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The study of the diffusive motion of ions or molecules in confined
biological microdomains requires the derivation of the explicit
dependence of quantities, such as the decay rate of the population
or the forward chemical reaction rate constant on the geometry of
the domain. Here, we obtain this explicit dependence for a model
of a Brownian particle (ion, molecule, or protein) confined to a
bounded domain (a compartment or a cell) by a reflecting bound-
ary, except for a small window through which it can escape. We call
the calculation of the mean escape time the narrow escape prob-
lem. This time diverges as the window shrinks, thus rendering the
calculation a singular perturbation problem. Here, we present
asymptotic formulas for the mean escape time in several cases,
including regular domains in two and three dimensions and in
some singular domains in two dimensions. The mean escape time
comes up in many applications, because it represents the mean
time it takes for a molecule to hit a target binding site. We present
several applications in cellular biology: calcium decay in dendritic
spines, a Markov model of multicomponent chemical reactions in
microdomains, dynamics of receptor diffusion on the surface of
neurons, and vesicle trafficking inside a cell.

molecular trafficking | mean first passage time | random motion |
cellular biology | small hole

he function of biological microdomains, and specifically

neurobiological microstructures, such as dendritic spines, is
largely unknown, and much effort has been spent in the last 20
years to unravel the molecular pathways responsible for the
maintenance or modulation of cellular functions and, ultimately,
to extract fundamental principles (1, 2). The cytoplasm of
eukaryotic cells is a complex environment where dynamic or-
ganelles, cytoskeletal network, and soluble macromolecules are
organized in heterogenous structures and local microdomains
(3). These submicrometer domains may contain only a small
number of molecules, of the order between just a few and up to
hundreds. This is the case in microdomains like endosomes (4),
synapses (5), and the sensory compartments of cells, such as the
outer segment of photoreceptors, but at such low molecular
number, the addition of external chemical binding dye mole-
cules, necessary for experimental purposes, may alter the sig-
naling pathway and thus modify the physiological phenomenol-
ogy. This circumstance calls for physical and mathematical
modeling to separate the interfering effects, and ultimately the
physical-mathematical model is expected to be a fundamental
tool for both the quantitative and qualitative study of chemical
reactions in microdomains.

Because of the small number of molecules involved in chem-
ical reactions occurring in extremely confined domains (such as
endoplasmic reticulum, caveolae, and mitochondria, to obtain
quantitative information about chemical processes, modeling
and simulations seem to be inevitable to reconstruct the mi-
crodomain’s environment and to obtain precise quantitative
information about the molecular dynamics. However, most of
the existing models are based on continuum concepts, in which
the medium is assumed homogeneous and the number of
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molecules involved is assumed sufficiently large, which is not the
case here.

To derive principles and to guess the role of a microdomain,
we have developed various computations to quantify precisely
the role of the geometry in molecular diffusion. The narrow
escape problem deals with computing the mean time that a
Brownian particle takes to diffuse to a small absorbing portion
of an otherwise reflecting boundary of a given domain. As the
absorbing boundary shrinks to zero, the mean time to absorption
diverges to infinity, rendering the narrow escape a singular
perturbation problem. Once formulated in terms of boundary
value problems for partial differential equations, their singular
perturbation analysis yields explicit asymptotic expressions for
the mean escape time, depending on the diffusion coefficient,
the ambient potential, dimensions, and the local and global
geometrical properties of the domain, and its boundary.

The narrow escape or the small hole computation leads to the
development of Markov models of chemical reactions and
accounts for the small number of molecules involved. After
presenting the modeling framework of the narrow escape, we
discuss several applications of the present theory to calcium
dynamics in dendritic spines, the forward binding rate of chem-
ical reactions, receptor trafficking on the surface membrane of
cells, and an application to vesicle trafficking in neuronal growth.

