Q-curvature on 4-manifolds

Sun-Yung Alice Chang Princeton University On (M^n, g) , compact Riemannian manifold A metric \overline{g} is conformal to g, if $\overline{g} = \rho g$ for some $\rho > 0$. Denote $\rho = e^{2w}$, and $g_w = e^{2w}g$.

An operator A is a conformally covariant operator of bidegree (a, b), if under $g_w = e^{2w}g$,

$$A_{g_w}(\phi) = e^{-bw} A(e^{aw}\phi) \quad \forall \phi \in \mathcal{C}^{\infty}(M^n).$$

Examples:

1. when n = 2, Δ of bidegree (0,2).

Properties of Δ_g on (M^2, g) a. $\Delta_{g_w} = e^{-2w} \Delta_g$. b. $-\Delta_g w + K_g = K_{g_w} e^w$, Gauss-Bonnet formula:

$$2\pi\chi(M) = \int_M K_g dv_g$$

2. On (M^n,g) , $n \ge 3$, denote

$$L_g = -c_n \Delta_g + R_g$$

where $c_n = \frac{4(n-1)}{n-2}$, R_g the scalar curvature. Under $\overline{g} = u^{\frac{4}{n-2}}g$,

$$L_{\overline{g}}(\phi) = u^{-\frac{n+2}{n-2}} L_g(u\phi),$$

for all $\phi \in C^{\infty}(M)$. Yamabe equation

$$L_g(u) = R_{\overline{g}} u^{\frac{n+2}{n-2}}$$

Using the notion $g_w = e^{2w}g$,

$$L_{g_w} = e^{-\frac{n+2}{2}w} L_g(e^{\frac{n-2}{2}w} \cdot)$$

i.e. L of bidegree $(\frac{n-2}{2}, \frac{n+2}{2})$.

3. When n = 4, Paneitz operator: (1983)

$$P\varphi \equiv \Delta^2 \varphi + \delta\left[\left(\frac{2}{3}Rg - 2Ric\right)d\varphi\right]$$

where δ denotes the divergence, d the deRham differential and Ric the Ricci tensor.

For example:
On
$$(R^4, |dx|^2)$$
, $P = \Delta^2$,
On (S^4, g_c) , $P = \Delta^2 - 2\Delta$,
On (M^4, g) , g Einstein, $P = (-\Delta) \circ (L)$.

P bidegree (0, 4) on 4-manifolds, i.e.

$$P_{g_w}(\phi) = e^{-4\omega} P_g(\phi) \ \forall \phi \in \mathcal{C}^{\infty}(M^4).$$

Properties of Paneitz operator on (M^4, g)

1.
$$P_{gw} = e^{-4w}P_g$$
2.
$$P_{gw} + 2Q_g = 2Q_{gw}e^{4w}$$

$$Q = \frac{1}{12}(-\Delta R + R^2 - 3|Ric|^2)$$
Course Report Chern Formula:

Gauss-Bonnet-Chern Formula:

$$4\pi^2 \chi(M^4) = \int (Q_g + \frac{1}{8} |W_g|^2) \, dv,$$

where W denotes the Weyl tensor.

• $W_{g_w} = e^{-2w}W_g$ implies $|W_g|^2 dv_g = |W_{g_w}|^2 dv_{g_w}$ Thus $|W_g|^2 dv_g$ is a pointwise conformal invariant; and the curvature integral $\int Q_g dv_g$ is a conformal invariant. 3. (Paneitz, Branson)

 \exists 4-th order Conformal Paneitz operator P_4^n , on (M^n,g)

$$P_4^n = \Delta^2 + \delta \left(a_n Rg + b_n \text{Ric} \right) d + \frac{n-4}{2} Q_4^n,$$

for $\bar{g} = u^{\frac{4}{n-4}}g$:

$$P_4^n u = \bar{Q}_4^n u^{\frac{n+4}{n-4}}.$$

 P_4^n is conformal covariant of bidegree $(\frac{n-4}{2}, \frac{n+4}{2})$.

