Q-curvature and Conformal Covariant operators

Sun-Yung Alice Chang Princeton University

January 9, 2004

Table of Contents

- $\S1$. Introduction
- §2. Conformal Compact Einstein manifold, Scattering theory
- \S 3. Q-curvature, general structure
- $\S4$. Renormalized volume, n odd
- $\S5.$ Renormalized volume, n even

Question: What are the general conformal invariants? What are the conformal covariant operators and their related curvature invariants? • Second order invariants: 1. (Δ_g, K_g) on (M^2, g) satisfying

$$\Delta_{g_w} = e^{-2w} \Delta_g$$

and

$$-\Delta_g w + K_g = K_{g_w} e^{2w}.$$

2. (L_g, R_g) on (M^n, g) , $n \ge 3$, where

$$L_g = -c_n \Delta_g + R_g$$

where R_g the scalar curvature, satisfying

$$L_{g_w} = e^{-\frac{n+2}{2}w} L_g(e^{\frac{n-2}{2}w}\cdot),$$

Yamabe equation

$$L_g(e^{\frac{n-2}{2}w}) = R_{g_w}e^{\frac{n+2}{2}w}.$$

• 4th order invariants:

When n = 4, Paneitz operator: (1983)

$$P\varphi \equiv \Delta^2 \varphi + \delta\left[\left(\frac{2}{3}Rg - 2Ric\right)d\varphi\right]$$

Satisfying:

$$P_{gw} = e^{-4w} P_g$$
$$P_g w + 2Q_g = 2Q_{gw} e^{4w}$$
$$Q = \frac{1}{12} (-\Delta R + R^2 - 3|Ric|^2)$$

3. On (M^n, g) , $n \neq 4$.

Existence of 4-th order conformal Paneitz operator P_4^n ,

$$P_4^n = \Delta^2 + \delta \left(a_n Rg + b_n \text{Ric} \right) d + \frac{n-4}{2} Q_4^n.$$

For $\bar{g} = u^{\frac{4}{n-4}}g$: $P_4^n u = \bar{Q}_4^n u^{\frac{n+4}{n-4}}.$

- P_4^n is conformal covariant of bidegree $(\frac{n-4}{2}, \frac{n+4}{2})$.
- Q_4^n is a fourth order curvature invariants. i.e. under dilation $\delta_t g = t^{-2}g$,

$$(Q_4^n)(\delta_t g) = t^4(Q_4^n)(g).$$

Fefferman-Graham (1985) systematically construct (pointwise) conformal inviariants:

Example: The Riemann curvature tensor has the decomposition

 $R_{ijkl} = W_{ijkl} + [A_{jk}g_{il} + A_{il}g_{jk} - A_{jl}g_{ik} - A_{ik}g_{jl}]$ where

$$A = \frac{1}{n-2} [R_{ij} - \frac{R}{2(n-1)}g_{ij}]$$

is called the Schouten tensor. The Weyl tensor satisfies $W_{g_w} = e^{-2w}W_g$.

Graham-Jenne-Mason-Sparling (1992) applied method of construction to existence results of general conformal covariant operators P_{2k}^n for n even.

$\S2$. Conformally compact Einstein manifold

Given (M^n, g) , denote [g] class of conformal metrics $g_w = e^{2w}g$ for $w \in C^{\infty}(M^n)$.

Definition: Given (X^{n+1}, M^n, g^+) with smooth boundary $\partial X = M^n$. Let r be a defining function for M^n in X^{n+1} as follows:

$$r > 0$$
 in X;
 $r = 0$ on M;
 $dr \neq 0$ on M.

• We say g^+ is conformally compact, if there exists some r so that (X^{n+1}, r^2g^+) is a compact manifold.

• (X^{n+1}, M^n, g^+) is conformally compact Einstein if g^+ is Einstein (i.e. $Ric_{g^+} = cg^+$).

• We call g^+ a Poincare metric if $Ric_{g^+} = -ng^+$.

