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PARTIALLY REFLECTED DIFFUSION∗

A. SINGER† , Z. SCHUSS‡ , A. OSIPOV§ , AND D. HOLCMAN¶

Abstract. The radiation (reactive or Robin) boundary condition for the diffusion equation is
widely used in chemical and biological applications to express reactive boundaries. The underlying
trajectories of the diffusing particles are believed to be partially absorbed and partially reflected at
the reactive boundary; however, the relation between the reaction constant in the Robin boundary
condition and the reflection probability is not well defined. In this paper we define the partially
reflected process as a limit of the Markovian jump process generated by the Euler scheme for the
underlying Itô dynamics with partial boundary reflection. Trajectories that cross the boundary are
terminated with probability P

√
Δt and otherwise are reflected in a normal or oblique direction.

We use boundary layer analysis of the corresponding master equation to resolve the nonuniform
convergence of the probability density function of the numerical scheme to the solution of the Fokker–
Planck equation in a half-space, with the Robin constant κ. The boundary layer equation is of the
Wiener–Hopf type. We show that the Robin boundary condition is recovered if and only if trajectories
are reflected in the conormal direction σn, where σ is the (possibly anisotropic) constant diffusion
matrix and n is the unit normal to the boundary. Otherwise, the density satisfies an oblique derivative
boundary condition. The constant κ is related to P by κ = rP

√
σn, where r = 1/

√
π and σn = nTσn.

The reflection law and the relation are new for diffusion in higher dimensions.
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1. Introduction. The Fokker–Planck equation (FPE) with radiation (also
called reactive or Robin) boundary conditions is widely used to describe diffusion
in a biological cell with chemical reactions on its surface [1], [2], [3], [4], [5], [6], [7],
[8], [9]. The Robin boundary conditions are used in [2], [4], [5], [6] as a homoge-
nization of mixed Dirichlet–Neumann boundary conditions given on scattered small
absorbing windows in an otherwise reflecting boundary. The mixed boundary condi-
tions may represent, e.g., ligand binding or pumping out ions at sites on the boundary
of a biological cell and no flux through the remaining boundary. The reactive rate
constant in the Robin boundary conditions is chosen in the homogenization process
so that the decay rate of the survival probability is the same as that in the mixed
Dirichlet–Neumann boundary value problem.

The definition of the Itô stochastic dynamics

(1.1) ẋ = a(x, t) +
√

2σ(x, t) ẇ
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on the positive axis with total or partial reflection at the origin was given first by
Feller [10] for the one-dimensional case with a(x, t) and σ(x, t) independent of t, as a
limit of Itô processes, which are terminated when they reach the boundary or moved
instantaneously to a point x = ρj > 0 with probability pj . When pj → 1 and ρj → 0
with

(1.2) lim
j→∞

1 − pj
ρj

= c,

where c is a constant, the partially reflected process converges to a limit. The
transition probability density function (pdf) of the limit process, p(y, t |x, s) dy =
Pr{x(t) ∈ (y, y + dy) | x(s) = x}, is the solution of the FPE

(1.3)
∂p(y, t |x, s)

∂t
= −∂[a(y, t)p(y, t |x, s)]

∂y
+

∂2[σ(y, t)p(y, t |x, s)]
∂y2

or, equivalently,

∂p(y, t |x, s)
∂t

= −∂J(y, t |x, s)
∂y

for all y, x > 0,

where

(1.4) J(y, t |x, s) = a(y, t)p(y, t |x, s) − ∂[σ(y, t)p(y, t |x, s)]
∂y

,

is the flux. The initial condition is

(1.5) p(y, t |x, s) → δ(y − x) as t ↓ s,

and the radiation boundary condition is

(1.6) −J(0, t |x, s) = κp(0, t |x, s),

where κ is a constant related to the constant c and to the values of the coefficients at
the boundary. The no flux and Dirichlet boundary conditions are recovered if c = 0
or c = ∞, respectively. Feller’s method does not translate into a Brownian dynamics
simulation of the limit process, because his approximations are continuous-time Itô
processes. Skorokhod [11] defines the reflection process inside the boundary. Several
numerical schemes have been proposed for simulating this process (see, e.g., [11],
[12], [13], [14]). The main issue there is to approximate the local time spent on the
boundary.

The definition of a diffusion process with absorbing or reflecting boundaries as
limits of Markovian jump processes, which is the basis for all simulations, gives in the
limit diffusion processes with well-defined boundary behavior. However, the definition
of a diffusion process with partially reflecting boundaries as a limit of Markovian jump
processes gives different diffusions for different jump processes. This is expressed in
different relations between the termination probability of the jump process and the
boundary conditions for the FPEs (see, e.g., [8]). The process x(t) defined by (1.1)
with partially absorbing boundaries can be defined as the limit of the solutions of the
Markovian jump processes generated by the Euler scheme

xΔt(t + Δt) = xΔt(t) + a(xΔt(t), t)Δt +
√

2σ(xΔt(t), t) Δw(t,Δt) for t ≥ s,(1.7)

xΔt(s) = x(1.8)
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in the interval x > 0, for 0 ≤ t − s ≤ T , with Δt = T/N , t − s = iT/N (i =
0, 1, . . . , N), where for each t the random variables Δw(t,Δt) are normally distributed
and independent with zero mean and variance Δt. The partially absorbing boundary
condition for (1.7) has to be chosen so that the pdf pΔt(x, t) of xΔt(t) converges to the
solution of (1.3)–(1.6). At a partially reflecting boundary for (1.7), the trajectories
are reflected with probability (w.p.) R and otherwise terminated (absorbed), once
they cross the origin. We show below that keeping R constant (e.g., R = 1/2) as
Δt → 0 leads to the convergence of the pdf pΔt(x, t) to the solution of the FPE
with an absorbing rather than the Robin boundary condition. Thus the reflection
probability R must increase to 1 as Δt → 0 in order to yield the Robin condition
(1.6). Moreover, the reactive constant κ is related to the limit

(1.9) lim
Δt→0

1 −R√
Δt

= P.

The reflecting boundary condition is recovered for P = 0, while the absorbing bound-
ary condition is obtained for P = ∞. Motivated by these considerations, we design
the following simple boundary behavior for the simulated trajectories that cross the
boundary, identified by xΔt(t) + a(xΔt(t), t)Δt +

√
2σ(xΔt(t), t) Δw < 0:

(1.10)

xΔt(t + Δt) =

{
−(xΔt(t) + a(xΔt(t), t)Δt +

√
2σ(xΔt(t), t) Δw) w.p. 1 − P

√
Δt,

terminate trajectory otherwise.

The exiting trajectory is normally reflected w.p.

