Q-curvature on 4-manifolds

Sun-Yung Alice Chang Princeton University

On (M^{n}, g), compact Riemannian manifold A metric \bar{g} is conformal to g, if $\bar{g}=\rho g$ for some $\rho>0$. Denote $\rho=e^{2 w}$, and $g_{w}=e^{2 w} g$.

An operator A is a conformally covariant operator of bidegree (a, b), if under $g_{w}=e^{2 w} g$,

$$
A_{g_{w}}(\phi)=e^{-b w} A\left(e^{a w} \phi\right) \quad \forall \phi \in \mathcal{C}^{\infty}\left(M^{n}\right) .
$$

Examples:

1. when $n=2, \Delta$ of bidegree $(0,2)$.

Properties of Δ_{g} on $\left(M^{2}, g\right)$
a. $\Delta_{g_{w}}=e^{-2 w} \Delta_{g}$.
b. $-\Delta_{g} w+K_{g}=K_{g_{w}} e^{w}$,

Gauss-Bonnet formula:

$$
2 \pi \chi(M)=\int_{M} K_{g} d v_{g}
$$

2. On $\left(M^{n}, g\right), n \geq 3$, denote

$$
L_{g}=-c_{n} \Delta_{g}+R_{g}
$$

where $c_{n}=\frac{4(n-1)}{n-2}, R_{g}$ the scalar curvature.
Under $\bar{g}=u^{\frac{4}{n-2}} g$,

$$
L_{\bar{g}}(\phi)=u^{-\frac{n+2}{n-2}} L_{g}(u \phi),
$$

for all $\phi \in C^{\infty}(M)$.
Yamabe equation

$$
L_{g}(u)=R_{\bar{g}} u^{\frac{n+2}{n-2}}
$$

Using the notion $g_{w}=e^{2 w} g$,

$$
L_{g_{w}}=e^{-\frac{n+2}{2} w} L_{g}\left(e^{\frac{n-2}{2} w} \cdot\right)
$$

i.e. L of bidegree $\left(\frac{n-2}{2}, \frac{n+2}{2}\right)$.
3. When $n=4$, Paneitz operator: (1983)

$$
P \varphi \equiv \Delta^{2} \varphi+\delta\left[\left(\frac{2}{3} R g-2 R i c\right) d \varphi\right]
$$

where δ denotes the divergence, d the deRham differential and Ric the Ricci tensor.

For example:
On $\left(R^{4},|d x|^{2}\right), P=\Delta^{2}$,
On $\left(S^{4}, g_{c}\right), P=\Delta^{2}-2 \Delta$,
On $\left(M^{4}, g\right), g$ Einstein, $P=(-\Delta) \circ(L)$.
P bidegree $(0,4)$ on 4-manifolds, i.e.

$$
P_{g_{w}}(\phi)=e^{-4 \omega} P_{g}(\phi) \forall \phi \in \mathcal{C}^{\infty}\left(M^{4}\right) .
$$

Properties of Paneitz operator on $\left(M^{4}, g\right)$

1. $P_{g_{w}}=e^{-4 w} P_{g}$
2.

$$
\begin{gathered}
P_{g} w+2 Q_{g}=2 Q_{g_{w}} e^{4 w} \\
Q=\frac{1}{12}\left(-\Delta R+R^{2}-3|R i c|^{2}\right)
\end{gathered}
$$

Gauss-Bonnet-Chern Formula:

$$
4 \pi^{2} \chi\left(M^{4}\right)=\int\left(Q_{g}+\frac{1}{8}\left|W_{g}\right|^{2}\right) d v
$$

where W denotes the Weyl tensor.

- $W_{g_{w}}=e^{-2 w^{2}} W_{g}$ implies $\left|W_{g}\right|^{2} d v_{g}=\left|W_{g_{w}}\right|^{2} d v_{g_{w}}$ Thus $\left|W_{g}\right|^{2} d v_{g}$ is a pointwise conformal invariant; and the curvature integral $\int Q_{g} d v_{g}$ is a conformal invariant.