Example:
On
$$(H^{n+1}, S^n, g_H)$$

 $(H^{n+1}, (\frac{2}{1 - |y|^2})^2 |dy|^2).$

We can then view $(S^n, [g])$ as the compactification of H^{n+1} using the defining function

$$r = 2\frac{1 - |y|}{1 + |y|}$$
$$g_H = g^+ = r^{-2} \left(dr^2 + \left(1 - \frac{r^2}{4}\right)^2 g \right)$$

8

•

Given (M^n, g) , consider $M^+ = M^n \times [0, 1]$ and metric g^+ with (i) g^+ has [g] as conformal infinity, (ii) $Ric(g^+) = -ng^+$. In an appropriate coordinate system (ξ, r) , where $\xi \in M$ with (iii) $g^+ = r^{-2} \left(dr^2 + \sum_{i,j=1}^n g_{ij}^+(\xi, r) d\xi_i d\xi_j \right)$, and g_{ij}^+ is even in r.

Theorem: (C. Fefferman- R. Graham, '85) (a) In case n is odd, up to a diffeomorphism fixing M, there is a unique formal power series solution of g^+ to (i)–(iii).

(b) In case n is even, there exists a formal power series solution for g^+ for which the components of $Ric(g^+) + ng^+$ vanish to order n-2 in power series of r.

Remarks:

• Conformally compact Einstein manifold is of current interest in the physics literature. The Ads/CFT correspondence proposed by Maldacena involves string theory and super-gravity on such X.

• The construction of the Poincare metric is actually accomplished via the construction of a Ricci flat metric, called the ambient metric on the manifold \tilde{G} , where $\tilde{G} = G \times (-1, 1)$ of dimension n + 2 and G is the metric bundle

$$G = \left\{ (\xi, t^2 g(\xi)) : \xi \in M^n, t > 0 \right\}$$

of the bundle of symmetric 2 tensors S^2T^*M on M. The conformal invariants are then contractions of $(\tilde{\nabla}^{k_1}\tilde{R}\otimes\tilde{\nabla}^{k_2}\tilde{R}\otimes....\tilde{\nabla}^{k_l}\tilde{R})$ restricted to TM where \tilde{R} denotes the curvature tensor of the ambient metric. A model example is given by the standard sphere (S^n, g) . Denote $S^n = \left\{ \sum_{1}^{n+1} \xi_k^2 = 1 \right\}$.

$$G = \left\{ \sum_{1}^{n+1} p_k^2 - p_0^2 = 0 \right\}$$

under $\xi_k = p_k/p_0$ ($1 \le k \le n + 1$). Then the ambient space \tilde{G} is Minkowski space

$$R^{n+1,1} = \left\{ (p, p_0), | p \in \mathbb{R}^{n+1}, p_0 \in \mathbb{R} \right\}$$

with the Lorentz metric

$$\tilde{g} = |dp|^2 - dp_0^2,$$

The standard hyberbolic space is realized as the quadric $H^{n+1} = \left\{ |p|^2 - p_0^2 = -1 \right\} \subset R^{n+1,1}$.

PICTURE

Graham, Jenne, Mason and Sparling (1992) The existence of conformal covariant operator P_{2k}^n on (M^n, g) with:

• Order 2k with leading symbol $(-\Delta)^k$

• Conformal covariant of bi-degree $(\frac{n-2k}{2}, \frac{n+2k}{2})$; where $k \in \mathbb{N}$ when n is odd, but $2k \leq n$ when n is even.

• In general, the operators P_{2k}^n is not unique, e.g. add $|W|^k$ to P_{2k}^n , where W is the Weyl tensor, when k is even.

• On \mathbb{R}^n , the operator is unique and is equal to $(-\Delta)^k$. Hence the formula for P_{2k}^n on the standard sphere and on Einstein metric.

Q curvature associated with P_{2k}^n .

• When $2k \neq n$, then $P_{2k}^n(1) = c(n,k)Q_{2k}^n$, e.g. when k = 1, 2 < n, $P_2^n = -c_n \Delta + R = L$, and $Q_2^n = R = P_2^n(1)$.

• When 2k = n, n even Branson ('93) justified the existence of Q_n^n by a dimension continuation (in n) argument from Q_{2k}^n . e.g. When k = 1 and n = 2k = 2, $Q_2^2 = K$ the

Gaussian curvature. When k = 2 and n = 4, $Q_4^4 = 2Q_4$.

• Graham and Zworski ('02) Existence of Q_n^n when n even, the analytic continuation of a spectral parameter in scattering theory. Spectral Theory on (X^{n+1}, M^n, g^+) , with g^+ Poincare metric and $(M^n, [g])$ as conformal infinity.