(1.11) R = 1 − P
√

Δt

and is otherwise terminated (absorbed). The scaling of the termination probability
with

√
Δt reflects the fact that the discrete unidirectional diffusion current at any

point, including the boundary, is O(1/
√

Δt) (see [15], [16]). This means that the
number of discrete trajectories hitting or crossing the boundary in any finite time
interval increases as 1/

√
Δt. Therefore, to keep the efflux of trajectories finite as

Δt → 0, the termination probability of a crossing trajectory, 1−R, has to be O(
√

Δt).
The pdf pΔt(x, t), however, does not converge to the solution p(x, t) of (1.3)–(1.6) on
the boundary, as discussed in section 2. This is due to the formation of a boundary
layer, as is typical for diffusion approximations of Markovian jump processes that
jump over the boundary [17], [18], [19]. The boundary layer equations are typically
Wiener–Hopf integral equations. The Wiener–Hopf boundary layer equation for the
particular case of a partially reflected Brownian motion on the positive axis (i.e.,
a(x, t) = 0 and σ(x, t) = σ in (1.7)) was recently solved in [8], and the relationship
κ = P

√
σ/

√
π was found.

The convergence of the pdf of an Euler scheme has been studied in [20], [21] for
the higher-dimensional problem with oblique reflection. Bounds on the integral norm
of the approximation error are given for the solution of the backward Kolmogorov
equation. These, however, do not resolve the boundary layer of the pdf of the numer-
ical solution. The solution of the forward equation for the Euler scheme converges
nonuniformly to the solution of the FPE due to the appearance of a boundary layer in
the first order spatial derivative. This distorts the boundary flux and gives incorrect
boundary conditions. A boundary layer expansion is needed to capture the boundary
phenomena.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTIALLY REFLECTED DIFFUSION 847

The derivation of the radiation condition has a long history. Collins and Kim-
ball [22] (see also [23]) derived the radiation boundary condition (1.6) for the limit
p(x, t) = limΔt→0 pΔt(x, t) from an underlying discrete random walk model on a semi-
infinite one-dimensional lattice with partial absorption at the endpoint. Their model
assumes constant diffusion coefficient and vanishing drift, for which they find the re-
active constant in terms of the absorption probability and the diffusion coefficient.
Previous simulation schemes that recover the Robin boundary condition [1], [24], [25],
[26], [27] make use of the explicit solution to the half-space FPE with linear drift term
and constant diffusion coefficient with a Robin condition. In [28] and the references
therein, the specular reflection method near a reflecting boundary has been shown to
be superior to other methods such as rejection, multiple rejection, and interruption.

An apparent paradox arises when using (1.7) and other schemes: while the pdf
pΔt(y, t |x, s) of the solution of (1.7), (1.8), (1.10), (1.11) converges to the solution
of the FPE (1.3) and the initial condition (1.5), each approximant pΔt(y, t |x, s) does
not satisfy the boundary condition (1.6), not even approximately; that is, the error
does not decay as Δt → 0. For a general diffusion coefficient and drift term, the
boundary condition is not satisfied even for the case of a reflecting boundary condi-
tion. This problem plagues other schemes as well. The apparent paradox is due to
the nonuniform convergence of pΔt(y, t |x, s) to the solution p(y, t |x, s) of the FPE,
caused by a boundary layer in pΔt(y, t |x, s), as is typical of boundary behavior of
diffusion approximations to Markovian jump processes. The limit p(y, t |x, s), how-
ever, satisfies the boundary condition (1.6) for some κ. Our analysis can be extended
to other schemes in a straightforward way. It is well known that the Euler scheme
produces an O(

√
Δt) error in estimating the mean first passage time to reach an

absorbing boundary. There are several recipes to reduce the discretization error to
O(Δt) [29], [30], [31], [32], [33]. Another manifestation of the boundary layer is that
the approximation error of the pdf near absorbing or reflecting boundaries is O(

√
Δt),

and some methods, including [1], [34], reduce this error to O(Δt). Thus, we expect
the formation of a boundary layer of size O(

√
Δt) for the Euler scheme (1.7) with the

boundary behavior (1.10).
This paper is concerned with the convergence of the partially reflecting Markovian

jump process generated by (1.7), (1.10) in one and higher dimensions. We show that
this scheme, with the additional requirement that the pdf converges to the solution
of the FPE with a given Robin boundary condition, defines a unique diffusion process
with partial reflection at the boundary. This definition is then generalized to higher
dimensions. In contrast to Collins and Kimball’s [22] discrete scheme, this definition
is not restricted to lattice points, and the drift and diffusion coefficients may vary.
The advantage of the current suggested design (1.10) is its simplicity, which is both
easily and efficiently implemented and amenable to analysis. There is no need to
make any assumptions on the structure of the diffusion coefficient or the drift. From
the theoretical point of view, it serves as a physical interpretation for the behavior of
diffusive trajectories near a reactive boundary.

Our main result in the one-dimensional case is the relation between the reactive
“constant” κ(t) and the absorption parameter P for the dynamics (1.1) on the positive
axis with drift and with a variable diffusion coefficient,

(1.12) κ(t) = rP
√
σ(0, t), r =

1√
π
.

The relation (1.12) is new for diffusion with variable coefficients. The value r = 1/
√
π

is different from values obtained for other schemes, e.g., from the value r = 1/
√

2,
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predicted by the discrete random walk theory of radiation boundaries [22]. Values of
r for other schemes are given in [8]. We show the effect of using (1.12) in numerical
simulations.

The scheme (1.10) is generalized to diffusion with drift and anisotropic constant
diffusion matrix σ(t) in the half-space, x1 > 0, with partial oblique reflection. We
show that the Robin boundary condition is recovered if and only if trajectories are
reflected in the direction of the unit vector

(1.13) v =
σn

‖σn‖ ,

where n is the unit normal to the boundary. The radiation parameter κ(x, t) in
the d-dimensional Robin boundary condition and the absorption parameter P (x) are
related by

(1.14) κ(x, t) = rP (x)
√
σn(t), x1 = 0,

with r given in (1.12) and σn(t) = nTσ(t)n. The relation (1.14) is new for higher-
dimensional diffusion in a half-space with drift and anisotropic diffusion matrix.

In the most common case of constant isotropic diffusion our result extends to
domains with curved boundaries. This is due to the fact that a smooth local mapping
of the domain to a half-space with an orthogonal system of coordinates preserves
the constant isotropic diffusion matrix, though the drift changes according to Itô’s
formula. In this case the vector v coincides with the normal n.

