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The single-particle reconstruction problem of electron cryo-microscopy (cryo-EM) is to find the three-
dimensional structure of a macromolecule given its two-dimensional noisy projection images at
unknown random directions. Ab initio estimates of the 3D structure are often obtained by the ‘‘Angular
Reconstitution” method, in which a coordinate system is established from three projections, and the ori-
entation of the particle giving rise to each image is deduced from common lines among the images. How-
ever, a reliable detection of common lines is difficult due to the low signal-to-noise ratio of the images. In
this paper we describe a global self-correcting voting procedure in which all projection images partici-
pate to decide the identity of the consistent common lines. The algorithm determines which common line
pairs were detected correctly and which are spurious. We show that the voting procedure succeeds at
relatively low detection rates and that its performance improves as the number of projection images
increases. We demonstrate the algorithm for both simulative and experimental images of the 50S ribo-
somal subunit.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

‘‘Three-dimensional electron microscopy” (Frank, 2006) is the
name commonly given to methods in which the 3D structures of
macromolecular complexes are obtained from sets of images taken
in an electron microscope. The most widespread and general of
these methods is single-particle reconstruction (SPR). In SPR the
3D structure is determined from images of randomly oriented
and positioned, identical macromolecular ‘‘particles”, typically
complexes 200 kDa or larger in size. The SPR method has been ap-
plied to images of negatively stained specimens, and to images ob-
tained from frozen-hydrated, unstained specimens (Wang and
Sigworth, 2006). In the latter technique, called cryo-EM, samples
are rapidly frozen and maintained at a holding temperature around
�180 �C throughout image acquisition.

SPR from cryo-EM images is of particular interest because it
promises to be an entirely general technique. It does not require
crystallization or other special preparation of the complexes to be
imaged, and is beginning (Henderson, 2004) to reach sufficient res-
olution (� 0:4 nm) to allow the polypeptide chain to be traced and
residues identified in protein molecules (Ludtke et al., 2008; Zhang
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et al., 2008). Even at the resolutions of 0.6–0.9 nm, many important
features of protein molecules can be determined (Chiu et al., 2005).

Much progress has been made in algorithms that, given a start-
ing 3D structure, are able to refine that structure on the basis of a
set of negative-stain or cryo-EM images, which are taken to be pro-
jections of the 3D object. Data sets typically range from 104 to 105

particle images, and refinements require tens to thousands of CPU-
hours. As the starting point for the refinement process, however,
some sort of ab initio estimate of the 3D structure must be made.
There are two known solutions to the ab initio estimation problem
of the 3D structure that do not involve tilting. The first solution is
based on the method of moments (Salzman, 1990; Goncharov,
1988) that exploits the known analytical relation between the sec-
ond order moments of the 2D projection images and the second or-
der moments of the (unknown) 3D volume in order to reveal the
unknown orientations of the particles. However, the method of
moments is very sensitive to errors in the data and is of rather aca-
demic interest (Penczek et al., 1994, Section 2.1, p. 251). The sec-
ond solution, on which present algorithms are based, is the
‘‘Angular Reconstitution” method of van Heel (1987) in which a
coordinate system is established from three projections, and the
orientation of the particle giving rise to each image is deduced
from common lines among the images. However, although more
robust to noise, the angular reconstitution method fails with parti-
cles that are too small, with images that are too noisy, or at reso-
lutions where the signal-to-noise ratio becomes too small.
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The common lines between three projections uniquely deter-
mine their relative orientations up to handedness (chirality). This
is the basis of the angular reconstitution method of van Heel
(1987), which was also developed independently by Vainshtein
and Goncharov (1986). Other historical aspects of the method
can be found in Van Heel et al. (1997). Farrow and Ottensmeyer
(1992) used quaternions to obtain the relative orientation of a
new projection in a least squares sense. The main problem with
such sequential approaches is that they are sensitive to false detec-
tion of common lines which leads to the accumulation of errors.
Penczek et al. (1996) tried to obtain the rotations corresponding
to all projections simultaneously by minimizing a global energy
functional. Unfortunately, minimization of the energy functional
requires a brute force search in a huge parametric space of all pos-
sible orientations for all projections. Mallick et al. (2006) suggested
an alternative Bayesian approach, in which the common line be-
tween a pair of projections can be inferred from their common
lines with different projection triplets. The problem with this par-
ticular approach is that it requires too many (at least seven) com-
mon lines to be correctly identified simultaneously. Therefore, it is
not suitable in cases where the true detection rate of common lines
is small.

In this paper we introduce a Bayesian approach, based on a glo-
bal voting procedure, that requires only a small fraction of the
common lines to be correctly identified. Without knowing which
common lines are correct and which are false, our method is able
to separate the good from the bad by boosting the good informa-
tion and averaging out the bad.

Ideally one would want to do the 3D reconstruction directly
from projections in the form of raw images. However, the determi-
nation of common lines from the very noisy raw images is typically
too error-prone. The determination of common lines is instead per-
formed on pairs of class averages, that is, averages of particle
images that have been classified into similar groups. To reduce var-
iability, class averages are typically computed from particle images
that have already been rotationally and translationally aligned. The
choice of reference images for the alignment is however arbitrary
and can represent a source of bias in the classification process.
The voting algorithm described here has the advantage that it
can be used for ab initio 3D reconstructions even from an initial
classification of cryo-EM particle images that have only undergone
a rudimentary translational alignment.

