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On (M™, g), compact Riemannian manifold
A metric g is conformal to g, if g = pg for some
p > 0. Denote p = e2¥, and gy = e2¥y.

An operator A is a conformally covariant op-
erator of bidegree (a,b), if under gy, = e?%g,

Ag(9) = e "W A(e™Wg) Ve € CO(M™).

Examples:
1. when n =2, A of bidegree (0,2).

Properties of Ay on (M?,g)
Gauss-Bonnet formula:



2. On (M"™, g), n > 3, denote

Lg — —Cfn,Ag + Rg
where ¢, = 4(#_21), R4 the scalar curvature.
4

Under g = unr—2g,
n+2
Lz(¢) =u "2Lg(ug),
for all ¢ € C°°(M).
Yamabe equation

+2

Lg(u) = Rgun—2
Using the notion g, = e?¥g,
2
Lg,=¢€¢ 2 “Lg(e 2 ™)

i.e. L of bidegree ("52,%42).




3. When n = 4, Paneitz operator: (1983)

2
Po=A%p+ 5[(539 — 2Rz’c) de]

where 6 denotes the divergence, d the deRham
differential and Ric the Ricci tensor.

For example:

On (R4, |dz|?), P = A?,

On (5%,gc), P= A2 —-2A,

On (M?4,q), g Einstein, P = (=A) o (L).

P bidegree (0,4) on 4-manifolds, i.e.

Py, (¢) = e Py(¢) Vo € C®(M*).



Properties of Paneitz operator on (M#%,g)
1. Py, =e 4P,
2.

1
Q = E(—AR + R? — 3|Ric|?)
Gauss-Bonnet-Chern Formula:
1
42 (M) = [(Qq+ ZIWal?) dv,
where W denotes the Weyl tensor.
Thus |[Wy|?dvg is a pointwise conformal invari-

ant; and the curvature integral | Qg4dvg is a con-
formal invariant.



3. (Paneitz, Branson)
3 4-th order Conformal Paneitz operator Pp,
on (M™,g)

—4
PP = A2 4§ (anRg + buRic) d + ”’TQZ,

4
for g = un—4g:

_ n+4
Pju = Qpun—4.

P} is conformal covariant of bidegree (254, 214).




§ Q-curvature, PDE aspect:

(%) Pyw + 2Q4 = 2Qg,e™"

Theorem: (Gursky, Chang-Yang)

(i) If A1(Lg) > 0 and [Qgdvgy > O then P, > 0
with KerP = {constants}.

(ii) Under assumptions in (i), (**) can be solved
with Qg, given by a constant.

Remark: Yamabe constant
ngwd'Ugw

n—2
vol(gw) n

then Y (M", g) > 0 iff \(Ly) > O.

N
Y(M", g) = |[L\Uf



Above existence result based on
Branson-Orsted Formula on (M?%,g) for

det Aq
detAg,’

for Ay conformal covariant operators.

Flw] = log

Chang-Yang: Existence of extremal metrics of
F over gy:

1IWI? +72Q —3AR=Fk Vol
for constants (v1,v2,v3) with yov3 > 0 and k.

Regularity: Chang-Gursky-Yang



§ Fully non-linear equations on (M™, g)

1
W e —AQy,

Rm

where
R

2(n— 1)’
A is called the Schouten tensor.

A = Ric —

Under g, = e2¥g, Wa, = e_Qng.

2
Agy = Ag+ (n—2){—V?w + dw ® dw — Vw

g}



Denote 0,(Ay) = k-th elementary function of
eigenvalues of Ag.

Examples:
n—2
oc1(Ag) = > N\ = Rg,
g EZ: T 2(n—1) "
i<
1
= SUTr Agl® = [Ag*)
1
= . ~| Ric|?,
8(n—1) 2

on(Ag) =det(Ag)



Equation of Monge-Ampere type:

o, (V2u) = f > 0

Dirichlet problem for uw defined on convex do-
main 2 C R"

e EXistence of functions u for which the right
hand side is some positive function is guaran-
teed by the convexity of the domain.

Caffarelli-Nirenberg-Spruck
Krylov, Evans
Pogorolev, Cheng-Yau, Caffarelli
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Comparison of the two equations:

Fully Non-linear PDE: for n =4, k = 2,

72(V2u) = _[(Aw)? ~ [V2ul?]

While for Ag:

02(Agy)e? =02(Ag) +2[(Aw)? - |VZuw|?
+ (Vw, V|Vw|?) + Aw|Vw|?)]
“+lower order terms.

