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1, The theta functions associated to Jacobi varieties are known to
satisfy a considerable pumber of special identities, such as the Schottky
identity, various nonlinear partial differemntial equations, the trisecant
.idenﬁity and addition theorems studied by Fay. A preceding paper under the
same title was devoted to an examination of various forms of the trisecant
identity and éome of their implications, while this paperrwill consider the
addition theoréms, in both cases as expressed in terms of second-order theta
functions and thereby linearized,

The basic second-order theta functions on a Jacobi variety J can be
viewed as a singleAfunction taking its values in a compleéx vector space S ,
and the addition theorem as an expression of the restrictions of this
function to the subvarieties Wr-W} CJ in terms of the standard holomorphic
and meromorphic Abelian differentials on the underlying Riemann surface M
when WE'-Wr is parametrized by M2r . The main point here is that there
are natural filtrations of the vector space S associated to this expression,

first according to the index r and then more finely according to the

singularities of the Abelian differentials in this expression. The filtration

Research supported in part by the National 501enﬂe
Foundation, Grant IMS 8401273.



can be used to build the general addition theorem by successive extensions,
the individual terms of which can be written out quite simply and explicitly,
and to simplify the analysis of linear relations between the theta nullwerte
correspondingly; by itself it can be viewed as yet another set of invariants
associated to Riemann surfaces.

After a brief survey in section 2 to recall the background apnd establish
notation, the general form of the addition theorem and its associated fil-
tration will be derived in sections 3 and 4, This will be exémined in rather
more detail for small values of r in sections 5 and 6, in part to clarify
the general picture but primarily to provide some explicit results that will
be needed. The basic qua%tic formulas as related to the filtration will
be examined in section 7. The final section will be devoted to surfaces of
genus 3 and 4, to show the extent to which the filtration and the associated
qua{&ics are related to other natural invariants of Riemann surfaces. The
formulas are mumbered separately in separate sections, with the section

obviously indicated in references to formulas in another sectionm,



2, Let M be a compact Riemamnn surface of genus g >0, represented
as the quotient M = ﬁfl‘ of its universal covering surface M by the group
T of covering transformations, and fix a marking of M, a base point
zq € M and a canonical set of generators Al""’Ag s Bl""’Bg for T .
Associated to this marking afe a canonical basis ml,...,mg for the Abelian
differentials on M, and the corréspondiug Abelian integrals wj(z) = I:owj
the latter can be viewed as the coordinate functions of a holomorphic
mapping w:ﬁ —> gf , and the constant vectors (T)=w(Tz) - w(z)
associated to the elements T € T' are the periods of the Abelian integrals.
The pericds w(Aj) = bj € rf viewed as column vectors are the columns of
the g w g identity matrig 1= [61,...,6g} , and the periods m(Bj) =
= (?6j € t® are the columns of a g X g symmetric matrix () with positive
definite imaginary part., The mapping T € T —> w(I) € t® is a group
homomorphism w:T —= e , - the image of which is the lattice subgroup
L=w = (I,[})ZZg spanned by the columns of the g x 2g period matrix
(r,Q) . The quotient group J = é/L is a compact complex torus of
dimension g , the Jacobi variety associated to the Riemann surface M ,
Holeomorphic line buﬁdles over M can be described by factors of
automorphy for the action of the group T on M . 'The simplest line bundles

are the topologically trivial omes, all of which can be described by factors

of automorphy that are merely scalar representations of the group T . Indeed

to each vector t € t® associate the representation O, € Hom(T", E*) for
which pt(Aj) =1 and pt(Bj) = exp Z}Titj ; any topologically trivial
1ine bundle can be described by one of these factors of automorphy Pe »
and two such factors of automorphy Pe» Py are holomorphically equivalent
and hence describe the same line bundle precisely when t-s € L . This

leads to a rather concrete identification of the set of topologically trivial



line bundles over M with the Jacobi variety J of M , a more detailed
description of which can be found in [6]. The simplest line bundle that is
not topologically trivial is the point bundle ([ associated to the base

point =z the bundle of Chern class 1 with a holomorphic section that

0 2

vanishes to first order at the point z4 but has no other zeros on M ;

as in [8] this line bundle can be described by the factor of automorphy

- - _27i

for suitable vectors q €L ct® and retd , where r will be called
the Riemamn point. Any line bundle over M of Chern class n can be
described by a factor of automorphy of the form ptgn , where t € R
is uniquely determined up to a vector in the lattice subgroup L ; in
particular the line bundle associatéd to a divisor d==Ej vjzj of degree

n = Ejv can be described by the factor of automorphy pw(d)cn vhere

i
E
w(d) = Z.v.w(z L= .
(d) ZJJ(j)G
The line bundle g, over M associated to the divisor on M represen-
ted by a divisor 1l-a omn ¥ can thus be described by the factor of
automorphy (= pw(a)g : there is then a holomorphic function q, on M

vanishing to the first order at the points T'a ©M and nonzero otherwise,

and satisfying the functiomal equations

(D g, (T2) = oy (D {(T,2) q,(2)

for all T €T . The advantage in viewing the parameter a as varying
over M 1is that it is then possible to find such functions qa(z) = q(z, a)
that are holomorphic in a as well as in z , and that satisfy the skew-
symmetry condition gq(z,a) = -g(a,z) ; the resulting function on M ¥ M
is unique up to a constant factor. . This function was called the elementary

function for the marked Riemann surface M in [6], and is essentially



Klein's prime form [10], Since the elementary function ¢(z,a) has a

simple zero along the diagomal z=a it follows that alq(z,z) = aq(z,a)/az]&=

where the differentiation is in terms of any local coordinate system near =z

on ﬁ?; the differential form (z) = alq(z,z)dz is then holomorphic and

nowhere vanishing on M , so its integral u(z) = I: @ is a well defined
0

holomorphic function on M and can be used as a local coordinate system at
each point of ﬁ . This function is uniquely determined by the choice of

elementary function g(z,a) , hence is uniquely determined up to a constant
factor for a given marked Riemann surface, The resulting local coordinates

on ﬁ; will be called the canonical local coordinates for the marked Riemann

surface M , and will be used consistently throughout the remainder of the
discussion here, One advantage they have is that the élemeﬁtary function
clearly has a local power series expansion near the diagonal of the form
q(z,a) = (z-a) + (z-a)zqz(z,a) in terms of the canonical local coordinates;
actually in view of (3) it must be the case that qz(z,a) = -qz(a,z) , 80

that qz(a,a) = 0 and this expansion can hence be rewritten
3
{(3) q(z,a) = (z-a) + (z-a) q3(z,a)

where q3(z,a) is holomorphic near the diagonal and q3(z,a) = q3(a,z) .
Another and more important advantage they have is that the canonical bundle
takes a particularly simple form; indeed as shown in [8] when a coordinate
transformation T € " is expressed in terms of the canonical local
coordinates on ﬁf then dT(z)/dz = p_k(T)g(T,z)z-ZE where k=2({(r+q-¢)
and ej=¢njj/2 . That means that arbitrary derivatives in terms of the
canonical local coordinates of holomorphic sections of line bundles in the
standard form ptgn will again be holomorphic sections of line bundles in
the standard form, The canonical bundle itself is just #% = pkg23-2 , and

k will be called the canonical point.

# 0,



The canonical meromorphic Abelian differentials and their integrals
can be expressed quite simply and usefully in terms of the elementary function.
First for a fixed point a in M the function wa(z) = -aiog q(z,a)iaé is
the canonical integral of the second kind with a pole at a : it is a well
defined meromorphic function on g ; its sole singularities are simple
poles at the points Ta cM , inde.ed in terms of the canonical local
coordinate =z at z=a it has a Laurent expansion wa(z) = -(z-a%)-l-l----
near z=a ; and it satisfies the periodicity properties thaf:
wa(Ajz) = wa(z) and Wa(BJ.z) = wa(z) +271i w-_'i(a) . The canonical
differential of the second kind is wa(z) = w;(z)-dz = azlog q(z,a)/3zra * dz .
It is convenient to introduce the associated holomorphic function
Q(z,2) = a(z,2) W!(2) = q(z,8)° 3°log q(z,a)/3z3a = q(z,3) 3,3,4(z,a) -
- alq(z, a) qu(z, a) , which obviously satisfies the symmetry condition
Q(z,a) = Q(a, z) and is easily seen to have a Taylor expansion in terms of

the canonical local coordinate 2z at z=a of the form
4
(%) Qz,a) = 1+ (z-a)" Q,(z,a)

for scme holomorphic function Q4(z, 2) near the diagonal z=a ; in

particular Q(z,a)=1 . Next for a pair of fixed points a, ,a_ in M

and a simple arc & from a_ to a+ in ;{U the function

Wb(z) = log[q(z, a+)/q(z, 2 )] 4is a canonical integral of the third kind
associated to § : it 1s a well defined holomorphic function on ﬁnl‘a
for any choice of branch of the logarithm, hence is determined uniquely up
to an additive constant in 2171 Z ; it has an analytic continuation
through each interior point of the arc § , with logarithmic branch points
at the ends a , a_ ; and it satisfies the periodicity properties that

+
Wb(Ajz) = wb(z) and wb(sz) =Ws(z)+21'ri[wj(a+)-wj(a_)] . The canonical



differential of the third kind is wa(z) = wg(z)'dz , and has simple poles
at the points Ta+ with residue 41 and simple poles at the points Ta_
with residue -1 . It should be noted that the derivative wé(z) is
independent of the choice of a branch of the logarithm or of a particular

it thus depends only on the points a, ,8 5,2,

arc § from a_ to a_ ;

so will be denoted alternatively simply by w; a {z) . It is convenient
2 2

here also to introduce the associated holomorphic function

Qzsa,,8) = (z,8,) alz,a) W32

3;a(z,a) q(z,a,)
det

3,a(z,8)  a(z,a) ,

which obviously satisfies the skew-symmetry conditiom Q(z;q+,a_) =
= ~Q(z;a_,q+) and is easily seen to have a Taylor expansion in terms of

the canonical local coordinate =z at z= a_ of the form
2
(5)  Qza,al) = ala,a) + Qylzia,a) (2-3)

for some holomorphic fumction Qz(z;q+,a_) near the diagonal z= a ;

in particular Q(q+;q+,a_) = q(a+,a_) , and clearly Q(z;a,a) = 0 .



3. The theta series with characteristic [vIT] and period matrix ()
has the form

alv|Tlwy = T gS*P ZTTi[% t(n+v)ﬂ(n+\))+t(n+v)(w+7)] ,
necZ

where v, T, Ww & t% and n € z® will be viewed as column vectors or
g ¥ 1 matrices with the usual matrix operations. The second-order theta

series will be taken here to be of the form

8,[v 71w = [%v|w](2w;2m :

I+ is convenient to view the 28 second-order theta series that arise

as v varies over Zg/ZZg as comprising a vector-valued theta function
8011wy = {ByIvlTI(ws) = v € 25/ 22%)

and to set __QZ[O]'(w) = §,(W) so that alternatively __QZ[ZT](W) = 8,(wtm) .
The associated Riemannian theta function Qz{-r] (w(z)) 1is then a holomorphic
mapping from M to !'JG , where G = 26 , depending on an auxiliary
parameter T € £® . Each entry in this vector-valued function is a
holomorphic section of the line bundle pk_TQZg over M , as demonstrated

in [6] among other places; the whole vector-valued functiom can be viewed

(*B g Iy, where I is the trivial

as a section of the wvector bundle G

Pr-t
bundle of rank G = 2g, and that will be indicated by writing

L 5,Mu=] eTeL O B a1y .

The first aim here is to express this section suitably in terms of the
standard functions and forms over M for suitable parameters T .

_
For this purpose fix a divisor al+ “ee +an on M, where S PREETEN

represent n distinct points of the surface M . It follows from the

2 ' . R
Riemann-Roch theorem that dimI (M, @(%ga ,..gi )) = g+ 2n-1 ; the functions
1 n X



n .
2

wi(z) * || q(z,a ) for §3=1,...,8

i V=1 v

]

1,...,n-1

n
{(2) W; a (z) - \:D_lq(z,av)z for i

2 o

1]
Pt
-
-
=]

n
w; @ - ] q(z,a\’)2 for
M v=1

are evidently linearly independent holomorphic sections of the line bundle

ng ...Qz s hence form a basis for the vector space of all such sections.
il %n
As a notational convenience set u;(z) = w; a (z) and v'(z) = w; (z) ,
. )\_:n u

and for nommegative integers k, £,m for which k+{+m=n let

S(m, £,k) be the subset of the group S(n) of permutations of the indices
1,2,...,n consisting of those permutations 1 such that (1) <...<m(m) ,
rr(m-l-i) <,..<7(tg) , and mlm+L+1) <,.. <m(m+ L+ %) ., In these terms

there is the following general expansion,

Theorem 1. There are uniquely determined vectors

m, L,k ~ md,k
Q. =0

. . € E
]J.l,---, m,},l""}kz)]l"")]k p-}’\.’

[ e
that are meromorphic functions of the points a a €M and non-

120"

singular whenever a,,...,a Tepresent distinct points of M, that are
n

symmetric in the m indices p, in the ¢ indices } , and in the k

indices j and are such that

2

, -2
B Cetart ey e T atea)) | Tatqea)] [Thaeya)]

<V p<v

Lk
= T T T e Yoorv' (z_, )
m, 4,k TESm, £,K) 1, ] 3,3 Ty )Ny, Pt

W Crmen) T @ ), P g ) @)



where the first summation is extended over all those indices k2 O,

£ 20, n20 for which k+f+m=n and as usual

W(zl+. . .+zn - ay~... -an) = t&(zl)+. . .+w(zn) - w(al)-. . .-w(an) .

