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Question: What are the general conformal in-
variants? What are the conformal covariant
operators and their related curvature invari-
ants?



e Second order invariants:
1. (Ay, Ky) on (M?,g) satisfying

w

Ny, = e VA,
and
—Agw + Ky = Kg,ev.
2. (Lg,Rg) on (M™, g), n > 3, where

Lg — —Cfn,Ag + Rg
where R4 the scalar curvature, satisfying

_nt?2 n—2
Ly, =¢e" 2 “Ly(e 2 %),

w

Yamabe equation

—2 42
Lg(enTw) = ngenTw.



e 4th order invariants:
When n = 4, Paneitz operator: (1983)

2
Po = A%p + 5[<§Rg — 2Ric) do]
Satisfying:

w

1
Q = E(—AR + R? — 3|Ric|?)



3. On (M™,g), n £ 4.

Existence of 4-th order
conformal Paneitz operator P/,

_4
Py = A2 4§ (anRg + bpRic) d + ”TQZ

4 n+4

For g = un—4g: Ppu = Qpun-4.

e P} is conformal covariant of bidegree (%52, “4%).

e Q; is a fourth order curvature invariants. i.e.
under dilation §;g = t—?g,

QM) (8t9) = t*(QM) (9).



Fefferman-Graham (1985) systematically con-
struct (pointwise) conformal inviariants:

The Riemann curvature tensor has
the decomposition

Rkt = Wi + [Ajrga + Augike — Aigik — Aikgijil
where
1 R
n—2[ i] 2(n—1)g”]
is called the Schouten tensor. The Weyl tensor
satisfies Wy,, = e 2¥Wj.

A=

Graham-Jenne-Mason-Sparling (1992) applied
method of construction to existence results of
general conformal covariant operators ng for
n even.



§2. Conformally compact Einstein manifold

Given (M"™,g), denote [g] class of conformal
metrics gy = e2¥g for w € C°(M™").

Definition: Given (X"t1 M7™ ¢g1) with smooth
boundary 90X = M"™. Let r be a defining func-
tion for M™ in X" 1T1 as follows:

r>0 in X;
r=0 on M;
dr 0 on M.

e \We say g"‘ iIs conformally compact, if there
exists some r so that (X1 +2¢1) is a com-
pact manifold.

o (X1l M7 gT) is conformally compact Ein-
stein if g7 is Einstein (i.e. Ric 4 = cgT ).

e We call g7 a Poincare metric if Ric 1 =

—ng"".



On (H™ 11 S™ gx)

2
—— )?|dy|?).
1—|y|?

We can then view (5", [g]) as the compactifi-
cation of H**T1 using the defining function

(H" L (

1 — |y
1+ |y

2 2
_ T
gH=g+=r2(W2+(1—4)g)-

r =2




Given (M™",g), consider Mt = M™ x [0, 1] and
metric g1 with

(i) g7 has [¢g] as conformal infinity,

(ii) Ric(gT) = —ngT.

In an appropriate coordinate system (&, r), where
£ € M with

(i) gt = r72(dr? + $7jq 955 (&, r)déids; )

and g+ IS even in r.

iJ
Theorem: (C. Fefferman- R. Graham, '85)
(a) In case n is odd, up to a diffeomorphism
fixing M, there is a unique formal power series
solution of g1 to (i)—(iii).

(b) In case n is even, there exists a formal
power series solution for g+ for which the com-
ponents of Ric(gt)+ng™T vanish to order n—2
in power series of r.



Remarks:

e Conformally compact Einstein manifold is of
current interest in the physics literature. The
Ads/CFT correspondence proposed by Malda-
cena involves string theory and super-gravity
on such X.

e [ he construction of the Poincare metric is
actually accomplished via the construction of
a Ricci flat metric, called the ambient metric
on the manifold G, where G = G x (—1,1) of
dimension n 4+ 2 and G is the metric bundle

G={(t°g(&): ¢eM™, t>0]}

of the bundle of symmetric 2 tensors S2T* M
on M. The conformal invariants are then con-
tractions of (VF1IR@V*2R®.....VkR) restricted
to TM where R denotes the curvature tensor
of the ambient metric.
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A model example is given by the standard sphere
(S", g). Denote S™ = {Z?"’l &8 = 1}.

n—+1
G={zpz—p3=o}
1

under & = pi/po (1 <k <n-+1). Then the
ambient space G is Minkowski space

R0 = {(p,po), [p € R"* 1, py € R}

with the Lorentz metric
G = |dp|? — dp},

The standard hyberbolic space is realized as
the quadric H* 11 = {|p|2 —p3 = —1} c RntL1

PICTURE
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Graham, Jenne, Mason and Sparling (1992)
The existence of conformal covariant operator
P3, on (M"™,g) with:

e Order 2k with leading symbol (—A)*

e Conformal covariant of bi-degree (272~ nt2k).
where k € N when n is odd, but 2k <n when n
IS even.

e In general,the operators ng IS not unique,
e.g. add |W|* to P&, where W is the Weyl
tensor, when k is even.

e On R™ | the operator is unique and is equal
to (—A)*. Hence the formula for P% on the
standard sphere and on Einstein metric.
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@ curvature associated with PJ,.

e When 2k # n, then PJ,.(1) = c(n, k)Q%,,
eg. when k=1, 2<n, P =—-cnA+ R=1L,
and Q5 = R = P%(1).

e When 2k = n, n even Branson ('93) justified
the existence of Q7' by a dimension continua-
tion (in n) argument from QF,.

e.d. When k=1 and n =2k =2, Q5 = K the
Gaussian curvature.