The paper is organized in the following way. In Section 2 we re-
visit the Fourier projection-slice theorem and the concept of com-
mon lines. In Section 3 we describe the global voting procedure
and the way it distinguishes the good common line pairs from
the bad pairs. During the voting procedure many ‘‘votes” are dis-
qualified, as explained in Section 4. Section 5 details the results
of numerous numerical experiments using simulative artificial
images and real electron microscope images of the Escherichia coli
50S ribosomal subunit. The running times of our numerical exper-
iments are also provided. Using the voting procedure we were able
to recover directly the 3D structure of the subunit from 750, 1500,
and 3000 class averages, generated from a data set of 27,121 pro-
jections. Simulation results provide quantitative measures for the
ability of the voting procedure to find consistent common lines
from low SNR images, for which many of the common lines are
incorrect. The computational complexity of the voting algorithm
as well as possible ways for accelerating it are discussed in Sec-
tion 6. Finally, Section 7 is a summary and discussion.
2. Fourier projection-slice theorem and common lines

The cryo-EM reconstruction problem is to find the three-dimen-
sional structure of a molecule given a finite set of its two-dimen-
sional projection images at unknown random directions. The
intensity of pixels in a given projection image corresponds to line
integrals of the Coulomb potential /ðx; y; zÞ induced by the charge
density of the molecule along the path of the imaging electrons (Ra-
don transform). The highly intense electron beam destroys the mol-
ecule and it is therefore impractical to take projection images of the
same molecule at known different directions, as in the case of clas-
sical computerized tomography. In other words, a single molecule
can be imaged only once. All molecules are assumed to have the ex-
act same structure; they differ only by their spatial orientation.
Thus, every image is a projection of the same molecule but at an un-
known random orientation. The cryo-EM problem is thus stated as
follows: find /ðx; y; zÞ given a collection of projection images.

One of the cornerstones of tomography is the Fourier projec-
tion-slice theorem, which states that the two-dimensional Fourier
transform of a projection image is a planar slice (perpendicular to
the beaming direction) of the three-dimensional Fourier transform
of the molecule (see, e.g., Natterer, 2001, p. 11). The geometry in-
duced by the Fourier projection-slice theorem is illustrated in
Fig. 1. Any two slices share a common line, i.e., the intersection line
of the two planes. Every radial line in the two-dimensional Fourier
transform of a projection image is also a radial line in the three-
dimensional Fourier transform of the molecule (see for example
Kk1 ;l1 in Fig. 1). Moreover, there is a 1-to-1 correspondence between
each radial line in the three-dimensional Fourier space and its
direction vector in R3 (see for example Kk1 ;l1 and bk1 ;l1 in Fig. 1).
The set of all direction vectors (unit vectors in R3) is known as
the unit sphere. The radial lines of a single projection image corre-
spond to a great geodesic circle on the unit sphere. The common
line property can now be restated as follows: any two different
geodesic circles over the unit sphere intersect at exactly two antip-
odal points. This is demonstrated at the bottom right part of Fig. 1.

Common lines between pairs of projections are usually found
using normalized cross correlation (van Heel, 1987). Given a data
set of N projection images P1ðx; yÞ; . . . ; PNðx; yÞ, one first computes
the polar Fourier transform of the images

bPkðq;aÞ ¼
1

ð2pÞ2
ZZ

Pkðx; yÞe�iðxq cos aþyq sin aÞ dxdy; k ¼ 1; . . . ;N;

ð1Þ

where 0 6 q <1 and 0 6 a < 2p. In practice, this is done by fixing
an angular resolution L, and sampling the Fourier transform (1)
along L radial lines, at n equispaced points along each radial line.
This results in L vectors Kk;0; . . . ;Kk;L�1 2 Cn, given by

Kk;l ¼ bPk
B
n
;
2pl

L

� �
; bPk

2B
n
;
2pl

L

� �
; . . . ; bPk B;

2pl
L

� �� �
; ð2Þ

where 1 6 k 6 N; 0 6 l 6 L� 1 and B is the band limit. The DC term
(q ¼ 0) does not distinguish between lines, because it is shared by
all lines independently of the image, and is therefore excluded. To
determine the common line between two images Pi and Pj, normal-
ized cross correlations between all L radial lines Ki;l1 from the first
image with all L radial lines Kj;l2 from the second image are com-
puted (overall L2 comparisons). However, as the correlation be-
tween Ki;l1 and Kj;l2 has the same value as the correlation between
their antipodal lines Ki;l1þL=2 and Kj;l2þL=2 (where addition of indices
is taken modulo L), it follows that the number of distinct correlation
values that need to be computed is L2=2, obtained by restricting the
index l1 to take values between 0 and L=2 and letting l2 take any of
the L possibilities (see also van Heel, 1987 and Penczek et al., 1994,
p. 255). Equivalently, it is possible to compare real valued 1D line
projections of the 2D projection images, instead of comparing radial
Fourier lines which are complex valued; these 1D projection lines
can be displayed as a 2D image known as a ‘‘sinogram” (see van
Heel, 1987; Serysheva et al., 1995).



Fig. 2. Angular reconstitution: the common lines between P1 (red), P2 (green), P3

(blue) uniquely determine the angle a12 between P1 and P2 as well as the three
intersection points Q12, Q13 and Q23 (‘‘triangle”) of their corresponding great circles
on the unit sphere (up to some three-dimensional rotation and possibly a
reflection).