Proof. First suppose that 8,...,8, are fixed points of M representing
distinct points of M . It then follows from (1) that as a function of the

variable z:L e ﬁ alone

g_,_(w(z1+. otz -a - --a))

= §2[ Zw(zz+. . .+zn -aT... -an) ] (W(zl))

et , O o2 gt B )
: 1 n 2 n

since c{(zl,z\',):’2 € T (M, (P(gi }) as a functicen of =z
h",

1 the expression

2
(3) =82(W(Zl+- . -+z.n = 31" "o 'an)) 'Ev[ Q(zuy z\,) CI(au, a\’)]

belongs to TM , @1 gi ---gi 2] IG)) when viewed as a function just of
. n

2
is any basis for T®M , D(x Cq "'gi )) there are
1 n

1 € EG such that {3) takes the form

: 1

v. o, £, (z;) , and these vectors are holomorphic functions of the
1,71, 11 1

variables =z

Z; - If fl""’fg-l-Zn-l

uniquely determined vectors a

g1 eeer By - By symmetry {3) has the same properties as a

function of z, as it has as a function of zy , S0 that (3) and therefore

2

2
belongs to TM ,{H(® Ci v Cq

i
1 1
hence there are uniquely determined vectors oy 4 € EG such that
172
. £, (z,) and these vectors are holomorphic functions of the
T i

variables z,,...,z . The argument can be repeated, leading eventually

each vector a 8 IG)) as a function of
n

22;
a, = %

1

to the result that there are uniquely determined vectors a, 1 € I:G
1°""™n

guch that (3) takes the form
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and since (3) is symmetric in the variables =z 2y the vectors

177"
ail"‘in are symmetric in the indices 11,...,in . If the index range
1={i:151 s g+2n-1} 4is split into subranges I'= {1i:15 1 £ ¢} s
I" = {i:g+1S1Sg+n-1}, and I = {f:g+n S i< g+2n-1] then
for any individual term in the series (4) there will be say k of the
indices i;,...,1 inm the range I', L in the range I" , and m

in the range I'" where k+ f+m=n . There is a unique rearrangement

of the indices 1 ..,in s, grouping together first those m of the 1i's

e
in the range I"™ , then those £ in the raﬁge I" , and finally those
k 1in the range I' , but preserving the order of the indices within each

subgroup; thus

o, CF(z)f. (z) = q. . f (z Yreof, (z )
i.--171 1 im kn(l)"'xn(n) in(l) (1) kﬂ(n) ™{n)

where ﬂﬂ)(n;<ﬂm,ﬂ@+n<ﬁﬂ<ﬂ@+ﬁ,wm+£+n<“-ﬂﬂm,

are in I™ and so on. As the indices EERERPE S

and iﬂ(l)"'in(m) n

vary but k, £,m remain fixed the positions of those indices in I' ,

in I" , and in I'™ will vary over all the possibilities, hence w will

vary over the full subset S(m,%,k) , while for each m the individual
indices iﬂ(l)""’iw(m) will vary independently over I'" | and so on.
The result is precisely the formula in the statement of the theorem, when

the basis fl""’fn is taken in the form (2), thus concluding the proof.

The preceding is, of course, a purely formal result, but is a con-
venient formula on which to base a more detailed analysis., The next step

is to observe that the formula can be simplified by introducing a suitable

filtration of the wvector space EG , although admittedly some information



{ o

is lost in the process. The procedure just amounts to applying a suitable

G
projection operator P: L —> EG to the preceding result, and can be

viewed either as ignoring the kernel of P or as considering only those

particular second-order theta functions that arise as the image of P
G G X
Theorem 2, If P:C —> & 1is any linear mapping for which
P=82(W(zl+---+zn_1 - gl-- ---an_l)) =0

for all points a-_j €M then

Zj,
T I T 2

PH Fesedz ~g =aea- , , s

=2(W(z.1 z -3, a“))[u<vq(z“ zv)] L(\,q(au av)] [“N q(zu av)]

= Z x Z Pa

L’k 1
Lk mESQO,LON 5 "I

0, P ] 1 P
Ny e, Frn ¥ Cacer 1)) Crgny)
1 2 1 k
where the first summation is extended over all those indices k20, 420

for which k+A4=n .

Proof. The gist of this result is of course that Pam’ Lk _

WA, J
whenever m>0 , or equivalently that after applying P the expansion

0

of the function (3) in terms of the basis (2) does not actually involve any
of the n functions of the third kind in the list (2). Note that each of
the g+n-1 functions of the first two kinds in (2) vanishes at all of

the points ay5ees

has the value 1 at ap and vanishes at the remaining a's , The hypothesis

P while the p~-th function of the third kind in (2)

on the projection operator P implies that the function (3) vanishes at

all of the points ay;

z , 80 the expansion of (3) does only involve the

++s,8 when viewed as a function of any of the
variables Zyseers
g+n-1 functions of the first two kinds in (2) and the proof is thereby

concluded.



g bk

LEs Ay

The problem now is to analyze the coefficients in the

expansion just obtained,

Theorem 3, If P is as in the hypothesis of Theorem 2, then

Pao"e’sk = 0 whenever Ai =ki for 1175 i

Xl"')“!,jl"‘jk 1 2 2"

Proof, Multiply the formula of Theorem 2 by —er,v q(ﬁJ,qv)z to make
all the terms appearing there holomorphic, apply the differential operator
a/azl , and set z =48, . The only possibly nontrivial term that can arise
on the left-hand side is that in which the differentiatiom is applied to
the term sz(w(zi+---+zn-a1-----an)) , since it has a zero when z;=a;
as a consequence of the hypothesis on P ; thus if angz(uo = aPﬁz(wﬂ/awj

for short then the left-hand side becomes

(5) ija(al)angz(w(z2+---+zn-az-..._zn)) .
2
)] T et )] IT e8]
1<y 1 <F1<\) L<y

The only possibly nontrivial terms that can arise on the right-hand side

are those in which the deuble zero of the factor q(zl,al)2 at 2y = 81 is
cancelled, and that can only happen when q(zl,al)2 is multiplied by
ui(zl) = y' (zl) to cancel one of the zeros and the differentiation is

a.,a
1’"n
applied to the result to cancel the other zero; these are thus the terms

for which 221, m(l)=1, k1==1 , and in view of (2,5) the result is

0,8,k

© F T % R Pt ul () ) -
Lk mEO,LK) A5 I T™(2) (2 (n)
£21 w)=1 ;\1=1

[-[;r q(al,a\,)] 2{;[’_1 a(z .av)] .

H>1



Then to the identity (5) = (6) apply the differential operator B/Bzz and
set z,=a; . The left-hand side vanishes identically since (5) has the

double zero at =z arising from the factor q(al,zz)2 . The only

253

possibly nontrivial terms that can arise on the right-hand side are those
in which the double zero of the factor q(zz,al)2 at =z
and that can only happen when q(zz,al)2 is multiplied by

' = 1
ul(ZZ) w

na (zz) to cancel one of the zeros and the differentiation
1™

is applied to the result to cancel the other zero; these are thus the

terms for which £ =22, m(2)=2, l2=1 , and in view of {2.5) the

resulting identity is

0,4,k
z = Pak

Lk  TESO,LK) A
L22 mA)=1,m(2)=2 l1=k2-

<
H]
™

L, 3?0 iy

4 2
17T a(a )] T etz ,a )}
. [v e EiaY ey e &y

M>2
+ T + + .
The functions uks(zﬂ(B)) W (zﬂ( )) in the different summands appearing
r I3 r) » O’L’k
here are linearly independent, so all the coefficients Pak j
3

appearing here must vanish; thus

0,2,k
Pa,’ =0
ll)\3 ..1331...Jk

for all possible choices £ 2 2, k , 13,...,lk . The coefficients are
symmetric in the indices Kl,...,lz , and the same argument can, of course,
i

be applied similarly when setting Zy =2, 2, for i=1,...,n-1, and that

suffices for the proof.

When considering the expansion given in Theorem 2, it is convenient
to take the number £ of singular differentials as the order of a term

on the right-hand side, and to view the terms of maximal order L actually

2==a1 is cancelied,

14
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appearing nontrivially in that expansion as the dominant terms; the

dominant order is thus given by

05 bk

€)) L = max{4:P Y # 0 for some 1,j},

and depends both on the number n of variable points and the projection

operator P chosen. Since Pg’{"k= 0 unless all the \'s are distinct

s]
O,n,0

by Theorem 3, while 0 5\ £n-1, it is evident that Po, = 0 for

all indices ) ; thus whenever P 1is as in the hypothesis of Theorem 2,
then necessarily 0 £L £ n-1 . The coefficients of the dominant terms

have a particularly simple form, as follows,

Theorem 4, If P is as in the hypothesis of Theorem 2 and L is
the dominant order of the expansion given in that theorem, then there are

uniquely determined comstant vectors

PR i,--a,. ,j ,.Il,j
U*l’i]c - o 1 JI 'L+1 .n € PEG ~ Ep
P . p Jlri-l""’Jn

such that for any indices 1 £ Ul < vre < UL £ n-1 and complementary

<

indices 1 = < ree <'rn=n

Tl
(O, eae, K(O ), (T, 1)s0ee, k(T )
1 2 2 L 3 L+1 2 ’ n ' -
1):: a. v (al) wl'{n(an) s

Po:O’L’n-L _ . )
P Ty eeerdg 1

T, ]

where k(crl) = kc and so on, These vectors are symmetric in the indices
1
i , in the indices j , and in the indices k ; furthermore

1,3 L i,k
a’d = (-1)" a7,
p k ( )P K
and n il,---,iL_l,i)\,jl,ao.,ik_l,ll_l_l,.o-,in
zZa =0 ,

=L K%

15



Proof, Choose any L indices 1S 0y <t <o Sn, and let

1= TL—I—I oo <T € n be the complementary set of indices, so that the

o's and T's together comprise the indices 1,,..,n . Again multiply

the formula of Theorem 2 by -n-
£

W,V q(zp, av)2 to make all the terms

appearing there holomorphic, but then apply the differential operator

L
B /82 ee.Bz and set z_ = a . The only possibly nontrivial terms
Ul UL O'i D'i .

that can arise on the left-hand side are those in which all the differentiation
is applied to P=82(w(z1+---+z.n-al-----an)) , since it is clear from the

hypothesis on P that this function vanishes whenever Zy = ag for
i i

any i ; thus the left-hand side becomes

(®) Zywi (ag)eew) (ag )3,

. e W +¢-.+ - -y - -
1 %1 I %L £ o )

L 141 n Ltl n

- 4 2
1T qa, say )} [Tl- aa; , 2z Ja(ay 8 )] .
li<k 73 "k ik i 'k i 'k

[ 2
T atz, ,z. da(a, ,a )]
L <k 'rj T 'rj L
The only possibly nontrivial terms that can arise on the right-hand side

are those in which the double zero of each of the L factors q(zc s 3 )2

is cancelled, by multiplying by a suitable singular term u)'\ (zc ) to
3 o3

cancel one of the zeros and then differehtiating the result to cancel the
other zero. All except the dominant terms A=L therefore automatically
vanish, since the others do not have encugh singular terms to allow such
cancellation, and among the dominant terms the only ones that can possibly
be nontrivial are those for which (1) = 0.5 e e TT(L) =0

m(L+1) =TL+1""’Tr(n) =T - There are, however, two separate cases that

must then be considered, (i) If UL <n then ui (zg) has a pole at
B I



zgj:ggj only when }Lj =Uj for each j . In view of (2.5), the right-
hand side becomes

(9 g, Pag’g"n'l‘ Wiz, deeewl (z0)
’ Jl L+1 N,

.L-lT ala; ,a, )] [Tr q(zT > Tk]z'

ifk i %

2
]T a2 192 sz)]

(ii) If o =n then for 1< jS£L-1 as before u (z ) has a pole
J J
= N = - ! — !
at 25 a5 . only when }\j Uj ; but uk(zn) LA (zn) has a pole
] ] ATn
at z =a for any value of X\, although with residue ~1, so in view

of (2.5) and this change of sign in the residue the right-hand side

becomes
0,L,n-L
(10) -, . Pa wi (z_  )eeew; (z.)°
A3 Ul"'°h M 3pttip 3 T oo "n

2 2
' [ -l-l— q(acr ’aU )] [Tr CI(ZT ’a'T )] .
ik j 'k

ik j Tk
[II ( Ya( )]2
. qla_ ,a gla_ ,2 .
. . T g’ T
i,k i 'k i k

After cancelling out those elementary functions that appear on both

sides, the equation (8)=(9) takes the form

(11) E,W‘_ (a )".W', (a )a_ . PE (W(z Fosef=z -a —eesmg ))-
37370 TR it T T L Tn

2
- T latz, ,z_ dala,a. )]
U i P R A

0,L,n-L 2
Z Po w, (z Yeeew!  (z_ ) —]T q(z,. ,a_ ) .
g,3 Jl T. J T i,k Tj 'rk



The expression Pag??’n_L depends on the choice of the points Byseees8
2

and it is clear from (11) that it belongs to T'(M ,OD(x & IP)) as a

function of any one of the variables , where p 1is the

’.C-,ao_

8
L

1

dimension of the image of the projection P ; this expression has the

same property as a function of any one of the variables dr  yeeesBo
L+l n

although that is perhaps not quite so obvious. For a proof, note that
the result of applying the differential operator BL/awj "°awj to the
1 L

functional equation satisfied by QZ[T](W) when the variable w is
translated by some lattice vector in L 1is a rather complicated formula,

but one that can be viewed as the assertion that aj ool QZ[T](WD
L

satisfies the same functional equations as does §Z[T](w) modulo lower-

order derivatives; consequently Bj eej 22[7](w(z)) belongs to the
1 L

vector space Tﬂﬂ,@)(pk_ngg 2 IG)) modulo lower-order derivatives, in the
obvious sense, and the corresponding result holds upon applying the
projection operator P . Iﬁ particular, in analogy with (3) the ex-
pression on the left-hand side of (11) belongs to the vector space