3. (Paneitz, Branson)
\exists 4-th order Conformal Paneitz operator P_{4}^{n}, on (M^{n}, g)

$$
P_{4}^{n}=\Delta^{2}+\delta\left(a_{n} R g+b_{n} \mathrm{Ric}\right) d+\frac{n-4}{2} Q_{4}^{n},
$$

for $\bar{g}=u^{\frac{4}{n-4}} g$:

$$
P_{4}^{n} u=\bar{Q}_{4}^{n} u^{\frac{n+4}{n-4}}
$$

P_{4}^{n} is conformal covariant of bidegree $\left(\frac{n-4}{2}, \frac{n+4}{2}\right)$.
§ Q-curvature, PDE aspect:

$$
\text { (**) } P_{g} w+2 Q_{g}=2 Q_{g_{w}} e^{4 w}
$$

Theorem: (Gursky, Chang-Yang)
(i) If $\lambda_{1}\left(L_{g}\right)>0$ and $\int Q_{g} d v_{g}>0$ then $P_{g} \geq 0$ with $\operatorname{Ker} P=\{$ constants $\}$.
(ii) Under assumptions in (i), (**) can be solved with $Q_{g_{w}}$ given by a constant.

Remark: Yamabe constant

$$
Y\left(M^{n}, g\right) \equiv \inf _{w} \frac{\int R_{g_{w}} d v_{g_{w}}}{\operatorname{vol}\left(g_{w}\right)^{\frac{n-2}{n}}}
$$

then $Y\left(M^{n}, g\right)>0$ iff $\lambda_{1}\left(L_{g}\right)>0$.

Above existence result based on
Branson-Orsted Formula on $\left(M^{4}, g\right)$ for

$$
F[w]=\log \frac{\operatorname{det} A_{g}}{\operatorname{det} A_{g_{w}}},
$$

for A_{g} conformal covariant operators.

Chang-Yang: Existence of extremal metrics of F over g_{w} :

$$
\gamma_{1}|W|^{2}+\gamma_{2} Q-\gamma_{3} \Delta R=\bar{k} \cdot \text { Vol }^{-1}
$$

for constants $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ with $\gamma_{2} \gamma_{3}>0$ and \bar{k}.

Regularity: Chang-Gursky-Yang
§ Fully non-linear equations on $\left(M^{n}, g\right)$

$$
R m=W \oplus \frac{1}{n-2} A \otimes g
$$

where

$$
A=\operatorname{Ric}-\frac{R}{2(n-1)} g
$$

A is called the Schouten tensor.

$$
\begin{aligned}
& \text { Under } g_{w}=e^{2 w} g, W_{g_{w}}=e^{-2 w} W_{g} . \\
& A_{g_{w}}=A_{g}+(n-2)\left\{-\nabla^{2} w+d w \otimes d w-\frac{|\nabla w|^{2}}{2} g\right\} .
\end{aligned}
$$

Denote $\sigma_{k}\left(A_{g}\right)=\mathrm{k}$-th elementary function of eigenvalues of A_{g}.

Examples:

$$
\begin{aligned}
\sigma_{1}\left(A_{g}\right) & =\sum_{i} \lambda_{i}=\frac{n-2}{2(n-1)} R_{g}, \\
\sigma_{2}\left(A_{g}\right) & =\sum_{i<j} \lambda_{i} \lambda_{j} \\
& =\frac{1}{2}\left(\left|T r A_{g}\right|^{2}-\left|A_{g}\right|^{2}\right) \\
& =\frac{n}{8(n-1)} R^{2}-\frac{1}{2}|R i c|^{2}, \\
\sigma_{n}\left(A_{g}\right) & =\operatorname{det}\left(A_{g}\right)
\end{aligned}
$$

Equation of Monge-Ampere type:

$$
\sigma_{k}\left(\nabla^{2} u\right)=f>0
$$

Dirichlet problem for u defined on convex domain $\Omega \subset \mathbb{R}^{n}$

- Existence of functions u for which the right hand side is some positive function is guaranteed by the convexity of the domain.

