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Question: What are the general conformal in-

variants? What are the conformal covariant

operators and their related curvature invari-

ants?
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• Second order invariants:

1. (∆g, Kg) on (M2, g) satisfying

∆gw = e−2w∆g

and

−∆gw + Kg = Kgwe2w.

2. (Lg, Rg) on (Mn, g), n ≥ 3, where

Lg = −cn∆g + Rg

where Rg the scalar curvature, satisfying

Lgw = e−
n+2
2 wLg(e

n−2
2 w·),

Yamabe equation

Lg(e
n−2
2 w) = Rgwe

n+2
2 w.
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• 4th order invariants:

When n = 4, Paneitz operator: (1983)

Pϕ ≡ ∆2ϕ + δ[

(

2

3
Rg − 2Ric

)

dϕ]

Satisfying:

Pgw = e−4wPg

Pgw + 2Qg = 2Qgwe4w

Q =
1

12
(−∆R + R2 − 3|Ric|2)
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3. On (Mn, g), n 6= 4.

Existence of 4-th order

conformal Paneitz operator P n
4 ,

Pn
4 = ∆2 + δ (anRg + bnRic) d +

n − 4

2
Qn

4.

For ḡ = u
4

n−4g: Pn
4 u = Q̄n

4u
n+4
n−4 .

• Pn
4 is conformal covariant of bidegree (n−4

2 , n+4
2 ).

• Qn
4 is a fourth order curvature invariants. i.e.

under dilation δtg = t−2g,

(Qn
4)(δtg) = t4(Qn

4)(g).
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Fefferman-Graham (1985) systematically con-

struct (pointwise) conformal inviariants:

Example: The Riemann curvature tensor has

the decomposition

Rijkl = Wijkl + [Ajkgil + Ailgjk −Ajlgik −Aikgjl]

where

A =
1

n − 2
[Rij −

R

2(n − 1)
gij]

is called the Schouten tensor. The Weyl tensor

satisfies Wgw = e−2wWg.

Graham-Jenne-Mason-Sparling (1992) applied

method of construction to existence results of

general conformal covariant operators P n
2k for

n even.
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§2. Conformally compact Einstein manifold

Given (Mn, g), denote [g] class of conformal

metrics gw = e2wg for w ∈ C∞(Mn).

Definition: Given (Xn+1, Mn, g+) with smooth

boundary ∂X = Mn. Let r be a defining func-

tion for Mn in Xn+1 as follows:

r > 0 in X;

r = 0 on M ;

dr 6= 0 on M.

• We say g+ is conformally compact, if there

exists some r so that (Xn+1, r2g+) is a com-

pact manifold.

• (Xn+1, Mn, g+) is conformally compact Ein-

stein if g+ is Einstein (i.e. Ricg+ = cg+ ).

• We call g+ a Poincare metric if Ricg+ =

−ng+.
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Example:

On (Hn+1, Sn, gH)

(Hn+1, (
2

1 − |y|2
)2|dy|2).

We can then view (Sn, [g]) as the compactifi-

cation of Hn+1 using the defining function

r = 2
1 − |y|

1 + |y|

gH = g+ = r−2



dr2 + (1 −
r2

4
)

2

g



 .
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Given (Mn, g), consider M+ = Mn × [0,1] and

metric g+ with

(i) g+ has [g] as conformal infinity,

(ii) Ric(g+) = −ng+.

In an appropriate coordinate system (ξ, r), where

ξ ∈ M with

(iii) g+ = r−2
(

dr2 +
∑n

i,j=1 g+
ij (ξ, r)dξidξj

)

,

and g+
ij is even in r.

Theorem: (C. Fefferman- R. Graham, ’85)

(a) In case n is odd, up to a diffeomorphism

fixing M , there is a unique formal power series

solution of g+ to (i)–(iii).

(b) In case n is even, there exists a formal

power series solution for g+ for which the com-

ponents of Ric(g+)+ng+ vanish to order n−2

in power series of r.
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Remarks:

• Conformally compact Einstein manifold is of

current interest in the physics literature. The

Ads/CFT correspondence proposed by Malda-

cena involves string theory and super-gravity

on such X.