Fig. 1. Fourier projection-slice theorem and its induced geometry. The Fourier transform of each projection bPk corresponds to a planar slice through the three-dimensional
Fourier transform /̂ of the molecule. The Fourier transforms of any two projections bPk1

and bPk2
share a common line (Kk1 ;l1 and Kk2 ;l2 ), which is also a ray of the three-

dimensional Fourier transform /̂. Each Fourier ray Kk1 ;l1 can be mapped to its direction vector bk1 ;l1 . The direction vectors of the Fourier rays Kk1 ;l1 and Kk2 ;l2 that correspond to
the common line between Pk1

and Pk2
must coincide, that is, bk1 ;l1 ¼ bk2 ;l2 .
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The pair of radial lines (or sinogram lines) that has the maxi-
mum normalized cross correlation is declared as the common line.
In practice, a weighted correlation, which is equivalent to applying
a combination of high-pass and low-pass filters is used to deter-
mine proximity. As noted in van Heel (1987), the normalization
is performed so that the correlation coefficient becomes a more
reliable measure of similarity between radial lines. The ‘‘common
lines matrix” C is an N-by-N array whose ði; jÞ and ðj; iÞ entries store
the indices l1 and l2, respectively, for which the maximum normal-
ized cross correlation is attained

ðCði; jÞ; Cðj; iÞÞ ¼ argmax
06l1<L=2;06l2<L

hKi;l1 ;Kj;l2 i
kKi;l1kkKj;l2k

; for all i–j: ð3Þ

In other words, Cði; jÞ is a discrete estimate for where the j’th image
intersects with the i’th image. Even with clean images, this estimate
will have a small deviation from its ground truth (unknown) value
due to discretization errors. With noisy images, large deviations of
the estimates from their true values (say, errors of more than 10�)
are frequent, and their frequency increases with the level of noise.
We refer to common lines whose Cði; jÞ and Cðj; iÞ values were esti-
mated accurately (up to a given discretization error tolerance) as
‘‘correctly detected” common lines, and to the remaining common
lines as ‘‘falsely detected”. Obviously, we do not know a priori
which common lines were correctly detected and which were fal-
sely detected. In the following section we describe a particular vot-
ing procedure that attempts to discover the correct common lines.

3. Voting procedure

Suppose that the probability of detecting the correct common
line between a pair of images is p. We assume that detection of
common lines is very difficult, but not impossible. In other words,
p� 1, but at the same time p� 2=L2 (2=L2 can be achieved by
choosing the common lines at random). For example, for p ¼ 1=5
only 20% of the entries in the common lines matrix C in (3) are cor-
rect, while the overwhelming majority of 80% of the entries are
false. We now describe a simple voting procedure that discovers
the correct common lines.
Consider a pair of projection images Pi and Pj. The common line
between projections i and j is insufficient to determine the angle aij

(Fig. 2) between their corresponding three-dimensional planes.
However, the common lines between three projections i, j and k
uniquely determines the relative orientation of the three projec-
tions up to handedness (chirality). This is the basis of the angular
reconstitution method (van Heel, 1987).

First, let us consider the case where the common line between
projections i and j was correctly identified. Given the pair ði; jÞ, we
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consider all N � 2 different triplets of the form ði; j; kÞ
(k ¼ 1;2; . . . ;N, k–i; j). Each projection k can vote only once and
all votes have equal weight. By the angular reconstitution method,
the triplet ði; j; kÞ determines the angle aij between projections i
and j. With probability p2 the common lines between projections
i and k and between projections j and k are correct. For all such
‘‘good” k’s, the resulting angle aij is the same. With probability
1� p2 one of the common lines (either ði; kÞ or ðj; kÞ) is wrong
and the resulting angle aij is random or non-physical (non-physical
common lines are explained in Section 4). There are p2ðN � 2Þ
‘‘good” third projections on average that all give the same angle.
The resulting histogram of the angle aij is therefore a mixture of
a flat distribution (random angles) and a delta-spike at the correct
angle. This is demonstrated using simulated data in Section 5, and
is illustrated in Fig. 5. On the other hand, if the common line be-
tween i and j is incorrect, then triplets of the form ði; j; kÞ give rise
to random (or non-physical) angles aij. The histogram of the angle
in this case is flat without spikes.

We can distinguish between the two typical histograms (com-
pletely random versus random+spike) if the spike is significantly
high. In other words, we are able to tell that a common line was cor-
rectly identified whenever enough projections voted in the same
way. That is, to be able to tell the ‘‘good” from the ‘‘bad”, the spike
must consist of enough votes, which happens if the condition

p2ðN � 2Þ � 1 ð4Þ

is satisfied. This shows that even at low detection rates, the larger
the data set the better. For example, when p ¼ 1=5 and N ¼ 10000
we expect a spike of size � 400.

In practice, we have no estimate for the value of p. Instead, we
plot for each pair of projections its angle histogram, and record the
height of its peak. Following the discussion above, even though we
do not know p, the angle histogram for pairs for which the com-
mon line was correctly identified will exhibit a higher peak than
for pairs for which the common line was misidentified. This is true
as long as p is not too small. Thus, once we compute the peak of the
angle histogram for each pair of projections, we plot the histogram
of the peaks. Pairs of projections that correspond to the right-hand-
side of the peaks histogram are those for which the peak of their
angle histogram was highest. It is thus more likely that the com-
mon line between those projections was correctly identified. We
demonstrate this in Section 5. For explanatory purposes, we as-
sume in the simulations in Section 5 that p is known, to demon-
strate quantitatively the performance of the algorithm. This
assumption is not required when processing experimental data.
In the experimental setup, we first plot the histogram of the modes
as shown in Figs. 8 and 9. The choice of the threshold is straightfor-
ward if this histogram exhibits two distinguished modes (clearly
visible in Fig. 8d and e), with the left mode (smaller values) corre-
sponding to falsely identified common lines and the right mode
(larger values) corresponding to the correctly identified common
lines (see further discussion in Section 5.1).