Caffarelli-Nirenberg-Spruck Krylov, Evans
Pogorolev, Cheng-Yau, Caffarelli

Comparison of the two equations:

Fully Non-linear PDE: for $n=4, k=2$,

$$
\sigma_{2}\left(\nabla^{2} u\right)=\frac{1}{2}\left[(\Delta u)^{2}-\left|\nabla^{2} u\right|^{2}\right]
$$

While for A_{g} :

$$
\begin{aligned}
\sigma_{2}\left(A_{g_{w}}\right) e^{4 w} & =\sigma_{2}\left(A_{g}\right)+2\left[(\Delta w)^{2}-\left|\nabla^{2} w\right|^{2}\right. \\
& \left.\left.+\left(\nabla w, \nabla|\nabla w|^{2}\right)+\Delta w|\nabla w|^{2}\right)\right] \\
& + \text { lower order terms. }
\end{aligned}
$$

Regularity properties of $\sigma_{k}\left(A_{g_{w}}\right)$ appears to be much better than that of $\sigma_{k}\left(\nabla^{2} v\right)$; much more to be explored.

Geometric content of sign of $\sigma_{k}\left(A_{g}\right)$:
For $k=1, \sigma_{1}\left(A_{g}\right)=c_{n} R_{g}$.

Some Algebraic fact:

- When $n=3$ and $\sigma_{2}\left(A_{g}\right)>0$, then either $R_{g}>$ 0 and the sectional curvature of g is positive or $R_{g}<0$ and the sectional curvature of g is negative on M.
- When $n=4$ and $\sigma_{2}\left(A_{g}\right)>0$, then either $R_{g}>0$ and Ricg $_{g}>0$ on M or $R_{g}<0$ and Ric $_{g}<0$ on M.
- For general n and $\sigma_{i}\left(A_{g}\right)>0 \forall 1 \leq i \leq k$ (i.e. $A_{g} \in \Gamma_{k}^{+}$) for some $k \geq \frac{n}{2}$, then Ricg $_{g}>0$.

Study of $\sigma_{k}\left(A_{g}\right)=$ constant

For $k=1$, Yamabe equation

For $k=2$, denote

$$
\mathcal{F}_{2}[g]=\int \sigma_{2}\left(A_{g}\right) d v_{g} .
$$

Theorem: (Gursky-Viaclovsky)
For 3-manifolds, a metric g with $\mathcal{F}_{2}[g] \geq 0$ is critical for the functional \mathcal{F}_{2} restricted to class of metrics with volume one if and only if g has constant sectional curvature.

For $k=2$ on $\left(M^{n}, g\right), n=4$,

$$
\begin{aligned}
& \sigma_{2}\left(A_{g}\right)=\frac{1}{6} R^{2}-\frac{1}{2}|R i c|^{2} \\
& Q_{g}=\frac{-1}{12} \Delta R_{g}+\frac{1}{2} \sigma_{2}\left(A_{g}\right)
\end{aligned}
$$

Gauss-Bonnet-Chern formula

$$
\begin{aligned}
& 4 \pi^{2} \chi(M)=\int_{M}\left(Q_{g}+\frac{1}{8}\left|W_{g}\right|^{2}\right) d v_{g} . \\
& 8 \pi^{2} \chi(M)=\int_{M}\left(\sigma_{2}\left(A_{g}\right)+\frac{1}{4}\left|W_{g}\right|^{2}\right) d v_{g} .
\end{aligned}
$$

Hence

$$
\int_{M} \sigma_{2}\left(A_{g}\right) d v_{g}
$$

is a conformal invariant.

Theorem: (Chang-Gursky-Yang)
On (M^{4}, g), assume
(i) $Y\left(M^{4}, g\right)>0$;
(ii) $\int \sigma_{2}\left(A_{g}\right) d v_{g}>0$;
then $\exists w \in \mathcal{C}^{\infty}(M)$, with $\sigma_{2}\left(A_{g_{w}}\right) \equiv 1$.
Corollary: Under (i),(ii), on (M^{4}, g), $\exists g_{w}=$ $e^{2 w} g$ with $R i c_{g_{w}}>0$; hence $\pi_{1}\left(M^{4}\right)$ is finite.

Examples:

- Gauss-Bonnet-Chern and Signature formulae imply that

$$
2 \chi+3 \tau>0
$$

as well as

$$
2 \chi-3 \tau>0
$$

precisely the same conditions satisfied by the class of positive Einstein 4-manifolds.