• The construction of the Poincare metric is

actually accomplished via the construction of

a Ricci flat metric, called the ambient metric

on the manifold G̃, where G̃ = G × (−1,1) of

dimension n + 2 and G is the metric bundle

G =
{

(ξ, t2g(ξ)) : ξ ∈ Mn, t > 0
}

of the bundle of symmetric 2 tensors S2T ∗M

on M . The conformal invariants are then con-

tractions of (∇̃k1R̃⊗∇̃k2R̃⊗......∇̃klR̃) restricted

to TM where R̃ denotes the curvature tensor

of the ambient metric.
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A model example is given by the standard sphere

(Sn, g). Denote Sn =
{

∑n+1
1 ξ2k = 1

}

.

G =







n+1
∑

1

p2
k − p2

0 = 0







under ξk = pk/p0 (1 ≤ k ≤ n + 1). Then the

ambient space G̃ is Minkowski space

Rn+1,1 =
{

(p, p0), |p ∈ R
n+1, p0 ∈ R

}

with the Lorentz metric

g̃ = |dp|2 − dp2
0,

The standard hyberbolic space is realized as

the quadric Hn+1 =
{

|p|2 − p2
0 = −1

}

⊂ Rn+1,1.

PICTURE
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Graham, Jenne, Mason and Sparling (1992)

The existence of conformal covariant operator

Pn
2k on (Mn, g) with:

• Order 2k with leading symbol (−∆)k

• Conformal covariant of bi-degree (n−2k
2 , n+2k

2 );

where k ∈ N when n is odd, but 2k ≤ n when n

is even.

• In general,the operators P n
2k is not unique,

e.g. add |W |k to Pn
2k , where W is the Weyl

tensor, when k is even.

• On Rn , the operator is unique and is equal

to (−∆)k. Hence the formula for P n
2k on the

standard sphere and on Einstein metric.
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Q curvature associated with P n
2k.

• When 2k 6= n, then Pn
2k(1) = c(n, k)Qn

2k,

e.g. when k = 1, 2 < n, P n
2 = −cn∆ + R = L,

and Qn
2 = R = Pn

2 (1).

• When 2k = n, n even Branson (’93) justified

the existence of Qn
n by a dimension continua-

tion (in n) argument from Qn
2k.

e.g. When k = 1 and n = 2k = 2, Q2
2 = K the

Gaussian curvature.

When k = 2 and n = 4, Q4
4 = 2Q4.

• Graham and Zworski (’02) Existence of Qn
n

when n even, the analytic continuation of a

spectral parameter in scattering theory.
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Spectral Theory on (Xn+1, Mn, g+), with g+

Poincare metric and (Mn, [g]) as conformal in-

finity.

• A basic fact is (Mazzeo, Melrose-Mazzeo)

σ(−∆g+) = [(
n

2
)2,∞) ∪ σpp(−∆g+)

the pure point spectrum σpp(−∆g+) ( L2 eigen-

values), is finite.

• For s(n − s) /∈ σpp, consider

(−∆g+ − s(n − s))u = 0.

Given f ∈ C∞(M) , then there is a meromor-

phic family of solutions u(s) = ℘(s)f

℘(s)f = Frn−s + Grs if s /∈ n/2 + N

with F |M = f

Define Scattering matrix to be

S(s)f = G|M
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The relation of f to S(s)f is like that of the

Dirichlet to Neumann data.

Theorem: (Graham-Zworski 2002)

Let (Xn+1, Mn, g+) be a Poincare metric with

(Mn, [g]) as conformal infinity. Suppose n is

even, and k ∈ N, k ≤ n
2 and s(n − s) not in

σpp(−∆g+). Then the scattering matrix S(s)

has a simple pole at s = n
2 + k and

ckPn
2k = −Ress=n

2+kS(s)

When 2k 6= n, Pn
2k(1) = c(n, k)Qn

2k

When 2k = n, cn
2
Qn = S(n)1.
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§3. Known facts for Qn, n even:

• Qn is a conformal density of weight -n ; i.e.

with respect to the dilation δt of metric g given

by δt(g) = t2g, we have (Qn)δtg = t−n(Qn)g.

•
∫

Mn(Qn)gdvg is conformally invariant.

• For gw = e2wg, we have

(Pn)gw + (Qn)g = (Qn)gwenw.

• When (Mn, g) is locally conformally flat, then

(Qn)g = cnσn
2
(Ag) + divergence terms, e.g.