2. Boundary layer analysis in one dimension. The aim of the boundary
layer analysis below is to examine the convergence of the pdf pΔt(y, t |x, s) of the
solution xΔt(t) of (1.7), (1.8) to the solution p(y, t |x, s) of (1.3)–(1.6), and to find
the relation between the parameter P of (1.10) and the reactive constant κ in (1.6).
Using abbreviated notation, the pdf pΔt(y, t |x, s) = pΔt(y, t) satisfies the forward
Kolmogorov equation [15], [16], [17], [18], [19], [35]

pΔt(y, t + Δt) =

∫ ∞

0

pΔt(x, t)√
4πσ(x, t)Δt

{
exp

[
− (y − x− a(x, t)Δt)

2

4σ(x, t)Δt

]

+ (1 − P
√

Δt) exp

[
− (y + x + a(x, t)Δt)

2

4σ(x, t)Δt

]}
dx.(2.1)

For P = 0 the pdf pΔt(y, t) satisfies the boundary condition

(2.2)
∂pΔt(0, t)

∂y
= 0,

which is obtained by differentiation of (2.1) with respect to y at y = 0. If P 
= 0, we
obtain

(2.3)
∂pΔt(0, t + Δt)

∂y
=

pΔt(0, t)P√
4πσ(0, t)

+ O(
√

Δt),

which holds also in the limit Δt → 0. However, the order of the limits Δt → 0 and
y ↓ 0 matters; indeed,

(2.4) lim
Δt→0

lim
y↓0

∂pΔt(y, t)

∂y

= lim

y↓0
lim

Δt→0

∂pΔt(y, t)

∂y
.
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The limit of (2.3) is not the boundary condition that the limit function p(y, t) =
limΔt→0 pΔt(y, t) (for y > 0) satisfies. To find the boundary condition of p(y, t), in
either case P = 0 or P 
= 0, we show below that p(y, t) satisfies the FPE (1.3) and
the initial condition (1.5) for all y > 0. Since for P = 0 the simulation preserves
probability (the population of trajectories),

(2.5) 0 =
d

dt

∫ ∞

0

p(x, t) dx = −∂[σ(0, t)p(0, t)]

∂y
+ a(0, t)p(0, t) = J(0, t).

Equation (2.5) is the no flux boundary condition. The discrepancy between (2.5) and
(2.2) is due to the nonuniform convergence of pΔt(y, t) to its limit p(y, t) in the interval.
There is a boundary layer of width O(

√
Δt), in which the boundary condition (2.2) for

pΔt(y, t) changes into the boundary condition (2.5) that p(y, t) satisfies. To analyze
the discrepancy between (2.2) and (2.5), we introduce the local variable y = η

√
Δt

and the boundary layer solution

(2.6) pBL(η, t) = pΔt(η
√

Δt, t).

Changing variables x = ξ
√

Δt in the integral (2.1) gives

pBL(η, t + Δt) =

∫ ∞

0

pBL(ξ, t)√
4πσ(ξ

√
Δt, t)

⎧⎪⎨⎪⎩exp

⎡⎢⎣−
(
η − ξ − a(ξ

√
Δt, t)

√
Δt
)2

4σ(ξ
√

Δt, t)

⎤⎥⎦
+ (1 − P

√
Δt) exp

⎡⎢⎣−
(
η + ξ + a(ξ

√
Δt, t)

√
Δt
)2

4σ(ξ
√

Δt, t)

⎤⎥⎦
⎫⎪⎬⎪⎭ dξ.(2.7)

The boundary layer solution has an asymptotic expansion in powers of
√

Δt:

(2.8) pBL(η, t) ∼ p
(0)
BL(η, t) +

√
Δt p

(1)
BL(η, t) + Δt p

(2)
BL(η, t) + · · · .

Expanding all functions in (2.7) in powers of
√

Δt and equating similar orders, we
obtain integral equations that the asymptotic terms of (2.8) must satisfy. The leading
order O(1) term gives the Wiener–Hopf-type equation on the half-line

(2.9) p
(0)
BL(η, t) =

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

{
exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ

for η > 0. The kernel

(2.10) K(η, ξ) = exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]
is an even function of η and ξ; i.e., K(η, ξ) = K(−η, ξ) = K(η,−ξ) = K(−η,−ξ).

Therefore, we extend p
(0)
BL(ξ, t) to the entire line as an even function (p

(0)
BL(ξ, t) =

p
(0)
BL(−ξ, t)) and rewrite (2.9) as

(2.11) p
(0)
BL(η, t) =

∫ ∞

−∞

p
(0)
BL(ξ, t)√
4πσ(0, t)

exp

[
− (η − ξ)2

4σ(0, t)

]
dξ
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for −∞ < η < ∞. The only solution of the integral equation (2.11) is the constant

function, that is, p
(0)
BL(η, t) = f(t), independent of η. This follows immediately from

the Fourier transform of (2.11), whose right-hand side is a convolution.
Away from the boundary layer the solution admits an outer solution expansion

(2.12) pOUT (y, t) ∼ p
(0)
OUT (y, t) +

√
Δtp

(1)
OUT (y, t) + · · · ,

where p
(0)
OUT satisfies the Fokker–Planck equation (1.3) and the initial condition (1.5).

Indeed, the integrals in (2.1) are of Laplace type with the small parameter Δt. For
interior points y �

√
Δt, the second integral, which represents only boundary inter-

actions, is negligible relative to the first. We change variables in (2.1) by setting

η =
y − x− a(x, t)Δt√

2σ(x, t)Δt
,

and extend integration over the entire line in the first integral and expand all functions
in powers of

√
Δt. The resulting integrals are moments of the normal distribution.

We obtain

pΔt(y, t + Δt) − pΔt(y, t)

Δt
= −∂[a(y, t)pΔt(y, t)]

∂y
+

∂2[σ(y, t)pΔt(y, t)]

∂y2
+ O(

√
Δt).

The leading term in the expansion of pΔt(y, t) is p
(0)
OUT (y, t), which therefore satisfies

the Fokker–Planck equation (1.3). The initial condition (1.5) is recovered from the

Gaussian integral as Δt → 0. The boundary condition that p
(0)
OUT (y, t) satisfies can

be determined only after the boundary layer is resolved by matching. The leading
order matching condition of the boundary layer and the outer solutions is

lim
η→∞

p
(0)
BL(η, t) = p

(0)
OUT (0, t).

Therefore

(2.13) p
(0)
BL(η, t) = p

(0)
OUT (0, t).

The matching condition at order
√

Δt gives

η
∂p

(0)
OUT (0, t)

∂y
+ p

(1)
OUT (0, t) ∼ p

(1)
BL(η, t) for η → ∞,

which means that p
(1)
BL(η, t) is asymptotically a linear function of η; therefore the limit

of its derivative is a constant. Thus the matching condition reduces to

(2.14) lim
η→∞

∂p
(1)
BL(η, t)

∂η
=

∂p
(0)
OUT (0, t)

∂y
.