If two modes are not clearly visible in the histogram of the
modes, then we try a few different threshold values using the fol-
lowing consideration. Eq. (4) gives a necessary condition for the
voting procedure to succeed, from which it follows that if (the un-
known) p is below 1=

ffiffiffiffi
N
p

then the method has no chance to suc-
ceed. The threshold value should therefore be one of the top
100%=

ffiffiffiffi
N
p

highest histogram modes. As there are NðN � 1Þ=2 pos-
sible threshold values, the threshold must be one of the OðN3=2Þ
highest modes. We therefore try a few different threshold values
corresponding to thresholding at the top c 100%ffiffiffi

N
p percentile, with

c ¼ 2;4;8;16. For example, for N ¼ 3000 the threshold is varied
from as high as the top 3.6% percentile to as low as the top 29.2%
percentile.
4. Disqualified votes and angular assignment

Not all triplets of common lines can be realized as planes whose
common lines are the given triplet. Such inconsistent triplets lead
to non-physical angles, as we now explain. As illustrated in Fig. 2,
the three great circles corresponding to projections 1, 2 and 3
intersect on the unit sphere at Q12, Q 13 and Q 23 (Qij is the intersec-
tion of the two circles corresponding to projections i and j; there
are also three antipodal intersection points). The three common
lines determine the distances between the three intersection
points. Those distances are always between 0 and 2 (the largest
distance between points on the unit sphere).

Clearly, three points Q 12;Q13;Q23 in the unit sphere that are not
collinear will always form a unique triangle. In practice, however,
we have no access to the coordinates of Q12;Q 13;Q23. Instead, the
common lines data translate (as we explain below) to distances be-
tween the three points. These observed distances are noisy realiza-
tions of the true distances, as is the case when the estimation of the
common lines is incorrect. With noisy distances it is not always the
case that three distances define a triangle on the unit sphere. We
proceed to verify the exact condition that guarantees for three in-
put distances between 0 and 2 to form a triangle that can be placed
in the unit sphere.

For three distances to form a triangle, they must satisfy the
triangle inequality. It turns out that the triangle inequality is
not sufficient to determine the triangle, because the three points
must lie on the unit sphere as well. For example, the distances
2,2,2 satisfy the triangle inequality, but the corresponding trian-
gle is too big to be placed on the unit sphere. The exact condi-
tion that guarantees a successful triangulation is obtained by
using either linear algebra or geometry. We first give the linear
algebra derivation.

The three dot products between the three points Q ij, Q ik, and Qjk

are obtained from the common lines between projections i, j, and k
by

hQ ij;Q iki ¼ cos 2pðCði; jÞ � Cði; kÞÞ=Lð Þ; ð5Þ

where Cði; jÞ is the index of the common line between projections i
and j at the plane of projection i. Since the points are on the unit
sphere, we have hQij;Qiji ¼ 1. The Gram matrix of Q12;Q13;Q23 is
the 3-by-3 matrix of their dot products given by

1 hQ 23;Q 13i hQ23;Q 12i
hQ 13;Q 23i 1 hQ13;Q 12i
hQ 12;Q 23i hQ 12;Q 13i 1

0
B@

1
CA ¼ 1 a b

a 1 c

b c 1

0
B@

1
CA; ð6Þ

where

a ¼ cos 2pðCð3;2Þ � Cð3;1ÞÞ=Lð Þ;
b ¼ cos 2pðCð2;3Þ � Cð2;1ÞÞ=Lð Þ;
c ¼ cos 2pðCð1;3Þ � Cð1;2ÞÞ=Lð Þ:

ð7Þ

We define

G ¼
1 a b

a 1 c

b c 1

0
B@

1
CA: ð8Þ

Note that the matrix G in (8) can always be formed by combining
the common lines information with (7). We want to find a condition
under which there exist coordinates Q12, Q13, Q23 such that (6)
holds. A necessary and sufficient condition in that the matrix (8)
is positive definite. To see this, suppose that we can write G in (8)
as a matrix of dot products as in (6). Then, G ¼ QT Q where
Q ¼ ðQ23;Q13;Q12Þ is the matrix having the coordinates of Q23,
Q13, and Q12 as its columns, which immediately shows that G is po-
sitive definite. Conversely, if G is positive definite, then the Cholesky
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decomposition (Golub and Van Loan, 1984) of G is in the form of
G ¼ QT Q and so (6) holds. We proceed to derive the condition for
G to be positive definite.