• A basic fact is (Mazzeo, Melrose-Mazzeo)

$$\sigma(-\Delta_{g^+}) = [(\frac{n}{2})^2, \infty) \cup \sigma_{pp}(-\Delta_{g^+})$$

the pure point spectrum $\sigma_{pp}(-\Delta_{g^+})$ (L^2 eigenvalues), is finite.

• For $s(n-s) \notin \sigma_{pp}$, consider

$$(-\Delta_{g+} - s(n-s))u = 0.$$

Given $f \in C^{\infty}(M)$, then there is a meromorphic family of solutions $u(s) = \wp(s)f$

$$\wp(s)f = Fr^{n-s} + Gr^s$$
 if $s \notin n/2 + \mathbb{N}$

with $F|_M = f$

Define Scattering matrix to be

$$S(s)f = G|M$$

The relation of f to S(s)f is like that of the **Dirichlet** to Neumann data.

Theorem: (Graham-Zworski 2002)

Let (X^{n+1}, M^n, g^+) be a Poincare metric with $(M^n, [g])$ as conformal infinity. Suppose n is even, and $k \in \mathbb{N}$, $k \leq \frac{n}{2}$ and s(n-s) not in $\sigma_{pp}(-\Delta_{g^+})$. Then the scattering matrix S(s) has a simple pole at $s = \frac{n}{2} + k$ and

$$c_k P_{2k}^n = -Res_{s=\frac{n}{2}+k} S(s)$$

When $2k \neq n$, $P_{2k}^n(1) = c(n,k)Q_{2k}^n$

When 2k = n, $c_{\frac{n}{2}}Q_n = S(n)1$.

§3. Known facts for Q_n , n even:

• Q_n is a conformal density of weight -n ; i.e. with respect to the dilation δ_t of metric g given by $\delta_t(g) = t^2 g$, we have $(Q_n)_{\delta_t g} = t^{-n} (Q_n)_g$.

• $\int_{M^n} (Q_n)_g dv_g$ is conformally invariant.

• For
$$g_w = e^{2w}g$$
, we have

$$(P_n)_g w + (Q_n)_g = (Q_n)_{g_w} e^{nw}.$$

• When (M^n, g) is locally conformally flat, then $(Q_n)_g = c_n \sigma_{\frac{n}{2}}(A_g) + \text{divergence}$ terms, e.g. $Q_4 = \sigma_2(A_g) - \frac{1}{6}\Delta_g R.$

Alexakis

$$Q_n = c_n \mathsf{Pfaffian} + J + \mathsf{div}(T_n).$$

where Pfaffian is the Euler class density, which is the integrand in the Gauss-Bonnet formula, J is a pointwise conformal invariant, and div (T_n) is a divergence term. • Alexakis (also Fefferman-Hirachi) has extended the existence of conformal covariant operator to conformal densities of weight γ , where $\gamma \neq (-\frac{n}{2}) + k$ where k is a positive integer and γ not a nonnegative integer. An example of such operator is:

$$2P(f) = \nabla^{i}(||W||^{2}\nabla^{i}f) + \frac{n-6}{n-2}||W||^{2}\Delta f.$$

with corresponding Q-curvature explicit.

• Fefferman and Hirachi have also extended the construction of conformal covariant operator and Q curvature to CR manifolds.

• Branson, Eastwood-Gover survey articles, AIM meeting August 2003.

§4. Renormalized Volume (Witten, Gubser-Klebanov-Polyakov, Henningson-Skenderis, Graham)

On conformal compact (X^{n+1}, M^n, g^+) with defining function r, For n odd,

$$Vol_{g^+}(\{r > \epsilon\}) = c_0 \epsilon^{-n} + c_2 \epsilon^{-n+2} + \dots + c_{n-1} \epsilon^{-1} + V + o(1)$$

For n even,

$$Vol_{g^{+}}(\{r > \epsilon\}) = c_{0}\epsilon^{-n} + c_{2}\epsilon^{-n+2} + \cdots + c_{n-2}\epsilon^{-2} + L\log\frac{1}{\epsilon} + V + o(1)$$

• For n odd, V is independent of $g \in [g]$, and for n even, L is independent of $g \in [g]$, and hence are conformal invariants. Theorem: (Graham-Zworski) When n is even,

$$L = -2 \int_M S(n) \mathbf{1} = 2c_{\frac{n}{2}} \int_M Q_n dv_g.$$

Theorem: (Fefferman-Graham '02) Consider $v = \frac{d}{ds}|_{s=n}S(s)1$ then v is a smooth function defined on X solving

$$-\Delta_{g^+}(v) = n$$

and with the asymptotic

$$v = \begin{cases} \log x + A + Bx^n \log x & \text{for n even} \\ \log x + A + Bx^n & \text{for n odd} \end{cases}$$

where $A, B \in C^{\infty}(X)$ are even mod $O(x^{\infty})$ and $A|_M = 0$. Moreover (i) If n is even, then

$$B|_M = -2S(n)\mathbf{1} = -2c_{\frac{n}{2}}Q_n$$

hence $L = 2c_{\frac{n}{2}} \int_M Q_n$.