2 2 . .
T ,GQ(?LQZ(T 1)'--Cz(7n) 8 IP)) as a function of each variable

a. 1,...,&T , since as already observed at the beginning cf the proof
L+ n :

of this theorem all the lower-order derivatives vanish at points of the

form -w(zT eeotz, aL  mree-ag } ; here Z(Ti) has been used in
L+l n 141 n

place of zZ, for typographical simpliecity. It then follows from the
i
equation (11) that the expression Pug’?’n L viewed as a function of
. _ A

any of the variables 8 seersfn is a meromorphic function with
1+1 n

singularities at most double poles at the points 2z 1,...,zT and
L+ n

transforms as a section of the bundle Hoa IP ; but since this expression

1Y



does not depend at all on the points ZTL+1?""ZT it must actually be
n
holomorphic, hence must belong to the vector space T(M,®(x B Ip)) as

desired. Altogether then it is evident that there are constant vectors

k kl,.‘.. --.’kn

pG'CS,j - padl""’cL’jl""’jn-L € PmG = e’
such that
(12) mg:TJf’“'L =5, o 1; P G, (a)
Upon substituting this into (11), replacing ji by kU. = k(ci) on the
i
left-hand side, comparing the coefficients of w! (a )"'W (a ) on the

i(op) ¥o,? " Mi(oy

two sides of the resulting equation, and then writing z; in place of

Z and a, in place of a. there results the identity
i i

2
(13) Bk(cl) K (T) PO, (w(z  yteeotz aL+1-----an))'1;|_<!-k q(zj,zk)q(aj,ak)]

o !
5epP

(Z‘ml)"""ﬁn (2%, k('rL_H_) (aL+1)"'“1'<(Tn) (a)-

- Tl atz,,a0?
i,k 9 b

which holds for any fixed indices k_ =k(0.),...,k
01 1 L

UL <n . The right-hand side involves both these fixed indices and the

indices of summation kTL+1= k(TL+1), .. .,an= k(Tn) , a notation that

=k(q) , for which

might at first seem confusing but on second thought should clearly be a
convenient way of indicating which of the superscripts kl,...,kn in’
cck . are fixed and which are variable indices of summation; since the

P T,]

k .
extent to which the ccefficients pac F are symmetric in k has not yet
2

been determined the exact location of any index must be kepf: in mind, This

formula is particularly simple when Ui = i ; setting



kl,‘-. L] -« ’k kl,. « = 8 ¢ = I’kn

(14) o o= . .
P ‘]L+1""’Jn P 1:-'-JLJJH1:H-:JU

for short, it becomes the identity

| 2
(15) a kL 8, (w(zy yHee bz -ay  =eee-a ) rTT q(z k)q(aj,ak)]

j <k

1,00."% k[l"]‘l,-..’ w'

= % '
P JL‘"‘I,...’J JL+1

2
. ;ﬂ; 1z a)” .

It is clear from the symmetries of the left-hand side of (15} that the
vectors (14) are symmetric in the indices kl,...,kL , in the indices
kL+1’°"’kn , and in the indices jL+1""’jn ; furthermore since
akl---kLsz(wo is an even function of w if L is even and an odd
function of w if L 1is odd , then interchanging the variables z; with
the wvariables a; shows that the vector (14) is multiplied by (-I)L
when ji and ki are interchanged simultaneously for all subscripts

141 £i £€n . Upon comparing (13) and (15) and keeping these
symmetries in mind it is also. evident that.

16 kl, s e o= s ® o,kn - ak(cl);--O,k(GL),k(THI))---,k(Tn)
(16) = SUUUDI- 200 TR e - PR
1’ A i 773 g ’“n 1+1 n

Turning back now to case (ii) in which o,=1n, and using (12) to rewrite
the equation (8)=(10) in the same way that the equation (8)=(9) has just
been rewritten, leads to the identity

2
Pp(o,) ko) P2 Pt o))" il [q(z k)‘“aj’ak):l

i<k
kl,. L] . - - - L] L] -,k

n
= - I ( )"'W (z )+
J,k(T N\ p Opseees0p_ 1,X,31,...,J 1 Jl 2141 A

¥ an oyl . 2
() G MRery) ) ;[I{q(zj,ak) -

(?D+1).'-win(z“)wéL+1(aL+l}..'win(a“).

20



He;e oL =n, and upon taking g, = 1, ++050; .1 =L-1 and hence

TL+1==L,...,Thf=n-l » and comparing the result with (15) it follows

readily that

aklj‘..}l(la'l,l&l,.-.’kn-].: -n;:]- kl,n * * 8 s« & @ o,kn
P jl""’j‘n-L =L 1’...’L-1’l’j1’".’jn-L

When'rewritten using (14) this clearly leads to the last symmetry
relation in the statement of the theorem, and thereby concludes the proof.
A particularly interesting auxiliary result obtained in the course of

the proof of the preceding proposition is (15), which can be viewed as

ij
k

derivatives of second-order theta functions, or equivalently as an

a reasonably explicit determination of the constants pa in terms of

indication of the independent significance of these constants.



4, The symmetry conditions described in Theorem 4 have some useful
formal consequences that will be derived next, in a slight digression.

The principal result of interest here can be stated as follows.

Lemma 1. If .. =Y. . . are ¢ t. ts that
me— Xl,} X11,...,1n ;Jl,...,Jn onstants a

are symmetric in the indices i and in the indices j separately
and that satisfy

1
M Il . . . =0

1 11""’111-1’:'}\.,Jl"..’jk-l"]k'l'l’-'.’:lﬂ'l‘l

for all indices then

Lipeensl gsdgseaesdgg

n
2 .. = (-1 cLs .
@ X%,5= CD Xy

Proof, To simplify the typography set

(1 2-cemgmileeo2n) = %, . .

1t2 i i tppyr et

It will be demonstrated by induction on m that

&) (l'°;n-m n-mtlee+n j otle--2n)

= - m »h Y] J eew 3 . T e 1 P
= (-1) ?(1 n-m jyetcj sommbleeen §o,oeecj) o,

where the summation is extended over all those permutations j.,...,jJ

o 1 n

of the indices ntl,...,2n such that Jl< R T and Sy <o < i, s
or equivalently is extended over the (;i) distinct ways of splitting

the indices ntl,...,2n into a subset jl""’jm of m of them

and the complementary subset jm+1,...,jn of the remaining n-m of

them, The case m=0 is of course trivial, while the case m=1

is just the hypothesis (1). For the inductive step,'assume that (3)

has been established for some m 2 1, By a simple reordering of the

indices that formula can be rewritten



(l1***n-m-1An-m* "ﬁ" ‘n ; trtles - 2n})

m 3 - ...A-.a 3 * 0 s
= ('1) § (1-"n-m-1lj1-°-Jm,n-m A n J‘IIH']. Jn)

for n-m S A S$n, where ?L signifies that the index X\ 1is to be
omitted at that point. Add these equations together for the mtl
possible values of X ; the additional symmetry hypothesis implies
that the left-hand sides are all identical, while on the right-hand
side for any fixed permutation 'J the case m=1 can be applied to

the summation over A and it follows that

(o+1) (1 - *n-m-1 n-m+++n ; wFl.--2n)

m m '] ] . -u-A--- 3 YR
(- ¥ ¥ (1.-.n-m-1 3y "Jm)\ ;N-mes+ A+ n i1 _'[u)
J A=n~m

i

m+1 n A
- 2 cas 115 1 easd ] * -l » & 3 cesn ] sea
-1 § \J=m+1(1 n-m-1 3370t dy S RTRITIR Attty Jn) -

There are {n-m) (:i)z (m+1) (n::l) summands on the right-hand side,
corresponding to mtl copies of the summation over the (nrtl-ll) ways
of splitting the indices ntl,..,,2n into a subset of mtl of them
and the complementary subset, and that leads to the case (mtl) of
(3) and thereby concludes the inductive step. The formula {(3) thus .
holds for all values 0 Sm £ n ; but the desired result (2) is just

the special case m=n s, and the proof is thereby concluded.

This purely formal observation can then be used to complement the

results of Theorem 4 as follows,

Theorem 5, With the hypothesis and notation as in Theorem 4, the

dominant order L is subject to the bound

2L n .
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i,3
k

and interchange of the sets i,j,k if L is even and skew-symmetric if

In the extreme case that 2ZL=n the vectors pa are symmetric under

L 1is odd.

Proof. To demonstrate the second assertion of the theorem, if

2L=n then the sets of indices 1i,j,k each contain the same number

L=n-L of indices, It follows from Theorem & that pai’i==(-l)mei’§ ’

and from the other symmetry properties of that theorem and Lemma 1 that
i,j _
p" K

in the sets 1i,j,k according to the parity of L as desired. Then for

L 3.4
(-1) paJ’; ; thus these vectors are symmetric or skew~symmetric

the first assertion of the theorem suppose to the contrary that 2L >n .,
Write i= (il,...,iL)= (i',i") where i' consists of the first 2ZL-n

indices and i" of the last n-L indices. It is clear that the vectors

] satisfy the hypotheses of Lemma 1 in the indices 1i",j for any

k

fixed indices i',k , and it therefore follows from that lemma that

(24
P

i, _ . n-L i'j,i" .
ok (-1) pa Kk consequently
Lysevestpdpygoeesdy

Pa kL-l-l""’kn

H

n-L ail’""iZL-n’JL+l""’Jn Lotenmt1?ee2 iy

» kparre + e oK

n-L ai2""’iZL-n’jL+1""’Jn’1l’12L-n+1’""lL

(-1

= (-1)
ysevesip odiirodop pprreeeripsdpgpo ey
= a
P k-L'l'l" - . "kﬂ

Ittt d s dn

) Pa kL-l-l" .o ’kn

The vectors pal’i are thus symmetric in il,jL+1 , and since they are also

symmetric in the indices i and in the indices j separately they must be



25

fully symmetric in the =n indices (4,j) . However the last symmetry of

i,]
k

but that contradicts the assumption that L is the dominant order, the

Theorem 4 in this case implies that Pa = 0 for all indices 1i,j,k ;

order of the highest nontrivial temms in the expansion of Theorem 2, so it °

cannot be the case that 2L > n and the proof is thereby concluded.



5. In the simplest case, that in which n=1, Theorem 1 just asserts

that
-2 _ L,0,0 , 0,0,1 ,
L 22(“’(2 a))Q(Z,B) =Q Wa(Z) + EJ o i Wj(z)
for some vectors al,0,0 s ao’o’} depending holomorphically on the

point a . These vectors can be determined quite explicitly by a direct
analysis, the result being the following well known and important formula

that has been discussed in [3], [2], and [11] among other places.
Corollary 1., For any points z,a €M,

8,(w(z-2)) = 8,(0)+Q(z,8) + 3 =z 3, 2,0 alz, 0 Wi (vl

Proof., First multiply (1) by q(z,a)2 so that all terms appearing

are holomorphic functions of z and a . Setting z=a in the resulting

1,0,0 _

formula leads immediately to the result that o 22(0) , in view

of (2.4). Next note from the symmetry of this formula in the variables

0,0,1

z and a that o ETM, O 8 IG)) as a function of a ; hence

3
0,0,1 k _, k . .

o’ = Zk o, w (a) for some vectors g, independent of a . Applying

i ik j
the differential operator az/BzBa and setting z=a readily leads to

) .
the result that ZaF = 378, (w) /ow_ dw, | = 3.,8,(0) , and thereby
i =2 ik w0 jk=2

concludes the proof.

