldiscrep(E 6∈ [S], X, S +D), thus if(

S̄,Diff S̄(D)
)

is not lc then (X,S + D) is also not lc and both sides of (126) are
−∞. Similarly, if totaldiscrep(E 6∈ [S], X, S +D) = 0, that is, when (X,S +D) is
canonical, then

(
S̄,Diff S̄(D)

)
is also canonical.

Let g : Y → (X,S+D) be a log resolution with exceptional divisors {Ei : i ∈ I}
such that g−1

∗ (S +D) is smooth. By replacing X with a suitable neighborhood of
S, we may assume that S ∩ centerX Ei 6= ∅ for every i. Set

CX := totaldiscrep(E 6∈ [S], center∩S 6= ∅, X, S +D).

By (124.3) we are done if there is an exceptional divisor, say E0, such that
a(E0, X, S +D) = CX and E0 ∩ f−1

∗ S 6= ∅. Unfortunately, the latter condition is
hard to control.

Thus, our strategy is to find another Q-factorial model g : Z → X and a g-
exceptional divisor E intersecting SZ := g−1

∗ S such that a(E,X, S + D) = CX .
Write KZ + SZ + ∆ ∼Q g∗(KX + S + D). Since Z is Q-factorial, E ∩ SZ = ∪Fi
has pure codimension 1. By (87.5), each Fi appears in DiffSZ

(∆) with coefficient
≥ −a(E,X, S +D). Thus, by (124),

a
(
Fi, S̄,Diff S̄(D)

)
≤ a(E,X, S +D) = CX ,

as required.
In order to find such a Z, assume first that (X,S +D) is lc and pick 0 ≥ −c >

CX (≥ −1) such that none of the exceptional divisors in a given log resolution f :
Y → X have discrepancy in the half open interval (CX ,−c

]
. Now apply (40) with

c(Ei) = c for every i to get g : Z := Xmc → X . By (40), the disrepancy of every
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g-exceptional divisor Ej ⊂ Z is CX , and their union equals Ex(g). Furthermore,
g : Z → X is not an isomorphism near S since discrep(Z, g−1

∗ (S +D) + c
∑
Ej) ≥

−c > CX . Thus at least one g-exceptional divisor Ej intersects g−1
∗ S.

The only thing that remains to show is that if (X,S + D) is not lc then(
S̄,Diff S̄(D)

)
is also not lc. If we apply the previous method with c = 1, we

get g : Z → X such that all g-exceptional divisors have disrepancy ≤ −1. This
only implies that

(
S̄,Diff S̄(D)

)
is not klt. Thus we would need to use (40) for some

c > 1, but this case does not hold in general. There are two ways to go around this
problem.

129.1. Special case. Assume first that S is Q-Cartier. (This is the only case
that we use in (128) and later in this book.)

Pick 0 < η ≪ 1 and apply (41) to (X, (1−η)S+D) with c = 1 to get g : Zη → X
with g-exceptional divisors Ei. Note that as we replace S by (1− η)S, we increase
the discrepancy of every exceptional divisor whose center is contained in S. Thus
we can choose η such that no g-exceptional divisor with center in S has discrepancy
−1 and some have discrepancy < −1.

Since S is Q-Cartier, so is g∗S, hence if g∗S 6= g−1
∗ S then there is a g-exceptional

divisor with center in S that intersects g−1
∗ S. We can complete the argument as

before.
Othwerise, g∗S = g−1

∗ S, hence g−1
∗ S intersects every g-exceptional divisor. By

(41.5) there is at least one g-exceptional divisor whose discrepancy is < −1 and we
are again done.

129.2. General case. The following method is due to Hacon. It can be viewed
as one of the simplest instances of the subtle lifting techniques due to [Siu98,

BCHM06, Siu08].
Let us start with a dlt model f : Y → X as in (41) with exceptional divisors

{Ei : i ∈ I}. Fix an ample divisor H on Y . By (39.2), for every m ∈ N there is a Q-
divisor ∆Y,m such that g−1

∗ (S+D)+
∑
Ei+

1
mH ∼Q g−1

∗ S+∆Y,m, (Y, (1−η)g−1
∗ S+

∆Y,m) is klt for η > 0 and there is a Q-factorial minimal model fm : Ym → X .
Let Sm (resp. Dm, Hm, Eim,∆m) denote the birational transform of S (resp.

