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A Riemannian metric g = ¥ g;jdz'dz gives rise
to measurement of angles between vectors, and
a conformally equivalent metric g = pg for some
positive function p gives the same angle mea-
surements. Two spaces X, X’ are said to be
conformally equivalent if there is a map T :
X — X' which preserves the angle measure-
ments.

e \We are interested to study conformal invari-
ants, i.e. terms which are invariant under con-
formal change of metrics. This includes

e |ocal or pointwise conformal invariants. EXx-
amples are curvature tensors, e.g. Weyl tensor
Wy, which satisfies W; = p~1W, and measures
the deviation of the metric from a conformally
flat metric.



e Global or integral conformal invariants. EXx-
amples are integral of curvature invariants, e.g.
integral of Gaussian curvature over a Riemann
surface.

e We are also interested in conformal covari-

ant operators, i.e. operators which transform

by simple rules under conformal change of met-

rics; such operators are usually closely associ-

ated with local conformal invariants. e.g.

e A,z on compact surface,

e The conformal Laplace operator Lg = —Ag+
a(n _l)Rg on (M™,g) for n > 3 where Ry is the

scalar curvature.



Important aspects of the theory includes:

e EXistence and construction of local confor-
mal invariants:

E. Cartan’s theory of differential invariants.
T. Thomas’'s theory of tractor calculus.

C. Fefferman and R. Graham introduced the
ambient metric construction.



e Construction and properties of conformally
covariant operators and their associated @ cur-
vatures:

Paneitz introduced 4-th order operators.
Graham-Jenne-Mason-Sparling introduce the n-
th order operator on n-manifolds (n even).
Branson relates the operators to Q-curvature.
Fefferman-Graham, Zworski relates the n-th
order operators on n-manifolds to the scat-
tering theory of conformally compact Einstein
spaces.

Alexakis’'s result on the structure of () curva-
tures



e Nonlinear PDE’s associated with the confor-
mally covariant operators:

Work on the Gauss curvature equation.

Work on the Yamabe equation

Work on the Q-curvature equation and the re-
lated fully nonlinear PDE’s.

e Connection to spectral theory.

e Applications to 4-dimensional conformal ge-
ometry and higher dimensional Kleinian groups.
An existence theorem for conformal metrics of
positive Ricci curvature. A conformal sphere
theorem.

e Conformally compact Einstein structures.



Review of the Riemann curvature tensor:

e The Riemann tensor Rm = R,;j is defined
in terms of a nonlinear expression involving up
to two derivatives of the metric.

e [ he sectional curvature of the plane v Aw is
given by K(v Aw) = ZRijklvivkijl when v, w

are orthonormal.

e Ricci curvature in the direction v = wvq IS
given as a trace Ric(v,v) = 7 5 K(v,v").

e The scalar curvature R = Y"1 Ric(v;,v;).
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Decomposition of the curvature tensor:

The Riemann curvature tensor has the decom-
position

Rm = W@A Dy
where
1 R
A = Ri: — .
n—2[ 1] 2(n—1)g”]
iIs called the Schouten tensor which is deter-
mined by the Ricci tensor; and (»is the Nomizu-

Kulkarni product of the symmetric two tensors.

e The Weyl tensor satisfies W5 = p~1Wj.

e [ he Ricci tensor controls the growth of vol-
ume of balls, and hence the topology of the
underlying space.



§ Analytic aspects: A blow up sequence of
functions

Sobolev Embedding Theorem:
For all ve C3°(R"), n >3

2
%) A v|Pdx)r < Vo|2dz.
() (Rnllw) _Rnl [“dx

e We say that W3-2(R") embeds into LP(R™).

e By a dilation of v(x) to v(Ax), we see p in
(*) is p = 2.

The best constant A and the extremal func-
tions v for (*): Assume v(z) = v(|z|) = v(r),



One solution is

n—?2
v(x) = (%W)T
NN = —”(”;Q)wg/”,

where wy, is the surface area of the unit sphere
S™. We then observe that the inequality is
invariant under:

2— r—x
v — ve(x) = eTn'U( 0

)7

where ¢ > 0 and zg is any point in R™. In other
words, we have

2€
x — z0|?

n—2
)T

vele) = (o

are all extremals for the Sobolev embedding
(*), we have the following remarkable theorem.
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Theorem: (Bliss, Talenti, T. Aubin)

The best constant in the Sobolev inequality
2

x) A vPdx)r < / Vol4dz.