Let S1 E;EG be the linear subspace spamned by the values gz(w(z-a))

as 2z and a vary independently over M . It is evident from Corollary 1

that S1 can be described equivalently as the subspace of EG spammed

a4



by the 1+ (g-;—l) vectors 0,(0) and a 18,0 for j £k ; for the
values Ez(w(z-a)) clearly 1ie‘in the span of these 1+( 'lz'l) vectors,

and since the coefficients of these vectors are linearly independent

functions of z , a the opposite inclusion holds as well, It was

demonstrated in [2], for instance, that thesé 1+ (g-lz-l) vec'tors are
linearly independent, so they form a basis for the vector space Sl and
that vector space has dimension 1 + (g-;l ) « Note that 1+ ( g-lz-l) < 28

whenever g > 2, so that S, is a proper subspace of @ whenever

1

g > 2, For the subsequent discussion it is convenient to choose some
. G G . .
projection operator Pl :f —> & having S1 as its kernel; this is

then a minimal projection operator for which Plgz(w(z-a)) = 0 for all
points g,a € M . |
The case n=2 is already somewhat more complicated and illustrates

the simplifications that can be effected by using the appropriate

projection operators. In this case Theorem 1 asserts that

(2) 8,((z; +2, - a;-ay)) alz, 22)2 q(al,az)z [ Jl_vq(zy, av)] )

20,0 o (zv) (2,0 + % ul,lO

My Hy Hy m,u

- uCnay? #1Cne2y)

1,0,1 ' 0,2,0

+ TTE o ’Hjj vp'i(z'rr(l)) Wj(zw(Z)) + o ui(zl)u]'_(zz)

+Ea011 00‘2

iy . ug '(z (1)) w!'(z (2)) + ? o 3y le(zl)wjz(zz)

for some vectors o that are meromorphic functions of a;,3, with
singularities at most at points for which al=a2 on M ; in the
summations indicated T ranges over the full symmetric group 52 . Ar
least some of these vectors can be deter_mined explicitly, although some-

thing can be said about all of them as follows,

21



¥

Corollary 2. For any points 2,58, € M

=92(W(21+22 -al-az)) Q(Z]_: zz)z Q(a]_; 32)2 [ —rr q(z ,av)]-

w,v
I (O)W(Z)W(Z)W(a) o (z,)]
mes, - i 2,2, Va2, P2
1 , '
+5 I Z 0,8, [w, (= )w (25 vy (a2)+wa( Pz vy ()
€8s 2 ik 1
-w! (2w (z_)wi(a)w (a,)]
a8, Tl a,a, 2L kN2
0,1,1
+ I Tog’?, w (z_)w!(z )+Z a2 )w (z )
2
mES, 3 i aa, T j J12 31 2
where ap’1’§ and a03032 are vectors that are mercmorphic functions
1-2
of 4,58, with singularities at most at points for which a;=a, on M
For these vectors
k. k
(3) pa®bl=sa T2 W (2w (ay)
bk 1 2
kyky G '
where @ Kk € le are constants that are skew-symmetric in the three
3
indices k. ,k,,k and if S! CZEG is the subspace spanned by S, and
1272273 2 1= k. k 1
any representatives of the vectors « 1 i and Pi :EG > EG is a
3
projection operator having kernel precisely Si then
k.k
(%) pl o2%% =Tt W (aDw (e
itdz x Hda iy 2
k.k G
where a i € PiE are constants that are symmetric in the indices
1142

iq233 in the indices kl’kZ , and in the pairs j,k .

Proof. The projection operator Pl satisfies the hypothesis of

Theorem 2 for the case n=2 , and it follows from Theorems 2 and 3 that



2,0,0 _ 051

P = -
) 1© Uluz 1 K 1" 4,3

these vectors thus all lie in the subspace Slgg EG , BO can be expressed
in terms of the canonical basis for that subspace. To do so first
multiply (2) by q(zz,az)2 and consider the limit in the resulting
 formula as z, tends to a, . The only possibly nontrivial terms that
can arise on the right-haﬁd side are those in which the double zero of
q(zz,az)2 at z,-a, is cancelled out by the double pole of the
meromorphic function VZ(ZZ) , and q(zz,az)zvz(zz)'"ﬂ> 1 in view of

(2.4). The resulting formula is easily seen to have the form

-2
EZ(W(zl-al)) q(zl,al)

2,0,0

"Ry i) te o

1,1,0 1 ,
2 ul(zl) + ? a’, j wa(zl) .

2
A comparison of this with the formula of Corollary 1 and use of the evident

symetry of (2) in the variables z4 and z, lead to the results that

210)0_- 23030—- 2,0’0_

(6) Ty s’ =0, a8,
1,1,0 _ 1,1,0 _
a l—a 2-—0
1,01 _ 1,0,1

1 ' 1
1,j " 2 E B (Ow(ay) , 'y =73 E 8220w (a)) .

Next multiply (2) by q(zz,az)2 again, but then apply the differential
operator a/azz and consider the limit in the resulting formula as Zy
tends to ?2 ., The only possibly nontrivial terms that can arise on the
right-hand side are those in which at least one of the zeros of
q(zz,az)2 at z,=a, is cancelled out by either the double pole of

2
vé(zz) or the single pole of ui(zz) ; but B/Bzz[q(zz,az) vé(zz)] —_— 0
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. 2
as z, —> a, _by (2.4) while B/Bzz[q(zz,az) u]‘_(zz)] - -1 by (2.3)
and (2.5), so only the second case actually leads to something nontrivial.

A straightforward calculation thus yields the formula

‘ -2 ' -2
(N ? ajﬁz(w(zl'al))w_%(32)“21.’ &) +2 =92(‘~’(z1--al))Wzl’&1(&2)q(zl, a,)
' 0,2,0 0,1,1
= -y 277 w! (z.) =T a7, wi(z,) .
2158, 10 i 1

Multiplying this by q(zl,az) and taking the limit in the resulting

formula as zZq tends to a, readily leads to the identity

0,2,0 -2
a Y = .2 q(al,az) gz(w(al—az)) ’

which can be rewritten using Corollary 1 as

0,2,0 _

® o "8(@02 v, (a) - T 3,80 wi(a)u(ay -

2

Js

Substituting (6) and (8) into (2) yields the first assertion of the

corollary, If the projection Pl is then applied to (2), the terms

0,1,1

involving P o will be the dominant ones, in view of (5), and (3)

t

then follows immediately from Theorem 4. Finally, if the projection P1

is applied to (2), the only terms femaining are P‘a03032 , so they are
172
the dominant ones in this expansion and (4) then follows immediately

from Theorem 4 again, to conclude the proof,

Probably the most interesting part of the principal formula of -

0,0,2
Corollary 2 is that involving the vectors ap’l’; a ’0’.

not lie in the subspace 51 « To describe the singularities of these

and , which do
vectors note first as a simple consequence of the discussion in section 2

2
I = ! . - - i
that Walaz(Z) waz(z) (a1 az) + O(a1 az) as a function of a;



when ay —> a, , where

distinct points of M . The coefficient of QZ(G) in the formula of

a,, z are viewed as fixed and representing

Corollary 2 is therefore holomorphic in a

near indeed tends to

1 921

zero a8 a; —> a, , S0 the last line must also be holomorphic in a

near a, . The singularities of ap’l’% s aO{O{Z cannot cancel one
J Iy,

)w (z ) s w&l(zl)wgz(zz) for

i £ j, , are linearly independent functions of 2452y , and consequently

01,1

1
another, since the coefficients w' _ (z

alaz ﬂ1

has as singularities at most simple poles at points where

= 0:0:2 : Pe 4
a;=a, on M while «a 5.3 is holomorphic in a;,8, - If

200 0,1,1

p. (az) ___al_{> , (al- 2) a’ ’j is the residue of o« f viewed
as a meromorphic function of a; at the point a; = a, then letting

a; -—ﬁraz in the formula of Corollary 2 leads almost immediately to the
identity

=3 Z 9, k_2(0) ! (zﬂl)w (ZWZ)W (az)

ik a
, 0,0,2
+ 3T Z p (a )wa (z )w,(z ) + ¥ a (a2,a2)w (z )w (22) s
T ] ] ;s Iz

and from this it is clear that

. 0,1, 1
(9) pJ(a) = 1_1m31:32_>a (31-32) . = E a_]k—Z(O) Wy (a)
0 0 2( a,a) =0 .
l 2

That the singularities of these functions lie in the subspace 5155 EG in

the obvious sense was of course already apparent from (3) and (4). That
and the other complications residing in Sl can be eliminated by applying
the projection operator P1 to the formula of Corollary 2, leading to the

simpler formula

g



e,

' -2
(10} P1§2(W(21 + 22 = al'az)) q(zl; 2:2) 2‘1(31: 32) 2 [ J_I-v q(zu_: a\,)]

152 ,
= L T « -wl'c (a]_)wk (aZ)WL'c3(zn1)w;

(z_,)
TES. k 3 K 2 nZ

1232

0,0,2
1

+ZPai’l

(ap,ap)wi (2wl (z,) .
12_]11_]22

Applying the projection operator Pl to this yields'the even simpler

formula
a1 BB, (w(z, +2, - a,-a,)) a(z,z,) alay, a2 | 1T atz ,a)|
122 W By T2y T 817800 ALz, 25) alay,a, “vqp’av
2
kiky
= T oo, . -wl (z)w' (z)w' (a)w' (a,)) .
g, d1d2 3 13 kg1 Tk, 2

The constant vectors appearing in these formulas can be described

alternatively by using (3.15), so that

an ez ee) =S {1 @y @ aEa”

k 2 1

but the analogue for the other vectors is just (11) itself, These last
three formulas were derived in [8] in an alternative manner.

The results obtained in the preceding two corollaries for n=1 and
n=2 can be extended to general n , but with ever increasing complication.
Again, though, the complication can be controlled to some extent by applying
ever stronger projection operators., For this purpose let Sn c EG be
the span of the vectors =82(w(zl+---+zn-al----—an)) as 'zj, aJ. vary
independently over 'ITI , and choose a projection operator Pn having Sn
as its kernel; for the case n=1 these are the subspace .";‘1 and projection

operator P already introduced. The expansion of Theorem 2 with

1

P=Pn-1 is then the simplest extension to general n of the version (10)
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of Corollary 2; the dominant order L satisfies 2L £ n by Theorem 5,
and the dominant terms have the form given in Theorem 4, The remaining
terms in the expansion can be ﬁnade dominant by further strengthening the

. projection operator, and then they too will have the form given in
Theorem 4&; this is just the extension to general =n of the simplifications
{(11) a_nd {12) in the case n=2 . There is not much point in attempting
to write out this program in any more detail in general, but it may be
helpful to see at least the next two cases n=3 and n=4& ., After the
éequence of dominant terms and the general form of the expansion are
established, it is a fairly mechanical task to write all the terms of the
full expansion as the appropriate expressions in terms of this sequence of
déminant terms; again, there is not much point at present in attempting

to write out the detailed formulas in general, but the cases n=3 and
n=4 will illustrate the procedure and some of the results in these cases

will be meeded later as well,

Pt

Corollary 3. For any points z,,8y €M,

2 =2
P 0,(w(z,+z,tz ~a -a,-a,)}) [Tl_q(z z )q(a a):l [—[Tq(z a)J
2=2 1'°277°3 71 72 73 Ly T VY TIRY (VAN
k. k.k
- = £al23 el G ow (a) v (a4

‘s Lo, e (¥ ()]

m€s,1,2) jk 293 1% 1 2 2%3

'wl'c (83) W.:I 2(271-2) w-'i (ZTT3)

3 3
0,0,3
+ 2P, ., Wi (2wl (z)w: (z,)
PREEIEPE DY UNS FREE A PR E
kykoks e
where o 3.3 € P2E are constants that are symmetric in jz,j3 and in
273

k.,,k, and satisfy

2273



k. k. k kydpiy  kgkpk k. k k k. k. k

1-2.3 - O 1.2 3 + g 2 1.3 +a 3’1'2 =0
PRE! koks PEE dz33 235
0,0,3 G . . _ . -~
and P,o,. € P.L  are holomorphic functions of the points a, € M.
27513535 2 it
kikoks
The constants « 5.3 are determined by the formula
23
W% .80, (b, - ar-a) a2’ atanan? | T ate,a)]
108y (W2 T2, = ay78p)) AlZy, 20 AR5 " S
i k1k2 ’
= ¥ o . .w (zw (z,)w (a)w (a,) ,
U PR PR T PR

and if Sé{; EG is the subspace that they together with S2 span and

G
Pé L mG is a projection operator with kernel Sé then

kokok.

0,0,3 1K2k3

(14 Pla T =Y%a, . .0 w (ap)w (a,)w (ay)
275 3534 o dpdpdy Ry 1T ky 20 kgT 3

k. k. k

where a.1.2.3 € P'C”° are constants that are symmetric in j.,J,,]
: J1d234 1’-2°-3 7
in kl’kz’kS , and under the interchange of j and k.

Proof. By Theorem 5 the dominant order L satisfies L 1 ; the
dominant terms in the expansion of Theorem 2 have the fomm given by Theorem 4,
and can be rewritten as indicated., The left~hand side and the first term
on the right-hand side are holomorphic in a; and since the functions
of z. on the fight—hand side are linearly independent, the coefficients
P’ ,j must also be holomo;phic in a; . Equation (13) is just the
form that (3.15) takes in this case, Finally, after applying the operator
P}

are Péa

to the main formula, the only nontrivial terms on the right-hand side

0’0’? ; they are therefore the dominant terms, So have the form

(14) as a consequence of Theorem 4, and that concludes the proof.
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Corollary 4, For any points z;,8; EM

2 -2
gytwtarr-ore, - aeeona) [T st paq,8)] [ T a0

<y
k .k, k. k
172737
= z L a w! (z_.) w! (z_.) w' (z_) w' (z_,)+
m€s,2,2) jk is3, 2,123 Tl apza3 2 ig T3 ig T

pESO,2,1)

°W1'cl(& )W (8 Z)W (a )W (34)

+ T ¥ p %13 ' (2

) (Z ) (z_ )W (= )
mES(0,1,3) Aj 3 l132J334 kl “m 2 3 i4 -

0,0,3
+ Z P o i w! o (z ) ew! (2,) ,
P i Jl... 4 31 1 i, 4

SR AIEP)
where ¢ klkz € P3E are constants that are symmetric in il,iz s
. s s . .. 0,1,3 G
In 44,3, in kl’k and in the sets i,j,k , and P3 R,J € p3m
Pago 0, 3 €P E are holomorphic functions of the points a; € M .

