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0 Introduction

Our goal is to study quantities in Riemannian geometry which remain invariant under the
”conformal change of metrics”–that is under changes of metrics which stretch the length
of vectors but preserve the angles between any pair of vectors. We call such a quantity
”conformally invariant”.

In conjunction with the study of conformal invariants, we are also interested to study
”conformally covariant operators”. That is, linear differential operators defined on a manifold
which prescribes the change of a geometric quantity under conformal change of metrics.

The study of conformal invariants has a long history going back at least to Poincare and
Cartan. In recent years, there have been intensive study of the existence and the construction
of conformal covariant operators and also applications to problems in geometry, and related
problems in string theory and mathematical physics. In these talks, I will report some
progress in this research area, with emphasis on the PDE approach to these problems.

A model example is that of the Laplace operator ∆g on a compact surface M 2 with a
Riemannian metric g. In this case, under the conformal change of metric gw = e2wg, ∆gw

= e−2w∆g is a familiar example of conformally covariant operator. If we denote Kg as the
Gaussian curvature of (M 2, g); then according to the well-known Gauss-Bonnet formula:

2πχ(M2) =

∫

M

Kgdvg

where χ(M2) denotes the Euler characteristic of the surface M 2. We conclude that the term
∫

M
Kgdvg is a topological, hence a conformal invariant; while Kgw

and Kg are related by the
partial differential equation

−∆gw + Kg = Kgw
e2w. (0.1)

There is an extensive literature about the equation (0.1). For example, to solve Kgw
= c for

some constant c is equivalent to the uniformization theorem of surfaces; i.e. the classification
of compact surfaces according to the sign of c to be +1, 0 or −1 as diffeomorphic to the
standard 2-sphere, the 2-torus or a hyperbolic surface. Note in this case, the sign of c is also
determined by the sign of the conformal invariant

∫

M
Kgdvg. It turns out the variational

functional to study the equation (0.1) is also the logarithmic determinant of the Laplace
operator in the sense of Ray-Singer and coincides with the Polyakov formula for compact
surfaces in string theory. We will discuss this in more detail in section 2.

Another well known example is the conformal Laplacian operator Lg = −∆g + n−2
4(n−1)

Rg

defined on manifolds (Mn, g) of dimension n ≥ 3; where Rg denotes the scalar curvature of

the metric g. In this case, denoting the conformal change of metric as gu = u
4

n−2 g for some
positive function u, then Rgu

and Rg are related by the Yamabe equation:

Lgu =
n − 2

4(n − 1)
Rgu

u
n+2

n−2 . (0.2)

Recall the famous Yamabe problem is to solve equation (0.2) for a positive function u with
Rgu

≡ c where c is a constant. The problem was solved by the series of works of Yamabe,
Trudinger, Aubin and Schoen. In particular, in the work of Schoen, he has applied the
positive mass theorem to bound the conformal invariant –the Yamabe constant defined as
infgu|volgu=1

∫

M
Rgu

.

2



Note that on Riemannian manifolds of dimensions n ≥ 3, there are many other curvatures
invariants, e.g sectional curvature, Ricci curvature and Weyl curvature etc, which are the
various components of the curvature tensor. We remark that the scalar curvature is the trace
of the Ricci curvature tensor; and the Weyl curvature W satisfies the point-wise conformal
invariant property Wgw

= e−2wWg under conformal change of metrics gw = e2wg.
It turns out that the Laplacian operator on 2-surfaces and the conformal Laplace op-

erator on manifolds of dimension greater than two are special cases of a general hierarchy
of conformally covariant operators. Based on the earlier work (1985) of C. Fefferman and
R. Graham on the construction of ambient metric, there have been systematic study of the
existence and construction of conformal covariants and conformal invariants of higher or-
ders. In particular, on manifolds of dimension 4, there is a fourth order conformal covariant
operator, independently discovered by Paneitz in 1983, with leading symbol the bi-Laplace
operator.

Pϕ ≡ ∆2ϕ + δ

(

2

3
Rg − 2Ric

)

dϕ (0.3)

where δ denotes the divergence, d the deRham differential and Ric the Ricci tensor of the
metric. The Paneitz operator on 4-manifold satisfies the conformal covariant property that
Pgw

= e−4wPg; also the Paneitz operator applied to a conformal factor determines a fourth
order curvature invariant which we will call the Q-curvature defined as

Q = −
1

12
(−∆P + R2 − 3|Ric|2). (0.4)

The relation of (P,Q) is like that of (∆, K) in (0.2)

Pgw + 2Qg = 2Qgw
. (0.5)

There are two reasons that make this Q-curvature equation attractive to study. The first
consideration comes from the analytic point of view, namely that the generic singularities
of the Q-curvature equation are isolated points. The second consideration comes from ge-
ometry: the Q-curvature prescribed by the Paneitz operator can be viewed as part of the
integrand in the Chern-Gauss-Bonnet formula, thus the integration of Q is conformally in-
variant. Since the Q-curvature contains information about the Ricci tensor, it influences the
geometry of the underlying manifold directly.

There is also an active development to study the structure of the family of conformally
covariant operators and their associated conformal invariants by Tom Branson and his col-
laborators.

The Q-curvature equation is intimately related to a fully non-linear second order elliptic
equation. Up to a fourth order divergence term, the Q-curvature is the second elementary
symmetric function σ2(A) of the Schouten tensor Aij = Rij −

1
2(n−1)

Rgij, where Rij denotes

the Ricci tensor and R the scalar curvature of the metric g. The positivity of σ2(A) implies a
sign on the Ricci tensor; hence there is implication for the fundamental group π1(M). Thus
the σ2(A) equation contains geometric information that is absent in the scalar curvature
equation. The Q-curvature equation was first used as an approximation to the lower order
fully nonlinear equation. In the past few years, a number of techniques have been introduced
to study the fully nonlinear equation associated with prescribing the quantity σk(A).

The Q-curvature equation arises from considerations in conformally compact Einstein
manifolds, a subject that was initially developed by C. Fefferman and R. Graham and has
now acquired wide interest due to the development in string theory. In particular, it is closely
related to the scattering theory of such manifolds.
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In the following, I will discuss the recent development around the Q-curvature equation.
This will by no means be a general survey of the subject, as I will only report on what I am
familiar with.

In the first lecture, I will give a brief survey of the subject. I will then describe the
variational approach to study the equations (0.1) and (0.2). The basic difficulty to find
solutions via this approach is due to the fact that the conformal group of the standard n-
sphere is not compact, thus creating a non-compact family of solutions which do not have
a priori L∞ bound and which satisfies Kgw

≡ 1 for (0.1) or Rgu
≡ n(n − 1) for (0.2). I

will describe the blow up sequence and the analytic tools (i.e. sharp Sobolev inequality
for manifolds of dimension n ≥ 3 and the Moser-Trudinger inequality on compact surfaces)
to overcome the difficulty. To make the lectures expository, in section 1 below I will first
describe the behavior of the blow-up sequence of functions defined on the Euclidean space
Rn for n ≥ 3; then ”transport” the sequence of functions defined on Rn to functions defined
on the sphere Sn via the stereographic projections. We will then see that the ”uniqueness”
of this blow-up sequence of functions leads to the solution (through the series of work of
Yamabe, Trudinger,T. Aubin and Schoen) of the famous ”Yamabe ” problem. In section 2, I
will explain the corresponding phenomenon on compact surfaces. An added complication in
this case is that on domains in R

2, the embedding of the Sobolev space W 1,2 (i.e. functions
with first derivatives in L2) is in the Orlicz space eL2

, with the best embedding constant
studied by Moser. I will briefly describe the Trudinger-Moser inequality and the variational
approach to the prescribing Gaussian curvature equations (0.1) and uniformization theorem.

In the second lecture, in sections 3, 4, I will discuss the study of Paneitz operator on
four manifolds, the Q-curvature, connection of Q-curvature to symmetric functions of the
Schouten tensor, the associated fully non-linear curvature σ2 equations. I will also discuss
some geometric applications. As this is a research field where both the PDE and the geo-
metric aspects of the problems are developing very fast currently, the discussion here will be
quite partial. I will also mention some open questions.