(ii) If n is odd, then

$$B|_M = -\frac{d}{ds}|_{s=n}S(s)\mathbf{1},$$

and if one defines $Q_n(g^+, [g])$ to be

$$Q_n(g^+, [g]) = k_n B|_M$$

then

$$k_n V = \int_M Q_n(g^+, [g]) dv_g.$$

Remark: when n is odd, the Q curvature thus defined is not intrinsic, it depends not only on the boundary metric g on M but also on the extension of g^+ on X.

On compact Riemannian 4-manifold (X^4, M^3, g^+) with boundary, Chang-Qing introduced

$$(P_b)_{g_w} = e^{-3w}(P_b)_g$$
, on M and
 $(P_b)_g w + T_g = T_{g_w} e^{3w}$ on M.

$$8\pi^2 \chi(X) = \int_{X^4} (\frac{1}{4} |W|^2 + Q_4) dv + 2 \int_{M^3} (\mathcal{L} + T) d\sigma,$$

where \mathcal{L} is a point-wise conformal invariant term on the boundary of the manifold.

On conformally compact Einstein (X^4, M^3, g^+) :

$$(P_b)_g = -\frac{1}{2} \frac{\partial}{\partial n} \Delta_{g^+}|_M, \ T_g = \frac{1}{12} \frac{\partial R}{\partial n}|_M,$$

and in this case \mathcal{L} vanishes.

§ When n = 3, on (X^4, M^3, g^+) , conformally compact Einstein

Theorem: (Chang-Qing-Yang) On (X^4, M^3, g^+) (i) $(Q_4)_{e^{2v}g^+} = 0$,

Proof: Recall

$$Q_4 = \frac{1}{6}(-\Delta R + R^2 - 3|Ric|^2).$$
Thus for g^+ a Poincare metric with $Ric \ g^+ = -3g^+$, we have $(Q_4)_{g^+} = 6$ and

$$(P_4)_{g^+} = (\Delta)^2_{g^+} + 2\Delta_{g^+}.$$

We then use the equations $-\Delta_{g^+}(v)=n=3$ and

$$(P_4)_{g^+}(v) + (Q_4)_{g^+} = (Q_4)_{e^{2v}g^+}$$

to conclude the proof.

(i)
$$(Q_4)_{e^{2v}g^+} = 0$$
,
(ii) $Q_3(e^{2v}g^+, [e^{2v}g]) = 3B|_{x=0} = T_{e^{2v}g}$.

As a consequence we have

$$6V = \int_{X^4} (Q_4)_{e^{2v}g^+} + 2 \int_{M^3} T_{e^{2v}g}$$
$$= \int_{X^4} \sigma_2(A_{e^{2v}g^+}).$$

Hence (M. Anderson)

$$8\pi^2 \chi(X^4) = \frac{1}{4} \int_{X^4} |W|^2 dv_{\bar{g}} + \int_{X^4} \sigma_2(A_{\bar{g}})$$
$$= \frac{1}{4} \int_{X^4} |W|^2 dv_{\bar{g}} + 6V,$$

for $\bar{g} = e^{2v}g^+$ or any conformal compact \bar{g} .

Conformal Sphere Theorem: (Chang-Gursky-Yang) On (M^4, g) with $Y(M^4, g) > 0$. If

$$\int_{M^4} |W_g|^2 dv_g < 16\pi^2 \chi(M^4),$$

or equivalently

$$\int_{M^4} \sigma_2(A_g) dv_g > 4\pi^2 \chi(M^4)$$

then M^4 is diffeomorphic to S^4 or \mathbb{R}^4 .

Note that on (M^4, g) , with $Y(M^4, g) > 0$.

$$\int_{M^4} \sigma_2(A_g) dv_g \le 16\pi^2$$

with equality if and only if M^4 is diffeomorphic to S^4 .