Proof., Again by Theorem 5, the dominant‘order L satisfies L X2,
and the expansion of Theorem 2 with the special form for the dominant term
given by Theorem 4 has the form indicated. The formula has been simplified
by writing out the general form and‘indicating the permutations necessary
to yield the full development; thus p runs through the three permutations
of the set (1,2,3) for which pl <p2 , The dominant coefficients have

further symmetries as in Theorem 4, and they imply the listed symmetries

in view of Theorem 5.

More details could be added as in the preceding formula, giving explicit

forms for the other terms under suitable further projection and alternative
formulas for the various constants appearing; but the pattern should by

this point be clear enough without these details being made explicit.
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The main formulas of the preceding two corollaries just give the
dominant terms of the full expansions of Theorem 1, the most interesting
‘terms in that they involve vectors that do not appear in the expansions for
lesser values of n . The other terms can be read off fairly easily frOm
a comparison with the expansions for lesser values of n , much as in the
proof of Corollary 2, The full details are somewhat complicated, but can
again be simplified by the appropriate use of auxiliary projection operators.
For instance, to investigate the vectors of Corollary 2 in more detail,
it is useful to comsider the result of applying the projection operator
Pl to the full expansions for the cases n=3 and n=4 ; the only
results that will be needed here are just those in the next two corollaries.
As a convenient abbreviation in this discussion set
(15) Q(zl,...,zn 5 ays ...,an [ T[_ q(zu,z )q(a a )] [ J:rvq(zw 3\;)]

H<y
and note that
. 2
(16) lmzn_> a_ q(zn, an) Q(zl, ceerZ 3 8g5ea0; an)

= Q(z]_,...,zn_1 ; al,...,an_l) .

Corollary 5, For any points zZ;,8; €M

(w(z +z +23 1-a2-a3)) Q(zl,zz,z3; al,az,a3)
=>:p1a1’ig HCRU{CISICINES 1;3‘1’32 RCR LRI ENCE
FTP agliZgB SR RCAL ISR Pla‘{ ;f : =, )%, o )‘{%(zrra’
+ 2R o vy () () +E Ry ‘;122;"3 w11(z1>w32<z2)w53(z3> ,

where the summations extend over permutations T € S(m, 4,k) and indices

u=1’2,3, )\'=132, j=1,--.,g - Here
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1, 1 1 %2 ‘o
1,1,1 _ . 1,1,1 LL,1_ 5 c5e T2 aw Gy
Plo i3y T P 295 =0, Ppoayy < v k, %1%,
' k.k
Eh 1,1,1 %2, (e
LLI pabl 2w (apw! (ap , Pabpii=Tal?w apw (ay s
Pja g5y = E“ F Wkl( 2%, %P 0 B a1y T 2y Y )
2
' 002 1,0,2_p 0,0,2, .
1,0,2 0,0,2 p 102 _ 5o ( 2y, 2ol p e,
=B (apr23) a A 1733,] 343,
0 1313 1% 3,3,02%9 0 Fi%y5, T 1t g s g
0,3,0 _ , 0,3,0 _
Py T B T2 T 0
0,3,0 kyk, Cayet ()
0,3,0 _ _ »Y . 2y w! (a)w! (a)w' (a ;
Prei12 T P12 R T T U T e T
Kk 0,0,2 ,
0,2,1 12 ! yw! (a))-23T P.o (a s 84 )w (a 5
=-2Za ", w (a))w (a))w 1 2
SLESTY 2Oy P (2, e e, :
kyk . 0,0,2
02,1 12w vy o () =2 DRy (a8 (e
=«2%a ", w (a)dw (a 2 1
LAY S T T T T AT
0,2,1 _ ¢ . [w' (apwy (2w, | () + v (apw (a Pl (a)
Pyja’ 123‘k“' k, 1%, %3 Ve Iy 283
- G v, Gap]
o= ¥ (B0, (92, ay
2
0,9,2 P 0 0 (a a )w (a )] .
+5 [Plao’oglzc(al,a:a)wl'((az) + 2,07 % 2y 8w Cay) - ¥
k
The two coefficients Plao, 7];,_’2| 3 Plao’ 0’_.']'3 not discussed explicitly

2

in the preceding corollary do not necessarily lie in the subspace

kk
P.S CZEG 80 cannot be expressed in terms of the vectors 172 P.a 0,0,2

172 = k3 b 33,
as were all the other coefficients. On the other hand, it is quite natural

to view these two coefficients as themselves being primitive vectors, since

by Corollary 3 they together with P.§ G

1°; SPan the subspace PS5 cr

13-
and their images under P2 and Pé have the standard forms as described



Corollary 6. For any points z;58; €M

P18y (wlzpteetz, may-erema))) Qag,ennsz,58),000,8,)

1,3,0
=X Pa’l? v' (z_p)u! (z_)u! (z_)u! (z.,)
Ly Aoy Ty Moo, o Ay TN, %4
+2 Pl“g’;}’g y, U (E) (2 (2] (2)
127374 1 2 _ 3 4
£,k
+ Z ¥ % Pty (g Yeerw! (z_ )rew! (z) ,
k>0m g T MM T M TE I, 4
m<3

where the summations extend over permutations T € S(m, b, k) and indices

w=1,2,3,4, r=1,2,3, j=1,...,8 . Here

.

1,3,0 1,3,0 1,3,0 _
Po 1k, Cf1% 1222 T Bzt 0, all A,
K.k -
1,30 _ . 1,30 12, :
P1® 3223 = Pjapi3= 22 ky “k (ap)w (apw (ay ,
1 2 3
P al’ 3,0 correspondingly for p= 2,3
> 3
1A,
P oL3H0 p (L30_ L L,30 . 130_

1% 4111 7 F1® 4222 T B0 4333 = Bypa 5, =

1,3,0 _ , 1,3,0_ _ 1,30 1,3,0 _ 1,3,0 _
F1O 2112 = P10 405, = B0 0] = B o lyha s Py o133
k. k

1,3,0 172
=P, 0 32 = -23q w! (a)w' (a)w' (a) ;
17 4233 Kk k3 kl 1 k2 2 k3 3
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0,4,0 _
P a 1113 = 0, all i,
Plaoiiig =4 “kltz e (agdw (34)[";11 (2w o (@) v (3w . (ap]
Kk 3 %2 3 1 a3%, 1 3%
0,0,2 :
+4TP a (az,a)w (a))w (a,) ,
! klkz 3 e, 1Yk, %2
0,40 kiky
P.a 2tV a3y [2w! (a,)w' (apw!' (a)w'  (a))+w' (a,)w! (a)w' (a)w' (a,)
1 1123 K k3 kl 2 k2 3 k3 4 a2a3 1 kl 2 kz 3 F3 1 a233 4
- W (a)w! (a)w (a)w' | (ay -w' (a)w' (a)w' (a)w' _ (a,)]
e R T A T T
+22{P1a0{c01’<2 yaw! (a)w (a,) -B; _"H(az,a)w (a)w; (a9
' K 1%2 ! k, 12 ky
0,02, G |
“P.g ¥ (a_,a,)w (a yw!' (a.)] s
IR R T e T A

and correspondingly for other indices,

It should be noted that the evident symmetries in the expansion of the
preceding corollary can be used to cbtain formulas for terms with indices

other than those given explicitly in the statement of the corollary; for

4,0 _
instance, from the symmetry Plu, 2213(31, 3,34) = 1 1123?82’31’ a4)

and the formulas as given in the corollary it is possible to read off an

explicit expression for this coefficient, Since the indices A range only

0 4,0

19300,

indices, so all these coefficients can be determined from those listed.

It should alse be noted that by this calculation the terms P1(11’3’0 and

U
0,4,0 s G .
Pla 3 take values in the subspace 82 € € , but that is not the case

for all the coefficients; the simplest way of determining just which of

over the values 1,2,3 any term P must have at least two equal

these coefficients do take values in 32 is to apply the projection

operator P2 and analyze the result similarly,
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6. The formula of Corollary 1 is reasonably well known, but those of
Corollary Zlare possibly not so much so; the latter involve interesting
additional phenomena, and are more typical of the general situatiom, so
merit some further discussion, First it is evident from the principal
formula of Corollary.l that the subspace § EEEG can be characterized

2
alternatively as the span of the vectors 22(0), Bjkgz(O) for j £k,

0,1,1 0,0,2 < . :
o j(al,az), o jk(al,az) for j £ k, as the points a),a,
independently over ﬁ'; indeed the values gz(w(zli—zz-al-az)) clearly

lie in the subspace of EG spanned by these vectoers, and since the co-
efficients of these vectors in the expansion of Corollary 2 are linearly

z for any fixed

independent functions of Zys%y

2,8, the opposite

inclusion holds as well. What is particularly interesting is that the

extension from S5, to § is canonically split into two simple stages:

1 2
first there is the extension Si/Sl spanned by the vectors
kik2 | K1k
o ~,  , then the extension §,/S; spanned by the vectors q, .,  , and
i’ 271 31d,

these vectors and hence the two separate extensions are uniquely determined,

Indeed the projection P establishes the isomorphism S]'_/S1 ~ P_S!

1 171°

and in view of (5.3) the span of the vectors P ap’l’ﬁ(al,az) is just the

1
k. k
span of the vectors o i ; similarly the projection Pi establishes the
isomorphism SZ/Si = P!S and in view of (5.4) the span of the vectors

1727
klkZ

P.ao,ogi(al’az) is just the span of the vectors Q

1 . The extensicn

k.k,
52/81 can thus be viewed as the span of the vectors g 1j2 € PIEG together
k. k
o 12 € P'EG , although this is
jji, ~ 1

with any representatives of the vectors
ne longer a canonical description since some choice of representatives
has to be made,

To avoid at least some complications, considerations here will for

the most part be limited to the forms (5.10) and (5.11) of Corellary 2;



A1

the interest really lies in properties of the vectors Q 1j2 and

k. k
lejZ , although it is necessary to consider the holomorphic functions Pla { (a
1-2 333 2

to some extent as well, The symmetries of these vectors in their indices have

already been noted, and it is obvious from (5.10) that the functions

0,0,2
P1CL j1j2(a1’a2) are symmetric in the wvariables a,,8, as well, The left-

hand side of (5.10) is also symmetric under the interchange of the varidbles

z and a , from which it readily follows that

0,0,2
¢h) ZP“*{ : . ,0,0,2 , .
j 1 3132(81’ az)wjl(zl)wjz(zz) - l (211 )wj (al)wjz(aZ)]

313, 1

k

mk F3lk

R 1% [w (zl)w (zp)%) (a 3D L (aﬂz)~wi1(a1)WQ2(a2)wi3(zﬂ1)w;laz(anz% :

1 172

Next the left-hand side of (5.10) wvanishes if either a,=a, or z1= Zy s
because of the presence of the terms q(al,az)2 and q(zl,zz)2 ; and from

this it follows quite easily that

o, 0 2

@ 2 e -
3132
and
» Tz 292 ,a, W (@) (2)
i 133, I3 4y
kyky
==-2Xa w' (a)w' (a,)w (z)w! (z)
il T T U S S A

under the further projection operator Pi these last two identities

reduce to

@ Tollw (@ (2)=0 for all indices iy, i, ,
w d1d2 kT Ok

while taking the limit in (3) as =z tends to a, leads by a simple calculation

to the identity

a,)
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44

¢y Tra’0?

(a,z)w} (z)w! (2)

” ki w{(l(a)w{cz(z)w"l;:;(z) .
The terms on the right-hand side of (3) are evidently holomorphic quadratic
differentials in the variable =z , in the sense that they are vectors the
components of which lie in T(M.,GQ(%Z)) as functions of z , and (3)
expresées these quadratic differentials as products of abelian differentials;
in the same sense the expressions on either side in (5) are holomorphic
cubic differentials in the variable z .

Rather more interesting is the alternative formula{ilZ) determining

k. k
the vectors o i a formula that can be rewritten as

k. k

(6) 3P 8, (w(z-2)) = -a(z, o Lo L2 LN

(2)%! (a) .
1 K

k. k

In one sense the analogue of this formula for the vectors aj j is just
' 1°2

(5.11), as already noted; another analogue, although one that does not

determine these vectors completely, is the formula
ik j.k k.k
2 ! 1°2 172
M 3y g B - S (et vt o)) @y @
1172 k A J2%2 325 2/ A 2
To demonstrate this multiply the principal formula of Corollary 5 by
q(zl,al)zq(zz,az)2 , apply the differential operator azlazlazz , and take
the limit in the result as Zy - a2 and z, —> a, . As before, the omnly
possibly nontrivial terms on the right-hand side are those involving the

functions ui(zl)ui(zz) , and a straightforward calculation leads to the

formula



' ' - -2
(8) ? ajlszlgz(W(z3 a3))wjl(al)wj2(a2)q(z3, a,)

-2
+ zﬁajPlgz(w(23~33)){wg(al)w;3,aB(aZ)4-Wi(az)wé3,a3(al)]q(z3’a3)

_ 0, 2 1 .
= Zj Pl (al" 2, B)W (23) >

upon applying the further projection operator Pi and using the explicit

form for the last coefficient as given in Corollary 5 this becomes

(9) E a Ple(w(z a ))W' (a )W' (a ) —2
. B - ! ' q(Z a )
0,0,2 6,0,2., 0,0,2
= E l +PI } P' ‘.
J[ 1% 31y (a;,a5)w; l(a ) tPa 143, »85) W 1(a ) -Pla 3,0, (a;, 2)w (a3)_-l sz(ZB),

P.oo

and using the explicit form for the coefficients 3
J3i2

from Corollary 2

leads relatively directly to the desired formula.