D,H,Ei,∆Y,m) on Ym. Set Σm =: −
∑(

a(Ei, X, S + D) + 1
)
Eim. Thus Σm is

effective and its support consists of those divisors whose disrepancy is < −1. By
construction, the following hold:

(3)
(
Ym, Sm +Dm +

∑
Eim + 1

mHm

)
is lc and

(
Ym,∆m

)
is klt.

(4) KYm
+ Sm +Dm +

∑
Eim + 1

mHm ∼Q,fm
−Σm + 1

mHm and

(5) Dm +
∑
Eim + 1

mHm ∼Q ∆m.

Our earlier arguments apply if Sm meets Σm for some m. We end the proof by
deriving a contradiction if Sm ∩ Supp Σm = ∅ for every m.

Choose m0 such that m0a(Ei, X, S + D) are all integers. The exceptional
divisors of fm are indexed by a subset of I. Thus there is an infinite subset M ⊂
m0N such that the fm have the “same” exceptional divisors for m ∈ M . Thus,
for m ∈ M , the models Ym are isomorphic to each other in codimension 1 and so
the Σm are birational transforms of each other. In particular, for any a, b ∈ Z the
sheaves

(fm)∗OYm

(
aHm − ⌊bΣm⌋

)
are independent of m ∈M . (129.6)
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Next we compute the composite

ψm : (fm)∗OYm

(
Hm −mΣm)→ (fm)∗OYm

(
Hm)→ (fm)∗OSm

(
Hm|Sm

)

in two different ways.
First fix n and let m increase. The shaves (fn)∗OYn

(
Hn − mΣn) form a de-

creasing sequence of subsheaves of (fn)∗OYn

(
Hn

)
. Furthermore, if I denotes the

ideal sheaf of fn(Σn) (which is independent of n ∈M), then

(fn)∗OYn

(
Hn −mΣn) ⊂ I · (fn)∗OYn

(
Hn

)
for m≫ n.

By (129.6), (fn)∗OYn

(
Hn −mΣn) = (fm)∗OYm

(
Hm −mΣm), thus ψm is not sur-

jective for m≫ 1 since S ∩ fn(Σn) 6= ∅.
If Sm ∩ Supp Σm = ∅ then OYm

(
Hm − mΣm)

∣∣
Sm

= OSm

(
Hm|Sm

)
, hence we

have an exact sequence

0→ OYm

(
Hm −mΣm − Sm)→ OYm

(
Hm −mΣm)→ OSm

(Hm)→ 0.

By pushing it forward we get

(fm)∗OYm

(
Hm−mΣm)

ψm
−→ (fm)∗OSm

(
Hm|Sm

)
→ R1(fm)∗OYm

(
Hm−mΣm−Sm).

Using (3–5),

Hm −mΣm − Sm ∼Q KYm
+Dm +

∑
Eim + 1

mHm + (m− 1)
(
−Σm + 1

mHm

)
,

Dm+
∑
Eim + 1

mHm ∼Q ∆m, (Ym,∆m) is klt and −Σm+ 1
mHm is fm-nef. Hence,

by the vanishing theorem [KM98, 2.68], R1(fm)∗OYm

(
Hm − mΣm − Sm) = 0.

Thus ψm is surjective, a contradiction. �

6. Log canonical centers

For a lc pair (X,∆) it is especially interesting and useful to study exceptional
divisors with discrepancy −1. These divisors, and their centers on X play a crucial
role in the inductive treatment of lc pairs.

Definition 130. Let (X,∆) be a lc pair with ∆ not necessarily effective. We
say that an irreducible subvariety Z ⊂ X is a log canonical center or lc center of
(X,∆) if there is a divisor E overX such that a(E,X,∆) = −1 and centerX E = Z.

Let f : Y → X be a proper birational morphism and write KY + ∆Y ∼Q

f∗(KX + ∆) as in (7). Then, by (12), the lc centers of (X,∆) are exactly the
images of the lc centers of (Y,∆Y ).

If X is smooth and ∆ is snc, then the lc centers of (X,∆) are exactly the
irreducible components of the various intersections Di1 ∩ · · · ∩ Dis where the Dk

appear in ∆ with coefficient 1. This follows easily from (15), or see (132) for a more
general case.

