Table of Contents

§1. Introduction/survey
§2. A blow-up sequence of functions on $R^{n}, n \geq 3$
§3. Yamabe probelm
§4. Moser-Trudinger inequality ($n=2$)
§5. Problem of Prescribing Gaussian curvature

A Riemannian metric $g=\sum g_{i j} d x^{i} d x^{j}$ gives rise to measurement of angles between vectors, and a conformally equivalent metric $\bar{g}=\rho g$ for some positive function ρ gives the same angle measurements. Two spaces X, X^{\prime} are said to be conformally equivalent if there is a map T : $X \rightarrow X^{\prime}$ which preserves the angle measurements.

- We are interested to study conformal invariants, i.e. terms which are invariant under conformal change of metrics. This includes
- local or pointwise conformal invariants. Examples are curvature tensors, e.g. Weyl tensor W_{g}, which satisfies $W_{\bar{g}}=\rho^{-1} W_{g}$ and measures the deviation of the metric from a conformally flat metric.
- Global or integral conformal invariants. Examples are integral of curvature invariants, e.g. integral of Gaussian curvature over a Riemann surface.
- We are also interested in conformal covariant operators, i.e. operators which transform by simple rules under conformal change of metrics; such operators are usually closely associated with local conformal invariants. e.g.
- Δ_{g} on compact surface,
- The conformal Laplace operator $L_{g}=-\Delta_{g}+$ $\frac{n-2}{4(n-1)} R_{g}$ on $\left(M^{n}, g\right)$ for $n \geq 3$ where R_{g} is the scalar curvature.

Important aspects of the theory includes:

- Existence and construction of local conformal invariants:
E. Cartan's theory of differential invariants.
T. Thomas's theory of tractor calculus.
C. Fefferman and R. Graham introduced the ambient metric construction.
- Construction and properties of conformally covariant operators and their associated Q curvatures:
Paneitz introduced 4-th order operators.
Graham-Jenne-Mason-Sparling introduce the nth order operator on n-manifolds (n even).
Branson relates the operators to Q-curvature. Fefferman-Graham, Zworski relates the n-th order operators on n-manifolds to the scattering theory of conformally compact Einstein spaces.
Alexakis's result on the structure of Q curvatures
- Nonlinear PDE's associated with the conformally covariant operators:
Work on the Gauss curvature equation.
Work on the Yamabe equation
Work on the Q-curvature equation and the related fully nonlinear PDE's.
- Connection to spectral theory.
- Applications to 4-dimensional conformal geometry and higher dimensional Kleinian groups. An existence theorem for conformal metrics of positive Ricci curvature. A conformal sphere theorem.
- Conformally compact Einstein structures.

Review of the Riemann curvature tensor:

- The Riemann tensor $R m=R_{i j k l}$ is defined in terms of a nonlinear expression involving up to two derivatives of the metric.
- The sectional curvature of the plane $v \wedge w$ is given by $K(v \wedge w)=\sum R_{i j k l} v^{i} v^{k} w^{j} w^{l}$ when v, w are orthonormal.
- Ricci curvature in the direction $v=v_{1}$ is given as a trace $\operatorname{Ric}(v, v)=\sum_{i=2}^{n} K\left(v, v^{i}\right)$.
- The scalar curvature $R=\sum_{i=1}^{n} \operatorname{Ric}\left(v_{i}, v_{i}\right)$.

PICTURE

Decomposition of the curvature tensor:

The Riemann curvature tensor has the decomposition

$$
R m=W \bigoplus A \otimes g
$$

where

$$
A=\frac{1}{n-2}\left[R_{i j}-\frac{R}{2(n-1)} g_{i j}\right]
$$

is called the Schouten tensor which is determined by the Ricci tensor; and © is the NomizuKulkarni product of the symmetric two tensors.