Q4 = σ2(Ag) −
1
6∆gR.

• Alexakis

Qn = cnPfaffian + J + div(Tn).

where Pfaffian is the Euler class density, which

is the integrand in the Gauss-Bonnet formula,

J is a pointwise conformal invariant, and div(Tn)

is a divergence term.
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• Alexakis (also Fefferman-Hirachi) has extended

the existence of conformal covariant opera-

tor to conformal densities of weight γ , where

γ 6= (−n
2) + k where k is a positive integer and

γ not a nonnegative integer. An example of

such operator is:

2P (f) = ∇i(||W ||2∇if) +
n − 6

n − 2
||W ||2∆f.

with corresponding Q-curvature explicit.

• Fefferman and Hirachi have also extended the

construction of conformal covariant operator

and Q curvature to CR manifolds.

• Branson, Eastwood-Gover survey articles, AIM

meeting August 2003.
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§4. Renormalized Volume (Witten, Gubser-

Klebanov -Polyakov, Henningson-Skenderis, Gra-

ham)

On conformal compact (Xn+1, Mn, g+) with

defining function r, For n odd,

Volg+({r > ε}) = c0ε−n + c2ε−n+2 + · · · · ·

+ cn−1ε−1 + V + o(1)

For n even,

Volg+({r > ε}) = c0ε−n + c2ε−n+2 + · · ·

+ cn−2ε−2 + L log
1

ε
+ V + o(1)

• For n odd, V is independent of g ∈ [g], and

for n even, L is independent of g ∈ [g], and

hence are conformal invariants.
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Theorem: (Graham-Zworski) When n is even,

L = −2
∫

M
S(n)1 = 2cn

2

∫

M
Qndvg.

Theorem: (Fefferman-Graham ’02) Consider

v = d
ds|s=nS(s)1 then v is a smooth function

defined on X solving

−∆g+(v) = n

and with the asymptotic

v =

{

log x + A + Bxnlogx for n even
log x + A + Bxn for n odd

where A, B ∈ C∞(X) are even mod O(x∞) and

A|M = 0. Moreover

(i) If n is even, then

B|M = −2S(n)1 = −2cn
2
Qn

hence L = 2cn
2

∫

M Qn.
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(ii) If n is odd, then

B|M = −
d

ds
|s=nS(s)1,

and if one defines Qn(g+, [g]) to be

Qn(g
+, [g]) = knB|M

then

knV =

∫

M
Qn(g

+, [g])dvg.

Remark: when n is odd, the Q curvature thus

defined is not intrinsic, it depends not only on

the boundary metric g on M but also on the

extension of g+ on X.
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On compact Riemannian 4-manifold (X4, M3, g+)

with boundary, Chang-Qing introduced

(Pb)gw = e−3w(Pb)g, on M and

(Pb)gw + Tg = Tgwe3won M.

8π2χ(X) =

∫

X4
(
1

4
|W |2+Q4)dv+2

∫

M3
(L+T )dσ,

where L is a point-wise conformal invariant

term on the boundary of the manifold.

On conformally compact Einstein (X4, M3, g+):

(Pb)g = −
1

2

∂

∂n
∆g+|M , Tg =

1

12

∂R

∂n
|M ,

and in this case L vanishes.

21



§ When n = 3, on (X4, M3, g+), conformally

compact Einstein

Theorem: (Chang-Qing-Yang)

On (X4, M3, g+)

(i) (Q4)e2vg+ = 0,

Proof: Recall

Q4 =
1

6
(−∆R + R2 − 3|Ric|2).

Thus for g+ a Poincare metric with Ric g+ =

−3g+, we have (Q4)g+ = 6 and

(P4)g+ = (∆)2g+ + 2∆g+.

We then use the equations −∆g+(v) = n = 3

and

(P4)g+(v) + (Q4)g+ = (Q4)e2vg+

to conclude the proof.

22



(i) (Q4)e2vg+ = 0,

(ii) Q3(e
2vg+, [e2vg]) = 3B|x=0 = Te2vg.

As a consequence we have

6V =

∫

X4
(Q4)e2vg+ + 2

∫

M3
Te2vg

=

∫

X4
σ2(Ae2vg+).