We begin with examining the trace of G

TrðGÞ ¼ 3 ¼ k1 þ k2 þ k3; ð9Þ

where k1 P k2 P k3 are the sorted eigenvalues of G, which immedi-
ately implies k1 > 0. Since jaj; jbj; jcj 6 1 it follows that the sums of
the absolute values of the rows of G are bounded by 3:
1þ jaj þ jbj 6 3, 1þ jaj þ jcj 6 3 and 1þ jbj þ jcj 6 3. By the Gersh-
gorin circle theorem (Golub and Van Loan, 1984) it follows that
k1 6 3. Combining this with (9) we obtain that k2 þ k3 P 0. There-
fore, k2 P 0 (because 2k2 P k2 þ k3 P 0). A necessary and sufficient
condition for positive definiteness is that all eigenvalues are posi-
tive. Since we have already established that k1 P k2 P 0, it remains
to require that the smallest eigenvalue is positive, that is, to require
that k3 > 0. To that end, we use the determinant of G which equals
the product of the eigenvalues: detðGÞ ¼ k1k2k3. In our case, the
determinant is given by

detðGÞ ¼ 1� ða2 þ b2 þ c2Þ þ 2abc: ð10Þ

We conclude that the condition for positive definiteness is

1þ 2abc > a2 þ b2 þ c2: ð11Þ

The condition (11) explains for example why the distances 2,2,2
corresponding to a ¼ b ¼ c ¼ �1 are not realizable on the sphere.
Only triplets ði; j; kÞ that satisfy the condition (11) are physical and
eligible to vote. All other votes are disqualified. Though it may be
tempting to think that condition (11) is violated only when projec-
tions are nearby and their common lines lie very close to each other
and therefore are not informative anyway, even moderate angles,
such as a ¼ b ¼ c ¼ �1=2 lead to violations.

An alternative approach for deriving condition (11) uses the
geometry of the sphere. We may assume that the circle corre-
sponding to projection 1 lies in the xy-plane, so it has the parame-
trization ðcos h1; sin h1;0Þ (0 6 h1 < 2p). By an arbitrary choice of
the coordinate system, the intersection point of projections 1 and
2 is

Q 12 ¼ ð1; 0;0Þ;

and the intersection point of projections 1 and 3 is

Q 13 ¼ ðc;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

;0Þ:

Since the great circle that corresponds to projection 2 goes through
Q12 ¼ ð1;0;0Þ, it follows that its parametrization is given by
ðcos h2; cos a12 sin h2; sin a12 sin h2Þ (0 6 h2 < 2p), where a12 is the
angle between projections 1 and 2 (see Fig. 2). In particular, from
hQ12;Q23i ¼ b, we get

Q 23 ¼ ðb;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
cos a12;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
sina12Þ:

Taking the dot product between Q13 and Q23 we obtain

a ¼ hQ13;Q 23i

¼ ðc;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

;0Þ � ðb;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
cos a12;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
sina12Þ

¼ bc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

cos a12;

from which cosa12 is extracted

cos a12 ¼
a� bcffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
p : ð12Þ

The condition cos2 a12 6 1 is equivalent to (11). The voting algo-
rithm is outlined in Algorithm 1.
Algorithm 1. Voting algorithm
Input: N 	 N common lines matrix C defined in (3).

1: Define T equally spaced angles between 0� and 180�:
at ¼ 180t=T , t ¼ 0; . . . ; T � 1.

2: for k1 ¼ 1 to N do
3: for k2 ¼ k1 þ 1 to N do
4: Initialize the histogram vector h of length T to

zero.
5: for k3 ¼ 1 to N such that k3–k1; k2 do
6: Compute a, b, and c using (7) and the values

Cðk1; k2Þ, Cðk2; k1Þ, Cðk1; k3Þ, Cðk3; k1Þ, Cðk2; k3Þ,
Cðk3; k2Þ.

7: if condition (11) is satisfied then
8: Compute a12 using (12).
9: Update the histogram h using Gaussian

smoothing

hðtÞ ¼ hðtÞ þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p e�ðat�a12Þ2=ð2r2Þ;

t ¼ 0; . . . ; T � 1; r ¼ 180=T:

10: end if
11: end for
12: Find and store the mode of the histogram: peaks

ðk1; k2Þ ¼ maxthðtÞ
13: end for
14: end for
15: Declare pairs ðk1; k2Þ with large values of peaks

ðk1; k2Þ as good common lines.
As stated, Algorithm 1 returns pairs of projection images
ðk1; k2Þ for which the common lines between them are suspected
to be identified correctly, but the algorithm does not assign Euler
angles to the projections. The latter has to be done separately,
after termination of the voting algorithm. The main issue here
is that although the voting procedure finds the correct common
lines, it may happen that it wrongly detects false common lines
as being correct. Such outliers may be post-identified using the
energy minimization procedure of Penczek et al. (1996). Another
possibility is to squeeze out more information out of the voting
algorithm, by noting that for good common lines, the location of
the mode of the histogram gives the angle between the planes
and this information can be incorporated into the energy mini-
mization framework. A different method that we use in this pa-
per to solve the angular assignment problem is described in
Coifman et al. (2009). Briefly speaking, this method uses the
good common lines reported by the voting algorithm to con-
struct an N 	 N sparse matrix whose top three eigenvectors pro-
vide an estimate for the Euler angles. We are currently
developing an alternative spectral and semidefinite programming
relaxation methods that show potential of handling a larger per-
centage of outliers. These relaxation techniques will be reported
in a separate publication.