The first order boundary layer term satisfies the integral equation

(2.15)

p
(1)
BL(η, t) =

∫ ∞

0

p
(1)
BL(ξ, t)√
4πσ(0, t)

{
exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTIALLY REFLECTED DIFFUSION 851

− P

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

exp

[
− (η + ξ)2

4σ(0, t)

]
dξ

− σy(0, t)

2σ(0, t)

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

ξ

{
exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ

+
σy(0, t)

4σ(0, t)2

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

ξ

{
(η − ξ)2 exp

[
− (η − ξ)2

4σ(0, t)

]
+ (η + ξ)2 exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ

+
2a(0, t)

4σ(0, t)

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

{
(η − ξ) exp

[
− (η − ξ)2

4σ(0, t)

]
− (η + ξ) exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ.

Evaluating explicitly the last four integrals in (2.15) and using (2.13) gives

p
(1)
BL(η, t) =

∫ ∞

0

p
(1)
BL(ξ, t)√
4πσ(0, t)

{
exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ(2.16)

− P

2
p
(0)
OUT (0, t) erfc

(
η

2
√
σ(0, t)

)

+
σy(0, t) − a(0, t)√

πσ(0, t)
p
(0)
OUT (0, t) exp

[
− η2

4σ(0, t)

]
.

Differentiating (2.16) with respect to η and integrating by parts, we obtain

∂p
(1)
BL(η, t)

∂η
=

1√
4πσ(0, t)

∫ ∞

0

∂p
(1)
BL(ξ, t)

∂η

{
exp

[
− (η − ξ)2

4σ(0, t)

]
− exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ

(2.17)

+
P

2
√
πσ(0, t)

p
(0)
OUT (0, t) exp

[
−η2

4σ(0, t)

]
− σy(0, t) − a(0, t)

2
√
π σ(0, t)3/2

p
(0)
OUT (0, t) η exp

[
−η2

4σ(0, t)

]
.

Setting

(2.18) g(η, t) =
∂p

(1)
BL(η, t)

∂η
− P

2
√
πσ(0, t)

p
(0)
OUT (0, t) exp

[
− η2

4σ(0, t)

]
,

we rewrite (2.17) as
(2.19)

g(η, t) = φ(η, t) +
1√

4πσ(0, t)

∫ ∞

0

g(ξ, t)

{
exp

[
− (η − ξ)2

4σ(0, t)

]
− exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ,

where

φ(η, t) =
P√

8πσ(0, t)
p
(0)
OUT (0, t) exp

[
−η2

8σ(0, t)

]
erf

(
η√

8σ(0, t)

)
(2.20)

− σy(0, t) − a(0, t)

2
√
π σ(0, t)3/2

p
(0)
OUT (0, t) η exp

[
−η2

4σ(0, t)

]
.

Since φ(η, t) is an odd function of η, we can define g(η, t) for negative values as an
odd function by setting g(η, t) = −g(−η, t) for η < 0. Then (2.19) can be rewritten
as

(2.21) g(η, t) = φ(η, t) +
1√

4πσ(0, t)

∫ ∞

−∞
g(ξ, t) exp

[
− (η − ξ)2

4σ(0, t)

]
dξ,
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which in Fourier space is

(2.22) ĝ(k, t) =
φ̂(k, t)

1 − exp[−σ(0, t)k2]
.

Using the Wiener–Hopf method, we decompose

(2.23) ĝ(k, t) = ĝ+(k, t) + ĝ−(k, t),

where g+(η) = g(η)χ[0,∞)(η), g−(η) = g(η)χ(−∞,0](η). The Fourier transform ĝ(k, t)
exists in the sense of distributions, and ĝ±(k, t) are analytic in the upper and lower

halves of the complex plane, respectively. Taylor’s expansion of φ̂(k, t) in (2.20) gives
(2.24)

φ̂(k, t) = 2ip
(0)
OUT (0, t)

{
P
√
σ(0, t)√
π

− [σy(0, t) − a(0, t)]

}
k + O(k3) as k → 0.

The nonzero poles of (2.22) split evenly between ĝ+(k, t) and ĝ−(k, t), and using
ĝ+(k, t) = −ĝ−(−k, t), the pole at the origin gives
(2.25)

ĝ+(k, t) = ip
(0)
OUT (0, t)

{
P√

πσ(0, t)
− σy(0, t) − a(0, t)

σ(0, t)

}
1

k
+ O(k) as k → 0.

Inverting the Fourier transform ĝ+(k, t), by closing the contour of integration around
the lower half-plane, we obtain

(2.26) lim
η→∞

∂p
(1)
BL(η, t)

∂η
= p

(0)
OUT (0, t)

{
P√

πσ(0, t)
− σy(0, t) − a(0, t)

σ(0, t)

}
.

The matching condition (2.14) implies

(2.27)
∂p

(0)
OUT (0, t)

∂y
= p

(0)
OUT (0, t)

{
P√

πσ(0, t)
− σy(0, t) − a(0, t)

σ(0, t)

}
.

Multiplying by σ(0, t) and rearranging, we obtain the radiation boundary condition

(2.28) −J(0, t) =
∂

∂y

[
σ(0, t)p

(0)
OUT (0, t)

]
− a(0, t)p

(0)
OUT (0, t) =

P
√
σ(0, t)√
π

p
(0)
OUT (0, t).

Since p(y, t) = p
(0)
OUT (y, t), the reactive “constant” in (1.6) is

(2.29) κ(t) =
P
√

σ(0, t)√
π

.

3. Numerical simulations in one dimension. The explicit analytical solu-
tion of the FPE (1.3) with the initial condition (1.5) and the radiation boundary
condition (1.6) for the case of vanishing drift (a = 0) and constant diffusion coeffi-
cient (σ(x, t) = σ) was first given by Bryan in 1891 [36] (see [37, sect. 14.2, p. 358]):

p(x, t |x0) =
1√

4πσt

[
exp

{
− (x− x0)

2

4σt

}
+ exp

{
− (x + x0)

2

4σt

}]
− κ

σ
exp

{
κ(x + x0 + κt)

σ

}
erfc

[
x + x0 + 2κt√

4σt

]
.

(3.1)
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The first term in (3.1) is the fundamental solution of (1.3) and (1.5) with a reflecting
boundary condition, whereas the second term may be transformed into

− κ√
πσ3t

∫ ∞

0

exp

{
−κξ

σ

}
exp

{
− (x + x0 + ξ)2

4σt

}
dξ,

which represents the density due to a line of exponentially decreasing sinks extending
from −x0 to −∞. The method of Laplace transforming (1.3) with respect to t was
later employed [1], [38] to obtain explicit analytical solution for the FPE (1.3)–(1.5)
with a constant diffusion coefficient and a (not necessarily vanishing) constant drift
term a(x, t) = a:

p(x, t |x0)

=
1√

4πσt

[
exp

{
− (x− x0 − at)2

4σt

}
+ exp

{
−ax0

σ
− (x + x0 − at)2

4σt

}]
− 2κ + a

2σ
exp

{
ax + κ[x + x0 + (κ + a)t]

σ

}
erfc

[
x + x0 + (2κ + a)t√

4σt

]
.