§ Q-curvature, PDE aspect:

$$(**) P_g w + 2Q_g = 2Q_{g_w} e^{4w}$$

Theorem: (Gursky, Chang-Yang) (i) If $\lambda_1(L_g) > 0$ and $\int Q_g dv_g > 0$ then $P_g \ge 0$ with $KerP = \{constants\}$. (ii) Under assumptions in (i), (**) can be solved with Q_{gw} given by a constant.

Remark: Yamabe constant

$$Y(M^{n},g) \equiv \inf_{w} \frac{\int R_{g_{w}} dv_{g_{w}}}{vol(g_{w})^{\frac{n-2}{n}}}$$

then $Y(M^n,g) > 0$ iff $\lambda_1(L_g) > 0$.

Above existence result based on Branson-Orsted Formula on (M^4, g) for

$$F[w] = \log \frac{\det A_g}{\det A_{g_w}},$$

for A_g conformal covariant operators.

Chang-Yang: Existence of extremal metrics of F over g_w :

$$\gamma_1 |W|^2 + \gamma_2 Q - \gamma_3 \Delta R = \bar{k} \cdot Vol^{-1}$$

for constants $(\gamma_1, \gamma_2, \gamma_3)$ with $\gamma_2 \gamma_3 > 0$ and \overline{k} .

Regularity: Chang-Gursky-Yang

§ Fully non-linear equations on (M^n, g) $Rm = W \ \oplus \ \frac{1}{n-2} A \bigotimes g,$

where

$$A = Ric - \frac{R}{2(n-1)}g$$

A is called the Schouten tensor.

Under
$$g_w = e^{2w}g$$
, $W_{g_w} = e^{-2w}W_g$.
 $A_{g_w} = A_g + (n-2)\{-\nabla^2 w + dw \otimes dw - \frac{|\nabla w|^2}{2}g\}.$

Denote $\sigma_k(A_g) = k$ -th elementary function of eigenvalues of A_g .

Examples:

$$\sigma_1(A_g) = \sum_i \lambda_i = \frac{n-2}{2(n-1)} R_g,$$

$$\sigma_2(A_g) = \sum_{i < j} \lambda_i \lambda_j$$

$$= \frac{1}{2} (|Tr A_g|^2 - |A_g|^2)$$

$$= \frac{n}{8(n-1)} R^2 - \frac{1}{2} |Ric|^2,$$

$$\sigma_n(A_g) = det(A_g)$$

Equation of Monge-Ampere type:

$$\sigma_k(\nabla^2 u) = f > 0$$

Dirichlet problem for u defined on convex domain $\Omega \subset \mathbb{R}^n$

• Existence of functions u for which the right hand side is some positive function is guaranteed by the convexity of the domain.

Caffarelli-Nirenberg-Spruck Krylov, Evans Pogorolev, Cheng-Yau, Caffarelli Comparison of the two equations:

Fully Non-linear PDE: for
$$n = 4$$
, $k = 2$,

$$\sigma_2(\nabla^2 u) = \frac{1}{2}[(\Delta u)^2 - |\nabla^2 u|^2]$$

While for
$$A_g$$
:

$$\sigma_2(A_{gw})e^{4w} = \sigma_2(A_g) + 2[(\Delta w)^2 - |\nabla^2 w|^2 + (\nabla w, \nabla |\nabla w|^2) + \Delta w |\nabla w|^2)]$$

$$+ [Ower order terms.]$$

Regularity properties of $\sigma_k(A_{g_w})$ appears to be much better than that of $\sigma_k(\nabla^2 v)$; much more to be explored. Geometric content of sign of $\sigma_k(A_g)$: For k = 1, $\sigma_1(A_g) = c_n R_g$.

Some Algebraic fact:

• When n = 3 and $\sigma_2(A_g) > 0$, then either $R_g > 0$ and the sectional curvature of g is positive or $R_g < 0$ and the sectional curvature of g is negative on M.

• When n = 4 and $\sigma_2(A_g) > 0$, then either $R_g > 0$ and $Ric_g > 0$ on M or $R_g < 0$ and $Ric_g < 0$ on M.