Formulation and Mathematical Results

We assume that biological particles (e.g., an ion, molecule, or
receptor) diffuse in a field of force (such as electrical potential)
and that their motion can be described by the overdamped
Langevin—-Smoluchowski (6) equation:

1
¥ P = V2D, [1]

where

kBT
D=— [2]
mry

v is the friction coefficient per unit of mass, F(x) the force per
unit of mass, T is absolute temperature, m is the mass of the
molecule, kg is Boltzmann’s constant, and w is a vector of
independent 8-correlated Gaussian white noise, which represent
the effect of the thermal motion. The derivation of the Smolu-
chowski equation (Eq. 1) is given in refs. 7 and 8 for the
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Fig. 1. The escape of a Brownian trajectory through a small window.

three-dimensional motion of a molecule in solution, where
Einstein’s formula (Eq. 2) can be applied. In two dimensions,
such as for diffusion of a cylinder in the surface of a membrane,
the diffusion coefficient is given by the Saffman-Delbriick

formula (9)

where p is the viscosity of the solution, u' is the viscosity of the
membrane, & the length of the cylinder, a is its radius, and yg is
Euler’s constant 0.5772. . ..

A generic problem in cellular biochemistry is to estimate the
mean sojourn time of a Brownian particle in a bounded domain
Q) before it escapes through a small absorbing window 9€),, in its
boundary 9€). The remaining part of the boundary 9{}, = 9} —
dQ), is assumed reflecting for the particle. The reflection may
represent a high potential barrier on the boundary, or an actual
physical obstacle. The opening may represent a narrow corridor
in the barrier or a defect in the physical obstacle (see Fig. 1). The
biological interpretation of the mean sojourn time is discussed
below.

The escape time can be estimated asymptotically in the limit

oy
o

€ < 1. [4]

The probability density function (pdf) p. (v, ¢) of the trajectories
of Eq. 1 is the probability per unit volume (area) of finding the
Brownian particle at the point x at time ¢ prior to its escape. The
pdf satisfies the Fokker—Planck equation,

ap(x, t) 1 A
T = DAps(xa t) - ; V.[ps(x7 I)F(x)] = ‘cps(x: t)7 [5]
with the initial condition

ps(x7 0) = pO(x)7 [6]
and the mixed Dirichlet-Neumann boundary conditions ¢ > 0

Pelx, 1) =0, forx € 9Q,, [7]

ap.(x, t (X, 1
e D p )

an F(x)n(x) =0, forx€ dQ,, [81

where po(x) is the initial pdf [e.g, po(x) = 1/|]Q| for a uniform
distribution or py(x) = 8(x — y), when the molecule is initially
located at position y]. In the later case, the function

us(v)=f dxf po(x, tly)dt, [91
Q 0
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where p. (x, t]y) is the pdf conditioned on the initial position,
represents the mean conditional sojourn time. It is the solution
of the boundary value problem (7)

1
L*u,(y) £ DAu(y) + ;F(y)-Vus(y) =—1,foryec Q [10]

u(y) =0, forye oQ, [11]

au(y)
on

=0, forye s, [12]

Eq. 12 is the adjoint boundary condition to Eq. 8. The survival
probability is

S,(t) —f Da(x, t)dx, [13]
Q
where
Delx, 1) = f Pe(x, tly)po(y)dy. [14]
Q

The density p.(x, t|y) can be computed by expanding in eigen-
functions

©

Pelx, 1]y) = 2 ai(e) i (X)d (y)e M, [15]

i=0

where A;(g) (resp. ¥, ) are the eigenvalues (resp. eigenfunctions)
of the Fokker—Planck operator £in Eqgs. 5, 7, and 8 and the
coefficients a,(¢) depend on the initial function py(y). The mean
sojourn time can be expressed using the expansion represented
by Eq. 15 (7),

- ai(e)
() = 2 = i), [16]
i=0 !
When & > 0, the eigenvalues are strictly positive so that the
steady state is

lim p.(x, t|]y) =0

t—>x

(the Brownian particle escapes in finite time with probability 1)
and the mean sojourn time is asymptotically 1/Ao(e) when ¢ <<
1. Thus Ag(e) — 0 as ¢ — 0. For free Brownian motion [with
F(x) = 0], M(e) = O(1) in this limit. Approximating the pdf,
solution of Eq. 8 by