- The Weyl tensor satisfies $W_{\bar{g}}=\rho^{-1} W_{g}$.
- The Ricci tensor controls the growth of volume of balls, and hence the topology of the underlying space.
§ Analytic aspects: A blow up sequence of functions

Sobolev Embedding Theorem:
For all $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), n \geq 3$

$$
(*) \wedge\left(\int_{\mathbb{R}^{n}}|v|^{p} d x\right)^{\frac{2}{p}} \leq \int_{\mathbb{R}^{n}}|\nabla v|^{2} d x .
$$

- We say that $W_{0}^{1.2}\left(\mathbb{R}^{n}\right)$ embeds into $L^{p}\left(\mathbb{R}^{n}\right)$.
- By a dilation of $v(x)$ to $v(\lambda x)$, we see p in (*) is $p=\frac{2 n}{n-2}$.

The best constant \wedge and the extremal functions v for $(*)$: Assume $v(x)=v(|x|)=v(r)$,

$$
\left\{\begin{array}{l}
v^{\prime \prime}+\frac{n-1}{r} v^{\prime}+\Lambda v^{\frac{n+2}{n-2}}=0 \\
v(0)=a, v^{\prime}(0)=0
\end{array}\right.
$$

One solution is

$$
\left\{\begin{array}{l}
v(x)=\left(\frac{2}{1++\left.x\right|^{2}}\right)^{\frac{n-2}{2}} \\
\wedge=\frac{n(n-2)}{4} \omega_{n}^{2 / n}
\end{array}\right.
$$

where ω_{n} is the surface area of the unit sphere S^{n}. We then observe that the inequality is invariant under:

$$
v \rightarrow v_{\epsilon}(x)=\epsilon^{\frac{2-n}{2}} v\left(\frac{x-x_{0}}{\epsilon}\right),
$$

where $\epsilon>0$ and x_{0} is any point in \mathbb{R}^{n}. In other words, we have

$$
v_{\epsilon}(x)=\left(\frac{2 \epsilon}{\epsilon^{2}+\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}}
$$

are all extremals for the Sobolev embedding ${ }^{*}$), we have the following remarkable theorem.

Theorem: (Bliss, Talenti, T. Aubin)
The best constant in the Sobolev inequality

$$
\text { (*) } \wedge\left(\int_{\mathbb{R}^{n}}|v|^{p} d x\right)^{\frac{2}{p}} \leq \int_{\mathbb{R}^{n}}|\nabla v|^{2} d x .
$$

for $p=\frac{2 n}{n-2}$ is $\Lambda=\frac{n(n-2)}{4} \omega_{n}^{2 / n}$. It is only realized by the functions v_{ϵ}.

Properties of v_{ϵ} : (fix $x_{0}=0, \epsilon>0$,)

$$
v_{\epsilon}(x)=\left(\frac{2 \epsilon}{\epsilon^{2}+|x|^{2}}\right)^{\frac{n-2}{2}}
$$

(i) $v_{\epsilon}(0)=\left(\frac{2}{\epsilon}\right)^{\frac{n-2}{2}} \rightarrow \infty$ as $\epsilon \rightarrow 0$,
(ii) $v_{\epsilon}(x) \rightarrow 0$, for all $x \neq 0$, as $\epsilon \rightarrow 0$,
(iii) $\int_{\mathbb{R}^{n}}\left|v_{\epsilon}(x)\right|^{\frac{2 n}{n-2}} d x=\int_{\mathbb{R}^{n}}\left|v_{1}(x)\right|^{\frac{2 n}{n-2}} d x$,
(iv) $\int_{\mathbb{R}^{n}}\left|\nabla v_{\epsilon}(x)\right|^{2} d x=\int_{\mathbb{R}^{n}}\left|\nabla v_{1}(x)\right|^{2} d x$. PICTURE

Thus v_{ϵ} is a sequence of functions

- bounded in $W^{1,2}\left(\mathbb{R}^{n}\right)$,
- The weak limit as $\epsilon \rightarrow 0$ is the zero function; Hence it does not have a convergent subsequence in $L^{\frac{2 n}{n-2}}$.
- The embedding of the Sobolev space $W^{1,2}\left(\mathbb{R}^{n}\right)$
into $L^{\frac{2 n}{n-2}}$ is not compact. This lack of compactness due to the non-compact group of translations and dilations of \mathbb{R}^{n} is the heart of the problem.