In particular, there are only finitely many lc centers. Their union is called the
non-klt locus of (X,∆). It is denoted by nklt(X,∆). (Some authors call this the
“log canonical locus,” but this violates standard usage.)

131. Let X be a normal variety and ∆ a Q-divisor on X such that (X,∆) is
Q-Cartier. The set of points where X is smooth and ∆ is a snc divisor is open, let
us call it the snc locus of (X,∆) and denote it by snc(X,∆). Its complement is the
non-snc locus, denoted by non-snc(X,∆) (??).
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Recall that (X,∆) is called dlt if ∆ is effective and a(E,X,∆) > −1 for every
divisor E whose center on X is contained in non-snc(X,∆).

Write ∆ = D + ∆<1 where D = D1 + · · · + Dr = ⌊∆⌋ are the divisors that
appear in ∆ with coefficient = 1 and ∆<1 = ∆− ⌊∆⌋ are the divisors that appear
in ∆ with coefficient < 1.

Lc centers in the dlt case.

Theorem 132. [?, Sec.3.9] Let (X,∆) be a dlt pair and D1, . . . , Dr the irre-
ducible divisors that appear in ∆ with coefficient 1.

(1) The s-codimensional lc centers of (X,∆) are excatly the irreducible com-
ponents of the various intersections Di1 ∩· · ·∩Dis for some {i1, . . . , is} ⊂
{1, . . . , r}.

(2) Every irreducible component of Di1 ∩ · · · ∩ Dis is normal and of pure
codimension s.

Proof. Let E be a divisor over X such that a(E,X,∆) = −1 and Z =
centerX E. By localizing at the generic point of Z, we may assume that Z is a closed
point of X . By the dlt assumption, X is smooth at Z and ∆ is snc. If dimZ X = n,
there are n snc divisors B1, . . . , Bn through Z such that ∆ =

∑
aiBi for some

0 ≤ ai ≤ 1 (where we can ignore the components of ∆ that do not pass through Z).
Set ∆′ :=

∑
Bi. Then a(E,X,∆′) ≥ −1 by (9) and a(E,X,∆) > a(E,X,∆′) ≥ −1

by (10) unless ai = 1 for every i. Thus every Bi appears in ∆ with coefficient = 1
- hence is one of the Dj - and Z is an irreducible component of the intersection of
the corresponding Dj .

We use induction on s to prove the rest. We may assume that ij = j. By (72)
each Di is smooth in codimension 1 and S2 (even CM) by (120). Thus each Di is
normal. By (104), the support of ODi

+ ODj
/ODi+Dj

has pure codimension 2 in
X , hence Di ∩Dj has pure codimension 2 in X .

By (133)
(
Ds,DiffDs

(∆ − Ds)
)

is dlt. Thus, by induction, every irreducible
component of D1 ∩ · · · ∩Ds is normal, has pure codimension s and is an lc center
of

(
Ds,DiffDs

(∆−Ds)
)
. By (125), these are all lc centers of (X,∆) as well. �

Lemma 133. If (X,D+∆) is dlt and D is irreducible then (D,DiffD ∆) is also
dlt.

Proof. We saw at the beginning of the proof of (132.2) that D is normal.
Let Z ⊂ D be an lc center of (D,DiffD ∆). Then there is a divisor ED over

D whose center is Z such that a(ED, D,DiffD ∆) = −1. Thus, by (125) there is
a divisor EX over X whose center is Z such that a(EX , X,D + ∆) = −1. Since
(X,D+∆) is dlt this implies that (X,D+∆) is snc at the generic point of Z. Thus
DiffD ∆ = ∆|D and (D,DiffD ∆) is snc at the generic point of Z.

The converse fails, for instance for
(
A3, (z = 0) + (xy = zm)

)
. �

134 (Higher codimension Poincaré residue maps). First, let X be a smooth
variety and D1 + · · · +Dr a snc divisor on X . We can iterate the codimension 1
Poincaré residue maps (121) to obtain higher codimension Poincaré residue maps

RX→D1∩···∩Dr
: ωX(D1 + · · ·+Dr)|D1∩···∩Dr

∼= ωD1∩···∩Dr
(134.1)

defined by

RX→D1∩···∩Dr
:= RD1∩···∩Dr−1→D1∩···∩Dr

◦ · · · ◦ RD1→D1∩D2
◦RX→D1

.
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Note that these maps are, however, defined only up to sign. It is enough to check
this for 2 divisors. As a local model, take X := An and Di := (xi = 0). For any
1 ≤ r ≤ n, a generator of ωX(D1 + · · ·+Dr) is given by

σ :=
1

x1 · · ·xr
dx1 ∧ · · · ∧ dxn.