1
Pex, 1) = o) Po(x) Po(y)e """ for 1 > o)’ [17]

shows that under the small hole approximation, the survival
probability is exponentially distributed,

S,(f) = e M@ for t > L [18]
¢ Ai(e)’

because

ay(e) :f polx)dx = 1, f Po(x)dx =1, [19]
Q Q
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due to normalization. If the medium contains initially Ny inde-
pendent particles, the population N(¢) decays exponentially with
rate Ao(e),

N(t) = NoS,(t) ~ Noe ™ for e < 1, > [20]

1
Ai(e)”
The asymptotic solution of Egs. 10-12 depends on the dimension
(2 or 3) and the local geometry near the small opening (10-13).
When the boundary of the domain is regular, the escape time u.(y)
is given for ¢ << 1 (e is the angle of the absorbing boundary) by

A 1
—In—+0(1) forn=2
7D &
u,(y) = 1% [21]
A £ =
4aD [1+0(1)] forn =3,

where a represents the small radius of a geodesic disk located on
the surface of the domain () and depending on the dimension,
A (resp. V) is the surface (resp. volume) of the domain ). The
function u.(y) does not depend on the initial position y, except
for a small boundary layer near 9(),, due to the asymptotic form
found in refs. 10-13.

In dimension 2, the first-order term matters, because, for
example, if e = 1071, then In 1/ =~ 2.3, so the second term in the
expansion (Eq. 21) is comparable to the leading term. The
second term can be found when () is a circular disk of radius R
and the particle starts at the center (12, 13), as

R? 1 1
E[1'|x(0)=0] :H logg+log2+z+ O(e) |.

[22]

The escape time, averaged with respect to a uniform initial
distribution in the disk, is given by

2

1 1
E7=5[10g;+log2+§+ 0(8)]- [23]

The geometry of the small opening can affect the escape time:
If the absorbing window is located at a corner of angle «, then

Ut o]
Er= - llog_+0(1)|. [24]

More surprising, near a cusp in a two-dimensional domain, the
escape time ET grows algebraically, rather than logarithmically:
In the domain bounded between two tangent circles, the escape
time is

SR
ET—m g+0(1) 5 [25]

where d > 1 is the ratio of the radii. Finally, when the domain
is an annulus, the escape time to a small opening located on the
inner circle involve a second parameter, which is B = (R1/Rz) <
1, the ratio of the inner to the outer radii, the escape time,
averaged with respect to a uniform initial distribution, is

T= D 0g8+og +2B +21_320g3
1 2 4 2
— —R5+ O(e, BY)R5. [26]

4

Eq. 26 contains two terms of the asymptotic expansion of £, and
2¢ is the angle of the absorbing boundary. The case 8 ~ 1
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remains open, and, for general domains, the asymptotic expan-
sion of the escape time remains an open problem, as does the
problem of computing the escape time near a cusp point in
three-dimensional domains. For Brownian motion in a field of
force F(x) # 0 the gap in the spectrum is not necessarily between
the first and the second eigenvalues, depending on the relative
size of the small hole and force barriers the particle has to
overcome in order to escape. The escape stream is not neces-
sarily Poissonian (14).

Calcium Diffusion in Dendritic Spines

Dendritic spines are small protrusions located on the surface of
a neuronal dendrite; they receive most of the excitatory inputs,
and their physiological role is still unclear. The number and the
shapes of the spines are highly correlated with cortical and
synaptic plasticity (15, 16). Moreover, calcium dynamics in
dendritic spines is a fundamental signal, which can trigger
physiological changes involved in remodeling the synaptic weight
(1, 2, 5). The small hole computation of a single Brownian
particle can be used to estimate the rate of calcium clearance as
a function of the dendritic spine geometry. The present com-
putation improves the approximation of this rate attempted in
refs. 17 and 18, which was used in many studies to interpret
experimental data (19, 20).