- Results of Donaldson and Freedman \longrightarrow the possible homeomorphic classes of simply connected 4-manifolds appear in the two lists:
In the non-spin case:
$k\left(\mathbb{C P}^{2}\right) \# l\left(\overline{\mathbb{C}} \overline{\mathbb{P}}^{2}\right)$, where $k>l$ and $4+5 l>k ;$
In the spin case: $\quad k\left(S^{2} \times S^{2}\right)$.

Proof of Theorem:

$$
\begin{aligned}
& \text { Part I: existence part: Under (i) and (ii) solve } \\
& \qquad \sigma_{2}\left(A_{g_{w}}\right)=f, \quad \text { for some } f>0
\end{aligned}
$$

Part II: regularity part:
Deform f to constant by method of continuity and degree theory.

Part I: Difficulty is lack of ellipticity. Recall

$$
\begin{aligned}
& Q_{g}=\frac{-1}{12} \Delta R_{g}+\frac{1}{2} \sigma_{2}\left(A_{g}\right) \\
& P_{g} w+2 Q_{g}=2 Q_{g_{w}} e^{4 w}
\end{aligned}
$$

Solve

$$
(*)_{\delta}: \quad \sigma_{2}\left(A_{g}\right)=\frac{\delta}{4} \Delta_{g} R_{g}+f
$$

Suitable f is $c\left|W_{g}\right|^{2}$; condition (ii) $\Rightarrow c>0$ $\delta=1$ extremal of $F[w]=\log \frac{\operatorname{det} L_{g}}{\operatorname{det} L_{g_{w}}}$ $\delta=\frac{2}{3}$, solution of $Q=\frac{c}{2}|W|^{2}$, $\delta \rightarrow 0$, apriori estimate, using integral form of Pogorolev estimates

Analytically: Regularized equation:

$$
(*)_{\delta}: \quad \delta(-\Delta)^{2} w=\sigma_{2}\left(A_{g_{w}}\right)-c\left|W_{g_{w}}\right|^{2}
$$

- Gursky-Viaclovsky: A different proof of above theorem. Based on Harnack estimates of solutions of

$$
A_{g}^{t}:=R i c-\frac{t R}{2(n-1)} g
$$

Start with t at $-\infty$ and let t tends to 1 .

- Chang-Gursky-Yang, A. Li-Y. Li: Uniqueness Theorem: If

$$
\sigma_{k}\left(A_{g_{w}}\right)=1 \text { on } \mathbb{R}^{n}
$$

for $g_{w}=e^{2 w} d x$, then

$$
w(x)=\log \frac{2 \epsilon}{\left(\epsilon^{2}+\left|x-x_{0}\right|^{2}\right)}+c_{n}
$$

for some $\epsilon>0$, and $x_{0} \in \mathbb{R}^{n}$.

- P.F.Guan-Wang, A. Li-Y. Li: A priori estimates for solutions of $\sigma_{k}\left(A_{g_{w}}\right)=f>0$ for the special case when $\left(M^{n}, g\right)$ is locally conformally flat.

Conformal Sphere Theorem:
(Chang-Gursky-Yang)
On $\left(M^{4}, g\right)$ with $Y\left(M^{4}, g\right)>0$.
(a) If

$$
\int_{M^{4}}\left|W_{g}\right|^{2} d v_{g}<16 \pi^{2} \chi\left(M^{4}\right),
$$

then M^{4} is diffeomorphic to S^{4} or $\mathbb{R} P^{4}$.
(b) If

$$
\int_{M^{4}}\left|W_{g}\right|^{2} d v_{g}=16 \pi^{2} \chi\left(M^{4}\right)
$$

and M^{4} not diffeomorphic to S^{4} or $\mathbb{R} P^{4}$ then either
(1) $\left(M^{4}, g\right)$ is conformal to ($\mathbb{C} P^{2}, g_{F S}$), or
(2) $\left(M^{4}, g\right)$ is conformal to $\left(\left(S^{3} \times S^{1}\right) / \Gamma, g_{\text {prod }}\right)$.