(3.2)

Setting κ = 0 in (3.2) reduces to Smoluchowski’s [39] explicit analytical solution for a
reflecting boundary with a constant drift term, while setting a = 0 reduces to Bryan’s
solution (3.1).

We conducted several numerical experiments in which n = 107 trajectories were
simulated according to the Euler scheme (1.7) with the boundary behavior (1.10). The
diffusion coefficient was constant σ = 1, and the reactive constant was κ = 1, giving
P =

√
π in (2.29). The trajectories were initially located at x0 = 1, and their statistics

were collected at time t = 1 and compared to the predicted p(x, t = 1 |x0 = 1).
The convergence of the scheme was tested by using four different time steps, Δt =
10−1, 10−2, 10−3, 10−4.

The first experiment corresponds to a vanishing drift a = 0. Figure 1 shows
the convergence of the numerical scheme to the analytic solution (3.1). The rate
of convergence of the numerical scheme to the analytic solution is

√
Δt. This is

demonstrated, for example, by the survival probability

psur(x0, t) =

∫ ∞

0

p(x, t |x0) dx

of finding the trajectory inside the domain at time t, that is, the probability that the
trajectory was not absorbed prior to t. Integrating (3.1) gives psur(1, 1) = 0.77095 . . .
for σ = κ = 1. The survival probability is estimated numerically by the ratio of the
number of survived (unabsorbed) trajectories nsur and the total number of simulated
trajectories n = 107. Table 1 shows that the convergence rate of the estimated sur-
vival probability to its analytic value is

√
Δt, as predicted by our boundary layer

analysis. The statistical estimation (variance) error due to the finite number of simu-
lated trajectories is

√
psur(1 − psur)/n = 0.00013 . . . , which is an order of magnitude

smaller than the smallest (bias) error obtained for Δt = 10−4 (see Table 1).
In the second experiment, the drift term a = −1 shifts the density leftward and

causes more trajectories to react with the boundary. Figure 2 shows the convergence
of the numerical scheme to the analytic solution (3.2).

The final experiment corresponds to a reflecting boundary, P = κ = 0, and a
constant nonvanishing drift toward the boundary a = −1. We simulated n = 108 tra-
jectories to obtain a finer resolution at the boundary. Figure 3 shows a comparison
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t(x

,t|
x 0)

Fig. 1. No drift: the analytical solution (3.1) (magenta) and the three numerical densities
Δt = 10−1 (blue), Δt = 10−2 (green), Δt = 10−3 (red) approaching it from below. The numerical
density of Δt = 10−4 is not shown because it is difficult to distinguish it from the analytic density.
(Parameters: σ = κ = x0 = t = 1, a = 0, P =

√
π, n = 107.)

Table 1

Survival probability: the difference between the analytic value of the survival probability psur =
0.77095 . . . and its numerical estimation nsur/n decreases by roughly

√
10 whenever Δt is decreased

by an order of magnitude. (Parameters: σ = κ = x0 = t = 1, a = 0, n = 107.)

Δt nsur psur − nsur/n

10−1 7253450 0.0456
10−2 7577156 0.0132
10−3 7670969 0.0039
10−4 7698523 0.0011

between the analytical solution (3.2) and the numerical densities for Δt = 10−1, 10−2.
The no flux condition J = 0 of a reflecting boundary together with (1.4) gives a neg-
ative boundary derivative, py(0, t) = −p(0, t) < 0. In particular, the analytic solution
(3.2) satisfies py(0, 1) = −p(0, 1) = −(2 +

√
π)/(2

√
π) ≈ −1.06. The numerical densi-

ties, however, are flat at the boundary. Their first derivatives vanish at the boundary,
as predicted in (2.2) and shown in Figure 3. The first derivative changes from 0 to
O(1) on an interval of length O(

√
Δt), manifesting a boundary layer behavior, though

there is no such behavior in the density itself.

4. Diffusion in R
d with partial oblique reflection at the boundary. We

consider the d-dimensional stochastic dynamics

(4.1) ẋ = a(x, t) +
√

2B(t) ẇ

in the half-space

Ω = {x = (x1, x2, . . . , xd) ∈ R
d : x1 > 0},
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Fig. 2. Drift, a = −1: the analytical solution (3.2) (magenta) and the numerical densities
Δt = 10−1 (blue), Δt = 10−2 (green), Δt = 10−3 (red) that approach it from below. (Parameters:
σ = κ = x0 = t = 1, P =

√
π, n = 107.)
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Fig. 3. Drift, a = −1, reflecting boundary P = κ = 0: the analytic solution (3.2) (red) and the
numerical densities Δt = 10−1 (blue) and Δt = 10−2 (green) with n = 108 simulated trajectories to
obtain a finer boundary resolution. (Parameters: σ = κ = x0 = t = 1.)
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where w is a vector of d independent Brownian motions and we assume that the

diffusion tensor σ(t) = B(t)BT (t) is uniformly positive definite for all t ≥ s. The
case of space-dependent diffusion involves many technically complicated calculations
and will be considered in a separate paper. We use henceforth the abbreviation
σ(t) = σ. The radiation condition (1.6) becomes

(4.2) −J(y, t |x, s) · n = κ(y, t)p(y, t |x, s), for y ∈ ∂Ω, x ∈ Ω,

where the components of the flux vector J(y, t |x, s) are defined by

(4.3) Jk(y, t |x, s) = −[ak(y, t)p(y, t |x, s)] +

d∑
j=1

∂

∂yj

[
σj,kp(y, t |x, s)

]
,

where σj,k are the elements of the diffusion matrix σ. The Fokker–Plank equation for
the pdf of x(t) can be written as

(4.4)
∂p(y, t |x, s)

∂t
= −∇y · J(y, t |x, s) for all y,x ∈ Ω.

If x ∈ Ω, but

x′ = x + a(x, t)Δt +
√

2B(t) Δw(t,Δt) /∈ Ω,

the Euler scheme for (4.1) with oblique reflection in ∂Ω reflects the point x′ obliquely
in the constant direction of v to a point x′′ ∈ Ω, as described below. First, we denote
by x′

B the normal projection of a point x′ on ∂Ω, that is, x′
B = x′ − (x′ ·n)n. Then

we write the Euler scheme for (4.1) with partially reflecting boundary as

(4.5) x(t + Δt) =

⎧⎪⎨⎪⎩
x′ for x′ ∈ Ω,

x′′ w.p. 1 − P (x′
B)

√
Δt if x′ /∈ Ω,

terminate trajectory w.p. P (x′
B)

√
Δt if x′ /∈ Ω.