Calcium diffusion involves many pathways (15): It can bind to
calcium buffers or calcium binding molecules, enter the endo-
plasmic reticulum, or be pumped out through exchangers or
pumps. The escape time determines much of the time course of
calcium dynamics and its dependence on the geometry of a
dendritic spine. We approximate the shape of a dendritic spine
by a spherical head () connected to the rest of the dendritic shaft
by a cylindrical neck of length L and radius a. In this approxi-
mation, the radius of the neck is small relative to that of the spine
head, so the mean time for a diffusing ion (which cannot return
to the head once it is in the neck) to escape a dendritic spine by
diffusion alone can be decomposed into the mean time to find
the small absorbing window (the neck) plus the mean time to
escape into the dendritic shaft. The former is approximated by
Eq. 21, while the second time is L%/2D, which gives the mean
escape time as

v o L?

T*m-l‘i.

[27]

According to Eq. 18, the time course of calcium dynamics can be
approximated by a single exponential with rate constant A = 1/7.
For example, in a dendritic spine of length L = 1 um, volume V' =
1 um?, radius @ = 0.1 wm, and diffusion coefficient D = 400
wm?/s, we have (V/4aD) = 6.25 ms, while (L%2D) = 1.25 ms;
thus, the total time is 7 ~ 7.5, which gives an estimate of the
diffusion time scale in spine (21). The influence of pumps on
calcium dynamics has been investigated in ref. 22. It was shown
that they affect the dynamics by shifting the extrusion rate. To
compute the shift, consider N pumps with an identical extrusion
rate, & uniformly distributed along the neck. Then the total
extrusion rate is

1
A~;+ éN. [28]

It is known that the geometry of the dendritic spines changes
depending on variables such as exposure to calcium concentra-
tion (15, 19, 21). That is, dendritic spines can regulate dynam-
ically their geometry and possibly the distributions and the
number of pumps. Thus they dynamically regulate the fraction of
calcium reaching the dendrite. The ratio of pumped ions to
arriving ions can be evaluated according to several parameters.
We demonstrated in ref. 22 that the distribution of pumps along

Schuss et al.
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the spine neck can modulate such a ratio. On the other hand,
given a fixed number of pumps, there exists a critical length such
that above it the spine head is effectively isolated and below it
the spine head conducts calcium (21).

Finally, the radius of the spine neck does not play a significant
role in calcium diffusion inside a thin spine neck when it is
approximated as a small cylinder, because this parameter enters
only in the second exponential in the sum (Eq. 15), while the
neck length directly enters the first one. Using the narrow escape
computation, it is possible to compute the effect of crowding ions
in a dendrite, which modifies the calcium time course by directly
changing the expression of the first exponential decay rate.

Markov Model of Chemical Reactions with a Small Number
of Molecules

The forward binding rate of a chemical reaction as it was
previously computed does not make much sense when only a few
molecules are involved. Indeed, the widely used Smoluchowski
formula k = 27RD[X] (6) for the binding rate k of Brownian
particles with diffusion coefficient D and concentration [X],
improved in refs. 23 and 24, assumes infinite medium and a
spherical absorbing or partially absorbing surface of radius R.
These assumptions obscure the role of the restricted geometry of
microdomains and thus cannot adequately describe chemical
reactions in microdomains. As we will see now, our explicit
analytical formula (Eq. 21) for the mean time to diffuse to a
small absorbing (binding) portion of the boundary of a microdo-
main determine the explicit dependence of k on the shape of the
domain.