7. The vector-valued second-order theta function 22 is an even function,
so only even-order terms appear in its Taylor expansion at the origin in

t® . Another interpretation of Corollary 1 is that the values Qz(w(z-a))
all lie in the subspace S E;EG spanned by the Taylor coefficients of

1
22 at the origin of orders 0 and 2, That means that the.Taylor coefficients
of gz(w(z-a)) as a function of z at z=0, which are of course just
some particular linear combinations of the Taylor coefficients of 22 at

the origin, must also lie in this subspace S1 ; the form:las expressing

this condition are particularly interesting, Perhaps the easiest approach

to these formulas is to rewrite Corollary 1 as the identity Plgz(w(z-a))==0 s

k
apply a differential operator 9 /sz , and set z=a , The first non-
trivial case is that in which k=4 , and the resulting formula is easily
seen to have the form

(L) Ty, Plgz(o)-wglca)wg

(a)w' (a)yw! (a) = 0.
3 J1rda Iz 4

2

Of course it is more informative to apply the differential operator directly
to the formula of Corollary 1 and then set =z=a ; the result is a rather
more complicated formula, expressing the left-hand side of (1) without the
projection operator P1 as a 1ineaf combination of the vectors 22(0) and

aj j @2(0) , but reduces to (1) upon applying the projection operator Pl .
172

This is another instance of the simplifications that can be effected by
suitable projection. The formula before projection is that given in

Corollary 3 in [8] or in equation (1.2) in [2]; it is a quite well known
formula, equivalent to the condition that a corresponding expression in
terms of first-order theta functions be a solution of the KP equation,

as discussed in detail in [2]., The simpler formula is alsc of interest
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though,in other respects. For example, since (1) holds for all points

o
a €M it can be viewed as asserting that the canonical curve assocciated

to M is contained in the locus in I?g-l defined by the quartic
equations
(2) %9, . P8, (0)x, x, %, x, =0,

3 Jl"OJ 1=2 Jl 1y 33 J‘q_

where (X,,...,% ) are homogeneous coordinates in 293-1 . In many cases
1? 1%y v

the quartic equations (2) describe precisely the canconical curve, as observed

by van Geemen and van der Geer [4]; it may be worth digressing briefly

here to include a proof of this.

Theorem 6. If the Riemann surface M i1s neither trigonal nor a
plane quintic then the locus (2) is precisely the canonical curve

representing M .

Proof. The well known addition theorem for theta functions [10] can

be written in the form
(3) Fg, (1), (") = B(t+WB(E-w) ,

where the left-hand side is the indicated matrix product, or equivalently
is the scalar product of the two vectors, and 6(t)=-8[0l0](t 3D is the
standard first~order theta function., Applying the differential operators

azlaw. gw, and aélaw, «v+3w, to (3) and then setting w=0 in (3)
and the derived formulas is readily seen to yield the identities

@) t,(6)-8,(0) = 6(t)°

t

t ' -
8,() -2, jagz(O) = 28(8)d, , 6(1) z[ajle(t)ajzj

100._}4

+ 2[3. . 8(B)B,

. B(t
. 41,20,

jée(t)]s 3

HE



where [ }n indicateg the obvious symmetrization of the expression in the
brackets, a sum over the n permutations needed to yield a fully symmetric

expression, Since 8, 1is the span of the vectors 52(0) and aj

1 3,22 (0

17
it is clear from the first two of these identities that tgz(t)-sl =0
precisely when 6(t) = Bje(t) = 0 for all j , hence precisely when ¢t
represents a point in the singular locus ®1 of the subvariety
@={t€&€J:06(t) = 0} ; and since §-—1’1§ ESl for any vector E € EG it
follows that tgz(t)°§ = tgz(t)-Plg for any point t € ®1 and any
vector E € EG . Using this observation and the third identity in (4)
leads readily to the result that

t
() 8. (L)-T o, . P8 (0)x, x. x, X,

2
=6(ZB_.9(Qx.x.)
j J132 Jl 32

for any point t € ®1 . Thus whenever x EZPG-I is in the locus (2)

then £3. ., B(t)x, x, =0 for all points ¢t € ®1 , and it follows

;i i,
from the Enriques-Babbage theorem [1] and the theorem of Green [5] that

" lies in the canonical curve, in view of the hypotheses of the present
theorem, Any point of the canonical curve is in the locus (2) as a

consequence of (1), and the proof is thereby concluded.

The preceding proof actually gives a bit more than was stated in the
theorem. Equation (1) of course implies that the canonical curve is contained
in the locus (2) for an arbitrary Ritmann surface M . Equation (5) implies

that the locus (2) is contained in the locus X={t€J:Z3, . 8(t)x, x. =0
. i JIJZ d1 2

for all t € ®1} for an arbitrary Riemann surface M , and the theorem

of Green asserts that X is the set of zeros of all quadrics through the



canonical curve for an arbitrary Riemann surface M , If the vectors
22(1:) for t ¢ @1 actually span the linear subspace
S:= {€ € EG: tE'Sl=O} then it follows from (5) that (2) is precisely
the locus X ,

The result (1) was obtained rather simply from Corollary 1, and as
might be expected there are various extensions of this result that can be
derived similarly from the other corollaries in section 5., The only.such

results that will be considered in detail here are the fourth-order

equations involving the function P 8 (W) , and they are as follows,

Theorem 7. For any points a; EM

. . P 8, (0)w! ' ' !
(6) Z 331"'34 18, (O le(al)wJZ(al)WJ3(al)w34(a2)
klkZ
=6 Xa w! (a )w' (a)w! (a,)
K kg kg Yk, Lkt 2 ’
(7) T3, 3 (0)- w (a )W (a )W' (a,)w} (a,)
§ Jpeeed 4 2 1 1 33 2 iy 2
0,0,2
=4 X P (a ) w {a )w (a,) ,
X 1 k1k2 1’ 1 2 2
. . P 0)-w! ! ! !
8) Z aJl“‘J4 18, (0) WJ1(al)WJZ(az)sz(a3)wj4(a3)
kiky
= -2 % q w' (a)w! (a.)w' (a)w' (a))
X kg kg 17k, 27 kgt 3 a8, 3

0,0,2 0,0
+22[ (a »83 )w (a)+P (a, )w' (a :lw (a.)
K 1@ klkz 1 1 A klk 2 kl 1 3’



(9 ? leu .J.AP]_QZ(O)'w;l(al)wgz(az)w;.3(a3)w;4(a4)
Kk,
=6 T Za i G v, -
mes(2,1) k<3 K “’am,a 53, ()
+2 3 2[21' %% %, %), (andwy (o
MES) K 1% &k, 23 %4 a2 rr2)
,0,0,2
i ke, B A2 " (@ 3)"122(“4)]
k. k
3 12
i SRR O B C R CH LI
*rnesy k. K3 K 2" kgt 3 "‘“rrl’anza‘*)
1
+ = 2 Z P (a » 8 ) W ( )W (a ) .
boacsey e L kk e

Proof. First consider the form (5.10) of Corollary 2, multiply
‘ 2
that equation by_Tr;q(zv,av) , apply the differential operator Balaziazz s
and set z, = a, . Since the first nontrivial Taylor coefficients of the

function Plﬁz(w) are Plb 3,8 (0) the only possibly nontrivial terms
— Ill 4 .

on the left-hand side are those in which all the differentiation is applied

to P QZ(W) , while the only possibly nontrivial terms on the right-hand

side are those involving the function w (22) ; this leads by a simple
b )

calculation to (6). Next multlply (5.10) byfTr q(zv,av) , apply the

differential operator /az azz , and set z,=a; . This time the terms

on the right-hand side involving the function wélaz(z) vanish in view of
(2.5), so the only possibly nontrivial terms are those invelving just the
holomorphic Abelian differentials; this leads by another simple calculation
to (7). Turn then to Corollary 5, multiply the principal formula by
'TT-q( , apply the differential operator /321322323 , and set

zi==ai . As before the only possibly nontrivial terms on the right-hand side
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are those that involve just the functions ui(zl)ué(zz)wg(z3) , 8o that

2
0’1§§(51,32;33)W3(a3) ;3 using the explicit form

side becomes 2 Ej Pla
for this coefficient as given in Cbrollary 5 and simplifying the result by
applying (6.3) readily leads to (8). Finally, multiply the principal
formula of Corollary 6 by-ﬂ-vq(zv,av)2 , apply the differentiél operator

2 /azlazzaz3az4 , and set z,=a, . The only possibly nontrivial terms on
the right-hand side are those that involve just the functions

u'(z )ui(zz)u'(z3)ui(z4) for any value X , 5o that side reduces to

23 Pl 01231 ;3 using the explicit forms for these coefficients as given

in Corellary 6 leads by a straightforward calculation to the first equality
in (9). The variable 2, plays a distinguished role on the right-hand
side, while the ieft-hand side is symmetric in all variables ai ; that
means that the right-hand side must also be fully symmetric, as alsc follows
from (6.3). Either using (6,3) appropriately, or more simply just
symmetrizing the right-hand side, yields the second equality in (9), the

symmetric version, and thereby concludes the proof.

Although the preceding results are of sufficient interest that it is
worth seeing them written out explicitly, it should also be noted that they
are all in fact simply consequences of the first identity (9); for by
using (6.25, (6.3) and (6.5) it is quite easy to verify that (8) follows

from (9) upon setting a,=a that (6) and (7) follow in turn from (8)

3 2
upon setting a,=a, and a,=a; respectively, and finally that (1)

follows from either (6) or (7) upon setting a; =a, . There is a further

series of identities that arise upon applying the projection operator P1

to the results of the preceding theorem; again though all are consequences
of a single identity, and in this case such simple consequences that it is

really only worth writing out that single identity explicitly.



Theorem 8. With the notation as before,

3y i3 3]
3, P18, = 2(aj1.2+a,1.3+a,1.4)

Proof. Applying the projection operator Pi to the first identity

(9) and using (5.4) and (6.4) yields the result that

E. a. = Piﬁz(o)'w-'i

Bpeeedy (al)wjz(az)sz(a3)wj (a4)

1 4

Kok,

=2 Z oo, [w @)w! (a)w! (a)w' (a,)
P P PR S

' 1 T
+_wj (al)wjz(aS)wk

(a))w! (a,)
1 2 k2 4

1
+ w} (az)wgz(aB)wél(al)wé (aa)] s

1 2

from which the desired result is an immediate consequence,

It is perhaps worth noting explicitly here that applying the projection

operator P1

to (6) yields in analogy to (1) the identity

(10) T3,  , PIE.(0)w' (a)w' (a)w' (a)w' (a.) = 0 ;
3 Jpeeedy 1=2 iy 1 ip 1 ig 1 ig 2 :

this also follows immediately from the preceding theorem and (6.4) though.

Let T C:EG be the subspace spanned by the vectors 8,(0) , o, . 6,(0) ,
2= =2 33572

G
2, , 8o that T,/S; €& /S1 is the subspace spanned by the

; 8,(0)
Jl-onJ4m2

vectors let..jQPlgz(O) . It is clear from (9) that TZ/Slgg SZ/Sl

although the reversed inclusion is not evident. If the cubic differentials

2

that appear implicitly in (6), those that will be defined explicitly in (8.7)

and discussed there for Riemann surfaces of genus g=4 , are linearly

50



independent, then it follows readily from (9) that S]'./Sl c T2/Sl ; these
differentials are linearly independent for low enough genus, but cannot be
for high enough genus since there are simply too many of them, Theorem 8

indicates the extent to which it is true that SZ/Si c T2/Si .

5]
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8. The interest of the preceding results can perhaps best be illustrated
by examining them more closely for curves of low genus, To begin with

a cutve M of genus g=3, recall that if M is not hyperelliptic the

6 distinct products of pairs of Abelian differentials are a basis for fhe
space of quadratic differentials, the 10 distinct products of triples of
Abelian differentials are a basis for the space of cubic differentials,
~and the 15 distinct products of quadruples of Abelian differentials span
the space of quaﬁﬁic differentials but satisfy a single nontrivial linear

equation, which yields a quadric equation

(1) f (}0 = 2 C . . X eseX =0
b j oJitetds g Iy

that defines the canonical curve in 'Pz ; on the other hand if M is
hyperelliptic the products of pairs of Abelian differentials only span a
5-dimensional subspace of the space of quadratic differentials, so there is
a single nontrivial linear relation among these products, and that yields

a quadratic equation

. . X %X, =0
13112 33 33

(2) fz(x) =Xc
2

that defines the canonical curve in P , a rational normal curve. In

either case the second-order theta function gz(w) takes values in the

space ms and the vector 22(0) together with the 6 vectors aj j 52(0)
o~

1

2

for jl §:j2 are a basis for the 7-dimensional subspace Sl c ES spanned
by the wvalues gz(w(z-a)) . The projection operator PI with kernel S1
can then be viewed as a linear mapping P1 :EB —> El , and PIQZ(W) is

an ordinary complex-valued function, a particular second-order theta function,

The subspace 8255 EB spanned by the values Qz(w(z1+-zz-a1~a2)) must



8
be all of E , since the points w(zli-zz-a -a cover the entire Jacobi

1 2)

variety and the 8 functions comprising gz(w) are linearly independent;

the extension SZISI is consequently one-dimensional, so at least one of the

k1k2 'k1k2 -
vectors a I aj i must be nontrivial. Actually, of course, the vectors
: 172
k%o
o4 j are just complex numbers, since 52/51 is one-dimensional, and since
kyky
of j is skew-symmetric in its indices and they range over the values
1,2,3 there is really just the single complex constant alg . If
a1§ # 0 it generates the extension 82/8l ; in this case Si = 52 and
' k.k
Pi is the zero mapping, so that a.1.2 = 0 . On the other hand, if
312
1
o § = 0 then Si = S1 and SZISi is one-dimensional; the vectors
klkz

., lie in this space, so are really just complex numbers, and at least
I142
one of them must be nonzero, With this in mind the situation can be

summarized as follows.