If we restrict first to D1 and then to D2, we get

RX→D1∩D2
(σ) =

1

x3 · · ·xr
dx3 ∧ · · · ∧ dxn.

If we restrict first to D2 and then to D1, then we need to interchange dx1 and dx2

first, hence we get

RX→D1∩D2
(σ) =

−1

x3 · · ·xr
dx3 ∧ · · · ∧ dxn.

Note also that, if W = D1 ∩ · · · ∩ Dr and Z = W ∩ Dr+1 ∩ · · · ∩ Ds then, by
construction,

RX→W = ±RW→Z ◦RX→W (134.2)

Assume next that X is a normal variety, D1, . . . , Dr ⊂ X integral divisors and
∆ a Q-divisor such that KX +

∑
Di + ∆ is Q-Cartier. Let Z0 ⊂ snc(X,

∑
Di) ∩

D1 ∩ · · · ∩Dr be an open subset and πZ : Z → X the normalization of its closure.
Assume that Z0 is disjoint from Supp ∆.

Choose m > 0 even such that m(KX +
∑
Di + ∆) is Cartier. We can apply

(134.1) to the snc locus of (X,D1 + · · ·+Dr) to obtain an isomorphism

RmX→Z0 : ω
[m]
X (m

∑
Di +m∆)|Z0

∼=
−→ ω

[m]
Z0 . (134.3)

As in (122), this gives a rational section of

HomZ

(
π∗
Zω

[m]
X (m

∑
Di +m∆), ω

[m]
Z

)

There is thus a unique Q-divisor Diff∗
Z ∆, called the different such that (134.3)

extends to an isomorphism

RmX→Z : ω
[m]
X (m

∑
Di +m∆)|Z

∼=
−→ ω

[m]
Z (m ·Diff∗

Z ∆). (134.4)

Note that this formula simultaneously defines RmX→Z and Diff∗
Z ∆ and that RmX→Z

is defined only for those values of m for which m(KX +
∑
Di + ∆) is Cartier.

Remark on the notation. In (87) the orginal DiffD is set up so that if ∆ = D+D′

then the restriction of KX + ∆ = KX + D + D′ to D is KD + DiffDD
′ = KD +

DiffD(∆−D). That is, we first remove D from ∆ and then take the different. For
higher codimension lc centers Z ⊂ X , it does not make sense to “first remove Z
from ∆.” Thus we need the new notation Diff∗. In the classical case, Diff∗

D ∆ =
DiffD(∆−D).

Applying this to the dlt case, we obtain the following

Proposition 135. Let (X,∆) be dlt and Z ⊂ X an lc center. Then Diff∗
Z ∆

is an effective Q-divisor such that

(1) (Z,Diff∗
Z ∆) is dlt,

(2) for m > 0 even such that m(KX + ∆) is Cartier, the Poincaré residue
map gives an isomorphism

RmX→Z : ω
[m]
X (m∆)|Z

∼=
−→ ω

[m]
Z (m ·Diff∗

Z ∆).
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(3) If W ⊂ Z is another lc center of (X,∆) then W is also an lc center of
(Z,Diff∗

Z ∆) and

Diff∗
W ∆ = Diff∗

W

(
Diff∗

Z ∆
)
.

Proof. By the definition, (134.4) and (134.2), (3) holds if Z is a divisor on X
and W a divisor on Z. Thus, by induction, (3) also holds whenever Z and W are
irreducible components of complete intersections of divisors in ⌊∆⌋. By (132) this
covers all cases. Now (3) and induction gives (1) and (2) was part of the definition
of Diff∗

Z ∆. �

P1-linked lc centers.

One of the difficulties of dealing with lc centers in the non-dlt case is that the
Poincaré residue map is more complicated. A possible solution found in [Kaw98,

Kol07b] is to define a Q-linear equivalence class JZ such that

RmX→Z : ω
[m]
X (m∆)|Z

∼=
−→ ω

[m]
Z (mJZ +mDiff∗

Z ∆).