When k=2 and n =4, Q7 = 2Qq.

e Graham and Zworski ('02) Existence of Q7!
when n even, the analytic continuation of a
spectral parameter in scattering theory.
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Spectral Theory on (X™T1 M™ ¢T), with ¢gT
Poincare metric and (M"™, [¢]) as conformal in-
finity.
e A basic fact is (Mazzeo, Melrose-Mazzeo)
n
(=) = [(5)%00) U opp(=A4)

the pure point spectrum app(—A +) ( L2 eigen-
values), is finite.
e For s(n —s) ¢ opp, Cconsider

(=Ayp —s(n—s))u=0.

Given f € C°°(M) , then there is a meromor-
phic family of solutions u(s) = o(s)f

() f =Fr"°+Gr° ifsédn/2+N

with F|M = f
Define Scattering matrix to be

S(s)f =GM
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The relation of f to S(s)f is like that of the
Dirichlet to Neumann data.

Theorem: (Graham-Zworski 2002)
Let (X"+1 M™ ¢gT) be a Poincare metric with
(M™, [g]) as conformal infinity. Suppose n is
even, and k£ € N, k£ < % and s(n — s) not in
app(—Ag+). Then the scattering matrix S(s)
has a simple pole at s =g—|—k and

c Py = —Ressz%_l_kS(s)

When 2k #=n, P3.(1) = c(n, k)Q3,

When 2k = n, C%Qn = S(n)l.
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§3. Known facts for Qn, n even:

e (Jn is a conformal density of weight -n ; i.e.
with respect to the dilation §; of metric g given

by 6:(g) = t°g, we have (Qn)s,g =t "(Qn)g-
o [1n(Qn)gdvg is conformally invariant.

o For guw = e2%g, we have

(Pn)gw + (Qn)g — (Qn)gwenw.

e When (M™, g) is locally conformally flat, then
(Qn)g = cna%(Ag) + divergence terms, e.g.

e Alexakis

Qn = cpPfaffian 4+ J 4+ div(T}).

where Pfaffian is the Euler class density, which
is the integrand in the Gauss-Bonnet formula,
J is a pointwise conformal invariant, and div(Ty)
IS a divergence term.
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e Alexakis (also Fefferman-Hirachi) has extended
the existence of conformal covariant opera-
tor to conformal densities of weight v , where
v # (—5) + k where k is a positive integer and
~v not a nonnegative integer. An example of
such operator is:

n_

2P(f) = V'(||W|?V'f) +

6
SIIWIRA S

n J—
with corresponding Q-curvature explicit.

e Fefferman and Hirachi have also extended the
construction of conformal covariant operator
and ) curvature to CR manifolds.

e Branson, Eastwood-Gover survey articles, AIM
meeting August 2003.
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§84. Renormalized Volume (Witten, Gubser-
Klebanov -Polyakov, Henningson-Skenderis, Gra-
ham)
On conformal compact (X"l M7™ ¢gT) with
defining function r», For n odd,
Vol 1+ ({r > €}) = coe " + coe T2 4L
+c, 164+ V 4+ 0(1)
For n even,
VOIg_|_({7° >€}) =cpe "+ coe T2 4.
_ 1
+cn2e 2+ Llog =+ V +o(1)

e For n odd, V is independent of g € [g], and
for n even, L is independent of g € [g], and
hence are conformal invariants.
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Theorem: (Graham-Zworski) When n is even,

Theorem: (Fefferman-Graham '02) Consider
v = d%|S:nS(s)1 then v is a smooth function
defined on X solving

—Ag_|_(fu) =n
and with the asymptotic

. logx + A + Bx"logx for n even
| logxz 4+ A+ Bz" for n odd

where A, B € C°°(X) are even mod O(z*°) and
Alpr = 0. Moreover
(i) If n is even, then

Bly = —25(n)1 = —QCan

hence L = 26% I Qn.
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(ii) If n is odd, then
d
Bly = ——|s=nS(s)1,
ds
and if one defines Q,(g™T,[g]) to be

Qn(g™, lg]) = knB|y

then
knV = [ Qulg™, [g)dvg.

Remark: when n is odd, the Q curvature thus
defined is not intrinsic, it depends not only on
the boundary metric ¢ on M but also on the

extension of g1 on X.
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On compact Riemannian 4-manifold (X%, M3, gT)
with boundary, Chang-Qing introduced

(P g, = e 3¥(Py)g, on M and

2 _ |
8r2x(X) = [, GIWPHQa)dv+2 [ (£4+T)do,

where L is a point-wise conformal invariant
term on the boundary of the manifold.