Although the existence of Q curvature and relation to the Gauss-Bonnet integrand is so
far restricted to even dimensional manifolds without boundary, there are indications that
some generalization of this notion is also interesting for an odd dimensional manifold viewed
as the boundary of a even dimensional manifold. We will discuss some aspects of this in
section 5.

In the third lecture, I will report on some recent development. One particular interesting
one is the work of R.Graham and Zworski relating the existence of the conformal invariants
and Q-curvature to the scattering theory of conformally compact Einstein manifold. I will
discuss the concept of the renormalized volume in this setting and some of the many open
questions in some recent development.

This notes is an expanded and modified version of the lecture notes in the Proceedings
of ICM 2004, Beijing written by the author together with Paul Yang. The author is grateful
for the input of Paul Yang together with many co-workers she is fortunate to be associated
with. She also would like to acknowledge consultation with Charles Fefferman and Robin
Graham for suggestions and comments about the notes.

1 A blow up sequence of functions; when n ≥ 3

In this section we will describe a blow up sequence of functions which occur for many elliptic
equations which enjoy the conformal invariance property in conformal geometry.
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We will start by describing the extremals for a Sobolev embedding theorem on the Eu-
clidean space Rn for n ≥ 3. Recall that for all functions v ∈ C∞

0 (Rn), the classical Sobolev
embedding theorem says that

Λ(

∫

Rn

|v|pdx)
2

p ≤

∫

Rn

|∇v|2dx. (1.1)

Or equivalently we say that W 1,2
0 (Rn) embeds into Lp(Rn). By a dilation of v(x) to v(λx),

we see that the optimal exponent p in (1.1) is p = 2n
n−2

.
It turns out that we can find the best constant Λ and the extremal functions v which

satisfies the inequality in (1.1). To do so, we suppose v(x) = v(|x|) = v(r) is a radially
symmetric extremal function, then it satisfies the ordinary differential equation

{

v
′′

+ n−1
r

v
′

+ Λ v
n+2

n−2 = 0,
v(0) = a, v′(0) = 0.

One solution is
{

v(x) = ( 2
1+|x|2

)
n−2

2

Λ = n(n−2)
4

ω
2/n
n ,

where ωn is the surface area of the unit sphere Sn.
We then observe that the inequality is invariant under the following translation and

dilations of the function v.

v → vε(x) = ε
2−n

2 v(
x − x0

ε
),

where ε > 0 and x0 is any point in Rn. In other words, we have

vε(x) = (
2ε

ε2 + |x − x0|2
)

n−2

2

are all extremals for the Sobolev embedding (1.1); and we have the following remarkable
theorem. In stating the theorem, we have assumed that we fixed the class of functions

v ∈ W 1,2
0 (Rn) with L

2n
n−2 norm as that of the function v1.

Theorem 1.1. ([9], [97], [4]) The best constant in the Sobolev inequality in (1.1) is Λ =
n(n−2)

4
ω

2/n
n . It is (only) realized by the functions vε as described in the above.

We now fixed x0 = 0 and observe that the sequence of functions vε has the following
properties:

(i) vε(0) = (2
ε
)

n−2

2 → ∞ as ε → 0,

(ii) vε(x) → 0, for all x 6= 0, as ε → 0,

(iii)
∫

Rn |vε(x)|
2n

n−2 dx =
∫

Rn |v1(x)|
2n

n−2 dx, for all ε > 0;

(iv)
∫

Rn |∇vε(x)|2dx =
∫

Rn |∇v1(x)|2dx, for all ε > 0.
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Thus vε is a sequence of functions which is bounded in W 1,2(Rn) and the weak limit of

the sequence is the zero function; hence it does not have a convergent subsequence in L
2n

n−2 .

In other words , we are saying that the embedding of the Sobolev space W 1,2(Rn) into L
2n

n−2

is not compact. This lack of compactness turns out to be at the heart of the problem.
The Euler Lagrange equation for the extremal function saturating the inequality (1.1) is

−∆v =
n(n − 2)

4
v

n+2

n−2 on R
n. (1.2)

Thus functions vε above are solutions of the equation (1.2). According to a result of Caffarelli-
Gidas-Spruck, [18] any positive solution of (1.2) is one of the vε as above. In other words,
the solutions of (1.2) is unique up to dilations and translations.

The same blow up sequence may be realized on the unit sphere Sn using the stereographic
projection. To see this, for each point ξ ∈ Sn, denote its corresponding point under the
stereographic projection π from Sn to Rn, sending the north pole on Sn to ∞; That is:
suppose ξ = (ξ1, ξ2, ..., ξn+1) is a point in Sn ⊂ Rn+1, x = (x1, x2, ..., xn), then ξi = 2xi

1+|x|2
for

1 ≤ i ≤ n; ξn+1 = |x|2−1
|x|2+1

. Suppose u is a smooth function defined on Sn, noting that the

Jacobian of π−1 is Jπ−1 = 2
1+|x|2

; thus if we denote

v(x) = u(ξ(x))(
2

1 + |x|2
)

n−2

2 ,

then inequality (1.1) is equivalent to

Λ(

∫

Sn

|u(ξ)|
2n

n−2 dv(ξ))
n−2

2 ≤

∫

Sn

|∇u(ξ)|2dv(ξ) +
n(n − 2)

4

∫

Sn

|u(ξ)|2dv(ξ), (1.3)

where dv(ξ) = ( 2
1+|x|2

)n is the standard volume form on the unit sphere Sn.

The transformed function u(ξ) satisfies the equation:

−∆gu +
n(n − 2)

4
u =

n(n − 2)

4
u

n+2

n−2 on Sn, (1.4)

where ∆g denotes the Laplace Beltrami operator with respect to the standard metric g on
Sn.

On manifolds (Mn, g) of dimensions greater than two, the conformal Laplacian Lg is
defined as Lg = −∆g + cnRg where cn = n−2

4(n−1)
, and Rg denotes the scalar curvature of

the metric g. An analogue of equation (1.2) is the equation, commonly referred to as the
Yamabe equation, which relates the scalar curvature under the conformal change of metric
to the background metric. In this case, it is convenient to denote the conformal metric as

ḡ = u
4

n−2 g for some positive function u, then the equation becomes

Lgu = cn R̄ u
n+2

n−2 . (1.5)

Thus a positive solution u on the sphere of equation (1.4) gives a metric u
4

n−2 g of constant
scalar curvature n(n − 1). In fact the functions uε obtained from vε are the only positive
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solutions of (1.4). This follows from the result of Caffarelli-Gidas-Spruck which we have just
discussed.

The famous Yamabe problem to solve (1.5) with R̄ a constant has been settled by Yamabe
([103]), Trudinger ([99]), Aubin ([5]) and Schoen ([93]). To solve the equation (1.5) by
the variational method, one has to prove the minimal solution is attained by the extremal
function u extremizing the inequality

Λg (

∫

M

|u|
2n

n−2 |dvg)
n−2

2 ≤

∫

M

|∇gu|
2dvg + cn

∫

M

R|u|2dvg, (1.6)

for some constant Λg ≤ Λ. This constant Λg is called the Yamabe constant, and is an
invariant of the conformal structure. A crucial ingredient in the solution is to establish
criteria for compactness of the minimizing sequence, such criteria involve conformal invariants
which serve to distinguish the conformal structure from that of the standard sphere. This
is a common strategy in treating all the conformally covariant differential equations that we
will encounter. In the solution by Aubin [5], the non-vanishing of the Weyl tensor (a local
conformal invariant) in high dimensions plays this role. The remaining case requires a global
invariant, in a remarkable paper, Schoen [93] uses the positive mass theorem to differentiate
the conformal structure from the standard n-sphere.

In the past two decades, there has been extensive study of the Yamabe equation and
more generally the equation to prescribe the scalar curvature function by many different
groups of mathematicians. We will not be able to survey all the results here. We will just
mention that for the degree theory for the existence of solutions for a given function R on the
n-sphere, there are work of Bahri-Coron ([7]), Chang-Gursky-Yang ([24]) and Schoen-Zhang
([94]) for n = 3 and under further constraints on the functions for n ≥ 4 by Y. Li ([74]) and
by C-C. Chen and C.-S. Lin ([38]).