(Note that Diff∗
Z ∆ is an actual divisor, whereas JZ is only a Q-linear equivalence

class. There does not seem to be any sensible way to pick a divisor corresponding to
JZ .) With this formulation, the two sides are not symmetric. It should be possible
to work out a symmetric variant, but this seems to involve some technical issues
about variations of mixed Hodge structures.

Here we present another approach to these problems. Instead of working di-
rectly on an lc center Z ⊂ X , we consider a dlt model f : (Y,∆Y )→ (X,∆) and a
minimal lc center ZY ⊂ Y that dominates Z. We then try to study Z through the
induced map f |ZY

: ZY → Z.
In general ZY is not unique, but, as we see next, the different ZY are closely

related to each other.

Definition 136. Let (X,∆) be a dlt pair and g : X → S a proper morphism.
Let Z1, Z2 ⊂ X be two lc centers. We say that Z1, Z2 are directly P1-linked if there
is an lc center W ⊂ X containing the Zi such that

(1) g(W ) = g(Z1) = g(Z2) and
(2) there is a variety V and a birational map

φ :
(
Z1, Z2,W

)
99K

(
0,∞,P1

)
× V

such that φ maps Z1 (resp. Z2) birationally to {0} × V (resp. {∞} × V ).

We say that Z1, Z2 ⊂ X are P1-linked if there is a sequence of lc centers Z ′
1, . . . , Z

′
m

such that Z ′
1 = Z1, Z

′
m = Z2 and Z ′

i is directly P1-linked to Z ′
i+1 for i = 1, . . . ,m−1

(or Z1 = Z2).

The following theorem plays an important role in the study of lc centers in the
non-dlt case.

Theorem 137. Let (X,∆) be dlt and f : X → S a proper morphism such that
KX + ∆ ∼Q,f 0. Let s ∈ S be a point such that f−1(s) is connected (as a k(s)-
scheme). Let Z ⊂ X be minimal (with respect to inclusion) among the lc centers
of (X,∆) such that s ∈ f(Z). Let W ⊂ X be an lc center of (X,∆) such that
s ∈ f(W ).

Then there is an lc center ZW ⊂W such that Z and ZW are P1-linked.
In particular, if Zi ⊂ X : i = 1, 2 are minimal among the lc centers of (X,∆)

such that s ∈ f(Zi), then f(Z1) = f(Z2) and the Zi are P1-linked.
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Note that we do not assume that f has connected fibers; this is useful over
non-closed fields. The following example illustrates some of the subtler aspects.

Example 138. Set X = A3 and D1, D2, D3 planes intersecting only at the
origin. Let π : B0X → X denote the blow-up of the origin with exceptional divisor
E. Then KB0X + E +

∑
D′
i ∼ π∗(KX +

∑
Di) where D′

i := π−1
∗ Di. There are 3

minimal lc centers over 0, given by pi := E ∩D′
i−1 ∩D

′
i+1 (with indexing modulo

3).
Assume now that we are over Q, D1 is defined over Q and Gal(Q̄/Q) inter-

changes D2, D3. Now there are 2 minimal lc centers over 0. One is p1 the other is
the irreducible Q-scheme p2 + p3. Thus p1 and p2 + p3 can not be P1-linked. This
is not a contradiction since (B0X,E+

∑
D′
i) is not dlt; the divisor D′

2 +D′
3 (which

is irreducible over Q) is not normal. We get a dlt model by blowing up the curve
D′

2 ∩D
′
3. Now there are 2 minimal lc centers over 0, both isomorphic to p2 + p3.

Similarly, if Gal(Q̄/Q) permutes the 3 planes, then we need to blow up all 3
intersections D′

i ∩D
′
j to get a dlt model. Over Q̄, there are 6 minimal lc centers

over 0. Over Q there is either only one (if Gal(Q̄/Q) acts on the planes as the
symmetric group S3) or two, both consisting of 3 conjugate points and isomorphic
as Q-schemes to each other (if Gal(Q̄/Q) permutes cyclically).

Proof. We use induction on dimX .
Write ⌊∆⌋ =

∑
Di. By passing to a strict étale neighborhood of s ∈ S we may

assume that each Di → Y has connected fiber over s and every lc center of (X,∆)
intersects f−1(s). (We need a strict étale neighborhood, that is, the residue field
at s is unchanged, to make sure that f−1(s) stays connected.)