Theorem 9, If M is a surface of genus g=3 then M is hyper-
elliptic precisely when alg = 0 , The equation (7.2) always describes the
canonical curve geometrically; if M is not hyperelliptic (7.2) is precisely
the defining equation (1) of the canonical curve, while if M is hyper~
elliptic (7.2) is the square of the defining equation (2) of the canonical
curve, The equation Plgz(w) = 0 always describes geometrically the
surface Wl-Wl in the Jacobi variety; if M is not hyperelliptic Plgz(w)

is precisely the defining equation of Wl-Wl , while if M is hyperelliptic

Plgz(w) is the square of the defining equaticn of wl-wl .

Proof, First suppose that a1§ = 0, so that S1 = Si and not all

k. .k S
of the constants aj 1 vanish, Then (6.4) is a nontrivial linear relation
1-2

e,



between products of Abelian differentials, so M must be hyperelliptic, and

in view of the known symmetries and the uniqueness of this linear relation

k.k
it must be the case that a.l.z =gc¢c, , C where g is some nonzero
i1z 31dz Kyl
complex constant and cj j are the coefficients of the defining equation
172 :
(2) for the canonical curve. Furthermore, since 8 = Si then P, = Pi s

and it follows almost immediately from Theorem 8 that

Z 9, I P1§2(0)°lexj

= 6af,m”,
] ipee-dy,

X, X
2 43 33
so that this is the square of the defining equation for the canonical
curve,
12 .
Next suppose that o 3 # 0 , and note that equation (6) of Theorem 7

can be written

(3) P-I i PIQZ(O)-W

! (a)w!
i 31"' 4 Jl ]

(a)yw! (a)w'! (b)
2 I3 1

Wi(a) wz(a) wi(b)
12 \
= 60 3det wé(a) wg(a) wé(b)
wé(a) wg(a) wé(b) .

For any polynomial f£(x) it is, of course, the case that af(x)/axi =0

for some point % and all indices i precisely when Ei wi(b) Bf(x)/axi=()
for that point x and all points b €M , since the canonical curve can

- never lie in a proper hyperplane, 1In particular, for the quartic polynomial
f(x) = Zﬁ le.'.j4P1§2(0)'le---31j4 and a point X = w(a) on Fhe canonical
curve it is then an easy consequence of (3) that af(w(a))/axi =0 for

all indices i precisely when the vectors {Wi(a)] and {w;(a)} are

linearly dependent; that is in turn the case precisely when there are two

linearly independent Abelian differentials vanishing to the second order

54



at a , hence precisely when M is hyperelliptic and a is a Weierstrass
point. Thus if M is not hyperelliptic then f(x) vanishes to the first
order on the canonical curve, so that £(x)=0 1is precisely the defining
equation for the canonical curve, On the other hand, if M is hyperelliptic
then since £(x) vanishes on the canonical curve necessarily |
f(x) = fz(x) g,(%) , where f£,(x) is the defining equation (2) for the
canoniﬁal curve and gz(x) is some quadratic polynomial. Thus |
£,(x) = 8f(x)/3x; = 0 for all indices i precisely when f,(x)=g,(x)=0,
hence either for all points of the canonical curve or for at most four
points on the canonical curve; but it was just ﬁoted that fz(x)==af(x)/3xi==0
for all indices i precisely at the eight distinct points of the canonical
curve that are the images of the Weierstrass points on M , and that is
a contradiction. Conseqqently, if alg # 0 the curve M cannot be
hyperelliptic,

A proof that Plgz(w) vanishes precisely on the surface W,-W, in
the Jacobi variety, indeed vanishes to first order if M is not hyper-
elliptic and to second order if M is hyperélliptic, was given iﬁ [71;
it is an argument of a quite different sort, but does not need to be
repeated here, It is worth noting, though, that this result together
with (6.6) gives an alternative proof of the result that M is
hyperelliptic precisely when alg =0.

Next for a curve of genus g=4 recall that if M is not hyperelliptic
the ten distinct products of pairs of Abelian differentials span the
9-dimensional space of quadratic differentials and satisfy a single

nontrivial linear equation, which yields a quadratic polynomial

(4) f(x) =Z c¢c. . X, X,



vanishing on the canonical curve, while the 20 distinct products of triples
of Abelian differentials span the 15-dimensional space of cubic differentials
and satisfy 5 independent linear equations, which yield 5 limearly
independent cubic polynomials vanishing on the canonical curve, the
polynomials xjf(x) for j=1,...,4 together with another cubic

polynomial

(5) g(x) =% e, . . % X, X,
j Jd1d2d3 31 42 3

H

the polynomials f and g define the canonical curve in IP3 . On the
other hand, if M is hyperelliptic the products of pairs of Abelian
differentials only span a 7~dimensional subspace of the space of quadratic
differentials, so there are 3 independent linear relations among these 10
products, and that leads to 3 quadratic polynomials

i

(6) f(®=2T¢c, . x, X
i K P P 8

3
that define the canonical curve in IE3 .

Some further and possibly less standard results will be needed as well,
80 will be discussed here before turning to the theta functions themselves,
For any indices 1 51, j < 4 the expressions
] 1]
wi(z) wi(z)

(7) cij(z) = det
wj(z) Wg(z)

: 3
are cubic differentials, in the sense that Oij'e TM,® (®)) , and since

they are evidently skew-symmetric in the indices i,j there are really

~
6 of them to be considered,



Lemma 2. If M 1is a hyperelliptic Riemann surface of genus g=4&
3
then T'(M, @ (")) is the direct sum of the 5-dimensional linear subspace
_ sgpanned by the expressions oij(z) and the 10-dimensional linear subspace

spanned by products of triples of the Abelian differentials w}(z) .
J

Proof, Since it is quite well known that the subspace of I'(M, E?(KS))
spanned by éroducts of triples of Abelian differentials is 10-dimensional,
it is only necessary to show that the expressions cij(z) span a 5-
dimensional subspace of T'(M, Q?(HB)) and that no nontrivial element of
this subspace can be written as a linear combination of products of triples
‘of Abelian differentials, These assertions are easily seeﬁ to be
independent of the particular basis chosen for the space of Abelian
differentials, and for the proof it is convenient to use another basis.
In pafticular,_represent M as the Riemann surface of the function

ZEﬁ; 1/2
f(z) = [z o (z-aj)] , where O,al,...,a2g+1 are distinct complex

numbers, and take thke basis

dz zdz zzdz zde
1 = 1 = =29z, 1 = £ da& v - 2.d2
wl(z)dz ) ’ wz(z)dz £(z) ’ w3(z)dz £(z) ’ w4(z)dz £(z)
] 1/2 . s
In terns of the local coordinate t = cz at the point of M 1lying

over the origin z=0 the functions wi(t) evidently have local power

series expansions of the form

2 ' 2 3 4
(8) wi(t) l+clt+c2t Foeve wz(t) t +clt. +c2t +oee,

b 5 6 6 7 8
! L N LI
w3(t) tihe, et , w4(t) tite, t et + s

H
It

if the constant ¢ # 0 is chosen appropriately, and using this and the
definition (7} it foliows easily that the functiocns Uij(t) have local

power series expansions of the form



2
(9) UlZ(t) = 2t + 4C1t +eoe

4t3 + 8c1t4 Feue

0y5(8)

I

.5 6
014(1:) 6t + 12c1t Feew

5 6
023(1:) 2t +4c1t +

|

— 7 8 -8 e
024(.‘:) 4t” + 8c1t +
10

034(1:) = 2t9-i- 4c1t Free .
Inspection of these expansions suggests that 014(t) = 3023(t) , which
can readily be verified by observing that 014(t) = 3023(t) = 6t5wi(t)2 s
and shows that after deleting 023(t) the remaining 5 functions are linearly
independent, Furthermore, any nonzero linear combination of these 5
functions has a power series expansion in t that begins with a term of
odd order, while the space spanned by products of triples of the functions
wi(t) has a basis consisting of the functions tzv wi(t)3 for v=0,...,9
and any nonzero element of this space must consequently have a power series
expansion in t that begins with a term of even order. These observations

suffice to conclude the proof,

For a non-hyperelliptic surface the situation is quite different,
since every element of I'(M, G?(M3)) can be written as a linear combination
of products of triples of the Abelian differentiéls w}(z) 3 thus there
must be some homogeneous cubic polyncmials B;j(x) € E[xl,...,x4] such

that
(10) 9;;(2) =T, @' (@) .

These polynomials are of course only determined up to arbitrary elements
in the ideal of the canonical curve, the ideal generated by the polynomials

f and g ;on the other hand, they must be determined to that extent by

5y
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the polynomials f and g alone, since the latter define the canonical
curve and hence determine the Riemann surfacertogether with the canonical
Abelian differentials, To describe these polynomials it is convenient to
introduce the polarized forms of the polynomials £ and g, ﬁamely the

miltilinear functions

(11) f(x,y) =Xe, . xy. , 8xy2z)=Zc, .. x y, 2z, ,
’ 5 d1d2 3075, 5 didads 317353,

‘and to write

(12) £(x,y) = 2 aj(x)yj ’ g(x,x,yﬁ =z bj(x)yj ,

. i j

where aj(x) are linear polynomials and bj(x) are quadratic polynomials,

Lemma 3, If M is a non-hyperelliptic Riemann surface of genus g=4
then the 6 expressions cij(z) for 1 < j are linearly independent elements

of T(M, GD(%B))'; the polynomials Ekj(x) can be taken as

0,y = c(33b4-34b3) , 333 = c(-a2b44-34b2) y Oy = c(a2b3-a3b2)
Op3 = elajbyaby) , Ty, = eCapbytagp) , Oy = claby-asb))

for some nonzero complex constant ¢ .,

Proof, The proof of the first assertion of this lemma is much the same
as the proof of the corresponding result in the preceding lemma, b} examining
the orders at a Weierstrass point of an appropriately chosen basis for the
Abelian differentials, As shown by T, Kato in [9], any non-hyperelliptic
surface of genus 4 has a Weierstrass point for which the first non-gap is
4, hence for which tle gap sequence is either (1,2,3,5), (1,2,3,6), or

(1,2,3,7). For the natural basis for the space of Abelian differentials



L0

associated to any of these sequences the orders of the expressions Uij
at the Weierstrass point of interest can very readily be calculated directly

from the defining equation_(?), and the results are as tabulated here:

(1,2,3,5) a,2,3,6) 1,2,3,7)

order of 612 = 0 0] 0
" 015 = 1 1 1
" 014 = 3 4 5
" Oyq = 2 2 _ 2
" Oy = 4 5 6
" Oy = 5 6 : 7

An inspection of this table shows that the 6 functions Uij are linearly
independent in any of these cases. It is perthaps worth noting in passing
that this argument does not work at a point other than a Weierstrass point,
since the orders of the expressions Gij are not then distinct (although
there are 5 distinct orders so that this can be used alternatively
to show that on any Riemann surface these expressions span at least a
5-dimensional space), nor does it work for all Weierstrass points (for
when the gap sequence is (1,2,4,5) it again only shows that these expressions
span at least a 5~dimensional space.)

For the remainder of the proof it is convenient to consider in place
of the canonical curve in ZES the cone over the canonical curve, the
holomorphic subvariety V= {x € E4 :f(ﬁ) = g(x) = 0} E;E4 ., This is an
irreducible 2-dimensional subvariety of E4 , regular aside from the isolated
singularity at the origin, the vertex of the cone, and the germs of the
functions £ and g generate the local ideal of this subvariety at each
of its points, Thus the tangent space to V at a regular point x €V

is the 2-dimensional linear subspace



(13) T ={ye £ £, = 8(xx,y) = 0} € £F

with the notation as in (il). On the other hand, the tangent space to V
at a point X = w'(z) contains the vector w'(z) , since V is a cone,
and differentiating with respect to the local coordinate z shows that it
also contains the vector w"{(z) ; these 2 vectors are always linearly
independent for a non-hyperelliptic Riemann surface, so this tangent’

space can also be described as

Tw'(z)(v) = {y € E4 : y,w'(2),w"(2) are linearly dependent] .