2 Gaussian curvature equation and the Gauss-Bonnet

formula

We now discuss the situation in dimension two. On a bounded domain D in R2, then a
function in W 1,2

0 (D) is in Lp(D) for all p > 0, yet it is easy to see that such a function may not
be bounded–for example, take D to be the unit ball B in R2, then w(x) = log log(e−1+ 1

|x|
)

is such a function.

Theorem 2.1. [79], [98] Suppose D is a smooth domain in R2, then there is a constant C
so that for all functions w ∈ W 1,2

0 (D) with
∫

D
|∇w(x)|2dx ≤ 1, we have

∫

D

eαw2

(x)dx ≤ C|D|, (2.1)

for any α ≤ 4π, with 4π being the best constant, i.e. if α > 4π, the integral can be made
arbitrarily large by appropriate choice of w; where |D| denotes the Lebesgue measure of D.

Remark: We have quoted here a special case of the original theorem. Inequality (2.1)
above is the limiting case of the Sobolev embedding: W 1,q

0 (D) ↪→ Lp with 1
p

= 1
q
− 1

n
for

q < n and for bounded domain D in Rn. Moser has also established a similar inequality for

7



all n ≥ 2. The result was also generalized to limiting case of W α,p embeddings with αp = n
by Adams [1]. Subsequently, Carleson and Chang ([20]) found that, contrary to the situation
for Sobolev embedding, there is an extremal function realizing the maximum value of the
inequality of Moser when the domain is the unit ball in Euclidean space. This fact remains
true for simply connected domains in the plane (Flücher [48]), and for some domains in the
n-sphere (Soong [96]).

The following linearized form of the inequality (2.1) is particularly useful:

Corollary 1.

log
1

|D|

∫

D

e2wdx ≤
1

4π

∫

D

|∇w|2dx. (2.2)

Extremal functions for both inequality (2.1) and (2.2) are interesting to study (see [20]
[22]). Another result is the following uniqueness theorem of W.X. Chen and C. Li, the proof
of which was based on a beautiful application of the method of moving planes.

Theorem 2.2 ([36]). Suppose w is in C2(R2), with e2w ∈ L1(R2), and satisfies the equation

−∆w = e2w on R
2. (2.3)

Then

w(x) = log
2ε

ε2 + |x − x0|2

for some ε > 0 and some x0 ∈ R2.

As we will see below after pulling functions from the 2-sphere S2 to R2, the corresponding
theorem is a statement of the “uniqueness” of metrics conformal to the standard sphere
(S2, g) with Gaussian curvature identically equal to one–those are metrics which are pullbacks
T ∗(g) of the standard metric for some Mobius transformation T of S2.

We now describe the situation on compact surface. On a compact surface (M, g) with
a Riemannian metric g, a natural curvature invariant associated with the Laplace operator
∆ = ∆g is the Gaussian curvature K = Kg. Under the conformal change of metric gw = e2wg,
we have

−∆gw + Kg = Kwe2w on M (2.4)

where Kw denotes the Gaussian curvature of (M, gw). The classical uniformization theorem
to classify compact closed surfaces can be viewed as finding solution of equation (2.4) with
Kw ≡ −1, 0, or 1 according to the sign of

∫

Kdvg. Recall that the Gauss-Bonnet theorem
states

2π χ(M) =

∫

M

Kw dvgw
(2.5)

where χ(M) is the Euler characteristic of M , a topological invariant. The variational func-
tional with (2.4) as Euler equation for Kw = constant is thus given by

J [w] =

∫

M

|∇w|2dvg + 2

∫

M

Kwdvg − (

∫

M

Kdvg) log

∫

M
dvgw

∫

M
dvg

(2.6)

When the surface (M, g) is the standard 2-sphere S2 with the standard canonical metric,
the problem of prescribing Gaussian curvature on S2 is commonly known as the Nirenberg
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problem. For general simply connected compact surface M , Kazdan and Warner ([71]) gave
a necessary and sufficient condition for the function when χ(M) = 0 and some necessary
condition for the function when χ(M) < 0. They also pointed out that in the case when
χ(M) > 0 i.e. when (M, g) = (S2, gc), the standard 2-sphere with the canonical metric
g = gc, there is an obstruction for the problem:

∫

S2

∇Kw · ∇x e2wdvg = 0 (2.7)

where x is any of the ambient coordinate function. Moser ([80]) realized that this implicit
integrability condition is satisfied if the conformal factor has antipodal symmetry. He proved
for an even function f , the only condition for (2.4) to be solvable with Kw = f is the
necessary condition that f be positive somewhere. An important tool introduced by Moser
is the following inequality ([79]) which is the analogue of inequality (2.1) on the 2-sphere.

Let w be a smooth function on the 2-sphere satisfying the normalized conditions:
∫

S2

|∇w|2dvg ≤ 1 and w̄ = 0

where w̄ denotes the mean value of w, then
∫

S2

eβw2

dvg ≤ C (2.8)

where β ≤ 4π and C is a fixed constant and 4π is the best constant. If w has antipodal
symmetry then the inequality holds for β ≤ 8π. Actually the best constant β is the isoperi-
metric constant for the class of functions (cf. [34]). Based on the inequality of Moser and
subsequent work of Aubin ([5] and Onofri ([82]), we devised a degree count ([33], [34], [24])
associated to the function f and the Mobius group on the 2-sphere, that is motivated by the
Kazdan-Warner condition (2.7). This degree actually computes the Leray-Schauder degree
of the equation (2.4) as a nonlinear Fredholm equation. In the special case that f is a Morse
function satisfying the condition ∆f(x) 6= 0 at the critical points x of f , this degree can be
expressed as:

∑

∇f(q)=0,∆f(q)<0

(−1)ind(q) − 1. (2.9)

The latter degree count is also obtained later by K.C. Chang and Liu ([21]) and Han ([65]).
There is a beautiful extension of this existence theory to the more general setting of the

so-called mean field equation by the work of C. C. Chen and C.S. Lin ([37]) in which a degree
count is derived for the following equation on any compact Riemann surface:

∆u + ρ(
heu

∫

M
heu

) − 1 = 0 (2.10)

where h is a positive function, and ρ is any given positive parameter.
There is an important geometric meaning of the functional J given by Ray-Singer ([92])

and Polyakov ([90]); (see also Okikiolu [85])

J [w] = 12π log (
det ∆g

det ∆gw

) (2.11)
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for metrics gw with the volume of gw equals the volume of g; where the determinant of the
Laplacian det ∆g is defined by Ray-Singer via the “regularized” zeta function. In ([82]), (see
also Hong [69]), Onofri established the sharp inequality that on the 2-sphere

J [w] ≥ 0 (2.12)

and J [w] = 0 precisely for conformal factors w of the form e2wg = T ∗g where T is a Mobius
transformation of the 2-sphere. Later Osgood-Phillips-Sarnak ([83], [84]) arrived at the
same sharp inequality in their study of heights of the Laplacian. This inequality also plays
an important role in their proof of the C∞ compactness of isospectral metrics on compact
surfaces.

The formula of Polyakov-Ray-Singer has been generalized to manifolds of dimension
greater than two in many different settings; one of which we will discuss in section 2 below.
There is also a general study of extremal metrics for det ∆g or det Lg for metrics g in the
same conformal class with a fixed volume or for all metrics with a fixed volume. ([8], [13], [12],
[86]). In terms of comparing determinants of Laplacian of metrics across different conformal
classes, there is the remarkable results of Okikiolu ([86]) that among all metrics with the
same volume as the standard metric on the 3-sphere, the standard canonical metric is a local
maximum for the functional det ∆g.

3 Conformally covariant differential operators and the

Q-curvatures

We have seen that in dimension two, under the conformal change of metrics gw = e2wg, the
associated Laplacians are related by

∆gw
= e−2w∆g. (3.1)

Similarly on (Mn, g), the conformal Laplacian L = −∆+ cnR, where cn = n−2
4(n−1)

, transforms

under the conformal change of metric ḡ = u
4

n−2 g:

Lḡ = u−n+2

n−2 Lg(u ·). (3.2)

In general, we call a metrically defined operator A conformally covariant of bi-degree
(a, b), if under the conformal change of metric gω = e2ωg, the pair of corresponding operators
Agω

and A are related by

Agω
(ϕ) = e−bωA(eaωϕ) for all ϕ ∈ C∞(Mn) .

