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On (Mn, g), compact Riemannian manifold

A metric ḡ is conformal to g, if ḡ = ρg for some

ρ > 0. Denote ρ = e2w, and gw = e2wg.

An operator A is a conformally covariant op-

erator of bidegree (a, b), if under gw = e2wg,

Agw(φ) = e−bwA(eawφ) ∀φ ∈ C∞(Mn) .

Examples:

1. when n = 2, ∆ of bidegree (0,2).

Properties of ∆g on (M2, g)

a. ∆gw = e−2w∆g.

b. −∆gw + Kg = Kgwew,

Gauss-Bonnet formula:

2πχ(M) =
∫

M
Kgdvg
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2. On (Mn, g), n ≥ 3, denote

Lg = −cn∆g + Rg

where cn = 4(n−1)
n−2 , Rg the scalar curvature.

Under ḡ = u
4

n−2g,

Lḡ(φ) = u
−n+2

n−2Lg(uφ),

for all φ ∈ C∞(M).

Yamabe equation

Lg(u) = Rḡu
n+2
n−2

Using the notion gw = e2wg,

Lgw = e−
n+2
2 wLg(e

n−2
2 w·)

i.e. L of bidegree (n−2
2 , n+2

2 ).

2



3. When n = 4, Paneitz operator: (1983)

Pϕ ≡ ∆2ϕ + δ[

(

2

3
Rg − 2Ric

)

dϕ]

where δ denotes the divergence, d the deRham

differential and Ric the Ricci tensor.

For example:

On (R4, |dx|2), P = ∆2,

On (S4, gc), P = ∆2 − 2∆,

On (M4, g), g Einstein, P = (−∆) ◦ (L).

P bidegree (0,4) on 4-manifolds, i.e.

Pgw(φ) = e−4ωPg(φ) ∀φ ∈ C∞(M4) .
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Properties of Paneitz operator on (M4, g)

1. Pgw = e−4wPg

2.

Pgw + 2Qg = 2Qgwe4w

Q =
1

12
(−∆R + R2 − 3|Ric|2)

Gauss-Bonnet-Chern Formula:

4π2χ(M4) =
∫

(Qg +
1

8
|Wg|

2) dv,

where W denotes the Weyl tensor.

• Wgw = e−2wWg implies |Wg|2dvg = |Wgw|
2dvgw

Thus |Wg|2dvg is a pointwise conformal invari-

ant; and the curvature integral
∫

Qgdvg is a con-

formal invariant.
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3. (Paneitz, Branson)

∃ 4-th order Conformal Paneitz operator P n
4 ,

on (Mn, g)

Pn
4 = ∆2 + δ (anRg + bnRic) d +

n − 4

2
Qn

4,

for ḡ = u
4

n−4g:

Pn
4 u = Q̄n

4u
n+4
n−4 .

Pn
4 is conformal covariant of bidegree (n−4

2 , n+4
2 ).
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§ Q-curvature, PDE aspect:

(∗∗) Pgw + 2Qg = 2Qgwe4w

Theorem: (Gursky, Chang-Yang)

(i) If λ1(Lg) > 0 and
∫

Qgdvg > 0 then Pg ≥ 0

with KerP = {constants}.

(ii) Under assumptions in (i), (**) can be solved

with Qgw given by a constant.

Remark: Yamabe constant

Y (Mn, g) ≡ inf
w

∫

Rgwdvgw

vol(gw)
n−2

n

then Y (Mn, g) > 0 iff λ1(Lg) > 0.
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Above existence result based on

Branson-Orsted Formula on (M4, g) for

F [w] = log
det Ag

detAgw

,

for Ag conformal covariant operators.

Chang-Yang: Existence of extremal metrics of

F over gw:

γ1|W |2 + γ2Q − γ3∆R = k̄ · V ol−1

for constants (γ1, γ2, γ3) with γ2γ3 > 0 and k̄.