• For general n and $\sigma_i(A_g) > 0 \ \forall 1 \le i \le k$ (i.e. $A_g \in \Gamma_k^+$) for some $k \ge \frac{n}{2}$, then $Ric_g > 0$.

Study of $\sigma_k(A_g) = constant$

For k = 1, Yamabe equation

For k = 2, denote

$$\mathcal{F}_2[g] = \int \sigma_2(A_g) dv_g.$$

Theorem: (Gursky-Viaclovsky)

For 3-manifolds, a metric g with $\mathcal{F}_2[g] \ge 0$ is critical for the functional \mathcal{F}_2 restricted to class of metrics with volume one if and only if g has constant sectional curvature.

For
$$k = 2$$
 on (M^n, g) , $n = 4$,
 $\sigma_2(A_g) = \frac{1}{6}R^2 - \frac{1}{2}|Ric|^2$
 $Q_g = \frac{-1}{12}\Delta R_g + \frac{1}{2}\sigma_2(A_g).$

Gauss-Bonnet-Chern formula

$$4\pi^2 \chi(M) = \int_M (Q_g + \frac{1}{8} |W_g|^2) dv_g.$$

$$8\pi^2 \chi(M) = \int_M (\sigma_2(A_g) + \frac{1}{4} |W_g|^2) dv_g.$$

Hence

$$\int_M \sigma_2(A_g) dv_g$$

is a conformal invariant.

Theorem: (Chang-Gursky-Yang) On (M^4, g) , assume (i) $Y(M^4, g) > 0$; (ii) $\int \sigma_2(A_g) dv_g > 0$; then $\exists w \in C^{\infty}(M)$, with $\sigma_2(A_{qw}) \equiv 1$.

Corollary: Under (i),(ii), on (M^4, g) , $\exists g_w = e^{2w}g$ with $Ric_{g_w} > 0$; hence $\pi_1(M^4)$ is finite.

Examples:

 Gauss-Bonnet-Chern and Signature formulae imply that

$$2\chi + 3\tau > 0$$

as well as

$$2\chi - 3\tau > 0$$

precisely the same conditions satisfied by the class of positive Einstein 4-manifolds.

• Results of Donaldson and Freedman \rightarrow the possible homeomorphic classes of simply connected 4-manifolds appear in the two lists: In the non-spin case:

 $k(\mathbb{CP}^2) \# l(\overline{\mathbb{CP}}^2)$, where k > l and 4 + 5l > k; In the spin case: $k(S^2 \times S^2)$. Proof of Theorem:

Part I: existence part: Under (i) and (ii) solve

 $\sigma_2(A_{g_w}) = f,$ for some f > 0.

Part II: regularity part:

Deform f to constant by method of continuity and degree theory.

Part I: Difficulty is lack of ellipticity. Recall

$$Q_g = \frac{-1}{12} \Delta R_g + \frac{1}{2} \sigma_2(A_g),$$

$$P_g w + 2Q_g = 2Q_{g_w} e^{4w}$$

Solve

$$(*)_{\delta}$$
: $\sigma_2(A_g) = \frac{\delta}{4} \Delta_g R_g + f$

Suitable f is $c|W_g|^2$; condition (ii) $\Rightarrow c > 0$ $\delta = 1$ extremal of $F[w] = log \frac{det L_g}{det L_{gw}}$ $\delta = \frac{2}{3}$, solution of $Q = \frac{c}{2}|W|^2$, $\delta \rightarrow 0$, apriori estimate, using integral form of Pogorolev estimates

Analytically: Regularized equation:

$$(*)_{\delta}: \quad \delta(-\Delta)^2 w = \sigma_2(A_{g_w}) - c|W_{g_w}|^2.$$

• Gursky-Viaclovsky: A different proof of above theorem. Based on Harnack estimates of solutions of

$$A_g^t := Ric - \frac{tR}{2(n-1)}g$$

Start with t at $-\infty$ and let t tends to 1.

• Chang-Gursky-Yang, A. Li-Y. Li: Uniqueness Theorem: If

$$\sigma_k(A_{g_w}) = 1$$
 on \mathbb{R}^n

for $g_w = e^{2w} dx$, then

$$w(x) = \log \frac{2\epsilon}{(\epsilon^2 + |x - x_0|^2)} + c_n$$

for some $\epsilon > 0$, and $x_0 \in \mathbb{R}^n$.