Regularity properties of o4 (Ag,) appears to be
much better than that of ¢,.(V2v); much more
to be explored.
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Geometric content of sign of o;(Ayg):

Some Algebraic fact:

e When n = 3 and 02(Ay) > 0, then either Ry >
O and the sectional curvature of g is positive
or R4 < 0 and the sectional curvature of g is
negative on M.

e When n = 4 and o,(Agy) > 0, then either
Rg > 0 and Ricg > 0 on M or Ry < O and
Ricg <0 on M.

e For general n and o0;(Ay) >0 V1 <i<Ek (i.e.
Ag € I‘,;") for some k > 75, then Ricg > 0.
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Study of o,(Ag) = constant
For £k = 1, Yamabe equation

For £k = 2, denote

Folgl = [ r2(Ag)dug.

Theorem: (Gursky-Viaclovsky)

For 3-manifolds, a metric g with Fs[g] > 0 is
critical for the functional F» restricted to class
of metrics with volume one if and only if g has
constant sectional curvature.
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For k=2 on (M"™ g), n =4,
1 1
02(Ag) = ERQ — §|R75C|2

—1 1

Gauss-Bonnet-Chern formula
1
4r2x(M) = [ (Qq+ ZIWyl?)dvy

1
Br2x(M) = | (02(Ag) + ZIWyl?)dvy.
Hence
| o2(Ag)dvg

iIs a conformal invariant.
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Theorem: (Chang-Gursky-Yang)
On (M#%,g), assume

(i) Y(M*,g) > 0;

(il) J o2(Ag)dug > O;

then Jw € C®(M), with o02(Ag,) = 1.

Corollary: Under (i),(ii), on (M*%,9), Jguw =
e*g with Ricg, > 0; hence w1 (M?) is finite.
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e Gauss-Bonnet-Chern and Signature formulae
imply that

2x +37 >0
as well as
2x —37 >0

precisely the same conditions satisfied by the
class of positive Einstein 4-manifolds.

e Results of Donaldson and Freedman — the
possible homeomorphic classes of simply con-
nected 4-manifolds appear in the two lists:

In the non-spin case:

k(CP2)#:1(CP?), where k > 1 and 4 + 51 > k;
In the spin case: k(S? x S2).

16



Proof of T heorem:

Part I. existence part: Under (i) and (ii) solve

o2(Ag,) = f, for some f > 0.

Part II: reqularity part:
Deform f to constant by method of continuity
and degree theory.
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Part I. Difficulty is lack of ellipticity. Recall

—1 1
Qg EARQ + 502(149)»

Pyw + 2Q4 = 2Qg,e™
Solve

)
(*)s o2(Ag) = ZAQRQ + f

Suitable f is ¢|[Wy|?; condition (ii) = ¢> 0
. det Lg
6 = 1 extremal of Flw] =log 1+ ng

§ = %, solution of Q = §|W|?,
y — O, apriori estimate, using integral form of
Pogorolev estimates

Analytically: Regularized equation:

()5 (—A)w = 02(Ag,) — c|Wg,|?.
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e Gursky-Viaclovsky: A different proof of above
theorem. Based on Harnack estimates of so-
lutions of
tR
Al = Ric —
g 2(n—1)7
Start with t at —oo and let t tends to 1.

e Chang-Gursky-Yang, A. Li-Y. Li:
Uniqueness Theorem: If
for guw = e?¥dz, then

2¢
4+ ¢
(24 |z —=20/2)
for some ¢ > 0, and zg € R".

w(x) = log

e P.F.Guan-Wang, A. Li-Y. Li: A priori esti-
mates for solutions of o1 (Ag,) = f > 0 for the
special case when (M™, g) is locally conformally
flat.
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Conformal Sphere Theorem:
(Chang-Gursky-Yang)

On (M?%,g) with Y(M*%,g) > 0.
(a) If
/M4 Wy|2dvg < 16525 (M%),

then M*% is diffeomorphic to S4 or RP%.
(b) If

/M4 Wy|?dug = 16m°x(M*),

and M*% not diffeomorphic to S% or RP#% then
either

(1) (M#%,9) is conformal to (CP2,grg), or

(2) (M4, g) is conformal to ((S3xSY)/T, gproa)-
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Gauss-Bonnet:

8r2x(M*) = [(02(Ag) + ;IWy[) du,

, 1
(a) < (a)’ - /M4 o2(Ag) > 5 /M4|Wg|2dvg

) = @) [ oa(Ag) =5 [ W[,

Margerin: Weak Pinching:

_ WP+ 2B

WP 2

where E denotes traceless Ricci.
WP < ¢ iff (a)": op > 2[W|? and
WP = ¢ iff (b)": op = z|W|2.