Gauss-Bonnet:

$$
\begin{gathered}
8 \pi^{2} \chi\left(M^{4}\right)=\int\left(\sigma_{2}\left(A_{g}\right)+\frac{1}{4}\left|W_{g}\right|^{2}\right) d v_{g}, \\
(a) \leftrightarrow(a)^{\prime}: \int_{M^{4}} \sigma_{2}\left(A_{g}\right)>\frac{1}{4} \int_{M^{4}}\left|W_{g}\right|^{2} d v_{g} \\
(b) \leftrightarrow(b)^{\prime}: \int_{M^{4}} \sigma_{2}\left(A_{g}\right)=\frac{1}{4} \int_{M^{4}}\left|W_{g}\right|^{2} d v_{g}
\end{gathered}
$$

Margerin: Weak Pinching:

$$
W P \equiv \frac{|W|^{2}+2|E|^{2}}{R^{2}}
$$

where E denotes traceless Ricci.
$W P<\frac{1}{6}$ iff (a)": $\sigma_{2}>\frac{1}{4}|W|^{2}$ and
$W P \equiv \frac{1}{6} \operatorname{iff}(\mathrm{~b}) \prime: \sigma_{2}=\frac{1}{4}|W|^{2}$.

Remarks:

- Margerin established previous Theorem under (a)" and (b)".
- Hamilton: assume curvature operator positive.

Proof of Theorem:
(a) In the conformal class, solve

$$
\sigma_{2}\left(A_{g_{w}}\right)=\frac{1}{4}\left|W_{g_{w}}\right|^{2}+c
$$

with $c>0$.
(b) and not (a) happens at minimal points of $\int_{M^{4}}|W|^{2} d v$, thus the Bach tensor vanishes. Bach tensor:

$$
B_{i j}=\nabla^{k} \nabla^{l} W_{k i j l}+\frac{1}{2} R^{k l} W_{k i j l} .
$$

In this case we solve for

$$
\sigma_{2}\left(A_{g_{w}}\right)=\frac{1-\epsilon}{4}\left|W_{g_{w}}\right|^{2}+C_{\epsilon}
$$

where $C_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$. Degenerate elliptic happens at x where $|W|^{2}(x)=0$.
§ Boundary operator, Cohn-Vossen inequality Suppose (N^{2}, M^{1}, g) is a compact surface with boundary; Gauss-Bonnet formula

$$
2 \pi \chi(N)=\int_{N} K d v+\oint_{M} k d \sigma
$$

where k is the geodesic curvature on M. Under conformal change of metric g_{w} on N, we have

$$
\frac{\partial}{\partial n} w+k=k_{w} e^{w} \text { on } \mathrm{M} .
$$

- On $\left(N^{2}, M^{1}, g\right)$, we have (Δ_{g}, K_{g}), with the corresponding boundary operator and curvature $\left(\frac{\partial}{\partial n}, k\right)$.
- On (N^{n+1}, M^{n}, g), $n \geq 2$, we have (L_{g}, R_{g}) with the corresponding Robin boundary operator $B_{g}=\frac{\partial}{\partial n}+c_{n} H_{g}$ and the mean curvature H_{g}.

Theorem: (Cohn-Vossen, Huber)
Suppose $\left(M^{2}, g\right)$ a complete surface with K_{g} integrable, then

$$
\int_{M} K_{g} d v_{g} \leq 2 \pi \chi(M)
$$

Furthermore M has a conformal compactification $\bar{M}=M \cup\left\{q_{1}, \ldots, q_{l}\right\}$ as a compact Riemann surface and

$$
2 \pi \chi(M)=\int_{M} K_{g} d v_{g}+\sum_{k=1}^{l} \nu_{k}
$$

where at each end q_{k}, take a conformal coordinate disk $\left\{|z|<r_{0}\right\}$ with q_{k} at its center, then

$$
\nu_{k}=\lim _{r \rightarrow 0} \frac{\operatorname{Length}(\{|z|=r\})^{2}}{2 \operatorname{Area}\left(\left\{r<|z|<r_{0}\right\}\right)}
$$

PICTURE

On a four manifold with boundary (N^{4}, M^{3}, g); Chang-Qing Existence of boundary operator P_{3} along with boundary curvature invariant T.