• P.F.Guan-Wang, A. Li-Y. Li: A priori estimates for solutions of $\sigma_k(A_{g_w}) = f > 0$ for the special case when (M^n, g) is locally conformally flat. Conformal Sphere Theorem: (Chang-Gursky-Yang)

On (M^4, g) with $Y(M^4, g) > 0$. (a) If

$$\int_{M^4} |W_g|^2 dv_g < 16\pi^2 \chi(M^4),$$

then M^4 is diffeomorphic to S^4 or $\mathbb{R}P^4$. (b) If

$$\int_{M^4} |W_g|^2 dv_g = 16\pi^2 \chi(M^4),$$

and M^4 not diffeomorphic to S^4 or $\mathbb{R}P^4$ then either

(1) (M^4, g) is conformal to $(\mathbb{C}P^2, g_{FS})$, or (2) (M^4, g) is conformal to $((S^3 \times S^1)/\Gamma, g_{prod})$. Gauss-Bonnet:

$$8\pi^{2}\chi(M^{4}) = \int (\sigma_{2}(A_{g}) + \frac{1}{4}|W_{g}|^{2}) dv_{g},$$

(a) \leftrightarrow (a)': $\int_{M^{4}} \sigma_{2}(A_{g}) > \frac{1}{4} \int_{M^{4}} |W_{g}|^{2} dv_{g}$
(b) \leftrightarrow (b)': $\int_{M^{4}} \sigma_{2}(A_{g}) = \frac{1}{4} \int_{M^{4}} |W_{g}|^{2} dv_{g}$

Margerin: Weak Pinching:

$$WP \equiv \frac{|W|^2 + 2|E|^2}{R^2}$$

where *E* denotes traceless Ricci. $WP < \frac{1}{6}$ iff (a)": $\sigma_2 > \frac{1}{4}|W|^2$ and $WP \equiv \frac{1}{6}$ iff (b)": $\sigma_2 = \frac{1}{4}|W|^2$.

Remarks:

• Margerin established previous Theorem under (a)" and (b)".

• Hamilton: assume curvature operator positive. Proof of Theorem:

(a) In the conformal class, solve

$$\sigma_2(A_{g_w}) = \frac{1}{4} |W_{g_w}|^2 + c$$

with c > 0.

(b) and not (a) happens at minimal points of $\int_{M^4} |W|^2 dv$, thus the Bach tensor vanishes. Bach tensor:

$$B_{ij} = \nabla^k \nabla^l W_{kijl} + \frac{1}{2} R^{kl} W_{kijl}.$$

In this case we solve for

$$\sigma_2(A_{g_w}) = \frac{1-\epsilon}{4} |W_{g_w}|^2 + C_\epsilon$$

where $C_{\epsilon} \to 0$ as $\epsilon \to 0$. Degenerate elliptic happens at x where $|W|^2(x) = 0$.

§ Boundary operator, Cohn-Vossen inequality Suppose (N^2, M^1, g) is a compact surface with boundary; Gauss-Bonnet formula

$$2\pi\chi(N) = \int_N K \, dv + \oint_M k \, d\sigma,$$

where k is the geodesic curvature on M. Under conformal change of metric g_w on N, we have

$$\frac{\partial}{\partial n}w + k = k_w e^w \text{ on } \mathsf{M}.$$

• On (N^2, M^1, g) , we have (Δ_g, K_g) , with the corresponding boundary operator and curvature $(\frac{\partial}{\partial n}, k)$.