Thus the conformal Laplacian operator is conformally covariant of bi-degree (n−2
2

, n+2
2

).
There are many operators besides the Laplacian ∆ on compact surfaces and the conformal

Laplacian L on general compact manifold of dimension greater than two which have the
conformal covariance property. We begin with the fourth order operator on 4-manifolds
discovered by Paneitz ([89]) in 1983:

Pϕ ≡ ∆2ϕ + δ

(

2

3
Rg − 2Ric

)

dϕ
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where δ denotes the divergence, d the deRham differential and Ric the Ricci tensor of the
metric. The Paneitz operator P (which we will later denote by P4) is conformally covariant
of bi-degree (0, 4) on 4-manifolds, i.e.

Pgw
(ϕ) = e−4ωPg(ϕ) for all ϕ ∈ C∞(M4) . (3.3)

Paneitz operator acting on functions defined on 4-manifold behaves much like the Laplace
operator acting on functions defined on surfaces. For example, there is a Q-curvature defined
as

Q =
1

12
(−∆R + R2 − 3|Ric|2). (3.4)

The relation of the pair (P, Q) is like that of (−∆, K) in (2.4):

Pgw + 2Qg = 2Qgw
e4w, (3.5)

in addition, Q can be viewed as part of the 4-dimensional Chern-Gauss-Bonnet formula:

8π2χ(M4) =

∫

(
1

4
|W |2 + 2Q) dv, (3.6)

where W denotes the Weyl tensor. Note that |W |2dv is a pointwise conformal invariant,
thus the curvature integral

∫

Qdv is a conformal invariant.
A basic existence result for the Q− curvature equation, based on a result of Gursky [60],

is given by the following Theorem.

Theorem 3.1. On (M 4, g)
(i) [60]
If the Yamabe constant Λ(M, g) ≥ 0, and

∫

M
Qgdvg ≥ 0, then P is a positive operator with

its kernel consists of constants.
(ii) [60]
Under the condition of (i),

∫

M
Qgdvg ≤ 8π2, with equality if and only if (M, g) is conformally

equivalent to the standard 4-sphere.
(iii) [35]
If
∫

M
Qgdvg < 8π2 and the P operator is positive except for constants, then equation (3.5)

may be solved with Qgw
given by a constant.

We remark that the conditions given by Gursky in (i) above are remarkable, as both
Λ(M, g) and

∫

M
Qgdvg are conformally invariant quantities, thus both are natural conditions

for the positivity of the conformally covariant Paneitz operator. The condition (ii) in the
theorem above can be viewed as the analogue of the positive mass theorem that is the source
for the basic compactness result for the Q-curvature equation as well as the associated fully
non-linear second order equations that we discuss in section 4. Gursky’s argument is based
on a more general existence result in which we consider a family of four-th order equations

γ1|W |2 + γ2Q − γ3∆R = k̄ · Vol−1 (3.7)

where k̄ =
∫

(γ1|W |2 + γ2Q)dv. These equations typically arise as the Euler equations of
the functional determinants. For a conformally covariant operator A of bi-degree (a, b) with
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b−a = 2 (e.g. when A = L the conformal Laplace operator) Branson and Orsted ([14]) gave
an explicit computation of the normalized form of log det Aw

det A
which may be expressed as:

F [w] = γ1I[w] + γ2II[w] + γ3III[w] (3.8)

where γ1, γ2, γ3 are constants depending only on A and

I[w] = 4

∫

|W |2wdv −

(
∫

|W |2dv

)

log

∫

e4wdv
∫

dv

II[w] = 〈Pw, w〉+ 4

∫

Qwdv −

(
∫

Qdv

)

log

∫

e4wdv
∫

dv
,

III[w] =
1

3

(
∫

R2
gw

dvgw
−

∫

R2dv

)

.

In [35], we gave the general existence result:

Theorem 3.2. If the functional F satisfies γ2 > 0, γ3 > 0, and k̄ < 8γ2π
2, then inf

w∈W 2,2
F [w]

is attained by some function wd and the metric gd = e2wdg0 satisfies the equation

γ1 |W |2 + γ2 Qd − γ34dRd = k̄ · Vol(gd)
−1. (3.9)

Furthermore, gd is smooth.

This existence result is based on extensions of Moser’s inequality by Adams ([1]) to
operators of higher order. In the special case of (M 4, g), the inequality states that for
functions in the Sobolev space W 2,2(M) with

∫

M
(∆w)2 dvg ≤ 1, and w̄ = 0, we have

∫

M

e32π2w2

dvg ≤ C, (3.10)

for some constant C. There are several applications of these existence result to the study
of conformal structures in dimension n = 4. In section 4 below we will discuss the use of
such fourth order equation as regularization of the more natural fully nonlinear equation
concerned with the Schouten tensor. Here we will mention some elegant application by M.
Gursky ([59]) to characterize a number of extremal conformal structures.

Theorem 3.3. Suppose (M, g) is a closed oriented manifold of dimension four with positive
Yamabe constant.

(i) If
∫

Qgdvg = 0, then M admits a non-zero harmonic 1-form if and only if (M, g) is
conformal equivalent to a quotient of the product space S3×R. In particular (M, g) is locally
conformally flat.

(ii) If b+
2 > 0 (i.e. the intersection form has a positive element), then with respect to

the decomposition of the Weyl tensor into the self-dual and anti-self-dual components W =
W+ ⊕ W−,

∫

M

|W+
g |2dvg ≥

4π2

3
(2χ + 3τ), (3.11)

where τ is the signature of M . Moreover the equality holds if and only if g is conformal to
a (positive) Kahler-Einstein metric.
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In the same article ([89]), Paneitz has actually introduced for each manifold of dimension
n, n 6= 2 some fourth order operator with some conformal covariant property. The relation of
these operators to some curvature functions (which we will call the Q-curvatures) was later
introduced by T. Branson ([10], [11]). When n 6= 2, we will call this fourth order Paneitz
operator the conformal Paneitz operator:

P n
4 = ∆2 + δ (anRg + bnRic) d +

n − 4

2
Qn

4 (3.12)

where

Qn
4 = cn|Ric|2 + dnR2 −

1

2(n − 1)
∆R, (3.13)

where an, bn, cn and dn are dimension constants. The conformal Paneitz operator is confor-
mally covariant of bi-degree (n−4

2
, n+4

2
).

In dimensions higher than four, the conformal Paneitz operator is being investigated
by a number of authors. In particular, Djadli-Hebey-Ledoux ([40]) studied the question
of coercivity of the operators P as well as the positivity of the solution functions, Djadli-
Malchiodi-Ahmedou ([41]), Hebey-Robert ([67]) have studied the blow-up analysis of the
Paneitz equation. A serious difficulty in dealing with higher order operator is the lack
of a good maximum principle. For example it is not clear at all that the minimizer of the
corresponding Sobolev quotient is necessarily positive. It is curious to note in this connection
that this problem does not arise in dimensions three and four due to the special form of the
non-linearlity. In dimension three, the fourth order Paneitz equation involves a negative
exponent, and have many properties which are distinct from their counterparts in higher
dimensions. The corresponding Sobolev inequality has the form

Λ ≤

(
∫

Pu · udv

)(
∫

u−6dv

)−1/3

(3.14)

for all positive smooth functions u.
Due to the negative power non-linearity, it is not possible to reduce such an inequality

to a domain in Euclidean 3-space. There is partial progress in understanding this equation
in the case when the fourth order Paneitz operator is positive ([102]), and in the case where
the Paneitz operator satisfies a weak form of positivity ([66]).

In general dimensions, there is a hierarchy of higher order operators enjoying conformal
covariance. In particular in even dimensions, there are n-th order Paneitz operators and
associated Q-curvature equations. It is interesting that although the operator is not known
explicitly yet (see section 6), there is a general existence result extending Theorem (3.1) which
is obtained recently by S. Brendle ([15]) using a heat flow associated to the Q-curvature.

In section 6, we will discuss the existence theory of local conformal invariants, covariant
operators and Q-curvatures in general manifolds. The existence results are based on the
work of Fefferman and Graham ([45]), also the recent work of Graham and Zworski ([54]).