The voting algorithm may also be useful in detecting non-
particle images, which is a problem often encountered in prac-
tice, as automatic particle picking is known to pick a large
number (up to 20-25%) of non-particles. All these images will
smear the average classes or will cluster into some non-particle
classes which will be compared to the rest of good-particle
classes during the voting procedure. The voting algorithm is ex-
pected to find that such bad non-particle classes have a rela-
tively small number of good common lines with the
remaining particle classes. This provides a way to identify
non-particle classes, and later reconstruction procedures should
only use classes whose number of good common lines exceeds
a certain threshold.
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5. Results

We conducted several numerical experiments to test the perfor-
mance of the voting procedure. In Section 5.1 we apply the algo-
rithm on simulated electron-microscope projections. This allows
us to demonstrate quantitatively the performance of the algorithm.
Then, in Section 5.2, we apply the algorithm on a real electron
microscope data set, obtaining three-dimensional models directly
from a large number of class averages.
5.1. Simulations

We applied the voting algorithm on sets of simulated projections
of a ribosomal subunit, containing N ¼ 100;500;1000; and 5000
projections. For each N, we generated N noise-free centered projec-
tions of the particle at uniformly distributed random orientations.
Specifically, the projection orientations were obtained by sampling
the set of all three-dimensional rotations, known as the rotation
group SO(3), uniformly at random. Each projection was of size
129	 129 pixels. Next, we fixed a signal-to-noise ratio (SNR), and
added to each clean projection additive Gaussian white noise of
the prescribed SNR. The SNR in all our experiments is defined by

SNR ¼ VarðSignalÞ
VarðNoiseÞ ; ð13Þ

where Var is the variance (energy), Signal is the clean projection im-
age and Noise is the noise realization of that image. Fig. 3 shows one
of the projections at different SNR levels. The SNR values used
throughout this experiment were 2�k with k ¼ 0; . . . ;9. Clean pro-
jections were generated by setting SNR ¼ 220.

The first step of the experiment was to determine the values of
the angular resolution L and the radial discretization n of the radial
Fourier lines. Computing the normalized correlation between a sin-
gle pair of radial lines takes the order of n operations. As men-
tioned earlier, the number of correlations that need to be
computed in order to detect the common line between two images
is L2=2. It follows that the complexity of finding a single common
line is of the order of nL2, and clearly the algorithm is faster with
smaller values of L and n. On the other hand, choosing L and n to
be too small will prevent common line routines from detecting a
good approximation of the true common line due to poor resolu-
tion in either the angular or radial directions. In all subsequent
experiments we use L ¼ 72 and n ¼ 100, which corresponds to an
angular resolution of 5�.
Fig. 3. Simulated projection with various le
Once L and n have been fixed, we took sets of noisy projections
with a given SNR, and constructed for each set its corresponding
common lines matrix. The percentage of correctly identified com-
mon lines in each matrix is plotted against the SNR for various val-
ues of N in Fig. 4a–d, using the curve designated by ‘‘no filtering”.
Each such curve gives the probability p of detecting common lines
between projections as a function of the SNR. In all experiments we
consider the common lines between two projections as correctly
identified, if the estimated common lines deviate from the true
ones by up to 10�.

We then applied ‘‘correlation filtering” to the common lines
matrices, that is, we retained only common lines whose correla-
tions are among the highest p=2 percentile of correlations. Specif-
ically, we retained a common line ðKi;l1 ;Kj;l2 Þ only if the normalized
correlation between rays Ki;l1 and Kj;l2 is one of the top
p=2	 NðN � 1Þ=2 correlation values. We then plotted the percent-
age of correct common lines among the retained common lines.
This is shown in Fig. 4a–d using the curve designated by ‘‘correla-
tion filtering”. Obviously, this filtering improves the detection rate
of common lines. Note that since there are only pNðN � 1Þ=2 cor-
rect common lines, there is no point in retaining more than that,
as any larger number would necessarily increase the number of er-
rors. We used as a threshold half this number.

Finally, we filtered the original common lines matrices using
the voting procedure, which we also refer to as ‘‘histogram filter-
ing”. The histogram filtering consists of several steps. The first step
is to compute for each pair of projections ðPi; PjÞ the angle induced
between them by all third projections. This gives a series of N � 2
estimates for the angle aij between Pi and Pj. If the common line
between projections Pi and Pj was correctly identified, we expect
these estimates to be centered around the true angle between Pi

and Pj. That is, we expect the histogram of the estimates to exhibit
a peak at the correct angle.

To find this peak, we use a Gaussian kernel to obtain a smooth
density estimation for the angle between Pi and Pj, followed by
mode seeking over a discrete set of T ¼ 60 equally spaced angles
between 0� and 180�. We choose the width of the Gaussian kernel
as r ¼ 3� (see also steps 1 and 9 in Algorithm 1). The Gaussian
smoothing serves as a simple way for binning the histogram such
that close-by angle estimates are combined into a single peak. In
Fig. 5 we show several examples for the smoothed histogram of
the angle between pairs of projections. These histograms were ob-
tained from the experiment that corresponds to N ¼ 1000 and
SNR ¼ 1=16. Fig. 5a–d show smoothed histograms for pairs of
projections where the common lines were correctly identified.
vels of additive Gaussian white noise.
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Fig. 4. Comparing correlation filtering and histogram filtering for (a) N ¼ 100, (b) N ¼ 500, (c) N ¼ 1000 and (d) N ¼ 5000.
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Fig. 5e–h correspond to pairs of projections for which the common
lines were misidentified. Note the different scaling of the y-axis
between the cases of correct and incorrect identification of com-
mon lines.

As explained at the end of Section 3, we record for each angle
histogram the height of its peak (step 12 in Algorithm 1), and com-
pute the histogram of the peaks. We then retain only common lines
whose peaks are among the p=2 percentile of highest peaks (p is
the probability of detecting a correct common line, obtained from
the curve designated by ‘‘no filtering” in Fig. 4a–d). The resulting
percentage of correct common lines is shown in Fig. 4a–d using
the curve designated by ‘‘histogram filtering”. As evident from
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Fig. 6. Common lines detection rate as a function of the SNR, for various values of N, when using (a) no filtering, (b) correlation filtering and (c) histogram filtering.
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Fig. 6a–c, increasing N improves the performance of the histogram
filtering, but not of the correlation filtering. However, as Fig. 4a–d
show, histogram filtering is consistently superior to correlation
filtering.