Remarks:

e Margerin established previous Theorem un-
der (a)” and (b)".

e Hamilton: assume curvature operator posi-
tive.
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Proof of Theorem:

(a) In the conformal class, solve

1
o2(Agy,) = Z|Wgw|2 +c

with ¢ > 0.

(b) and not (a) happens at minimal points
of [ys4|W|2dv, thus the Bach tensor vanishes.
Bach tensor:

1
k!l kl
In this case we solve for

1 —¢
UQ(Agw) — 4

where Cc — 0 ase — 0. Degenerate elliptic
happens at = where |W|?(z) = 0.

|Wgw|2 + CE
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§ Boundary operator, Cohn-Vossen inequality
Suppose (N2, M1 ¢) is a compact surface with
boundary; Gauss-Bonnet formula

2y (N) = /N K dv + fM k do,

where k is the geodesic curvature on M. Under
conformal change of metric g, on N, we have

O
—w + k = ke on M.
on

e On (N2, M1 g), we have (Ay, Ky), with the
corresponding boundary operator and curva-
ture (%,k).

e On (N"T1 M™ g), n > 2, we have (Lg, Rg)
with the corresponding Robin boundary oper-
ator By = % + cnHg and the mean curvature
Hy.
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Theorem : (Cohn-Vossen, Huber)
Suppose (M2,g) a complete surface with Ky
integrable, then

Kqodvg < 2 M).
/M gaUg >~ 7TX( )

Furthermore M has a conformal compactifica-
tion M = MU{q1,...,q;} as a compact Riemann
surface and

[
2nx (M) = /M Kgdvg + > v,
k=1

where at each end gq;, take a conformal co-
ordinate disk {|z| < rg} with ¢ at its center,
then

Length({|z| = r})?
v = lim e ({|Z| T}) -
r—02Area({r < |z| < ro})

PICTURE

24



On a four manifold with boundary (N4, M3, g);
Chang-Qing EXxistence of boundary operator
P35 along with boundary curvature invariant T'.

(P3)g, = e 3¥(P3)4, on M and

Special cases:
e On (B*%,53 dz), where B% is the unit ball in
R4 we have

Py = (—A)?

1 0O 0
Pr=— (2 " A4+A—+A
3 (28n T on T )

and T = 2. where A the intrinsic boundary
LLaplacian on M.
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The pair (Ps,Q4) together with (P3,T) satisfy:

Gauss-Bonnet-Chern formula:

8r2x(N) = [ GIWP+Qa) dv + f, (£+T) do.

where L is a third order boundary curvature
(pointwise) conformal invariant.
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Generalization of Cohn-Vossen Theorem to 4-
manifold:

Theorem (Chang-Qing-Yang)

Suppose (M#%,g) is a complete conformally flat
manifold, satisfying the conditions:

(i) The scalar curvature R4 is bounded be-
tween two positive constants and |V4Ry| is also
bounded;

(ii) The Ricci curvature is bounded below;
(i) [ps 1Qgldvg < oo;

then

Assume M is simply connected, it is confor-
mally equivalent to S*—{q1, ..., ¢} and we have

472 (M) = /M Qg dvg + 4n2l :
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e Schoen-Yau: For (M",g) simply connected,
locally conformally flat, with R4 > O,

(M™, g) — (8™, e?Yg.).

Say M = S™ — A, then Hausdorff dimension
A< D2

PICTURE

Key estimates:
Assume the conformal metrics eQ"UgC defined
over domains Q2 = S% — A, then
@ 1
d(x,0)
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Generalizations:

e (Hao Fang) On (N%,g), with Q integrable re-
placed by 05>(Ay) integrable; also on (N, g) un-
der further pinching conditions of curvatures.
e (Carron-Herzlich) On (N™,g) with confor-
mal structures which are not necessarily locally
comformally flat.

e (M. Gonzalez, Chang-Hang-Yang) On (M™, g)
locally conformally flat, assume g & I‘,;". (i.e.
0;(Ag) > 0foralli <Ek.), then (M, g) — (S™ e?¥gc),
Say M = S™ — A, then Hausdorff dimension

n—2k
A< B

Corollary:(M. Gonzalez, Izeki) A compact con-
formally flat manifold (M™, g) with g € I’,;" for
2k > n — 2 is a quotient of Schottky group.
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e T he main open question in dimension four is
the classification of conformal structures whose
Schouten tensor belongs to the cone I‘;‘.

e SO far the results in dimension four relies
on explicit form of P;,Q4 on M%*. To extend
this theory to general dimensions, it will be
important to find structural properties of the
operators P and the Q curvatures.
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