In a closed microdomain (), a chemical reaction that involves
only a few species, such as

ky
M=M,, [29]
k-

can be described in terms of a Markov process. We assume that
M molecules (total number is M) are diffusing inside a domain
Q) and can be bound to a substrate S consisting of a single site
So = 1, of small size a, located on the boundary [the general
analysis of a chemical reaction of a ligand with a substrate is
given in supporting information (SI) Appendix 1. We assume
here that the number of M molecules that can be bound to S is
not limited. The mean time for a diffusing molecule to unbind
is (1/k—1) and depends only on the local potential (7, 25). It is
given by the Arrhenius law

k,1 — Ce*AE/kBTe’ [30]

where C is a constant that depends on the temperature T, the
electrostatic potential barrier AE generated by the binding
molecule, and the friction coefficient, while k; represents the
forward rate, which is given by the small window approximation
a<<1as

I = 4aD
Lol
The probabilities px(f) = Pr{M,(t) = k} that there are exactly k
Mj, molecules produced at time ¢ satisfy the master equations (see
SI Appendix 1)
Pit) = — (ki + Mo — Kk pi(t) + [k_1(k + 1)]px, (0
+ [ki(My — k + D]py_ () fork =1, [31]
while, for k = 0,

Po(t) = — Mokipy(t) + k_1p1(2),
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and, for k = M,
Pay(t) = — Mok _1par (1) + kipagy—1 (D).

The mean and the variance of p; are defined, respectively, as

My Mo
M@) = 2 kpi(), o2() = X, KPpilt) — M(@).

k=1 k=1

For example, the steady-state mean and variance are computed
by directly solving the recurrence (Eq. 31) with the normali-
zation condition 3} px = 1. The steady-state probabilities are
(C}y, are the binomial coefficients) px = pi () = Chy /(1 +
ki/k—1)% (ki/k-1)*, and, after some computations, we get for the
moments

Mo
ME) = S kpulee) = My = My

Pr Ok tky 4aD
S ar

,daD

k_iky el

2 — A2 — A2
o (OO) MO (k,1 + kl)z MO (k N 4Q7D>2
el

This framework is sufficiently general to include the Michaelis—
Menten reaction theory and modulation of the reaction due to
push—pull reactions. When the microdomain () is open and
diffusing molecules arrive at random times, the time course of
any chemical reaction inside () is affected, yet the properties of
the moments can be estimated analytically (26).

Receptor Trafficking on a Neuronal Membrane Near
a Synapse: Contribution to the Synaptic Weight

The synaptic weight between a pre- and a postsynaptic neurons
depends in part on the number of postsynaptic receptors. In
general, starting from a presynaptic neuron, the postsynaptic
current depends on the type k, the number Ny, the conductance
v of the receptors, and the probability pi(#|f) that channel k
opens, conditioned on the firing rate f. The conditional proba-
bility p«(¢|f) depends on such diverse biophysical parameters as
the presynaptic terminal dynamics and up to the gating proper-
ties of the channel, which depend on its molecular structure. The
conductivity y; controls the flux of ions through a channel of
type k, and it depends mainly on the molecular properties of the
primary subunit structure. The postsynaptic current is given by

16) = X v Nepiltlf). [32]
k

There is experimental evidence that channels are not static, so
the number of channels Ny in a given domain is not a constant
but rather fluctuates in time. Glutamatergic and GABAergic
receptors on the surface of neurons, as well as other receptors,
traffic in and out of a fundamental microstructure called the
postsynaptic density (PSD) (5, 27, 28). The receptor movement
has been approximated so far as mostly Brownian, with mea-
surable sojourn times (confinements) in small subdomains (Fig.
2). When the confining restriction is due to a corral zone around
the receptor, the mean escape time, given by Eq. 21, is a good
approximation of the measured confinement time (26). Indeed,
for a diffusion constant D = 0.004 um?/s, a corral zone approx-
imated by a disk of radius R = 0.25 um, a ratio of absorbing to
total boundary e = 1073/(2 - - 0.25), according to Eq. 21 the
time in the corral area is 7 =~ 125 s, which is comparable with the
experimental observations given in ref. 27. This result confirms
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Fig. 2. Homogenization of the PSD. (Right) Scattered free, bound, and
scaffolding molecules and other obstacles and fences in the PSD. (Left) A
course-grained model with concentrated free (green), bound (orange), and
scaffolding and other molecules (brown) (see text). [Reproduced with permis-
sion from ref. 29 (Copyright 2006, Biophysical Society).]