The value of the termination probability P (x′
B)

√
Δt, which varies continuously in

the boundary, is evaluated at the normal projection of the point x′ on the boundary.
The oblique reflection in the direction of the unit vector v (v1 
= 0) is defined by

(4.6) x′′ = x′ − 2x′
1

v1
v.

Note that x′′
1 = −x′

1 guarantees that the reflected point of a crossing trajectory is
inside the domain Ω. The fact that the normal components of x′′ and x′ are of equal
lengths makes the high-dimensional boundary layer analysis similar to that in one
dimension. Normal reflection corresponds to v = n = (1, 0, . . . , 0).

We note that for a point y ∈ Ω, we can write Pr{x′′ = y} = Pr{x′ = y′}, where

(4.7) y = y′ − 2y′ · n
v1

v

is the oblique reflection of y′ (see Figure 4). Given y, (4.7) defines y′ as

(4.8) y′ = y − 2
y1

v1
v.
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n

v
x

y

'y

1x 1y
1'y 0

'By

Fig. 4. A simulated trajectory can get from x to y in a single time step Δt in two different
ways: (i) directly from x to y, without crossing the boundary, and (ii) by crossing the boundary from
x to y′ and reflection in the oblique direction v with probability 1−P (y′

B)
√

Δt to y. The reflection
law (4.5)–(4.7) satisfies y′1 = −y1.

As in the one-dimensional case, the forward Kolmogorov equation is

pΔt(y, t + Δt) =

∫
x1>0

pΔt(x, t)

(4πΔt)d/2
√

detσ

{
exp

[
−B(x + a(x, t)Δt,y)

4Δt

]

+ (1 − P (y′
B)

√
Δt) exp

[
−B(x + a(x, t)Δt,y′)

4Δt

]}
dx,(4.9)

where

(4.10) B(x,y) = (x− y)Tσ−1(x− y).

We construct a boundary layer of width O(
√

Δt) in the normal direction to the bound-
ary. The layer extends infinitely in the d− 1 directions tangent to the boundary

(4.11) pBL(η1, y2, . . . , yd, t) = pΔt(η1

√
Δt, y2, . . . , yd, t).

In other words, pBL(η1n+yB , t) = pΔt(η1

√
Δtn+yB , t), where yB = (0, y2, y3, . . . , yd).

As in the one-dimensional case, we assume the asymptotic expansion

(4.12) pBL(η1n + yB , t) ∼ p
(0)
BL(η1n + yB , t) +

√
Δt p

(1)
BL(η1n + yB , t) + · · ·
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and substitute

(4.13) x = yB +
√

Δt ξ

in the integral (4.9). We obtain

pBL(η1n + yB , t + Δt) =

∫
ξ1>0

pBL(ξ1n + yB +
√

Δt ξB , t)

(4π)d/2
√

detσ
(4.14)

×
{

exp

[
−B(ξ + a(yB , t)

√
Δt, η1n)

4

]
+ (1 − P (y′

B)
√

Δt)

× exp

[
−1

4
B
(
ξ + a(yB , t)

√
Δt, η1n− 2η1

v1
v

)]}
dξ + O(Δt).

We calculate separately the integral of the first and second terms in the braces. Sub-
stituting

(4.15) z = σ−1/2(ξ − η1n)

in the first integral of (4.14) transforms the domain of integration into

(4.16) z · ñ > − η1√
σn

,

where ñ = σ1/2n
‖σ1/2n‖ is a unit vector and σn = nTσn = ‖σ1/2n‖2. Similarly, we

transform the second integral by substituting z′ = σ−1/2
(
ξ − η1n + 2η1

v1
v
)
. Using

the expansion (4.12), we obtain at the leading order the integral equation

p
(0)
BL(η1n + yB , t)

=
1

(4π)d/2

∫
z·ñ>− η1√

σn

p
(0)
BL ((η1 +

√
σn z · ñ)n + yB , t) exp

[
−‖z‖2

4

]
dz

+
1

(4π)d/2

∫
z′·ñ>

η1√
σn

p
(0)
BL ((−η1 +

√
σn z

′ · ñ)n + yB , t) exp

[
−‖z′‖2

4

]
dz′.

Integrating in the d− 1 directions orthogonal to ñ yields

p
(0)
BL(η1n + yB , t) =

1√
4π

∫ ∞

− η1√
σn

p
(0)
BL ((η1 +

√
σn u)n + yB , t) exp

[
−u2

4

]
du

+
1√
4π

∫ ∞

η1√
σn

p
(0)
BL ((−η1 +

√
σn u)n + yB , t) exp

[
−u2

4

]
du

=
1√

4πσn

∫ ∞

0

p
(0)
BL (un + yB , t)

{
exp

[
− (u− η1)

2

4σn

]
+ exp

[
− (u + η1)

2

4σn

]}
du.

This is the same leading order integral equation as that of the one-dimensional case
(2.9); thus the solution is independent of η1, and matching to the outer solution gives

(4.17) p
(0)
BL(η1n + yB , t) = p

(0)
OUT (yB , t).
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To evaluate the O(
√

Δt) terms, we expand in the first integral in (4.14)

B(ξ + a(yB , t)
√

Δt, η1n) = (ξ − η1n) · σ−1(ξ − η1n)

+
√

Δt 2a(yB , t) · σ−1(ξ − η1n),(4.18)

and in the second integral

B
(
ξ + a(yB , t)

√
Δt, η1n− 2η1

v1
v

)
=

(
ξ − η1n +

2η1

v1
v

)
· σ−1

(
ξ − η1n

2η1

v1
v

)
+
√

Δt 2a(yB , t) · σ−1

(
ξ − η1n

2η1

v1
v

)
.(4.19)

The O(
√

Δt) contribution of the drift term for the first exponential term is

−1

4

∫
ξ1>0

p
(0)
OUT (yB , t)

(4π)d/2
√

detσ
exp

{
−B(ξ, η1n)

4

}[
2a(yB , t) · σ−1(ξ − η1n)

]
dξ

= −1

4

p
(0)
OUT (yB , t)√

4π
2a(yB , t) · σ−1/2ñ

∫ ∞

−η1/
√
σn

ue−u2/4 du

= −1

2

p
(0)
OUT (yB , t)√

πσn
a(yB , t) · n exp

{
−η2

1

4σn

}
.(4.20)

The second exponential has the same contribution, so the overall contribution of the
drift to the O(

√
Δt) term is

(4.21) −p
(0)
OUT (yB , t)√

πσn
a(yB , t) · n exp

{
−η2

1

4σn

}
.