Assume first that f−1(s) ∩
∑
Di is connected. By suitable indexing, we may

assume that Z ⊂ D1, W ⊂ Dr.
By induction, we can apply (137) to D1 → S with Z as Z and D1 ∩D2 as W .

We get that there is an lc center Z2 ⊂ W such that Z and Z2 are P1-linked. Note
that Z2 is an lc center of

(
D1,Diff∗

D1
(∆)

)
. By adjunction, it is also an lc center of

(X,∆) hence, by (126), an lc center of
(
D2,Diff∗

D2
(∆)

)
.

Next we apply (137) to D2 → S with Z2 as Z and D2∩D3 as W , and so on. At
the end we work on Dr → S with Zr as Z and W as W to get an lc center ZW ⊂W
such that Z and ZW are P1-linked. This proves the first claim if f−1(s) ∩

∑
Di is

connected.
If f−1(s)∩

∑
Di is disconnected, then by (141) Z and W are the only lc centers

and there is a variety V and a birational map φ : X 99K P1×V such that φ maps Z
(resp. W ) birationally to {0} × V (resp. {∞} × V ). Thus Z and W are P1-linked.

Assume finally that Z1, Z2 ⊂ X are minimal among the lc centers of (X,∆)
such that s ∈ f(Zi). By the first part, Z2 contains an lc center Z ′

2 that is P1-linked
to Z1. Since Z2 is minimal, Z ′

2 = Z2 and hence Z1 and Z2 are P1-linked. This
implies that f(Z1) = f(Z2). �

The following lemma can be viewed as a common generalization of the con-
nectedness theorems [K+92, 17.4] and [Kol07a, 9].

Lemma 139. Let X be a smooth variety, S a normal variety and f : X → S a
proper morphism with connected fibers. Write KX ∼f,Q A−B −∆ where

(1) A+B + ∆ is an snc divisor,
(2) A is an effective Z-divisor, B is a reduced Z-divisor,
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(3) B has no common irreducible components with A+ ∆,
(4) ⌊∆⌋ = 0 and
(5) f∗OX(A) is an invertible sheaf on S.

Then, for every s ∈ S,

(6) either every lc center of (X,B) that intersects f−1(s) also dominates S,
(7) or f−1(s)∩SuppB is connected. (This is always the case if f is birational.)

Proof. As before we may assume that every lc center of (X,B) intersects
f−1(s). Write B = Bh + Bv where every irreducible component of Bh dominates
S and Bv does not dominate S. By blowing up various lc centers of (X,Bh) if
necessary, we may assume that every lc center of (X,Bh) dominates S.

Choose any B0 ⊂ Bh, write B = B0 + B′
0 and let

∑
i≥1 Bi be the connected

components of B′
0. Consider the exact sequence

0→ OX(A−B′
0)→ OX(A)→

∑
i≥1OBi

(
A|Bi

)
→ 0

and its push-forward

OS ∼= f∗OX(A)
r
→

∑
i≥1f∗OBi

(
A|Bi

) δ
→ R1f∗OX(A−B′

0).

139.8 Claim. If B1 does no dominate S then B′
0 = B1.

Proof. Since A−B′
0 ∼f,Q KX+∆+B0, we see that R1f∗OX(A−B′

0) is torsion
free by (??). On the other hand, f∗OB1

(
A|B1

)
is a nonzero torsion sheaf over OS

which is therefore in ker δ. Thus the image of r contains f∗OB1

(
A|B1

)
, hence it can

be written as

im r = f∗OB1

(
A|B1

)
+M for some M ⊂

∑
i≥2f∗OBi

(
A|Bi

)
.

Since im r is a cyclic Os,S-sheaf, this implies that M = 0 (after possibly shrinking
S). Thus the maps f∗OX(A)→ f∗OBi

(
A|Bi

)
are zero for i ≥ 2.