that barrier restriction can be responsible for the long time
confinement of Brownian receptors. However, inside the PSD
region, receptors can be anchored to the membrane when they
bind to scaffolding proteins. Fig. 2 represents a coarse-grained
model of the PSD into three compartments, where the free
binding sites and the bound sites have been combined into the
green annulus and orange disk, respectively; the grey annulus
represents the domain of free diffusion of the receptors; and the
scaffolding molecules, as well as many other structures, such as
transmembrane molecules, submembranous cytoskeleton-
constituting obstacles, and fences are grouped into the brown
boundary. The total number of scaffolding molecules (orange
plus green) is constant, but the proportion of bound and
unbound sites depends on the number of receptors in the PSD.
The peripheric brown fence is connected to the extrasynaptic
region through a small hole that restricts the dynamics of the
receptors. A random trajectory of a receptor (blue) has been
drawn in both pictures (black broken line). K; is the forward
binding rate of a receptor to the scaffolding molecules (which
depends on the total number of scaffolding molecules and the
mean time it takes to enter this domain), K_; is the backward
binding rate.

The Markov model, combined with the narrow escape ap-
proximation, can account for the interactions of receptors with
the scaffolding molecules and can give an estimate of the mean
and variance of the number of bound receptors at synapses, as
well as of the chemical reactions described in the previous
paragraph (29). The computation is based on four assumptions.
(i) The stream of receptors entering the synaptic region is
Poissonian with rate equal to the inward flux J. (if) The escape
rate of receptors from the PSD is the reciprocal of the escape
time 7 ~ (|]Q|/#D) In(1/¢), given by Eq. 21. This assumption is
motivated by the fact that transmembrane molecules, such as the
one involved in adhesion or such as those that bind receptors,
may act as pickets and that submembranous molecules can create
a fence (see Fig. 2) (30). Finally, (iii) a receptor can bind a free
scaffolding molecule at rate k», according to the standard law of
chemical reactions, and (iv) they can dissociate from a scaffold-
ing molecule with a rate k—_,. Using assumptions i—iv, the
steady-state Markov model balances the flux J with the number
of escaping receptors. The number of bounded receptors and
their mean can be estimated from the model as a function of the
flux (see SI Appendix 1) (29). The number of bound receptors Ry,
is given by

Q1
ko pIng
1 1
Jinkzﬁlng"' k_,

R, = S. [33]

16102 | www.pnas.org/cgi/doi/10.1073/pnas.0706599104

Recent experimental findings (D. Choquet and A. Triller, per-
sonal communication) have demonstrated that the receptor
movement is modulated by neuronal activity and depends on the
type of receptors, which results in a modulation of the flux Jj,.

Residence Time of a Receptor in the Synapse

The calculation of the mean time a Brownian molecule spends
inside a microdomain () before it escapes through one of the
small holes on the boundary, when it can be caught and released
by a scaffolding molecule inside (), is a generalization of the
narrow escape problem described above. This mean time de-
pends on several parameters, such as the backward binding rate
(with the agonist molecules), the mean escape time from the
microdomain, and the mean time it takes for the molecule to
reach the binding sites (forward binding rate). This mean time
is usually called the dwell time, and experimental measurements,
such as FRAP (fluorescent recovery after photobleaching), are
used for its estimate.

We assume for simplicity that the microdomain ) can be
decomyposed into a part where the receptor is diffusing freely
and a part where it is bound to the scaffolding molecule (see ST
Appendix 1). Under these assumptions the dwell time can be
computed by counting all the possibilities of a Brownian mole-
cule to exit after 0,1,. . . bindings. Summing the probabilities of
all these events, we obtain a geometric series and the dwell time
E(7p) is calculated to be

B =@+ " (@ + ) [34]

8

(1) is the mean time to exit when no binding occurs, (T') is the
mean time to enter the binding site area, m; is the probability to
bind before exit, given a uniform initial distribution, and k_; is
the backward binding rate.