(5) A ([, lolPdz)p < [ [V

for p= 2% is A = “”T—Q)wi/”. It is only real-

ized by the functions ve.

Properties of ve: (fix g =0, € > 0,)

¢ n—2

) 2

(i) ve(0) = (2)"Z° — o0 as € — 0,

(ii) ve(x) — O, for all z %40, as e — O,
2n_ 2n_

(iii) Jgn |ve(z)|n—2dx = [gn |v1(x)|—2dz,

(iV) Jrn [Voe(@)|2dz = [gn [Vv1(z)|?da.
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Thus ve is a sequence of functions
e bounded in W12(R"),
e [ he weak Iimit as ¢ — O is the zero function;

Hence it does not have a convergent subse-
2n

quence in Ln—2,

e The embeddlng of the Sobolev space W12(R")

into Ln = IS not compact. This lack of com-
pactness due to the non-compact group of trans-
lations and dilations of R™ is the heart of the
problem.
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The Euler Lagrange equation for the extremal
function satisfies:

~2) nt2
n(n )vn—Q on R"™.

Thus functions v above are solutions.

Theorem: (Caffarelli-Gidas-Spruck)
ve are the only positive solutions of above equa-
tion.

We conculde:
e All critcal points of the Sobolev embedding
are minimal points.

e [ he positive solutions are unique up to dila-
tions and translations.
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§ Blow up sequence on the unit sphere S™
Consider stereographic projection.

w: (S" — north pole) — R"
¢ — x(£)

Sending the north pole on S™ to oo;
¢ = (&1,€2,..,&,41) is @ point in §* C Rt

x = (x1,zo,...,2p), then & = %TZ“P for
1<i< — |zt
1< n; ptp1 = |21

PICTURE

Suppose v is a smooth function defined on S",
note that the Jacobian of n—1 as

2
J 1= (1 T |:13|2) I

n—2

v(z) = u(§())( ) 2,

1+||2
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Sobolev inequality on S™:
AL 1u©12d0(€)"2° < [ IVu(©)[2do(e)
n(n — 2) 5
+ B [ (@) Pdo (),

where do(¢) = (%W)n is the standard area

form on the unit sphere S™.

The transformed function (&) satisfies:

n(n — Q)u _ n(n — Q)u% on S"
4 4

2
where Ay = (%W) Ay

e Uniqueness Functions ue obtained from ve are
the only positive solutions.
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On (M™,g), the conformal Laplacian Ly

where ¢, = 4&;_21), and Ry denotes the scalar

curvature of the metric g.

Euler equation for Sobolev inequality on (M™", g):
Yamabe equation:

n—+2

Lqu = cn Rg un—2,

_4
where the conformal metric g = un—2g for some

positive function w.

e Yamabe problem:

Given (M™, g), find positive function u so that
Rz a constant.

(Yamabe, Trudinger, Aubin, Schoen).
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Variational method:
Find the extremals for the inequality:

2n n—2
—> —== 2 2
/\g (/ |'U/|n_2dvg) 2 S / |VgU| d'Ug_I_Cn/ Rg|U| d’Ug,

for some constant Ag < A.
e This constant A4 is called the Yamabe con-
stant, and is conformally invariant.

A crucial ingredient in the proof: to establish
some criteria for compactness of the minimiz-
iIng sequence. That is to distinguish the man-
ifold from the standard sphere by establishing
Ng < Ng,.

e In the solution by Aubin, the non-vanishing of
the Weyl tensor in high dimensions plays this
crucial role.

17



e Schoen uses the positive mass theorem to
differentiate the conformal structure from the
standard n-sphere.

Mass associated to a point p is defined as the
finite part A in the asymptotic expansion of
the Green’'s function of the conformal Lapla-
cian with pole at p : in a geodesic coordinate
system x whose origin is the given pole p, the
Green’s function G is the solution of the equa-
tion

Near the point p there is an expansion:
G(z) = || "+ A+ 0(Jz|).
e A>0, A=0ifandonlyif (M",g) = (S™ gc).
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§ Moser-Trudinger Inequality
Sobolev embedding Theroem:

1 1 1
Wa'd(D) — L7 with = = = — =
p q n

When g = 2, pZ% for n > 3.
When ¢ =2, n=2 0 < p < oo, but p # oo.