All experiments in this subsection were executed on a Linux
machine with 16 Xeon 2.93 GHz cores and 48GB of RAM. The
algorithm for detecting common lines between projections was
implemented in MATLAB, thus taking partial advantage of multi-
processing in computations that use the Basic Linear Algebra Sub-
routines (BLAS) library. This gives some degree of parallelization in
computing cross correlations, but our experience shows that the
current implementation never exceeds 200% utilization (that is,
cannot use more than 2 cores at any given time). The running times
for computing the common lines matrices were 12.12 s for
N ¼ 100, 169.34 s for N ¼ 500, 658.38 s for N ¼ 1000, and
15907.43 s for N ¼ 5000. The voting procedure was parallelized
in C to take advantage of all computing cores, and its speed scales
linearly with the number of CPUs. Though it is an OðN3Þ procedure,
the constant associated with it is very small, and thus the algo-
rithm is practical for rather large N (like N ¼ 5000). The reason
for the small constant is that given a pair of projections, the first
step of the voting checks all third projections and disqualifies
non-physical angles. This test requires computing a simple formula
for checking condition (11) and is very fast. In the noise levels typ-
ically present in class averages of real microscope images, only a
few projections pass that test. Thus, updating the histogram never
involves OðNÞ angles but rather much less. Fig. 7 shows the running
times required for histogram filtering as a function of the SNR. It is
clear that histogram filtering gets faster as the SNR decreases, since
more triplets are being disqualified, as explained in Section 4.

Fig. 8a–j show the histograms of peaks for N ¼ 1000 projections
and various levels of SNR. As can be seen from the figures, for lower
noise levels (see for example Fig. 8d and e), the histograms consist
of two well-separated distributions (bumps) – the right peak corre-
sponds to the average peak height of histograms of correctly iden-
tified common lines; the left peak corresponds to the average peak
height of histograms of misidentified common lines. As the noise le-
vel increases, the two distributions start to overlap. Fig. 9a–d show
the histogram of peaks for a fixed SNR ¼ 1=16 and various values of
N. As N increases, it becomes possible to resolve the peak that cor-
responds to misidentified common lines from the peak that corre-
sponds to correctly identified common lines.

5.2. Reconstruction from ribosome images

A set of micrographs of E. coli 50S ribosomal subunits was pro-
vided by M. van Heel. These images were acquired with a Philips
CM20 at defocus values between 1.37 and 2.06 lm; they were
scanned at 3.36 Å/pixel, and particles were picked using the auto-
mated particle picking algorithm in EMAN Boxer. All subsequent
image processing was performed with the IMAGIC software pack-
age (Stark et al., 2002; van Heel et al., 1996). The particle images
were phase-flipped to remove the phase-reversals in the CTF and
bandpass filtered at 1/150 and 1/8.4 Å. The variance-normalized
images were translationally aligned with the rotationally-averaged
total sum.

Without rotational alignment, the 27,121 particle images were
classified using the MSA function into sets of 750, 1500 and 3000
classes, and the class means were used for the voting algorithm.
In parallel, the IMAGIC routines were used to perform multiple cy-
cles of multireference alignment and classification, reconstruction
using angular reconstitution, and model refinement.

A comparison of the refined model and the three models ob-
tained directly from the sets of 3000, 1500 and 750 class averages
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Fig. 7. Running time (in seconds) of histogram filtering as a function of the SNR.

Fig. 8. Histogram of peaks for N ¼ 1000 and various levels of noise. The top p=2 percentile of each histogram is marked in green (right to the black vertical line separator), the
bottom 1� p=2 percentile is marked in red (left to the black vertical line separator), and the boundary between the regions is marked as a black vertical line. The location of
the boundary is the minimal peak height to be considered by the algorithm as a correctly identified common line. Note how this threshold value decreases as the SNR
decreases. The algorithm assumes that the correct common lines are concentrated in the green area and that the wrong common lines are concentrated in the red area

Fig. 9. Histogram of peaks for SNR ¼ 1=16 for N ¼ 100;500;1000 and 5000.
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is shown in Fig. 10. Each class average is formed from � 9, 18 or 36
particle images, respectively. The set of 750 class averages yielded
the lowest-quality reconstruction; this is to be expected because
the number of classes does not sufficiently sample the three Euler
angles of orientation. Nevertheless this and the other two models
computed directly from the common lines assignments represent
excellent ab initio models. Fig. 11 evaluates the model agreement
by Fourier shell correlations (FSCs). The FSC of the refined model,
obtained from reconstructions of two halves of the data set, shows
a nominal resolution of about 15 Å at the 0.5 threshold criterion
and 11.7 Å using the 3r criterion. FSCs were also computed be-
tween the refined model and the models obtained directly from
the voting algorithm. The ab initio models agree with the refined
model up to 25 Å , with the 1500 and 3000-class reconstructions
being slightly better than the 750-class reconstruction. Recon-
structions failed when using 500 class averages due to excessive
averaging, and for sets of 5000 and 7000 class averages due to
the low detection rate of common lines.
6. Computational complexity

As stated, Algorithm 1 has a computational complexity of OðN3Þ,
which may be computationally prohibitive with datasets as large
as N ¼ 105. In fact, already the computation of the N 	 N common
lines matrix is quadratic in N and may be too time consuming for
large N, as it requires the computation of OðL2Þ normalized correla-
tions for each pair of images, and the computation of each normal-
ized correlation is OðnÞ, where n is the number of discretization
points of the radial Fourier lines, so the overall complexity of
computing the common lines matrix is OðN2L2nÞ. There are at least
three possible ways in which the voting algorithm may be
accelerated.