4 Fully nonlinear equations in conformal geometry

In dimensions greater than two, the natural curvature invariants in conformal geometry
are the Weyl tensor W , and the Schouten tensor A = Ric − R

2(n−1)
g that occur in the
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decomposition of the curvature tensor; where Ric denotes the Ricci curvature tensor:

Rm = W ⊕
1

n − 2
A ©∧ g. (4.1)

Since the Weyl tensor W transforms by scaling under conformal change gw = e2wg, only the
Schouten tensor depends on the derivatives of the conformal factor. It is thus natural to
consider σk(Ag) the k-th symmetric function of the eigenvalues of the Schouten tensor Ag as
curvature invariants of the conformal metrics. As a differential invariant of the conformal
factor w, σk(Agw

) is a fully non-linear expression involving the Hessian and the gradient of
the conformal factor w. We have abbreviated Aw for Agw

:

Aw = (n − 2){−∇2w + dw ⊗ dw −
|∇w|2

2
} + Ag. (4.2)

The equation
σk(Aw) = 1 (4.3)

is a fully non-linear version of the Yamabe equation. For example, when k = 1, σ1(Ag) =
n−2

2(n−1)
Rg, where Rg is the scalar curvature of (M, g) and equation (4.3) is the Yamabe

equation which we have discussed in section 1. When k = 2, σ2(Ag) = 1
2
(|Trace Ag|

2 −

|Ag|
2) = n

8(n−1)
R2 − 1

2
|Ric|2. In the case when k = n, σn(Ag) = determinant of Ag, an

equation of Monge-Ampere type. To illustrate that (4.3) is a fully non-linear elliptic equation,
we have for example when n = 4,

σ2(Aw)e4w =σ2(Ag) + 2((∆w)2 − |∇2w|2

+(∇w,∇|∇w|2) + ∆w|∇w|2)

+ lower order terms.

(4.4)

where all derivatives are taken with respect to the metric g.
For a symmetric n × n matrix M , we say M ∈ Γ+

k in the sense of Garding ([49]) if
σk(M) > 0 and M may be joined to the identity matrix by a path consisting entirely of
matrices Mt such that σk(Mt) > 0. There is a rich literature concerning the equation

σk(∇
2u) = f, (4.5)

for a positive function f . In the case when M = (∇2u) for convex functions u defined on
the Euclidean domains, regularity theory for equations of σk(M) has been well established
for M ∈ Γ+

k for Dirichlet boundary value problems by Caffarelli-Nirenberg-Spruck ([17]); for
a more general class of fully non-linear elliptic equations not necessarily of divergence form
by Krylov ([72]), Evans ([43]) and for Monge-Ampere equations by Pogorelov ([88]) and by
Caffarelli ([16]). The Monge-Ampere equation for prescribing the Gauss-Kronecker curvature
for convex hypersurfaces has been studied by Guan-Spruck ([55]). Some of the techniques
in these work can be modified to study equation (4.3) on manifolds. However there are
features of the equation (4.3) that are distinct from the equation (4.5). For example, the
conformal invariance of the equation (4.3) introduces a non-compactness due to the action
of the conformal group that is absent for the equation (4.5).

When k 6= n
2

and the manifold (M, g) is locally conformally flat, the equation (4.3) is the
Euler equation of the variational functional

∫

σk(Aw)dvgw
([100]). In the exceptional case k =
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n/2, the integral
∫

σk(Ag)dvg is a conformal invariant. We say g ∈ Γ+
k if the corresponding

Weyl-Schouten tensor Ag(x) ∈ Γ+
k for every point x ∈ M . For k = 1 the Yamabe equation

(1.5) for prescribing scalar curvature is a semi-linear one; hence the condition for g ∈ Γ+
1

is the same as requiring the operator Lg = −4(n−1)
n−2

∆g + Rg be a positive operator. The

existence of a metric with g ∈ Γ+
k implies a sign for the curvature functions ([61], [26], [56]).

In dimension 3, one can characterize metrics with constant sectional curvatures (i.e. space
forms) through the study of σ2.

Theorem 4.1. ([61]) On a compact 3-manifold, for any Riemannian metric g, denote
F2[g] =

∫

M
σ2(Ag)dvg. Then a metric g with F2[g] ≥ 0 is critical for the functional F2

restricted to class of metrics with volume one if and only if g has constant sectional curvature.

The criterion for existence of a conformal metric g ∈ Γ+
k is not easy for k > 1 since the

equation is a fully non-linear one. However when n = 4, k = 2 the invariance of the integral
∫

σ2(Ag)dvg is a reflection of the Chern-Gauss-Bonnet formula

8π2χ(M) =

∫

M

(
1

4
|Wg|

2 + σ2(Ag))dvg. (4.6)

In this case it is possible to find a criterion:

Theorem 4.2. ([26], [62])
For a closed 4-manifold (M, g) satisfying the following conformally invariant conditions:
(i) Λ(M, g) > 0, and
(ii)

∫

σ2(Ag)dvg > 0;
there exists a conformal metric gw ∈ Γ+

2 .

Remark: In dimension four, the condition g ∈ Γ+
2 implies that R > 0 and Ricci curvature is

positive everywhere. Thus such manifolds have finite fundamental groups. In addition, the
Chern-Gauss-Bonnet formula and the signature formula show that this class of 4-manifolds
satisfies the same conditions as that of Einstein manifolds with positive scalar curvatures.
Thus it is the natural class of 4-manifolds in which to seek an Einstein metric.

In the proof in ([26]), the existence result depends strongly on the positivity of the Paneitz
operator. The method of continuity is used to consider the deformations of the equation:

(∗)δ : σ2(Ag) =
δ

4
∆gRg − 2γ|Wg|

2 (4.7)

where γ is chosen so that
∫

σ2(Ag)dvg = −2γ
∫

|Wg|
2dvg, for δ ∈ (0, 1] and let δ tend to zero.

In the recent paper ([62]), there is an alternative deformation argument giving a more
direct proof of the result in Theorem 4.3. The proof relies only on estimates of second order
fully non-linear elliptic PDE developed in the recent work of ([76], [57]).

The equation (4.3) becomes meaningful for 4-manifold which admits a metric g ∈ Γ+
2 .

In the article ([27]), when the manifold (M, g) is not conformally equivalent to (S4, gc), we
provide apriori estimates for solutions of the equation σ2(Agw

) = f . where f is a given
positive smooth function. Then we apply the degree theory for fully non-linear elliptic
equation to the following 1-parameter family of equations

σ2(Agt
) = tf + (1 − t) (4.8)

to deform the original metric to one with constant σ2(Ag).
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In terms of geometric application, this circle of ideas may be applied to characterize a
number of interesting conformal classes in terms of the relative size of the conformal invariant
∫

σ2(Ag)dvg compared with the Euler number.

Theorem 4.3. ([28])
Suppose (M, g) is a closed 4-manifold with Λ(M, g) > 0.
(i) If

∫

M
σ2(Ag)dvg > 1

4

∫

M
|Wg|

2 dvg, then M is diffeomorphic to (S4, gc) or (RP 4, gc).

(ii) If M is not diffeomorphic to (S4, gc) or (RP 4, gc) and
∫

M
σ2(Ag)dvg = 1

4

∫

M
|Wg|

2 dvg,
then either
(a) (M, g) is conformally equivalent to (CP 2, gFS), or
(b) (M, g) is conformal equivalent to ((S3 × S1)/Γ, gprod).

It is natural to ask whether this result may be extended to further classify the class of
4-manifolds with metrics belonging to the cone Γ+

k .
There is recent progress of Gursky-Viaclovsky ([63]) on the general solvability of the

σk equations when k > n/2 in dimensions three and four. In particular, they introduced
an invariant called the k-maximal volume which is an analogue of the Sobolev quotient for
conformal metrics belonging to Γ+

k , that is always less than or equal to that of the standard
spheres and in the case of strict inequality, they were able to prove the existence of metric
extremizing the k-maximal volume solves the σk equation. In particular they were able to
demonstrate in dimension four that the k-maximal volume is strictly smaller than that of
the sphere if the conformal structure is different from the standard sphere, and in dimension
three such a characterization is still to be verified for k = 2, 3.