. Take D to be the unit ball B in R?,
w(z) = log | log(e — 1—|—ﬁ)|.

Theorem: (Moser, Trudinger)

Suppose D is a smooth domain in R2, then
there is a constant C, for all functions w €
Wo2(D) with [p |Vw(z)[2dz < 1, we have

/D ean(CU)dCU < C|D],

for any a < 4, with 47 being the best con-
stant.
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e EXistence of extremal functions for Moser’s
inequality. (Carleson-Chang)

e Linearized form of the inequality is useful:
1 1
log—/ e?Vdr < —/ Vw|?da.
|D| /D 47 JD

e (W.Chen and C. Li)
Suppose w is in C2(R?), with 2% e L1(R?),
and satisfies the equation

—Aw = 2% on RZ.

T hen

for some € > 0 and some zg € RZ.
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§ Gaussian curvature on compact surface

e Recall on (M2, g) a compact surface, we have
A = A4 and the Gaussian curvature K = K.

e Under the conformal change g, = e2%g,
(1) —Agw + Kg= Kuwe?™ on M

Ky denotes the Gaussian curvature of (M, gw).

e | he Gauss-Bonnet Theorem:

o (M) = /M Ko dug,

where x(M) is the Euler characteristic of M.

e Uniformization Theorem to classify compact
closed surfaces can be viewed as finding solu-
tions with K = —1, 0, or 1 according to the
sign of [ Kduvy.
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(1) —Agw + K4= Kuwe?” on M
Variational Functional:
J[w] = /M Vw|2dvg + 2 /M Kqwdvg

fM dvgw
Jar dvg

—( /M Kgdvg) 109

Nirenberg problem: Which functions can be
the Gaussian curvature function Ky, in partic-
ular on (S2,gc).

e Kazdan-Warner

On 52 = {(£1,&,83)| 71 &7 = 1}, there is an
obstruction for the problem:

/52 VEKy - VE e2¥dug, = 0.
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Theorem: (Moser)

Any positive C? even function f (i.e. f(&) =
(=€) for all £ € 82) can be a Gaussian curva-
ture function on (52, gc).

Theorem: (Onofri; T.Aubin) J[w] > 0

and J[w] = 0 precisely for conformal factors w
of the form e2?¥g = T*g where T is a Mobius
transformation of the 2-sphere.

Leray-Schauder degree theory for (1):
(Chang-Yang, Chang-Gursky-Yang)
(C.C. Chen and C.S. Lin)

Assume f is a Morse function satisfying the
(non-degenerate condition) Af(£) # 0 at the
critical points & of f,

degree = S (—1)d(a) _ 1
Vf(q)=0,Af(g)<0
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§ Geometric content of the functional J[w]

Polyakov-Ray-Singer Formula

On (M?,g)

det(—Ayg)
det(—Agw))

where the determinant of the Laplacian det(—Ay)
is defined by Ray-Singer as :

J[w] = 127 log (

logdet(—Ay) := —¢'(0).

Definition
On compact Riemannian manifold (M™", g), con-
sider eigenvalue of —Ay

O=XAp < A1 < < .. <A<

and the zeta function

¢(s) == > A%

A, 70
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Formal differentiation leads to

('(s) = > —(logrp)A.?, ie.

AL#O
¢'(0)=— > logA,=—log [] A
ALZO k=1

Apply Mellin transform for all x > O,
x ° = 1 /OO e~ Tlys—1 gy
(s) Jo
We can rewrite ((s) in terms of the Gamma
function:

— 1 xS —Ajtps—1
¢(s) = m/ Z e t dt

=1
=02 )/ (Z(t)—l)ts Lat,

where Z(t) denotes the Heat kernel. The exis-
tence of ¢/(0) can be justified via Weyl's asymp-
totic formula of the heat kernel.
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e Onofri's inequality is equivalent to the state-
ment det(—Ayg.) is maximal among all metrics
g on S2.

e Osgood-Phillips-Sarnak independently derived
Onofri's inequality and established the C'°° com-
pactness of isospectral metrics on compact sur-
faces.

e Chang-Yang, Brooks-Perry-Peterson: Par-
tial results for isospectral compactness for 3-
manifolds.

e OKkikiolu: Among all metrics with the same
volume as the standard metric on the 3-sphere,
the standard canonical metric is a local maxi-
mum for the functional det(—Ay).
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