On conformally compact Einstein (X%, M3, g1):

10 1 OR
P)g=—"A , Tg = ——| 1>
(Po)g = —57 - Bytlm, Ty = 155-lm

and in this case L vanishes.
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§ When n = 3, on (X4, M3,47), conformally
compact Einstein

Theorem: (Chang-Qing-Yang)
On (X%, M3,g7)
() (Qa).20p+ =0,

Proof: Recall
1
Qa=(-AR+ R? — 3|Ric|?).

Thus for g7 a Poincare metric with Ric g7 =
—3g7T, we have (Q4),+ = 6 and

(P4) + = (A)29+ T 24 .

We then use the equations —Ag+(v) =n=3
and

(Pa) +(v) +(Qa) )+ = (Q4) 20+

to conclude the proof.
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(D) (Q4) 204+ =0,
(i) @3(e*Vg™,[e*¥g]) = 3Bls=0 = T,2v,.

AS a consequence we have
oV = /X4(Q4)621)g-|- _I_ 2 /M3 T€21)g

p— /X4 0'2 (A€2vg+) .

Hence (M. Anderson)

1
Br2x(Xh) =3 [ IWPdvs+ [, 0a(4g)

1 >
— Z/X4|W| dvg + 6V,

for g = 62“g+ or any conformal compact g.
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Conformal Sphere Theorem:
(Chang-Gursky-Yang)
On (M#%,g) with Y(M*%,¢) > 0. If

/M4 Wy|2dvg < 16525 (M%),
or equivalently
/M4 o2(Ag)dvg > 47r2><(M4)

then M*? is diffeomorphic to S* or R%.

Note that on (M#%,g), with Y(M*%,g) > 0.

with equality if and only if M*% is diffeomorphic
to S4.
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Theorem: (Chang-Qing-Yang )
Suppose (X%, M3, 41) is a conformal compact
Einstein manifold, and (M3,[g]) has positive
Yamabe constant, then
() V < 4T7T2, with equality holds if and only if
(X%, gT) is the hyperbolic space (H?, gp), and
therefore (M3, g) is the standard 3-sphere.
(i) If
2
V> S(Tx00),
then X is homeomorphic to the 4-ball B4 up
to a finite cover.
(iii) If
2
V> SCTx0o0),
then X is diffeomorphic to B4 and M is diffeo-
morphic to S3.
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A crucial step in the proof of the theorem
above is an earlier result:

Theorem: (Qing '02)

Suppose (X"t1 M7™ ¢1) is a conformal com-
pact Einstein manifold, with Y (M™", [g]) posi-
tive, then there is a positive eigenfunction w
satisfying

—Ag_|_u = (n+ 1)u on X1

so that (X" T1 4=2¢T) is a compact manifold
with totally geodesic boundary and the scalar
curvature is greater than or equal to Z—i‘%Rg,
where g € [g] is the Yamabe metric.

PICTURE
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Theorem:

(Chang-Qing-Yang, Epstein)

On conformally compact Einstein (X™T1, M7 g1),
when n is odd,

[ Watadug + enV (X" ) = x(x™+1)

for some curvature invariant W, 41, which is a
sum of contractions of Weyl curvatures and/or
its covariant derivatives in an Einstein metric.

Proof:

Use structure equation of @)y; in particular, the
result of Alexakis that

Qn = anpPfaffian 4+ J 4+ div(1y,).
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§5. Renormalized volume when n is even.

The renormalized volume can also be defined
via the scattering matrix:

d

d
V(X57 [g]ag—l_) — = /M4 £|3:4S(8)1d?)g
1

_ R?[g]dv,, for n =4
3536 Jae 10 19ldvg, Torm

d
V(Xn+17 [g]ag_l_) — — / _|s:nS(S)1d’l)g
M™ ds

-+ correction terms,
for n even
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Definition: We call a functional F defined on
(M™,g) a conformal primitive of a curvature
tensor A if

d
= lamoF[e2g) = ~2c5 [ w Agduy.

Theorem: On (X"l Mn™ gt), n even, the
scattering term S(g,¢g1) = %Lg:nS(s)l(g,g_")
is the conformal primitive of (Qn)g.

Corollary: (Henningson-Skenderis, Graham)
On (X3,M?2 ¢T), V is the conformal primitive
of K, the Gaussian curvature.

On (X°, M4 gT), V is the conformal primitive
of =02, where o5 = £(R? — 3|Ric|?).
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e QQing established the rigidity result that any
conformal compact Einstein manifold with con-
formal infinity the standard n-sphere is the hy-
perbolic n + 1 space extending prior results of
L. Andersson.

e X. Wang proved that on (X1 M™ ¢1) with
Ao(gt) >n—1, then H,(X,Z) = 0. In particu-
lar, the conformal infinity M is connected; thus
extending an earlier result of Witten-Yau.

Given (M™, [g]) in general, both the existence
and uniqueness problem of a conformal com-
pact Einstein manifold with (M"™, [g]) as con-
formal infinity remain open.
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