In the case when (M, g) is locally conformally flat, there is a lot of progress in under-
standing the structure of the σk equation when the conformal structure admits metrics whose
Schouten tensor belongs to the cone Γ+

k . This is largely due to the result of Schoen-Yau ([95])
which assures that the developing map embeds the holonomy cover as a domain in Sn so that
the method of moving planes may be used to derive apriori estimates for such equations. In
particular a recent series of work of A. Li and Y. Li ([75] [76]) extends the result of ([27],
[28]) to classify the entire solutions of the equation σk(Ag) = 1 on Rn thus provides apriori
estimates for this equation in the locally conformally flat case. In addition, recent work of
Guan-Wang ([57]) applied the heat flow associated to the σk (k 6= n/2) equation to derive
conformally invariant Sobolev inequality for locally conformally flat manifolds, while we have
extended the result for the remaining case k = n/2 in general even dimensions.

In general, the geometric implications of the study of σk for manifolds of dimensions
greater than four remains open.

5 Boundary operator, Cohn-Vossen inequality

To develop the analysis of the Q-curvature equation, it is helpful to consider the associated
boundary value problems. In the case of a compact surface with boundary (N 2, M1, g) where
the metric g is defined on N 2 ∪ M1; the Gauss-Bonnet formula becomes

2πχ(N) =

∫

N

K dv +

∮

M

k dσ, (5.1)
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where k is the geodesic curvature on M . Under conformal change of metric gw on N , the
geodesic curvature changes according to the equation

∂

∂n
w + k = kwew on M. (5.2)

The boundary value problem for the Yamabe equation was treated by Escobar [42]. On a
four manifold with boundary (N 4, M3, g), we introduced in ([29]) a third order boundary
operator P3 along with the boundary curvature invariant T . The key property of P3 is
that it is conformally covariant of bidegree (0, 3), when operating on functions defined in
a neighborhood of the boundary of compact 4-manifolds; and under conformal change of
metric gw = e2wg on N4 we have at the boundary M 3

(P3)gw + Tg = Tgw
e3w. (5.3)

We refer the reader to ([29]) for the precise definitions of P3 and T and will here only mention
that on (B4, S3, dx), where B4 is the unit ball in R4, we have

P4 = (−∆)2, P3 = −

(

1

2

∂

∂n
∆ + ∆̃

∂

∂n
+ ∆̃

)

and T = 2, (5.4)

where ∆̃ is the intrinsic boundary Laplacian on M .
In this case the Chern-Gauss-Bonnet formula may be expressed as:

8π2χ(N) =

∫

N

(
1

4
|W |2 + Q4) dv +

∮

M

(L + T ) dσ, (5.5)

where L is a third order boundary curvature invariant that transforms by scaling under
conformal change of metric.

The boundary version (5.5) of the Gauss-Bonnet-Chern formula can be used to give an
extension of the well known Cohn-Vossen-Huber formula. Let us recall ([39], [70]) that
a complete surface (N 2, g) with Gauss curvature in L1 has a conformal compactification
N̄ = N ∪ {q1, ..., ql} as a compact Riemann surface and

2πχ(N) =

∫

N

KdA +
l
∑

k=1

νk, (5.6)

where at each end qk, take a conformal coordinate disk {|z| < r0} with qk at its center, then
νk represents the following limiting isoperimetric constant:

νk = lim
r→0

Length({|z| = r})2

2Area({r < |z| < r0})
. (5.7)

This result can be generalized to dimension n = 4 for locally conformally flat metrics. As
we mentioned previously, the developing map of a locally conformally flat manifolds having
nonnegative Yamabe invariant realizes the holonomy cover as a domain Ω in the n-sphere Sn,
and in addition, the complement of Ω has small Hausdorff dimension: dim(Sn \ Ω) ≤ n−2

2
.

([95]) It is possible to further constraint the topology as well as the end structure of such
manifolds by imposing the natural condition that the Q-curvature is in L1.
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Theorem 5.1. ([30])
Suppose (M 4, g) is a complete locally conformally flat manifold, satisfying the conditions:
(i) The scalar curvature Rg is bounded between two positive constants and |∇gRg| is also
bounded;
(ii) The Ricci curvature is bounded below;
(iii)

∫

M
|Qg|dvg < ∞;

then
(a) if M is simply connected, it is conformally equivalent to S4 − {q1, ..., ql} and we have

4π2 χ(M) =

∫

M

Qg dvg + 4π2l ; (5.8)

(b) if M is not simply connected, and we assume in addition that its fundamental group is
realized as a geometrically finite Kleinian group without torsion, then we conclude that M
has a conformal compactification M̄ = M ∪ {q1, ..., ql} and equation (5.8) holds.

This result gives a geometric interpretation to the Q-curvature integral as measuring an
isoperimetric constant. A key element is an estimate for conformal metrics e2w|dx|2 defined
over domains Ω ⊂ R4 satisfying the conditions of Theorem 5.1 must have a uniform blow-up
rate near the boundary:

ew(x) ∼=
1

d(x, ∂Ω)
. (5.9)

In the thesis of H. Fang ([44]) there is an analogue of this result in which the condition
(iii) is replaced by

∫

|σ2|dv < ∞.

This result has an appropriate generalization to higher even dimensional situation, in
which one has to impose additional curvature bounds to control the lower order terms in
the integral. One such an extension is also contained in the thesis of H. Fang ([44]). For
conformal structures which are not necessarily locally conformally flat, there is an extension
of Theorem 5.1 by G. Carron and M. Herzlich ([19]).

It is possible to constrain the size of the complement for conformal metrics g ∈ Γ+
k . For

example, in the thesis of M. González ([50]), she studies the singular set of conformal metrics
on domains in Rn belonging to Γ+

k . In ([50]), she extends the argument of ([23]) to show the
existence of complete conformal metrics on Ω ⊂ Sn belonging to Γ+

k with suitable bounds
on the Ricci tensor implies dim(Sn \ Ω) < n−2k

2
. As a consequence, she obtains vanishing

theorem for certain homotopy groups. This result can be applied to classify certain Kleinian
groups in space: a compact conformally flat manifold (Mn, g) with g ∈ Γ+

k for 2k > n− 2 is
a Schottky group.

The regularity property of the σk(A) is apparently better than that of the σk(∇
2v)

equation. Much remains to be explored in this direction.

6 Conformal covariant operator and Q-curvature

So far in these lecture notes, we have only discussed the second order differential operators
(the Laplace operator on compact surfaces and the conformal Laplace operator on manifolds
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on dimension n ≥ 3 ), and some fourth order operators (Paneitz operator on dimension
four and the conformal Paneitz operator on dimensions n 6= 4) with the conformal covariant
properties as specified in (3.3). We now discuss some general existence results of such
operators and their corresponding curvature invariants.

We start with a fundamental paper by C. Fefferman and R. Graham ([45]), in which
they systematically construct local conformal invariants. They introduce the concept of
ambient metric which is not only an effective tool for computation, but also suggests many
interesting questions. Here we will very briefly describe a main step in their construction.
First we recall some definitions. Given a Riemannian metric g, we denote [g] as the conformal
structure consists of all metrics conformal to g, i.e. the collection of all metrics gw = e2wg
for w ∈ C∞(M).

Suppose X is a manifold with boundary (M, [g]). A Riemannian metric g+ on X is said
to be conformally compact if there is a defining function x ∈ C∞(X̄) satisfy x > 0 in X,
x = 0 and dx 6= 0 on M with x2g+ a smooth extension to X̄ and when restricted to tangent
space TM, x2g+ ∈ [g]. In this case, we call (M, [g]) the conformal infinity of X.

We remark that above definition is independent of the defining function. Given a con-
formally compact manifold (Xn+1, Mn, g+), we say it is conformally compact Einstein if in
addition, g+ is Einstein.

Conformally compact Einstein manifold is of current interest in the physics literature.
The Ads/CFT correspondence proposed by Maldacena ([77]) involves string theory and
super-gravity on such X and super-symmetric conformal field theory on M . Here we will
only describe some of the mathematical development related to conformal geometry.