Theorem: (Chang-Qing-Yang)

Suppose (X^4, M^3, g^+) is a conformal compact Einstein manifold, and $(M^3, [g])$ has positive Yamabe constant, then

(i) $V \leq \frac{4\pi^2}{3}$, with equality holds if and only if (X^4, g^+) is the hyperbolic space (H^4, g_H) , and therefore (M^3, g) is the standard 3-sphere. (ii) If

$$V > \frac{1}{3}(\frac{4\pi^2}{3}\chi(X)),$$

then X is homeomorphic to the 4-ball B^4 up to a finite cover.

(iii) If

$$V > \frac{1}{2}(\frac{4\pi^2}{3}\chi(X)),$$

then X is diffeomorphic to B^4 and M is diffeomorphic to S^3 .

A crucial step in the proof of the theorem above is an earlier result:

Theorem: (Qing '02)

Suppose (X^{n+1}, M^n, g^+) is a conformal compact Einstein manifold, with $Y(M^n, [g])$ positive, then there is a positive eigenfunction u satisfying

$$-\Delta_{g^+} u = (n+1)u \text{ on } X^{n+1},$$

so that $(X^{n+1}, u^{-2}g^+)$ is a compact manifold with totally geodesic boundary and the scalar curvature is greater than or equal to $\frac{n+1}{n-1}R_g$, where $g \in [g]$ is the Yamabe metric.

PICTURE

Theorem:

(Chang-Qing-Yang, Epstein)

On conformally compact Einstein (X^{n+1}, M^n, g^+) , when n is odd,

$$\int_{X^{n+1}} W_{n+1} dv_g + c_n V(X^{n+1}, g) = \chi(X^{n+1})$$

for some curvature invariant W_{n+1} , which is a sum of contractions of Weyl curvatures and/or its covariant derivatives in an Einstein metric.

Proof:

Use structure equation of Q_n ; in particular, the result of Alexakis that

$$Q_n = a_n \mathsf{Pfaffian} + J + \mathsf{div}(T_n).$$

$\S5$. Renormalized volume when n is even.

The renormalized volume can also be defined via the scattering matrix:

$$V(X^{3}, [g], g^{+}) = -\int_{M^{2}} \frac{d}{ds} |_{s=2} S(s) 1 dv_{g}, \text{ for } n = 2$$
$$V(X^{5}, [g], g^{+}) = -\int_{M^{4}} \frac{d}{ds} |_{s=4} S(s) 1 dv_{g}$$
$$-\frac{1}{32 \cdot 36} \int_{M^{4}} R^{2}[g] dv_{g}, \text{ for } n = 4$$

$$V(X^{n+1}, [g], g^+) = -\int_{M^n} \frac{d}{ds} |_{s=n} S(s) 1 dv_g$$

+ correction terms,
for *n* even

Definition: We call a functional \mathcal{F} defined on (M^n, g) a conformal primitive of a curvature tensor \mathcal{A} if

$$\frac{d}{d\alpha}|_{\alpha=0}\mathcal{F}[e^{2\alpha w}g] = -2c_{\frac{n}{2}}\int_{M}w\,\mathcal{A}_{g}dv_{g}.$$

Theorem: On (X^{n+1}, M^n, g^+) , *n* even, the scattering term $S(g, g^+) = \frac{d}{ds}|_{s=n}S(s)1(g, g^+)$ is the conformal primitive of $(Q_n)_g$.

Corollary: (Henningson-Skenderis, Graham) On (X^3, M^2, g^+) , V is the conformal primitive of K, the Gaussian curvature. On (X^5, M^4, g^+) , V is the conformal primitive of $\frac{1}{16}\sigma_2$, where $\sigma_2 = \frac{1}{6}(R^2 - 3|Ric|^2)$. • Qing established the rigidity result that any conformal compact Einstein manifold with conformal infinity the standard n-sphere is the hyperbolic n + 1 space extending prior results of L. Andersson.

• X. Wang proved that on (X^{n+1}, M^n, g^+) with $\lambda_0(g^+) > n-1$, then $H_n(X, \mathbb{Z}) = 0$. In particular, the conformal infinity M is connected; thus extending an earlier result of Witten-Yau.

Given $(M^n, [g])$ in general, both the existence and uniqueness problem of a conformal compact Einstein manifold with $(M^n, [g])$ as conformal infinity remain open.