Regularity: Chang-Gursky-Yang
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§ Fully non-linear equations on (Mn, g)

Rm = W ⊕
1

n − 2
A ©∧ g,

where

A = Ric −
R

2(n − 1)
g

A is called the Schouten tensor.

Under gw = e2wg, Wgw = e−2wWg.

Agw = Ag +(n−2){−∇2w + dw⊗ dw−
|∇w|2

2
g}.
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Denote σk(Ag) = k-th elementary function of

eigenvalues of Ag.

Examples:

σ1(Ag) =
∑

i

λi =
n − 2

2(n − 1)
Rg,

σ2(Ag) =
∑

i<j

λiλj

=
1

2
(|Tr Ag|

2 − |Ag|
2)

=
n

8(n − 1)
R2 −

1

2
|Ric|2,

σn(Ag) = det(Ag)
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Equation of Monge-Ampere type:

σk(∇
2u) = f > 0

Dirichlet problem for u defined on convex do-

main Ω ⊂ Rn

• Existence of functions u for which the right

hand side is some positive function is guaran-

teed by the convexity of the domain.

Caffarelli-Nirenberg-Spruck

Krylov, Evans

Pogorolev, Cheng-Yau, Caffarelli
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Comparison of the two equations:

Fully Non-linear PDE: for n = 4, k = 2,

σ2(∇
2u) =

1

2
[(∆u)2 − |∇2u|2]

While for Ag:

σ2(Agw)e4w =σ2(Ag) + 2[(∆w)2 − |∇2w|2

+(∇w,∇|∇w|2) + ∆w|∇w|2)]

+lower order terms.

Regularity properties of σk(Agw) appears to be

much better than that of σk(∇
2v); much more

to be explored.
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Geometric content of sign of σk(Ag):

For k = 1, σ1(Ag) = cnRg.

Some Algebraic fact:

• When n = 3 and σ2(Ag) > 0, then either Rg >

0 and the sectional curvature of g is positive

or Rg < 0 and the sectional curvature of g is

negative on M .

• When n = 4 and σ2(Ag) > 0, then either

Rg > 0 and Ricg > 0 on M or Rg < 0 and

Ricg < 0 on M .

• For general n and σi(Ag) > 0 ∀1 ≤ i ≤ k (i.e.

Ag ∈ Γ+
k ) for some k ≥ n

2, then Ricg > 0.
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Study of σk(Ag) = constant

For k = 1, Yamabe equation

For k = 2, denote

F2[g] =

∫

σ2(Ag)dvg.

Theorem: (Gursky-Viaclovsky)

For 3-manifolds, a metric g with F2[g] ≥ 0 is

critical for the functional F2 restricted to class

of metrics with volume one if and only if g has

constant sectional curvature.
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For k = 2 on (Mn, g), n = 4,

σ2(Ag) =
1

6
R2 −

1

2
|Ric|2

Qg =
−1

12
∆Rg +

1

2
σ2(Ag).

Gauss-Bonnet-Chern formula

4π2χ(M) =

∫

M
(Qg +

1

8
|Wg|

2)dvg.

8π2χ(M) =

∫

M
( σ2(Ag) +

1

4
|Wg|

2)dvg.

Hence
∫

M
σ2(Ag)dvg

is a conformal invariant.
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Theorem: (Chang-Gursky-Yang)

On (M4, g), assume

(i) Y (M4, g) > 0;

(ii)
∫

σ2(Ag)dvg > 0;

then ∃w ∈ C∞(M), with σ2(Agw) ≡ 1.

Corollary: Under (i),(ii), on (M4, g), ∃ gw =

e2wg with Ricgw > 0; hence π1(M
4) is finite.
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Examples:

• Gauss-Bonnet-Chern and Signature formulae

imply that

2χ + 3τ > 0

as well as

2χ − 3τ > 0

precisely the same conditions satisfied by the

class of positive Einstein 4-manifolds.