On the other hand, the constant section of OX(A) restricts to a nonzero section
of OBi

(
A|Bi

)
, hence the maps f∗OX(A)→ f∗OBi

(
A|Bi

)
are all nonzero. �

Assume now that f−1(s) ∩ SuppB is disconnected and not every lc center
dominates S. In necessary, we can blow up such an lc center to reduce to the
case when an irreducible component of B does not dominate S. By passing to an
étale neighborhood of s ∈ S, we may assume that SuppB is disconnected. Write
B = D1 + D2 where the Di are disjoint and D1 contains a divisor that does not
dominate S. Apply (139.8) with B0 = (D1)h and B1 = (D1)v to conclude that
D2 = 0, a contradiction. �

Corollary 140. Let g : Y → S be a proper morphism with connected fibers
between normal varieties. Assume that (Y,∆) is lc and KY + ∆ ∼Q,g 0. Then, for
any s ∈ S, g−1(s) ∩ nklt(Y,∆) is

(1) either connected,
(2) or every lc center of (Y,∆) that intersects g−1(s) also dominates S.

Proof. Let π : X → Y be a log resolution of (Y,∆). Write π∗(KY + ∆) ∼Q

KX−A+B+∆X and note that the assumptions of (139) are satisfied by f := g◦π.
Note that

g−1(s) ∩ nklt(Y,∆) = π
(
f−1(s) ∩ SuppB

)
.
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Thus either f−1(s)∩B and hence g−1(s)∩nklt(Y,∆) are both connected, or every
lc center of (X,B) (equivalently, of (X,B + ∆X − A)) that intersects f−1(s) also
dominates S. By (130) the lc centers of (Y,∆) are exactly the images of the lc
centers of (X,B + ∆X −A); and this gives (2). �

Up to birational equivalence, there is only one way that the case (140.2) can
happen.

Lemma 141. (cf. [K+92, 12.3.1]) Let (X,∆) be a dlt pair defined over a field
k such that E := ⌊∆⌋ is disconnected. Then there is a k-variety V and a birational
map φ : X99KP1 × V such that φ maps E birationally to {0,∞}× V .

Proof. Write ∆ = E + ∆′ and run the (X,∆′)-MMP. This is possible by
[BCHM06, 1.3.2].

Every step is numerically KX + E + ∆′-trivial, hence E is ample on every
extremal ray. Therefore a connected component of E can never be contracted by
a birational contraction. By (139) E stays disconnected. At some point, we must
encounter a Fano-contraction p : (X∗,∆∗) → V where E∗ is ample on the general
fiber. By (140) every irreducible component of E∗ dominates S.

Since the relative Picard number is one, every irreducible component of E∗

is relatively ample. Thus a general fiber of p contains at least 2 disjoint ample
divisors. This is only possible if p has fiber dimension 1, the generic fiber is a
smooth rational curve and E∗ has 2 irreducible components which are sections of
p. Thus X∗ is birational to V ×P1. (For a more precise description of X∗ → V see
the proof of [KK09, 5.1].) �

Finally let us see what happens with lc centers for birational maps between dlt
pairs.

Lemma 142. Let (X,∆) be dlt and f : (Y,∆Y ) → (X,∆) a log resolution.
Let T ⊂ X be an lc center of (X,∆) and S ⊂ Y a minimal lc center of (Y,∆Y )
dominating T . Then f : S → T is birational.

Proof. It is enough to prove that Y → X is dominated by a Y ′ → X that
satisfies the conclusion. We construct such Y ′ → X in 2 steps.

As we see in (??.2), there is a log resolution g : X ′ → X of (X,∆) such that
every lc center of (X ′,∆′) maps birationally to an lc center of (X,∆). This reduces
us to the case when ∆ is a snc divisor. Then, by induction, it is sufficient to show
that (142) holds for one blow up pZ : BZX → X where Z ⊂ X has snc with ∆.

If T 6⊂ Z then pZ is an isomorphism over the generic point of T and the
birational trasnform of T is the only lc center of

(
BZX,∆BZX

)
that dominates T .

It remains to consider the case when T ⊂ Z. Let D1, . . . , Dr be the components
of ⌊∆⌋ such that T is an irreducible component ofD1∩· · ·∩Dr. Since Z has snc with
Supp ∆, we see that Z is the intersection of some of the Di, say Z = D1 ∩ · · · ∩Dj.

The exceptional divisor EZ of pZ is a Pj−1-bundle over Z and it appears in
∆BZX with coefficient 1. There are r different minimal lc centers that dominate Z,
obtained by intersecting EZ with j−1 of the birational transforms of theD1, . . . , Dj

and with the birational transforms of the Dj+1, . . . , Dr. Each of these centers maps
isomorphically to Z. (Note that this step could fail if ∆ is only nc but not snc.) �

7. Du Bois, by SK
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