The Euler Lagrange equation for the extremal function satisfies:

$$
-\Delta v=\frac{n(n-2)}{4} v^{\frac{n+2}{n-2}} \text { on } \mathbb{R}^{n} .
$$

Thus functions v_{ϵ} above are solutions.

Theorem: (Caffarelli-Gidas-Spruck)
v_{ϵ} are the only positive solutions of above equation.

We conculde:

- All critcal points of the Sobolev embedding are minimal points.
- The positive solutions are unique up to dilations and translations.
\S Blow up sequence on the unit sphere S^{n} Consider stereographic projection.

$$
\begin{gathered}
\pi:\left(S^{n}-\text { north pole }\right) \rightarrow \mathbb{R}^{n} \\
\xi \stackrel{\pi}{\longmapsto} x(\xi)
\end{gathered}
$$

Sending the north pole on S^{n} to ∞; $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n+1}\right)$ is a point in $S^{n} \subset \mathbb{R}^{n+1}$, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then $\xi_{i}=\frac{2 x_{i}}{1+|x|^{2}}$ for $1 \leq i \leq n ; \xi_{n+1}=\frac{|x|^{2}-1}{|x|^{2}+1}$.

PICTURE

Suppose u is a smooth function defined on S^{n}, note that the Jacobian of π^{-1} as

$$
\begin{gathered}
J_{\pi^{-1}}=\left(\frac{2}{1+|x|^{2}}\right) I \\
v(x)=u(\xi(x))\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n-2}{2}}
\end{gathered}
$$

Sobolev inequality on S^{n} :

$$
\begin{aligned}
\wedge\left(\int_{S^{n}}|u(\xi)|^{\frac{2 n}{n-2}} d \sigma(\xi)\right)^{\frac{n-2}{2}} \leq \int_{S^{n}}|\nabla u(\xi)|^{2} d \sigma(\xi) \\
+\frac{n(n-2)}{4} \int_{S^{n}}|u(\xi)|^{2} d \sigma(\xi)
\end{aligned}
$$

where $d \sigma(\xi)=\left(\frac{2}{1+|x|^{2}}\right)^{n}$ is the standard area form on the unit sphere S^{n}.

The transformed function $u(\xi)$ satisfies:

$$
-\Delta_{g} u+\frac{n(n-2)}{4} u=\frac{n(n-2)}{4} u^{\frac{n+2}{n-2}} \text { on } S^{n}
$$

where $\Delta_{g}=\left(\frac{2}{1+|x|^{2}}\right)^{2} \Delta_{x}$.

- Uniqueness Functions u_{ϵ} obtained from v_{ϵ} are the only positive solutions.

On $\left(M^{n}, g\right)$, the conformal Laplacian L_{g}

$$
L_{g}=-\Delta_{g}+c_{n} R_{g}
$$

where $c_{n}=\frac{n-2}{4(n-1)}$, and R_{g} denotes the scalar curvature of the metric g.

Euler equation for Sobolev inequality on $\left(M^{n}, g\right)$: Yamabe equation:

$$
L_{g} u=c_{n} R_{\bar{g}} u^{\frac{n+2}{n-2}} .
$$

where the conformal metric $\bar{g}=u^{\frac{4}{n-2}} g$ for some positive function u.

- Yamabe problem:

Given (M^{n}, g), find positive function u so that $R_{\bar{g}}$ a constant.
(Yamabe, Trudinger, Aubin, Schoen).

Variational method:
Find the extremals for the inequality:
$\wedge_{g}\left(\int_{M}|u|^{\frac{2 n}{n-2}} d v_{g}\right)^{\frac{n-2}{2}} \leq \int_{M}\left|\nabla_{g} u\right|^{2} d v_{g}+c_{n} \int_{M} R_{g}|u|^{2} d v_{g}$,
for some constant $\Lambda_{g} \leq \Lambda$.

- This constant Λ_{g} is called the Yamabe constant, and is conformally invariant.

A crucial ingredient in the proof: to establish some criteria for compactness of the minimizing sequence. That is to distinguish the manifold from the standard sphere by establishing $\wedge_{g}<\wedge_{g_{c}}$.