Now, we expand

p
(0)
BL

(
(η1 +

√
σn z · ñ)n + yB +

√
Δt (σ1/2z)B , t

)
= p

(0)
BL ((η1 +

√
σn z · ñ)n + yB , t)

(4.22)

+
√

Δt∇p
(0)
BL ((η1 +

√
σn z · ñ)n + yB , t) · (σ1/2z)B + O(Δt).

Together with (4.17), the expansion (4.22) reduces to

p
(0)
BL

(
(η1 +

√
σn z · ñ)n + yB +

√
Δt (σ1/2z)B , t

)
= p

(0)
OUT (yB , t) +

√
Δt∇p

(0)
OUT (yB , t) · (σ1/2z)B + O(Δt).

Integrating as above, we obtain the O(
√

Δt) integral equation as

p
(1)
BL(η1n + yB , t)

=
1√

4πσn

∫ ∞

0

p
(1)
BL (un + yB , t)

{
exp

[
− (u− η1)

2

4σn

]
+ exp

[
− (u + η1)

2

4σn

]}
du

− P (y′
B) p

(0)
OUT (yB , t)√
4πσn

∫ ∞

0

exp

[
− (u + η1)

2

4σn

]
du

+
1√
4π

∫ ∞

η1√
σn

∇p
(0)
OUT (yB , t) ·

(
2σ1/2uñ− 2η1

v1
v

)
B

exp

[
−u2

4

]
du

− p
(0)
OUT (yB , t)√

πσn
a(yB , t) · n exp

{
−η2

1

4σn

}
.
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Differentiating with respect to η1 and integrating by parts (as was done in the one-
dimensional case), we arrive at the integral equation

∂p
(1)
BL(η1n + yB , t)

∂n

=
1√

4πσn

∫ ∞

0

∂p
(1)
BL (un + yB , t)

∂n

{
exp

[
− (u− η1)

2

4σn

]
− exp

[
− (u + η1)

2

4σn

]}
du

− P (y′
B) p

(0)
OUT (yB , t)√
4πσn

exp

[
−η2

1

4σn

]

+ ∇p
(0)
OUT (yB , t) ·

⎧⎨⎩− 1
√
πσn

[
σn

σn
− v

v1

]
η1 exp

[
−η2

1

4σn

]
− v

erfc
(

η1

2
√
σn

)
v1

⎫⎬⎭
B

+
p
(0)
OUT (yB , t)√

πσn
a(yB , t) · n

η1

2σn
exp

[
−η2

1

4σn

]
.

The Wiener–Hopf method requires the extension of the erfc function discontinuously

as an odd function, that is, to define ẽrfc(x) = sgn(x) erfc(|x|). Following the calcu-
lations of the one-dimensional case, it remains to determine the small k behavior of

the Fourier transform of ẽrfc(x). Using

(4.23)

∫ ∞

−∞
ẽrfc

(
η

2
√
σn

)
exp{ikη} dη ∼ 2ik

∫ ∞

0

erfc

(
η

2
√
σn

)
η dη = 2ikσn,

we obtain, as in (2.24),

φ̂(k) ∼ 2ik

{
P (y′

B) p
(0)
OUT (yB , t)

√
σn√

π
− 2σn∇p

(0)
OUT (yB , t) ·

[
σn

σn
− v

2v1

]
B

+ p
(0)
OUT (yB , t)a(yB , t) · n

}
as k → 0.

Therefore,

lim
η1→∞

∂p
(1)
BL(η1n + yB , t)

∂n

=

{
P (y′

B) p
(0)
OUT (yB , t)√
πσn

− 2∇p
(0)
OUT (yB , t) ·

[
σn

σn
− v

2v1

]
B

+ p
(0)
OUT (yB , t)

a(yB , t) · n
σn

}
.

Combining with the matching condition

(4.24) lim
η→∞

∂p
(1)
BL(η1n + yB , t)

∂n
=

∂p
(0)
OUT (yB , t)

∂n
,

we obtain

∂p
(0)
OUT (yB , t)

∂n

=

{
P (yB) p

(0)
OUT (yB , t)√
πσn

− 2∇p
(0)
OUT (yB , t) ·

[
σn

σn
− v

2v1

]
B

+ p
(0)
OUT (yB , t)

a(yB , t) · n
σn

}
.
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The requirement that the pdf of the limiting diffusion process satisfies the Robin
boundary condition leads to the only possible choice,

(4.25) v =
σn

‖σn‖ .

Otherwise, we obtain an oblique derivative boundary condition. Since y′
B → yB as

Δt → 0, we obtain the Robin boundary condition

−JOUT (yB , t) · n = ∇p
(0)
OUT (yB , t) · σn− p

(0)
OUT (yB , t)a(yB , t) · n

=
P (yB) p

(0)
OUT (yB , t)

√
σn√

π
.

The reflection direction v of crossing trajectories is the conormal direction σn. Nor-
mal reflection (i.e., replacing v by n) gives rise to the boundary normal flux if and
only if n is an eigenvector of the diffusion tensor σ. The limit of the outer solution
as Δt → 0 is the solution of the Fokker–Planck equation (4.4) with the radiation
boundary condition

(4.26) −J(y, t) · n = κ(y)p (y, t) for y ∈ ∂Ω,

where the reactive “constant” is

(4.27) κ(y) =
P (y)

√
σn√

π
.

Note that normal reflection will not recover the normal flux of the radiation condition
if n is not an eigenvector of σ.

5. Numerical simulations in two dimensions. To illustrate the conormal
reflection law (4.25) in the Euler scheme (4.5)–(4.7) in the half-plane x ≥ 0, we
ran several numerical experiments. The simulations show the convergence of the pdf
of the numerical solution to that of the FPE with the radiation boundary condi-
tion (4.26)–(4.27). Unlike in the one-dimensional case, no explicit solution of the
anisotropic Robin problem for the FPE in the half-plane is available, so we compare
the statistics of the simulated trajectories with a numerical solution of the FPE. The
latter is constructed by the stable Crank–Nicolson scheme on lattice points, where in
each time step the sparse linear system is solved by the conjugate gradient method.

In all numerical experiments the initial point is (x0, y0) = (0.3, 0), and the statis-
tics are collected at time T = 0.5. We choose the reactive constant κ = 1 and the
diffusion matrix B in (4.1),

B =

(
0.3 0.4
0 1

)
,

which gives the anisotropic diffusion tensor

σ = BBT =

(
0.25 0.4
0.4 1

)
.