• Results of Donaldson and Freedman −→ the

possible homeomorphic classes of simply con-

nected 4-manifolds appear in the two lists:

In the non-spin case:

k(CP
2)#l(C̄P̄

2
), where k > l and 4 + 5l > k;

In the spin case: k(S2 × S2).
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Proof of Theorem:

Part I: existence part: Under (i) and (ii) solve

σ2(Agw) = f, for some f > 0.

Part II: regularity part:

Deform f to constant by method of continuity

and degree theory.
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Part I: Difficulty is lack of ellipticity. Recall

Qg =
−1

12
∆Rg +

1

2
σ2(Ag),

Pgw + 2Qg = 2Qgwe4w

Solve

(∗)δ : σ2(Ag) =
δ

4
∆gRg + f

Suitable f is c|Wg|2; condition (ii) ⇒ c > 0

δ = 1 extremal of F [w] = log
det Lg
det Lgw

δ = 2
3, solution of Q = c

2|W |2,

δ → 0, apriori estimate, using integral form of

Pogorolev estimates

Analytically: Regularized equation:

(∗)δ : δ(−∆)2w = σ2(Agw) − c|Wgw|
2.
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• Gursky-Viaclovsky: A different proof of above

theorem. Based on Harnack estimates of so-

lutions of

At
g := Ric −

tR

2(n − 1)
g

Start with t at −∞ and let t tends to 1.

• Chang-Gursky-Yang, A. Li-Y. Li:

Uniqueness Theorem: If

σk(Agw) = 1 on R
n

for gw = e2wdx, then

w(x) = log
2ε

(ε2 + |x − x0|2)
+ cn

for some ε > 0, and x0 ∈ Rn.

• P.F.Guan-Wang, A. Li-Y. Li: A priori esti-

mates for solutions of σk(Agw) = f > 0 for the

special case when (Mn, g) is locally conformally

flat.
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Conformal Sphere Theorem:

(Chang-Gursky-Yang)

On (M4, g) with Y (M4, g) > 0.

(a) If
∫

M4
|Wg|

2dvg < 16π2χ(M4),

then M4 is diffeomorphic to S4 or RP4.

(b) If
∫

M4
|Wg|

2dvg = 16π2χ(M4),

and M4 not diffeomorphic to S4 or RP4 then

either

(1) (M4, g) is conformal to (CP2, gFS), or

(2) (M4, g) is conformal to ((S3×S1)/Γ, gprod).
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Gauss-Bonnet:

8π2χ(M4) =

∫

(σ2(Ag) +
1

4
|Wg|

2) dvg,

(a) ↔ (a)′ :
∫

M4
σ2(Ag) >

1

4

∫

M4
|Wg|

2dvg

(b) ↔ (b)′ :
∫

M4
σ2(Ag) =

1

4

∫

M4
|Wg|

2dvg

Margerin: Weak Pinching:

WP ≡
|W |2 + 2|E|2

R2

where E denotes traceless Ricci.

WP < 1
6 iff (a)”: σ2 > 1

4|W |2 and

WP ≡ 1
6 iff (b)”: σ2 = 1

4|W |2.

Remarks:

• Margerin established previous Theorem un-

der (a)” and (b)”.

• Hamilton: assume curvature operator posi-

tive.
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Proof of Theorem:

(a) In the conformal class, solve

σ2(Agw) =
1

4
|Wgw|

2 + c

with c > 0.

(b) and not (a) happens at minimal points

of
∫

M4 |W |2dv, thus the Bach tensor vanishes.

Bach tensor:

Bij = ∇k∇lWkijl +
1

2
RklWkijl.

In this case we solve for

σ2(Agw) =
1 − ε

4
|Wgw|

2 + Cε

where Cε → 0 as ε → 0. Degenerate elliptic

happens at x where |W |2(x) = 0.
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§ Boundary operator, Cohn-Vossen inequality

Suppose (N2, M1, g) is a compact surface with

boundary; Gauss-Bonnet formula

2πχ(N) =
∫

N
K dv +

∮

M
k dσ,

where k is the geodesic curvature on M . Under

conformal change of metric gw on N , we have

∂

∂n
w + k = kwew on M.