- In the solution by Aubin, the non-vanishing of the Weyl tensor in high dimensions plays this crucial role.
- Schoen uses the positive mass theorem to differentiate the conformal structure from the standard n-sphere.

Mass associated to a point p is defined as the finite part A in the asymptotic expansion of the Green's function of the conformal Laplacian with pole at p : in a geodesic coordinate system x whose origin is the given pole p, the Green's function G is the solution of the equation

$$
L_{g} G=(n-2) \omega_{n-1} \delta_{p} .
$$

Near the point p there is an expansion:

$$
G(x)=|x|^{2-n}+A+O(|x|) .
$$

- $A \geq 0, A=0$ if and only if $\left(M^{n}, g\right)=\left(S^{n}, g_{c}\right)$.
§ Moser-Trudinger Inequality
Sobolev embedding Theroem:

$$
W_{0}^{1, q}(D) \hookrightarrow L^{q} \text { with } \frac{1}{p}=\frac{1}{q}-\frac{1}{n} .
$$

When $q=2, p=\frac{2 n}{n-2}$ for $n \geq 3$.
When $q=2, n=20<p<\infty$, but $p \neq \infty$.
Example: Take D to be the unit ball B in R^{2}, $w(x)=\log \left|\log \left(e-1+\frac{1}{|x|}\right)\right|$.

Theorem: (Moser, Trudinger)
Suppose D is a smooth domain in \mathbb{R}^{2}, then there is a constant C, for all functions $w \in$ $W_{0}^{1,2}(D)$ with $\int_{D}|\nabla w(x)|^{2} d x \leq 1$, we have

$$
\int_{D} e^{\alpha w^{2}}(x) d x \leq C|D|
$$

for any $\alpha \leq 4 \pi$, with 4π being the best constant.

- Existence of extremal functions for Moser's inequality. (Carleson-Chang)
- Linearized form of the inequality is useful:

$$
\log \frac{1}{|D|} \int_{D} e^{2 w} d x \leq \frac{1}{4 \pi} \int_{D}|\nabla w|^{2} d x
$$

- (W.Chen and C. Li)

Suppose w is in $C^{2}\left(\mathbb{R}^{2}\right)$, with $e^{2 w} \in L^{1}\left(\mathbb{R}^{2}\right)$, and satisfies the equation

$$
-\Delta w=e^{2 w} \text { on } \mathbb{R}^{2}
$$

Then

$$
w(x)=\log \frac{2 \epsilon}{\epsilon^{2}+\left|x-x_{0}\right|^{2}}
$$

for some $\epsilon>0$ and some $x_{0} \in \mathbb{R}^{2}$.
§ Gaussian curvature on compact surface

- Recall on $\left(M^{2}, g\right)$ a compact surface, we have $\Delta=\Delta_{g}$ and the Gaussian curvature $K=K_{g}$.
- Under the conformal change $g_{w}=e^{2 w} g$,

$$
\text { (1) }-\Delta_{g} w+K_{g}=K_{w} e^{2 w} \text { on } M
$$

K_{w} denotes the Gaussian curvature of $\left(M, g_{w}\right)$.

- The Gauss-Bonnet Theorem:

$$
2 \pi \chi(M)=\int_{M} K_{w} d v_{g_{w}}
$$

where $\chi(M)$ is the Euler characteristic of M.

- Uniformization Theorem to classify compact closed surfaces can be viewed as finding solutions with $K_{w} \equiv-1,0$, or 1 according to the sign of $\int K d v_{g}$.

$$
\text { (1) }-\Delta_{g} w+K_{g}=K_{w} e^{2 w} \text { on } M
$$

Variational Functional:

$$
\begin{aligned}
J[w] & =\int_{M}|\nabla w|^{2} d v_{g}+2 \int_{M} K_{g} w d v_{g} \\
& -\left(\int_{M} K_{g} d v_{g}\right) \log \frac{\int_{M} d v_{g_{w}}}{\int_{M} d v_{g}} .
\end{aligned}
$$

Nirenberg problem: Which functions can be the Gaussian curvature function K_{w}, in particular on $\left(S^{2}, g_{c}\right)$.