The condition that the 3 vectors y,w'(z) ,w"(z) be linearly dependent
just amounts to the vanishing of all 3 X3 subdeterminants of the 4 X3

matrix with these 3 vectors as columns, so using (7) this tangent space can

evidently be described equivalently as

y1023(z) + y2031(z) + y3612(z) =0

(14 ¥,0,,€2) + y,0,.(z) + y,0,,(z) =0
Ly @ < {5 € o 1% 241 4712 L

|
o

9193442 ¥ 539, (2 + 5,9,5(2) =

o.,(z) + y.,0,,(z) + y,0,.(z) = 0 .
| Y2934, (2) + 939,,(2) + 5,9,5(2)
Since the tangent spéce has dimension 2 the matrix describing this system
of linear equations must have rank 2; if is a straightforward matter to

verify that this rank condition is equivalently that the functions Uij(z)

have no common zeros on M and satisfy the identity

(15) 012(2)034(2) - 013(z)024(z) + 014(2)023(2) =0.

It is also quite easy to see that aside from a common nonzero factor

there is a unique system of linear equations of the form appearing in (14)

bl
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describing a 2-dimensional subspace of E4 « Indeed not all the values

Gij(z) are zero, so since the equations are symmetric in the expressions
Gij(z) it can be supposed for instance that 012(2) # 0 ; the first 2
equations then serve to describe the subspace, so the values

013(2), 014(2), 023(2), 024(2) are determined by 012(2) and that

subspace, and 034(2) is then determined by (15).A Thus aside from a common
factor the values Uij(z) can be determined in terms of the polynomials

f and g just by comparing the two descriptions (13) and (14) of the tangeﬁt
space to V at the point x = w'(z) . For instance, using the notation

(12) the equatioms f(x,y) = g(x,%x,y) = 0 are equivalent to the equations

yp* (agb,maby) 5,0 (agb,-a by) +y50(agb,-aby) = O
yl‘(a3b1-a1b3)4-y2-(a3b2-a2b3)4-y4'(a3b4-a4b3) =0

whenever a3b4-a4b3 # 0 ; thus whenever 012(2) # 0 there is a nonzero

value é(z) for which
0,,(2) = c(2)+[ay(w" (D), (' (2)) -3, (@' (D)D" (N)]

and correspondingly for the other expressions Uij(z) with the same

value c(z) . These equations show that c(z) is a meromorphic function

on M, as the quotient of two elements of T(M, QQ(n3)) , and is nonvanishing
since the functions Uij(z) that appear in the numerators of the var;ous
different repfesentations of c¢(z) have no common zeros; ‘therefore

c¢(z) = ¢ is really a nonzero constant, The cubic polynomial

c[a3(xbb4(x) -aﬁ(x)bB(x)] when restricted to points x=w'(z) on the
canonical curve takes the values Ulz(z) , hence can be taken as the
polynomial E&z(x) , and correspondingly for the other terms, to conclude

the proof,



To return to the theta functions again, for a Riemann surface of

genus g=4 the function §2(w)f takes values in the space B16 . The

vector QZ(O) together with the 10 vectors ajlj2§2(0) for iy < J,
form a basis for the 1l1-dimensional subspace Sl cr spanned by the

values Qz(w(z-a)) « The projection operator P1 with kernel S1 can

. . , 16
be viewed as a linear mapping Pl : L -“—D-Es , Bo the function

Plgz(w) can be viewed as taking values in the space E5 « The subspace

16
82 cL spanned by the values gz(w(zl+ z, - al-az)) must be all of

E16 » just as in the case of surfaces of genus g=3, so the extension

52/51 is 5-dimensional., In view of the skew-symmetry there are really

k.k
just 4 of the vectors « 1j in 32/81 , namely alg ’ ali s a}z s azz R

so the extension Si/S1 can be at most 4-dimensional; consequently the

extension Szfsi muist be at least l-dimensional.

Theorem 10. If M is a hyperelliptic Rismann surface of genus
12 12 _ 13 _ 23 _
37047047 0y

canonical curve geometrically, but all vanish to at least second order

g=4 then ¢ 0 ; the equations (7.2) describe the

at each point of the canoﬁical curve., If M is a pnon-hyperelliptic Riemamn
surface of genus g=4 then the vectors alg » alz s alz ’ azz are
liﬁearly independent; if the rank of the matrix {cjk} is 4 the

equations (7.2) describe the canonical curve geometrically, while if the
rank of that matrix is 3 and P is the point in ZP3 it annihilates

then the equations (7.2) describe geometrically the union of the canonical

curve and the point P .,

Proof. First suppose that M is hyperelliptic, It is easy to see
that in terms of the expressions (7) equation (7.6) of Theorem 7 can be

rewritten as the identity



33

. ()

a

(16) Z?d . .
3 Jida

. s oz P8 (0)w! (2)w! (2wl (2) =6 I
Jydpigk "1=2 33 " a2 0 33 3y <d,

for all k , and it follows immediately from this identity and Lemma 2

that

‘ jljz _
(17) = x "Cs s (2) =0 for all k.
3, <3, J3d2

It is another consequence of Lemma 2 that there is a single nontrivial

linear relation z a, . *0, . (z) = 0 between the 6 expressions

i, <3, J1d2 dd2

1 2

cj j (z) , so all of the nontrivial relations (17) must be equivalent to
2

this one relation, Thus if a12'¥ 0 for instance then all those relations

idp

k 0

(17) that do not involve Ulz(z) must be trivial, and therefore «

whenever k=1 or 2; but in view of the skew-symmetry one of the indices
3,3
in any o Xk must be either 1 or 2, and that index can always be taken
3132

Kk = 0 for all indices. The same argument holds

to be k , so that «

for any nonzero coefficient a5 5. of which there must certainly be some,
172, . '
112

so that all of the vectors o K are zero as desired, It follows

from Theorem 6 that the quartic equations (7.2) describe the canonical curve

i3
geometrically, and from (16) together with the observation that ¢ 1k2 =0
for all indices jl,jz,k that the first partial derivatives of all these

quartic equations all vanish on the canonical curve also,

Next suppose that M is not hyperelliptic, There is a unique
guadratic polynomial (4) vanishing on the canonical curve, so it follows

immediately from (6.4) that

b4



K.k
1%2
(18) . .= qgec, . ©
314, 313y Kk,

for some vector o € SZIS' . Since the vectors (18) span the nontrivial
vector space Szlsi it must be the case that ¢ # 0 and dim SZ’Si =1,

and consequently that dim Si/S1 = 4 ; the four vectors alg R a;i R

13 23 .

@, » &, sSpanning S]'_/S1 must therefore be linearly independent as
desired. Since the quartic polynomials in (7;2) vanish on the canonical
curve while (4) and (5) generate the ideal of the canonical curve there

must be unique vectors ¢ and § of quadratic and linear polynomials

respectively such that

(19) T3, . PB(Oex, rerx, = px)£(x) + §(x)g(x) .
j Jlaav_]l‘_ o Jl JZ'_ .

Applying the further projection operator Pi to (19) and then using

Theorem 8 and equation (18) lead readily tc the result that

(20) Plo(x)-£() + RIU() 2() = 6 Ploi(?
hence that
(21) Piw(x) =6 Pia'f(x) s Pi¢(x} =0 ,

The system of equations (7.2) is therefore precisely equivalent to the

system of equations

(22) f(x)2 = §(x)g(x) = 0,

where Y(x) is a vector of linear equations with values in the subspace

Si s hence where

23 ¥ = 4, @a’, + 1,0 + 4@a] + ¥

b5
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for some uniquely determined ordinary linear polynomials tpj » To find
these polynomials explicitly note that they are determined completely by
their values ¢rj(x) at points x of the canonical curve, since the
canonical curve lies in no hyperplane., Further if x is in the

canonical curve then it follows from (21) that Picp(x) = 0, so there is a

corresponding expansion
23 13 12 12
(24) w(x) = cpl(x)cc 4 + cpz(x)q, 4 + cp3(x)o: 4 + @4(x)a 3

for some functions cpj on the canonical curve, Now for any vector
y € E4 applying the differential operator ¥ ykalaxk to (19), considering
the resulting equation at a point x = w'(z) on the canonical curve, and

applying (16) lead to the result that

2p(x)+£(x, ¥) + 3¥(x) s(x,x,y)

=4 ¥ 3, . (., P.08,00)w! (Z)w! (2w (2)y
gk dudzdsk 120 4 T, K
ijd,
-2 ¥ zotl. 0, 5.,
J1<J2 k 1-2
where ;. . (x) =0, . (2) as in (10); substituting into this the expansions
3139 I1do .
(23) and (24) and comparing coefficients of the basis vectors
iyd, |
a then easily yields the system of equatioms

B

(25) 29 () EC,9) + 30 (g (x,5) = 240,03, () - y55,,(0) + 5,551

29, () £(x, ) + 3V, (g (x,%,5) = 24[3,T,, (@) - 7,5, + 3,8 ,(]
20, () £(x,9) + 3V3(0)g (x,%,9) = 24[y,T,,(x) = y,0,,(x) + y,5,,(x)]
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that hold for all points x in the canonical curve and all points y

in E4 . As observed earlier £(x,y) and g(x,x,y) are linearly
independent linear functions of y for each point % on the canonical
curve, so this system of equations completely determinés the values ¢ﬁ(xb

and ﬂ;j(x) in terms of the values . (x) , and the latter are determined

o
313,

by the values of the coefficients aj(x) and bj(x) of the forms fI(x,y)

and g(x,x,y) a5 in Lemma 3. For instance, comparing the coefficients of

Y1 and Yy in the first equation of (25) yields the equations

2, ()2 (%) + 3§, @b (x) = 0
ggol(x)az(g) + 34, ()b (x) = 24 ’634(::) :

if al('x)bz(x) - az(x)bl(x) # 0 these equations can be solved to yield
¥, (®) (3, ()b, (x) -aé(x)bl(xn_ =8 2,(00,, () ,

and it then follows from Lemma 3 that

1111(}:) =8¢ al(x)

If al(x)bz(x) -az(x)bl(x) = 0 then it is‘necessary to consider the
coefficients of some other pair of variables, but the end result will be

the same, A straightforward calculation thus yields the explicit

determination
Y0 = Beca; (), Y, (x) = -8 ca,(x)
1]'[3(}:) = 8 ca3(x) ’ ¢4(X) = -8 ca!*(x) »

or equivalently in terms of the coefficients (%)

(26) Vi = (-1)itlg CE L



£ “ ) é £

It is a familiar result that the rank of the matrix {cjk] is either 4 o& 3,
according as the subvariety W% consists of a pair of points or a single

point, If the ramk is 4 then the vector equation {(x) = 0 describes just the
origin in E4 , and the equations (22) and therefore also the equations (7.2)
describe the canonical curve geometrically; however, the ideal generated by these
quartics is not the canonical ideal but that generated by f(x)2 R

x8(¥) , xg(¥) , xg(x), and x4g(x) . If the rank is 3 then the vector
equation Y(x) = 0 describes a line in E4 hence a single point in IE3 R
the point P annihilated by the matrix {cjk} ; this point of course lies on
the locus f(x) = 0, so the equations (22) and therefore also the equations

(7.2) describe geometrically the union of the canonical curve and this single

point, That suffices to conclude the proof,

The last part of the proof of the preceding theorem yields the following
rather more precise result as well, extending the geometrical description
given in the statement of the theorem; this is an evident consequence of (22)

when the vector ((x) has the explicit form given by (23) and (26),

Corollary 7. If M is a non-hyperelliptic surface of genus g=4 the
ideal generated by the quartic polynomials in (7,2) can be described alternatively

as that generated by the quartics f(x)2 s g(x) T cij33 for 154154
j .

1 the hyperelliptic case the statement of the preceding theorem can
also be made somewhat more precise, but since the canonical curve is just the
rational normal curve it is perhaps not worth pursuing this matter too far here,
as interesting as it may be. Briefly,though, in this case (6.4) evidently

implies that



k1k2 il i, 12
27 aj 5. " z Gy € . © j
2 1 2 K% 3
il il 1'.2 .
for some vectors a, € S_./8! , and from the known symmetries «. = a. .
i, 2°71 i, i,
Furthermore, since Pl = Pi in this case, as a consequence of the first part

of Theorem 10, it follows from Theorem 8 and (27) that

. i
(28) ) Pi8,(0)-% seox = 63

. 8 xf, x) .
j 31"'j£[. 1_ .]1 J4 i 12

o, f.
12 11

The products fi (x)fi (x) span a 6-dimensional subspace A of the 35-
1 2
dimensional space of quartic polynomials; clearly all the polynomials in A

vanish to second order on the canonical curve, and this set of polynomials
i

1 .
describe the canonical curve geometrically. The vectors ai span the
2

5-dimensional space 52/S1 , 8o (28) really describes a 5~dimensional
subspace B c A, The condition that this subset of the polynomials in A
also describe the canonical curve geometrically is a nontrivial condition

1 | 4
on the vectors ¢, , indeed is just the condition that X ¢g,” y., y, = 0

i P ¢ i, i

i "2 71 72
only when y=0 ,
The use of this approach in investigating further the various linear
relations among the vectors Bj 5 P1§2(0) requires an analysis of the
1°*-4

quadratic differentials (6.2},somewhat along the lines of the analysis of the
cubic differentials in Lemmas 2 and 3 but a bit more complicated, and will be
taken up elsewhere, The same analysis seems required in using this approach

to the subvarieties of the Jacobi variety defined by equations such as

PIQZ(WD = 0 ; a different approach has been used with notable success by

Welters [12].
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