• On (N2, M1, g), we have (∆g, Kg), with the

corresponding boundary operator and curva-

ture ( ∂
∂n, k).

• On (Nn+1, Mn, g), n ≥ 2, we have (Lg, Rg)

with the corresponding Robin boundary oper-

ator Bg = ∂
∂n + cnHg and the mean curvature

Hg.
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Theorem : (Cohn-Vossen, Huber)

Suppose (M2, g) a complete surface with Kg

integrable, then
∫

M
Kgdvg ≤ 2πχ(M).

Furthermore M has a conformal compactifica-

tion M̄ = M∪{q1, ..., ql} as a compact Riemann

surface and

2πχ(M) =

∫

M
Kgdvg +

l
∑

k=1

νk,

where at each end qk, take a conformal co-

ordinate disk {|z| < r0} with qk at its center,

then

νk = lim
r→0

Length({|z| = r})2

2Area({r < |z| < r0})
.

PICTURE
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On a four manifold with boundary (N4, M3, g);

Chang-Qing Existence of boundary operator

P3 along with boundary curvature invariant T .

(P3)gw = e−3w(P3)g, on M and

(P3)gw + Tg = Tgwe3won M.

Special cases:

• On (B4, S3, dx), where B4 is the unit ball in

R4, we have

P4 = (−∆)2,

P3 = −

(

1

2

∂

∂n
∆ + ∆̃

∂

∂n
+ ∆̃

)

and T = 2. where ∆̃ the intrinsic boundary

Laplacian on M .
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The pair (P4, Q4) together with (P3, T ) satisfy:

Gauss-Bonnet-Chern formula:

8π2χ(N) =

∫

N
(
1

4
|W |2+Q4) dv +

∮

M
(L+T ) dσ.

where L is a third order boundary curvature

(pointwise) conformal invariant.
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Generalization of Cohn-Vossen Theorem to 4-

manifold:

Theorem (Chang-Qing-Yang)

Suppose (M4, g) is a complete conformally flat

manifold, satisfying the conditions:

(i) The scalar curvature Rg is bounded be-

tween two positive constants and |∇gRg| is also

bounded;

(ii) The Ricci curvature is bounded below;

(iii)
∫

M |Qg|dvg < ∞;

then

Assume M is simply connected, it is confor-

mally equivalent to S4−{q1, ..., ql} and we have

4π2 χ(M) =
∫

M
Qg dvg + 4π2l ;

27



• Schoen-Yau: For (Mn, g) simply connected,

locally conformally flat, with Rg ≥ 0,

(Mn, g) ↪→ (Sn, e2wgc).

Say M = Sn − Λ, then Hausdorff dimension

Λ ≤ n−2
2 .

PICTURE

Key estimates:

Assume the conformal metrics e2wgc defined

over domains Ω = S4 − Λ, then

ew(x) ∼=
1

d(x, ∂Ω)
.
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Generalizations:

• (Hao Fang) On (N4, g), with Q integrable re-

placed by σ2(Ag) integrable; also on (Nn, g) un-

der further pinching conditions of curvatures.

• (Carron-Herzlich) On (Nn, g) with confor-

mal structures which are not necessarily locally

comformally flat.

• (M. González, Chang-Hang-Yang) On (Mn, g)

locally conformally flat, assume g ∈ Γ+
k . (i.e.

σi(Ag) > 0 for all i ≤ k.), then (M, g) ↪→ (Sn, e2wgc),

Say M = Sn − Λ, then Hausdorff dimension

Λ ≤ n−2k
2

Corollary:(M. González, Izeki) A compact con-

formally flat manifold (Mn, g) with g ∈ Γ+
k for

2k > n − 2 is a quotient of Schottky group.
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• The main open question in dimension four is

the classification of conformal structures whose

Schouten tensor belongs to the cone Γ+
2 .

• So far the results in dimension four relies

on explicit form of P4, Q4 on M4. To extend

this theory to general dimensions, it will be

important to find structural properties of the

operators P and the Q curvatures.
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