An explicit expression for the dwell time (Eq. 34) is given in
SI Appendix 1. The mean, M, = ((1 — ms)/ms), and the variance,
Ve = ((1 — ms)/ms?), of the number of bounds made by a single
molecule before it exits ) can be computed in the limit ¢ << 1
fixed, but for uniform B << 1, (SI Appendix 1),

i 1
og —~
B

mg= +o(1).

1
logE-i- 210gg+21n2

The Reaction Rate with Narrow Escape and Thermal Activation

Recently (14), Eq. 10 was solved for a bounded domain, whose
boundary contains a small absorbing window, at x,, but the
particle diffuses in a field of force with a single attractor at x,,
and the potential ¢ forms a well inside the domain. In the special
case of a small circular window and small noise, the rate is given
asymptotically by

dawiwyws [35]

Ks = "=, ——=¢ s
* T m)Py\keT

where a is the radius of the window, w; are the frequencies at x,,,
AE = ¢(xp) — ¢(x). Note that AE is not the barrier height. The
activation rate (Eq. 35) is of Arrhenius form and has two
contributions: One is due to an activation over the potential
barrier, and the other is due to the geometry of the absorbing
window alone. Geometrical properties of the domain, such as its
volume, are not included in the leading order asymptotics of the
reaction rate. In dimension 2, the formula becomes

Schuss et al.
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ksT V/wlw2 ¢ ~AE/keT

k
2y [lné-ﬁ- 0(1)]

, [36]

where ¢ is given in Eq. 4.

Vesicle Trafficking in Cells

Neuronal development involves axonal and dendritic growth,
attributed to the delivery of trafficking vesicles at a small portion
of the cell membrane (30). Vesicle movement can be described
by a stochastic equation, which accounts for intermittent switch-
ing between a directed motion on microtubules and free diffu-
sion in the bulk. A simple model assumes a constant drift
component, obtained by an homogenization procedure. Then
the rate of arrival of vesicles to the location where a protrusion
is initiated, is given by a formula similar to Eq. 35, but with
repulsive, rather than attractive, drift. For a circular model of a
cell and uniform velocity along microtubules, the rate of vesicle
arrival at the protrusion is

No 4NV,
Ks = S [371
where () is the domain of the cell, S is the surface of the external
membrane, & is the radius of the (circular) protrusion, Ny is the
number of steady state vesicles, and V/; is the drift velocity along
microtubules. For a cell of radius R = 5 um, a surface S = 47
R?, 8 = R/60, a vesicular velocity V; = 0.083 m/s and N, = 6,000,
we find a rate per vesicle ks = 0.5, in good agreement with the
measured rate given in ref. 31. This rate contributes to the
dendritic growth.
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Future and Perspectives

The narrow escape problem is ubiquitous in cellular biology,
because it concerns the random time between the release of a
given particle in a cell and the time it activates a given protein
on the cell membrane. The narrow escape problem has many
possible extensions. For example, it can be used for the estab-
lishment of principles describing viral trafficking in a host cell
(32). In these applications, virus transport can be modeled by a
stochastic equation with a small absorbing window that repre-
sents a small pore located on the surface of the nucleus.
Reaching this goal is critical for DNA viruses, before replication
can start.

Another problem that can be addressed in the small-hole
framework consists in computing the time needed for a tran-
scription factor to find its binding site on a DNA fragment.
Indeed, when the search involves three-dimensional dynamics,
the narrow escape formula derived for dimension 3 can be used
to incorporate the effect of the nucleus geometry on the search
time.

Finally, the narrow escape problem may be a powerful tool in
nonviral gene delivery. During intracellular trafficking, plasmid
DNA has to diffuse through a crowded (33) and hostile (34)
environment before escaping into the nucleus. A realistic quan-
titative description of DNA transport into the cytoplasm that
accounts specific and nonspecifics local interactions is still
lacking. Being able to account for specifics protein structure
should be one of the goals for a future narrow escape theory
concerning trafficking at the cell level. In that perspective, the
narrow escape theory should become a tool for the study of gene
delivery, and we hope that such model will help designing
improved synthetic vectors.
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