We simulate n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4 in each
experiment.
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Fig. 5. The marginal density of x(T ) with no drift and correct oblique reflection (the first
experiment). The numerical solution of the FPE (blue) with grid size Δx = 0.01 and estimates from
the simulation of n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4.

In the first experiment the drift vanishes (a = 0). The normal n = (1, 0) and the
conormal σn = (0.25, 0.4) point in different directions. The simulated trajectories are
reflected in the conormal direction according to the prescription (4.25). The simulated
and the numerical solutions of the FPE give the marginal densities shown in Figures
5 and 6. Figure 5 shows the marginal density of x(T ),

p(x, T |x0, y0) =

∫ ∞

−∞
p(x, y, T |x0, y0) dy,

while Figure 6 shows the marginal density of y(T ),

p(y, T |x0, y0) =

∫ ∞

0

p(x, y, T |x0, y0) dx.

Table 2 gives the computed survival probability and indicates the convergence rate.
We illustrate the importance of using the correct reflection law in the second

experiment, in which the simulated trajectories are reflected in the normal direction
n = (1, 0). Clearly, the marginal density of x(T ) coincides with that of the first
experiment, because both oblique and normal reflections have the same x-coordinate
(see (4.6)). However, the plot of the marginal density of y(T ) differs significantly from
that in the previous experiment. It is apparent from the comparison to the numerical
solution of the FPE that the simulation does not recover the Robin boundary condition
in the limit Δt → 0 (see Figure 7). Note that the peak of the density is at y > 0,
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Fig. 6. The marginal density of y(T ) with no drift and correct oblique reflection (the first
experiment). The numerical solution of the FPE (blue) with grid size Δx = 0.01 and estimates from
the simulation of n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4.

Table 2

Survival probability for a = 0. The third column lists the error between the numerical value
of the survival probability psur = 0.6799545 from the solution of the FPE and its estimate nsur/n
from the simulation. The error decreases by about

√
10 whenever Δt is decreased by an order of

magnitude, indicating the convergence rate
√

Δt of the simulation.

Δt nsur psur − nsur/n

10−1 5986662 0.0814708
10−2 6449991 0.0351379
10−3 6707318 0.0094052
10−4 6775672 0.0025698

though the reflection is normal. This is due to the anisotropy of the diffusion tensor,
which causes the probability flux density vector to have a positive y component.

In the third experiment the drift is the constant vector a = (−1, 0), and the dif-
fusion tensor is as in the first experiment. The density is shifted toward the boundary
(see Figures 8 and 9). The results are summarized in Table 3.

6. Summary and discussion. We have defined a diffusion process with par-
tially reflecting boundary as a limit of Markovian jump processes generated by the
Euler scheme for the dynamics in a half-space with partial absorption of exiting tra-
jectories and partial oblique reflection in the boundary. We derived an expression
for the radiation constant in the Robin boundary condition for the one-dimensional
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Fig. 7. The marginal density of y(T ) with no drift and with normal reflection (the second
experiment). The numerical solution of the FPE (blue) with grid size Δx = 0.01 and estimates from
the simulation of n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4.

Fokker–Planck equation for the case of diffusion with variable drift and diffusion coef-
ficients, as a function of the absorption probability. We found that the Euler scheme
for a diffusion in a half-space with variable drift and constant anisotropic diffusion has
to be reflected in a particular oblique direction in order to recover the Robin boundary
condition. Also for this case we found the radiation “constant” as a function of the
local absorption probability on the boundary. We found a boundary layer of width
O(

√
Δt) in the pdf of the Euler scheme and solved the boundary layer equation, which

is of Wiener–Hopf type.
The boundary layer of pΔt(y, t) makes the calculation of the boundary flux non-

trivial. The net boundary flux of the simulation profile pΔt(y, t) is

(6.1) −JΔt(0, t) = lim
Δt→0

1

Δt

P
√

Δt√
4πσΔt

∫ 0

−∞
dy

∫ ∞

0

pΔt(x, t) exp

{
− (x− y)2

4πσΔt

}
dx,

which is the probability of the trajectories that propagate out of the domain per unit
time, discounted by the probability of trajectories returned into the domain by the
partially reflecting Euler scheme. Changing the order of integration and then changing
the variable of integration into z = x/2

√
σΔt gives

(6.2) −JΔt(0, t) = P
√
σ

∫ ∞

0

erfc(z)pΔt(2z
√
σΔt, t) dz =

P
√
σ√
π

p
(0)
BL(0, t) + O(

√
Δt).
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Fig. 8. The marginal density of x(T ) with drift a = (−1, 0) and correct oblique reflection (the
third experiment). The numerical solution of the FPE (blue) with grid size Δx = 0.01 and estimates
from the simulation of n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4.

This straightforward calculation of the flux gives the correct radiation constant, pro-
vided that

(6.3) p
(0)
BL(0, t) = p

(0)
OUT (0, t).

The latter, however, depends on the mode of reflecting a trajectory from x′ outside to
x′′ inside the domain. We have shown that for x′′ = −x′ the provision holds; however,
for other schemes, e.g., x′′ = −αx′ (α 
= 1), the provision (6.3) fails in general, though
(6.2) still holds. On the other hand, the differential form of the flux, (1.4), has to be
obtained from (6.1) in the limit Δt → 0, which is not the case for pΔt(y, t), though
it is for pOUT (y, t). This shows up in spades in the multidimensional case, because
although (6.3) holds for any direction of reflection, the differential form of the flux is
obtained in the limit only if the correct direction of oblique reflection is chosen.

The generalization of the multidimensional case to domains with curved bound-
aries and to a variable diffusion tensor σ(x, t) is not straightforward and will be done
separately. Note that if the diffusion tensor is constant, but anisotropic, a local orthog-
onal mapping of the boundary to a plane converts the diffusion tensor from constant
to variable, as can be seen from Itô’s formula. However, as mentioned in section 1, in
the most common case of constant isotropic diffusion, our result extends to domains
with curved boundaries because the mapping leaves the Laplacian unchanged, though
the drift changes according to Itô’s formula. In this case the vector v coincides with
the normal n.
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Fig. 9. The third experiment (a = (−1, 0), correct oblique reflection): y-marginal den-
sities. The numerical solution (blue) is compared to four simulated solutions (with time steps
Δt = 10−1, 10−2, 10−3, 10−4). n = 107. Resolution: Δx = 0.01.

Table 3

Survival probability for a = (−1, 0). The third column lists the error between the numerical
value of the survival probability psur = 0.3722893 from the solution of the FPE and its estimate
nsur/n from the simulation.

Δt nsur psur − nsur/n

10−1 2541947 0.1180946
10−2 3399528 0.0323365
10−3 3632622 0.0090271
10−4 3693905 0.0028988
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