$$
\begin{aligned}
& \left(P_{3}\right)_{g_{w}}=e^{-3 w}\left(P_{3}\right)_{g}, \text { on } \mathrm{M} \text { and } \\
& \left(P_{3}\right)_{g} w+T_{g}=T_{g_{w}} e^{3 w} \text { on } \mathrm{M} .
\end{aligned}
$$

Special cases:

- On ($B^{4}, S^{3}, d x$), where B^{4} is the unit ball in \mathbb{R}^{4}, we have

$$
\begin{gathered}
P_{4}=(-\Delta)^{2} \\
P_{3}=-\left(\frac{1}{2} \frac{\partial}{\partial n} \Delta+\tilde{\Delta} \frac{\partial}{\partial n}+\tilde{\Delta}\right)
\end{gathered}
$$

and $T=2$. where $\tilde{\Delta}$ the intrinsic boundary Laplacian on M.

The pair $\left(P_{4}, Q_{4}\right)$ together with $\left(P_{3}, T\right)$ satisfy:

Gauss-Bonnet-Chern formula:
$8 \pi^{2} \chi(N)=\int_{N}\left(\frac{1}{4}|W|^{2}+Q_{4}\right) d v+\oint_{M}(\mathcal{L}+T) d \sigma$. where \mathcal{L} is a third order boundary curvature (pointwise) conformal invariant.

Generalization of Cohn-Vossen Theorem to 4manifold:

Theorem (Chang-Qing-Yang)
Suppose (M^{4}, g) is a complete conformally flat manifold, satisfying the conditions:
(i) The scalar curvature R_{g} is bounded between two positive constants and $\left|\nabla_{g} R_{g}\right|$ is also bounded;
(ii) The Ricci curvature is bounded below;
(iii) $\int_{M}\left|Q_{g}\right| d v_{g}<\infty$;
then
Assume M is simply connected, it is conformally equivalent to $S^{4}-\left\{q_{1}, \ldots, q_{l}\right\}$ and we have

$$
4 \pi^{2} \chi(M)=\int_{M} Q_{g} d v_{g}+4 \pi^{2} l
$$

- Schoen-Yau: For $\left(M^{n}, g\right)$ simply connected, locally conformally flat, with $R_{g} \geq 0$,

$$
\left(M^{n}, g\right) \hookrightarrow\left(S^{n}, e^{2 w} g_{c}\right)
$$

Say $M=S^{n}-\Lambda$, then Hausdorff dimension $\wedge \leq \frac{n-2}{2}$.

PICTURE

Key estimates:
Assume the conformal metrics $e^{2 w} g_{c}$ defined over domains $\Omega=S^{4}-\wedge$, then

$$
e^{w(x)} \cong \frac{1}{d(x, \partial \Omega)}
$$

Generalizations:

- (Hao Fang) On $\left(N^{4}, g\right)$, with Q integrable replaced by $\sigma_{2}\left(A_{g}\right)$ integrable; also on (N^{n}, g) under further pinching conditions of curvatures. - (Carron-Herzlich) On (N^{n}, g) with conformal structures which are not necessarily locally comformally flat.
- (M. González, Chang-Hang-Yang) On (M^{n}, g) locally conformally flat, assume $g \in \Gamma_{k}^{+}$. (i.e. $\sigma_{i}\left(A_{g}\right)>0$ for all $i \leq k$.), then $(M, g) \hookrightarrow\left(S^{n}, e^{2 w} g_{c}\right)$,
Say $M=S^{n}-\Lambda$, then Hausdorff dimension ^ $\leq \frac{n-2 k}{2}$

Corollary:(M. González, Izeki) A compact conformally flat manifold (M^{n}, g) with $g \in \Gamma_{k}^{+}$for $2 k>n-2$ is a quotient of Schottky group.

- The main open question in dimension four is the classification of conformal structures whose Schouten tensor belongs to the cone Γ_{2}^{+}.
- So far the results in dimension four relies on explicit form of P_{4}, Q_{4} on M^{4}. To extend this theory to general dimensions, it will be important to find structural properties of the operators P and the Q curvatures.