- Kazdan-Warner

On $S^{2}=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \mid \sum_{i=1}^{3} \xi_{i}^{2}=1\right\}$, there is an obstruction for the problem:

$$
\int_{S^{2}} \nabla K_{w} \cdot \nabla \xi e^{2 w} d v_{g_{c}}=0
$$

Theorem: (Moser)
Any positive C^{2} even function f (i.e. $f(\xi)=$ $f(-\xi)$ for all $\xi \in S^{2}$) can be a Gaussian curvature function on $\left(S^{2}, g_{c}\right)$.

Theorem: (Onofri; T.Aubin) $J[w] \geq 0$ and $J[w]=0$ precisely for conformal factors w of the form $e^{2 w} g=T^{*} g$ where T is a Mobius transformation of the 2 -sphere.

Leray-Schauder degree theory for (1):
(Chang-Yang, Chang-Gursky-Yang)
(C.C. Chen and C.S. Lin)

Assume f is a Morse function satisfying the (non-degenerate condition) $\Delta f(\xi) \neq 0$ at the critical points ξ of f,

$$
\text { degree }=\sum_{\nabla f(q)=0, \Delta f(q)<0}(-1)^{i n d(q)}-1
$$

\S Geometric content of the functional $J[w]$

Polyakov-Ray-Singer Formula
On $\left(M^{2}, g\right)$

$$
J[w]=12 \pi \log \left(\frac{\operatorname{det}\left(-\Delta_{g}\right)}{\operatorname{det}\left(-\Delta_{g_{w}}\right)}\right)
$$

where the determinant of the Laplacian $\operatorname{det}\left(-\Delta_{g}\right)$ is defined by Ray-Singer as :

$$
\log \operatorname{det}\left(-\Delta_{g}\right):=-\zeta^{\prime}(0)
$$

Definition
On compact Riemannian manifold $\left(M^{n}, g\right)$, consider eigenvalue of $-\Delta_{g}$

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{k} \leq \ldots
$$

and the zeta function

$$
\zeta(s):=\sum_{\lambda_{k} \neq 0} \lambda_{k}^{-s}
$$

Formal differentiation leads to

$$
\begin{aligned}
\zeta^{\prime}(s) & =\sum_{\lambda_{k} \neq 0}-\left(\log \lambda_{k}\right) \lambda_{k}^{-s}, \text { i.e. } \\
\zeta^{\prime}(0) & =-\sum_{\lambda_{k} \neq 0} \log \lambda_{k}=-\log \prod_{k=1}^{\infty} \lambda_{k} .
\end{aligned}
$$

Apply Mellin transform for all $x>0$,

$$
x^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} e^{-x t} t^{s-1} d t .
$$

We can rewrite $\zeta(s)$ in terms of the Gamma function:

$$
\begin{aligned}
\zeta(s) & =\frac{1}{\Gamma(s)} \int_{0}^{\infty} \sum_{j=1}^{\infty} e^{-\lambda_{j} t} t^{s-1} d t \\
& =\frac{1}{\Gamma(s)} \int_{0}^{\infty}(Z(t)-1) t^{s-1} d t
\end{aligned}
$$

where $Z(t)$ denotes the Heat kernel. The existence of $\zeta^{\prime}(0)$ can be justified via Weyl's asymptotic formula of the heat kernel.

- Onofri's inequality is equivalent to the statement $\operatorname{det}\left(-\Delta_{g_{c}}\right)$ is maximal among all metrics g on S^{2}.
- Osgood-Phillips-Sarnak independently derived Onofri's inequality and established the C^{∞} compactness of isospectral metrics on compact surfaces.
- Chang-Yang, Brooks-Perry-Peterson: Partial results for isospectral compactness for 3manifolds.
- Okikiolu: Among all metrics with the same volume as the standard metric on the 3-sphere, the standard canonical metric is a local maximum for the functional $\operatorname{det}\left(-\Delta_{g}\right)$.