Given (Mn, g) a compact Riemannian manifold of dimension n, denote M+ = M × [0, 1],
identify M with ∂M+ = M × 0. In ([45]), a metric g+ defined on M+ is called a Poincare
metric if
(i) g+ has [g] as conformal infinity,
(ii) Ric(g+) = −ng+.
Some further computation shows that a Poincare metric g+ in an appropriate coordinate
system (ξ1, ξ2, ..., ξn, x), where ξ = (ξ1, ξ2, ...., ξn) denotes a point in M , can be written as

g+ = x−2

(

dx2 +
n
∑

i,j=1

g+
ij(ξ, x)dξidξj

)

. (6.1)

We need to introduce the additional assumption:

(iii) when written in the form (6.1), g+
ij is an even function of x,

The main result in ([45]) is:

Theorem 6.1. (a) In case n is odd, up to a diffeomorphism fixing M , there is a unique
formal power series solution of g+ to (i)–(iii).
(b) In case n is even, if one replaces (ii) by (ii

′

):
(ii

′

) Along M, the components of Ric(g+) + ng+ vanish to order n − 2 in power series of x,
then there is a formal power series solution for g+.

The construction of the Poincare metric is actually accomplished via the construction of
a Ricci flat metric, called the ambient metric on the manifold G̃, where G̃ = G × (−1, 1),
and G is the metric bundle

G =
{

(ξ, t2g(ξ)) : ξ ∈ M, t > 0
}
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of the bundle of symmetric 2 tensors S2T ∗M on M . The conformal invariants are then
contractions of (∇̃k1R̃⊗ ∇̃k2R̃ ⊗ ......∇̃klR̃) restricted to TM where R̃ denotes the curvature
tensor of the ambient metric.

A model example is given by the standard sphere (Sn, g). Introduce the projective
coordinates (p, p0) where p = (p1, p2, ..., pn+1) ∈ Rn+1 so that Sn =

{
∑n+1

1 ξ2
k = 1

}

goes over
to

G =

{

n+1
∑

1

p2
k − p2

0 = 0

}

under ξk = pk/p0 (1 ≤ k ≤ n+1). In the Minkowski space Rn+1,1 = {(p, p0), |p ∈ Rn+1, p0 ∈ R}
with the Lorentz metric

g̃ = |dp|2 − dp2
0,

the standard hyberbolic space is realized as the quadric Hn+1 = {|p|2 − p2
0 = −1} ⊂ Rn+1,1,

and the hyperbolic metric gH = g̃|Hn+1 is given by

gH =
1

1 + |p|2
(d|p|)2 − |p|2g.

An alternative form is to view (Hn+1, gH) as the standard Poincare ball

(Hn+1, (
2

1 − |y|2
)2|dy|2).

We can then view (Sn, [g]) as the compactification of Hn+1 using the defining function

x = 2
1 + |y|

1 − |y|

to have gH to appear in the form of (6.1)

gH = g+ = x−2

(

dx2 + (1 −
x2

4
)
2

g

)

.

Based on the construction above, in ([53]), Graham, Jenne, Mason and Sparling have
shown the existence of conformal covariant operator P n

2k of order 2k with leading symbol
(−∆)k defined on n-dimensional manifold, which is of bi-degree (n−2k

2
, n+2k

2
), where k can be

any positive integers when n is odd, but 2k ≤ n when n is even. In ([53], see also [47]), P n
2k

is identified with the restriction of P̃2k = ∆̃k on the ambient space.
We remark that the result above does not assert the uniqueness of the operators P n

2k. In
fact, if k is a multiple of 2 then one can add a scale multiple of |W |k to P n

2k , where W is the
Weyl tensor, without disturbing the conformal covariance of the operator. Yet on Rn , the
operator is unique and is equal to (−∆)k. Also, the explicit expression of P n

2k on the standard
sphere is known ([11], [8]); hence the explicit formula is also known for manifold with an
Einstein metric. (This latter fact the author learned from T. Branson and R. Graham).
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A related problem is the expression of the Q-curvature associated with such operators.
Of particular interest is when n is even and k = n

2
, as we know that when n = 2, or 4, such

Q-curvature is part of the integrand in the Chern-Gauss-Bonnet formula. Assume n is even,
then for 2k 6= n, one may obtain Qn

2k through the relation P n
2k(1) = c(n, k)Qn

2k for some
constant c(n, k) ([53]), but such relation fails when k = n

2
. In ([10]), Branson justified the

existence of Qn
n by a dimension continuation (in n with k fixed) argument from Qn

2k; in the
recent article by R. Graham and Zworski ([54]) this argument is replaced by the analytic
continuation of a spectral parameter. There is also construction of the Q- curvature by
Gover and Peterson ([51]) using tractor calculus.

We now briefly describe the work in ([54]).
Suppose (X, g+) is an n+1 dimensional manifold with a Poincare metric and (Mn, [g]) as

conformal infinity as described above, we say such g+ an asymptotically hyperbolic metric.
Spectral theory on such spaces has been well studied for example by Mazzeo, Mazzeo-Melrose
([78], [81]). A basic fact is the spectrum σ(−∆g+) is given by

σ(−∆g+) = [(
n

2
)2,∞) ∪ σpp(−∆g+), with σpp(−∆g+) ⊂ (0, (

n

2
)2),

where the pure point spectrum σpp(−∆g+) ( the set of L2 eigenvalues), is finite.
Suppose that x is a defining function associated with a choice of metric g ∈ [g] on M as

before. One considers the asymptotic Dirichlet problem at infinity for the Poisson equation

(−∆g+ − s(n − s))u = 0.

Based on earlier works on the resolvents, assuming further that when n is even that g+

satisfies the evenness assumption (iii) as in the statement of Theorem 6.1, Graham and
Zworski proved that there is a meromorphic family of solutions u(s) = ℘(s)f such that when
Res > n

2
,

℘(s)f = Fxn−s + Gxs if s /∈ n/2 + N

℘(s)f = Fxn/2−k + Hxn/2+k log x if s = n/2 + k, k ∈ N,
(6.2)

where F, G, H ∈ C∞(X), F |M = f , and F, G mod O(xn) are even in x. Moreover, if n/2− s
is an integer, then H|M is locally determined by f and g. However, if n/2 − s is not an
integer, then G|M is globally determined by f and g. The scattering operator is defined as:

S(s)f = G|M . (6.3)

One of the main result in [54]

Theorem 6.2. Let (Xn+1, Mn, g+) be a asymptotically hyperbolic metric with (Mn, [g]) as
conformal infinity. Suppose k ∈ N and k ≤ n

2
if n is even and s(n − s) not in σpp(−∆g+).

Then
the scattering matrix S(s) has a simple pole at s = n

2
+ k and

ckP
n
2k = −Ress= n

2
+kS(s), where ck = (−1)k[22kk!(k − 1)!]−1. (6.4)

When 2k 6= n, P n
2k(1) = c(n, k)Qn

2k
When 2k = n cn

2
Qn = S(n)1.
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We remark that the curvatures Qn
n thus defined is unique. For n = 2, Q2

2 = R
2
, for n = 4,

Q4
4 = 2Q for the Q-curvature defined in section 3. Denote Qn

n = Qn, the general formula for
Qn can be computed recursively but the computation is very complicated, and has so far
been carried out for n = 6 and n = 8 ([51]), also private communication from R. Graham.
Here we summarize some known facts about Qn for n even:

(a) Qn is a conformal density of weight -n, i.e. with respect to the dilation δt of metric
g given by δt(g) = t2g, we have (Qn)δtg = t−n(Qn)g.

(b)
∫

Mn(Qn)gdvg is conformally invariant.
(c)Under the conformal change of metric gw = e2wg, we have

(Pn)gw + (Qn)g = (Qn)gw
enw.

(d) When (Mn, g) is locally conformally flat, then (Qn)g = anσn
2
(Ag), where Ag, σk are

defined in section 4.
(e) More significantly, Alexakis has announced a proof of the following conjectural ex-

pression of Q:
Qn = anPfaffian + J + div(Tn).

where Pfaffian is the Euler class density, which is the integrand in the Chern-Gauss-Bonnet
formula, J is a pointwise conformal invariant, and div(Tn) is a divergence term.