First, since the number of good common lines needed for
assigning the Euler angles of N projections is OðNÞ, it follows that
if p is the detection rate, then the expected number of projection
pairs ðk1; k2Þ that need to be examined until OðNÞ good common
lines are collected is OðN=pÞ (here, the enumeration over the pairs
ðk1; k2Þ should not progress sequentially like ð1;2Þ; ð1;3Þ; ð1;4Þ; . . . ;

as currently done in Algorithm 1, but rather in a random fashion).
Since p is at least as large as 1=

ffiffiffiffi
N
p

, for otherwise condition (4) is
violated, it follows that N=p is bounded by N1:5. Thus, the number
of pairs ðk1; k2Þ for which we need to make a histogram is only
OðN1:5Þ, and since histogram preparation takes OðNÞ, it follows that
the overall complexity of a careful implementation of the voting
procedure would be OðN2:5Þ, saving a factor of

ffiffiffiffi
N
p

over the naïve
implementation.

Second, the histogram updating can be stopped once enough
votes had been cast. Put in another way, from Eq. (4) it follows that
the number of votes needed, denoted K, should satisfy K ¼ Oð1=p2Þ.
Fig. 10. Comparison of a refined model of the 50S ribosomal subunit with direct reconst
Imagic reference-based alignment of the 27,121 particle data set used in this study and r
directly from the voting-derived common line assignments following classification into
comparison, were soft masked and filtered to 15 Å resolution. The structures were also
structure (Ban et al., 2000) and shown as the Imagic-generated 3D volumes.
The overall complexity would be the number of pairs ðk1; k2Þ times
K, or the number of pairs times 1=p2. Since the number of pairs
needed is OðN=pÞ, the overall complexity of the algorithm is
OðN=p3Þ. The maximum complexity is obtained when p ¼ 1=

ffiffiffiffi
N
p

and then N=p3 ¼ N2:5, but at the other extreme (p ¼ 1) we get a lin-
ear algorithm (which is not that surprising, as in this case one can
simply use a sequential implementation of van Heel’s angular
reconstitution method to assign all angles). In practice, however,
we do not know the value of p, so the very careful implementation
would also need to estimate p ‘‘on the fly”, for example, by noting
after how many pairs ðk1; k2Þ a first spiky histogram was obtained.

Third, in order to obtain an ab initio coarse structure, it is usu-
ally not necessary to find the angular assignment of all N projec-
tions. A coarse structure can be obtained from a fewer number N0

of projections ðN0 < NÞ and can be later refined using the entire im-
age collection. While the number of votes for each histogram can
still be as large as N, the number of pairs ðk1; k2Þ can be limited
to N0ðN0 � 1Þ=2 instead of NðN � 1Þ=2. For example, if the number
of projections is N ¼ 105, and we choose N0 ¼ 102, we get a compu-
tational savings factor of 106.

At the moment, our implementation follows the description of
Algorithm 1 without the computational savings discussed above.

7. Summary and discussion

We presented a simple and efficient voting procedure that
makes use of the geometry rendered by the Fourier projection-slice
theorem to identify the correct common lines even in the presence
of many other falsely detected common lines. The quality of a com-
mon line is determined by all other images. Our method succeeds
ructions from N ¼ 750, 1500 and 3000 class averages. The refined model is from an
efined to 11.7 Å resolution (3r criterion). The remaining structures were generated

the given numbers of input classes. The voting-based structures, for the sake of
flipped about the z-axis such that their handedness is consistent with the X-ray
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even at a low detection rate of common lines and would therefore
allow common lines-based methods to succeed in lower SNR. It
would allow, for example, to use noisier class averages, where each
class consists of fewer projections.

The voting procedure can be easily adjusted to handle cases in
which there are several common line candidates: for each candi-
date we produce a histogram and choose the one (if any) that
shows an identifiable spike.

We note that the method may also be useful for the heterogene-
ity problem. In theory, if we pick a pair of projections correspond-
ing to different types, then all triplets containing the pair should be
incoherent and produce random angles. In practice, however, the
problem of heterogeneity is more difficult. Projections of different
types are very similar and can easily fool the common line test.
This is especially true when dealing with class averages that may
contain projections from different types.

Our experience with simulative data shows that the detection
rate of common lines between a fixed pair of images exhibits a
phase transition behavior. Once the SNR goes below a certain
threshold, the detection rate decays exponentially quickly. This is
in agreement with the threshold phenomenon in non-linear esti-
mation theory that was developed originally for radar range esti-
mation (Zakai and Ziv, 1969; Ziv and Zakai, 1969). In our case,
the threshold is different from one pair of images to the other,
and so some common lines may be correctly detected while others
are not. In other words, although the detection of common lines
between a fixed pair of images exhibits a sharp threshold phenom-
enon as a function of the SNR, the threshold region is much wider
and smoother for the entire data set since we are comparing many
different pairs with different thresholds.

Improved filters and correlation tests for common line detection
can push the detection threshold lower and therefore significantly
improve the performance of any common lines based algorithm
like the one presented in this paper. We believe that constructing
improved comparison tests, such as developing tests based on
some clever feature selection to replace simple correlation, is a re-
search direction that should be strongly pursued.
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