• On (N^{n+1}, M^n, g) , $n \ge 2$, we have (L_g, R_g) with the corresponding Robin boundary operator $B_g = \frac{\partial}{\partial n} + c_n H_g$ and the mean curvature H_g . Theorem : (Cohn-Vossen, Huber)

Suppose (M^2, g) a complete surface with K_g integrable, then

$$\int_M K_g dv_g \le 2\pi \chi(M).$$

Furthermore M has a conformal compactification $\overline{M} = M \cup \{q_1, ..., q_l\}$ as a compact Riemann surface and

$$2\pi\chi(M) = \int_M K_g dv_g + \sum_{k=1}^l \nu_k,$$

where at each end q_k , take a conformal coordinate disk $\{|z| < r_0\}$ with q_k at its center, then

$$\nu_k = \lim_{r \to 0} \frac{Length(\{|z| = r\})^2}{2Area(\{r < |z| < r_0\})}$$

PICTURE

On a four manifold with boundary (N^4, M^3, g) ; Chang-Qing Existence of boundary operator P_3 along with boundary curvature invariant T.

$$(P_3)_{g_w} = e^{-3w} (P_3)_g$$
, on M and
 $(P_3)_g w + T_g = T_{g_w} e^{3w}$ on M.

Special cases:

• On (B^4, S^3, dx) , where B^4 is the unit ball in \mathbb{R}^4 , we have

$$P_{4} = (-\Delta)^{2},$$
$$P_{3} = -\left(\frac{1}{2}\frac{\partial}{\partial n}\Delta + \tilde{\Delta}\frac{\partial}{\partial n} + \tilde{\Delta}\right)$$

and T = 2. where $\tilde{\Delta}$ the intrinsic boundary Laplacian on M.

The pair (P_4, Q_4) together with (P_3, T) satisfy:

Gauss-Bonnet-Chern formula:

$$8\pi^2 \chi(N) = \int_N (\frac{1}{4} |W|^2 + Q_4) \, dv + \oint_M (\mathcal{L} + T) \, d\sigma.$$

where \mathcal{L} is a third order boundary curvature
(pointwise) conformal invariant.

Generalization of Cohn-Vossen Theorem to 4manifold:

Theorem (Chang-Qing-Yang)

Suppose (M^4, g) is a complete conformally flat manifold, satisfying the conditions:

(i) The scalar curvature R_g is bounded between two positive constants and $|\nabla_g R_g|$ is also bounded;

(ii) The Ricci curvature is bounded below;

(iii)
$$\int_M |Q_g| dv_g < \infty$$
;

then

Assume M is simply connected, it is conformally equivalent to $S^4-\{q_1,...,q_l\}$ and we have

$$4\pi^2 \chi(M) = \int_M Q_g \, dv_g \, + \, 4\pi^2 l$$
 ;

• Schoen-Yau: For (M^n, g) simply connected, locally conformally flat, with $R_g \ge 0$,

$$(M^n,g) \hookrightarrow (S^n,e^{2w}g_c).$$

Say $M = S^n - \Lambda$, then Hausdorff dimension $\Lambda \leq \frac{n-2}{2}$.

PICTURE

Key estimates:

Assume the conformal metrics $e^{2w}g_c$ defined over domains $\Omega = S^4 - \Lambda$, then

$$e^{w(x)} \cong \frac{1}{d(x,\partial\Omega)}.$$

Generalizations:

• (Hao Fang) On (N^4, g) , with Q integrable replaced by $\sigma_2(A_g)$ integrable; also on (N^n, g) under further pinching conditions of curvatures.

• (Carron-Herzlich) On (N^n, g) with conformal structures which are not necessarily locally comformally flat.

• (M. González, Chang-Hang-Yang) On (M^n, g) locally conformally flat, assume $g \in \Gamma_k^+$. (i.e. $\sigma_i(A_g) > 0$ for all $i \le k$.), then $(M, g) \hookrightarrow (S^n, e^{2w}g_c)$, Say $M = S^n - \Lambda$, then Hausdorff dimension $\Lambda \le \frac{n-2k}{2}$

Corollary: (M. González, Izeki) A compact conformally flat manifold (M^n, g) with $g \in \Gamma_k^+$ for 2k > n-2 is a quotient of Schottky group. • The main open question in dimension four is the classification of conformal structures whose Schouten tensor belongs to the cone Γ_2^+ .

• So far the results in dimension four relies on explicit form of P_4, Q_4 on M^4 . To extend this theory to general dimensions, it will be important to find structural properties of the operators P and the Q curvatures.