(f) In his thesis, Alexakis ([2], see also [47], for special case [51] ) has extended the
existence of conformal covariant operator to conformal densities of weight γ , where γ 6=
(−n

2
) + k and other than l, where k is a positive integer and l a nonnegative integer. An

example of such operator is:

2P (f) = ∇i(||W ||2∇if) +
n − 6

n − 2
||W ||2∆f.

with the corresponding Q-curvature explicitly written.
In ([47]), Fefferman and Hirachi, have also extended the construction of conformal co-

variant operator and Q-curvature to CR manifolds. We refer the readers to the articles ([46],
[47]) and also the lecture notes of Branson, Eastwood and Gover at the AIM conference this
past summer for the latest development in this subject.

7 Renormalized volume

The volume of any conformally compact manifold is infinite. An appropriate renormalization
of volume for conformally compact Einstein manifolds gives rise to the new volume invariants.
In the physics setting, it arises from a procedure outlined by Witten ([101]) and by Gubser,
Klebanov and Polyakov ([58]). The volume renormalization was carried out by Henningson
and Skenderis ([68]). The reader is also referred to the article by Graham ([52]) for a
mathematical approach to the subject based on the Poincare metric construction discussed
in section 6. In this section, we will discuss the connection between the renormalized volume
and Q-curvature.

Recall a conformally compact Einstein manifold is a manifold (Xn+1, Mn, g+), such that
g+ is an Einstein manifold and that (Mn, [g]) is the conformal infinity of X. We have
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normalized so that Ric[g+] = −ng+ on X. Suppose we choose a defining function x so that
in a neighborhood of M we have

g+ = x−2(dx2 + gx), (7.1)

where gx is a parameter family of metrics on M with g = x2g+|x=0, g ∈ [g] is a representative
of metrics associated with the defining function x. The renormalized volume V is defined as
the finite part in the expansion of V olg+(x > ε) as ε → 0.

Volg+({x > ε}) = c0ε
−n + c2ε

−n+2 + · · · + cn−1ε
−1 + V + o(1) (7.2)

for n odd, and

Volg+({x > ε}) = c0ε
−n + c2ε

−n+2 + · · ·+ cn−2ε
−2 + L log

1

ε
+ V + o(1) (7.3)

for n even.
The renormalized volume V is independent of the conformal representative g on the

boundary when n is odd, and L is independent of the conformal representative when n is
even. The dependence of V on the choice of g for n even is called the holographic anomaly
(cf [68], [52]). Using the connection with the scattering matrix, Graham and Zworski have
also identified L in terms of the Q-curvature.

Theorem 7.1. ([54])
When n is even,

L = 2cn
2

∫

M

Qndvg, (7.4)

where cn
2

is the constant defined in (6.4).

In a subsequent work, Fefferman and Graham gave a different proof of the above result,
furthermore they have extended the notion of Qn to manifold with with odd dimension n in
the following sense:

Theorem 7.2. ([46])
There is a unique smooth function v defined on X solving

−∆g+(v) = n (7.5)

and with the asymptotic

v =

{

log x + A + Bxnlogx for n even
log x + A + Bxn for n odd

where A, B ∈ C∞(X) are even mod O(x∞) and A|M = 0. Moreover

(i) If n is even, then
B|M = −2cn

2
Qn,

hence

L = 2cn
2

∫

M

Qn.
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(ii) If n is odd, then

B|M = −
d

ds
|s=nS(s)1,

and if one defines Qn(g+, [g]) to be

Qn(g+, [g]) = knB|M , where kn = 2n Γ(n/2)

Γ(−n/2)
,

then

knV =

∫

M

Qn(g+, [g])dvg, (7.6)

where V is the renormalized volume.

We remark that when n is odd, the Q-curvature thus defined depends not only on the
boundary metric g on M but also on the extension of g+ on X.

We now restrict to n = 3 and illustrate the connection between the Q curvature and
the boundary operator Pb and curvature T which have discussed in section 5. Recall in
section 5 we have mentioned that in ([29]), on an arbitrary compact Riemannian 4-manifold
(X4, M3, g+) with boundary, a third order boundary operator Pb and a third order boundary
curvature T were introduced which satisfy:

(Pb)gw
= e−3w(Pb)g, on M and

(Pb)gw + Tg = Tgw
e3won M.

We have also re-organized the terms in the integrand of Chern-Gauss-Bonnet formula for
4-manifolds with boundary into the following form:

8π2χ(X) =

∫

X4

(
1

4
|W |2 + Q4)dv + 2

∫

M3

(L + T )dσ,

where L is a point-wise conformal invariant term on the boundary of the manifold.
While for a general (X4, M3, g+), the formula for (Pb)g, Tg and L are quite complicated,

the expressions become very simple when the boundary is umbilical and is totally geodesic:

(Pb)g = −
1

2

∂

∂n
∆g+|M + ∆̃

∂

∂n
− (F −

1

3
R)

∂

∂n
, (7.7)

Tg =
1

12

∂R

∂n
|M , (7.8)

where F = R − αNαN , N = ∂
∂n

, and in this case L vanishes.
In the special case when (X4, M3, g+) is a conformally compact Einstein manifold, we

now consider the metric e2vg+, where v is the function satisfies the equation (7.5). We make
the following observation:

Theorem 7.3. [32]
(i) (Q4)e2vg+ = 0, and
(ii) Q3(e

2vg+, [e2vg]) = 3B|x=0 = Te2vg, as a consequence we have
(iii)

∫

X4

σ2(Ae2vg+) =

∫

X4

(Q4)e2vg+ + 2

∫

M3

Te2vg = 6V.
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Combine the results in Theorem 7.2 and 7.3, we have given a different proof of the
following result of Anderson ([3]) relating the renormalized volume to the Pffafian integral.

Theorem 7.4. Suppose that (X4, g+) is a conformally compact Einstein manifold, let us set
ḡ = e2vg+, then

8π2χ(X4) =
1

4

∫

X4

|W |2dvḡ +

∫

X4

σ2(Aḡ) =
1

4

∫

X4

|W |2dvg+ + 6V

Combining the conjecture (e) of the structure of general Q-curvature in section 6 and
the observation made above, one can extend the formula for the renormalized volume to any
(Xn+1, Mn, g+) conformally compact Einstein manifold for n odd. In particular one obtains
as a special case a formula of Epstein (appendix A in [87]) for the renormalized volume of
hyperbolic manifold as multiple of the Euler number of the manifold. It turns out ([32]) that
when n is even, one can instead relate the renormalized volume to the conformal primitive
of the Q-curvature.

This understanding of the relation between the renormalized volume and the integral
in the Chern-Gauss-Bonnet formula also allows us to translate some of the results in ([59],
[26], [28]) from compact 4-manifolds without boundary to the setting of conformal compact
Einstein 4-manifolds.

Theorem 7.5. [31]
Suppose (X4, M3, g+) is a conformal compact Einstein manifold, and assume further that
the conformal infinity (M 3, [g]) has positive Yamabe invariant, then
(i)

V ≤
4

3
π2,

with equality holds if and only if (X4, g+) is the hyperbolic space (H4, gH), and therefore
(M3, g) is the standard 3-sphere.
(ii) If

V >
1

3

4π2

3
χ(X),

then X is homeomorphic to the 4-ball B4 up to a finite cover.
(3)If

V >
1

2

4π2

3
χ(X),

then X is diffeomorphic to B4 and M is diffeomorphic to S3.

A crucial step in the proof of the theorem above is an earlier result by J. Qing ([91]),
which builds upon some earlier estimates of J. Lee [73] on the subject.

Theorem 7.6. [91]
Suppose (Xn+1, Mn, g+) is a conformal compact Einstein manifold, and with the Yamabe

constant of (Mn, [g]) being positive, there is a positive eigenfunction u satisfying

−∆g+u = (n + 1)u on Xn+1,

so that (Xn+1, u−2g+) is a compact manifold with totally geodesic boundary and the scalar
curvature is greater than or equal to n+1

n−1
Rg, where we have taken g ∈ [g] to be the Yamabe

metric.
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In ([91]) above theorem was used to establish the rigidity result that any conformal
compact Einstein manifold with conformal infinity the standard n-sphere is the hyperbolic
n + 1 space. Given (Mn, [g]) in general, both the existence and the uniqueness problems of
a conformal compact Einstein manifold with (Mn, [g]) as conformal infinity remain open.
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