Hence (M. Anderson)

8π2χ(X4) =
1

4

∫

X4
|W |2dvḡ +

∫

X4
σ2(Aḡ)

=
1

4

∫

X4
|W |2dvḡ + 6V,

for ḡ = e2vg+ or any conformal compact ḡ.
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Conformal Sphere Theorem:

(Chang-Gursky-Yang)

On (M4, g) with Y (M4, g) > 0. If
∫

M4
|Wg|

2dvg < 16π2χ(M4),

or equivalently
∫

M4
σ2(Ag)dvg > 4π2χ(M4)

then M4 is diffeomorphic to S4 or R4.

Note that on (M4, g), with Y (M4, g) > 0.
∫

M4
σ2(Ag)dvg ≤ 16π2

with equality if and only if M4 is diffeomorphic

to S4.
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Theorem: (Chang-Qing-Yang )

Suppose (X4, M3, g+) is a conformal compact

Einstein manifold, and (M3, [g]) has positive

Yamabe constant, then

(i) V ≤ 4π2

3 , with equality holds if and only if

(X4, g+) is the hyperbolic space (H4, gH), and

therefore (M3, g) is the standard 3-sphere.

(ii) If

V >
1

3
(
4π2

3
χ(X)),

then X is homeomorphic to the 4-ball B4 up

to a finite cover.

(iii) If

V >
1

2
(
4π2

3
χ(X)),

then X is diffeomorphic to B4 and M is diffeo-

morphic to S3.
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A crucial step in the proof of the theorem

above is an earlier result:

Theorem: (Qing ’02)

Suppose (Xn+1, Mn, g+) is a conformal com-

pact Einstein manifold, with Y (Mn, [g]) posi-

tive, then there is a positive eigenfunction u

satisfying

−∆g+u = (n + 1)u on Xn+1,

so that (Xn+1, u−2g+) is a compact manifold

with totally geodesic boundary and the scalar

curvature is greater than or equal to n+1
n−1Rg,

where g ∈ [g] is the Yamabe metric.

PICTURE
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Theorem:

(Chang-Qing-Yang, Epstein)

On conformally compact Einstein (Xn+1, Mn, g+),

when n is odd,
∫

Xn+1
Wn+1dvg + cnV (Xn+1, g) = χ(Xn+1)

for some curvature invariant Wn+1, which is a

sum of contractions of Weyl curvatures and/or

its covariant derivatives in an Einstein metric.

Proof:

Use structure equation of Qn; in particular, the

result of Alexakis that

Qn = anPfaffian + J + div(Tn).
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§5. Renormalized volume when n is even.

The renormalized volume can also be defined

via the scattering matrix:

V (X3, [g], g+) = −
∫

M2

d

ds
|s=2S(s)1dvg, for n = 2

V (X5, [g], g+) = −
∫

M4

d

ds
|s=4S(s)1dvg

−
1

32 · 36

∫

M4
R2[g]dvg, for n = 4

V (Xn+1, [g], g+) = −
∫

Mn

d

ds
|s=nS(s)1dvg

+ correction terms,

for n even
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Definition: We call a functional F defined on

(Mn, g) a conformal primitive of a curvature

tensor A if

d

dα
|α=0F[e2αwg] = −2cn

2

∫

M
wAgdvg.

Theorem: On (Xn+1, Mn, g+), n even, the

scattering term S(g, g+) = d
ds|s=nS(s)1(g, g+)

is the conformal primitive of (Qn)g.

Corollary: (Henningson-Skenderis, Graham)

On (X3, M2, g+), V is the conformal primitive

of K, the Gaussian curvature.

On (X5, M4, g+), V is the conformal primitive

of 1
16σ2, where σ2 = 1

6(R
2 − 3|Ric|2).
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• Qing established the rigidity result that any

conformal compact Einstein manifold with con-

formal infinity the standard n-sphere is the hy-

perbolic n + 1 space extending prior results of

L. Andersson.

• X. Wang proved that on (Xn+1, Mn, g+) with

λ0(g
+) > n − 1, then Hn(X, Z) = 0. In particu-

lar, the conformal infinity M is connected; thus

extending an earlier result of Witten-Yau.

Given (Mn, [g]) in general, both the existence

and uniqueness problem of a conformal com-

pact Einstein manifold with (Mn, [g]) as con-

formal infinity remain open.
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