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ABSTRACT
The multireference alignment problem consists of estimat-
ing a signal from multiple noisy shifted observations. In-
spired by existing Unique-Games approximation algorithms,
we provide a semidefinite program (SDP) based relaxation
which approximates the maximum likelihood estimator (MLE)
for the multireference alignment problem. Although we show
this MLE problem is Unique-Games hard to approximate
within any constant, we observe that our poly-time approxi-
mation algorithm for this problem appears to perform quite
well in typical instances, outperforming existing methods.
In an attempt to explain this behavior we provide stabil-
ity guarantees for our SDP under a random noise model on
the observations. This case is more challenging to analyze
than traditional semi-random instances of Unique-Games:
the noise model is on vertices of a graph and translates into
dependent noise on the edges.

Interestingly, we show that if certain positivity constraints
in the relaxation are dropped, its solution becomes equiv-
alent to performing phase correlation, a popular method
used for pairwise alignment in imaging applications. Fi-
nally, we describe how symmetry reduction techniques from
matrix representation theory can greatly decrease the com-
putational cost of the SDP considered.

Categories and Subject Descriptors
F.2.0 [ Theory of Computation]: Analysis of Algorithms
and Problem Complexity—General ; G.0 [Mathematics of
Computing]: General
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1. INTRODUCTION
The multireference alignment problem consists of esti-

mating an unknown signal x from multiple noisy cyclically-
shifted copies. More precisely, we are interested in the prob-
lem of estimating an unknown template vector x ∈ RL from
N measurements y1, . . . , yN of the form:

yi = Rlix+ ξi ∈ RL, (1)

where ξi ∼ N (0, σ2IL) is gaussian white noise with vari-
ance σ2, and Rl denotes the index cyclic shift operator
(x1, . . . , xL) 7→ (x1−l, . . . , xL−l).

The difficulty of this problem resides in the fact that both
the template x and the shifts l1, . . . , ln are unknown (more-
over, no model is presumed a-priori for their distribution).
If the shifts were known, one could easily estimate x by un-
shifting the observations and averaging them. Motivated by
this fact we will focus on the problem of estimating the shifts
l1, . . . , ln (up to a global shift).

This problem has a vast list of applications. Alignment
is directly used in structural biology [8] [34]; radar [36] [29];
crystalline simulations [32]; and image registration in a num-
ber of important contexts, such as in geology, medicine, and
paleontology [11] [12]. We will discuss below various meth-
ods to solve this problem, some of which are used in these
communities (see also Appendix A).

Perhaps the most näıve approach to estimate the shifts
in (1) would be to fix one of the observations, say yi, as a
reference template and align every other yj with it by the
shift δij minimizing their distance

δij = argmin
l∈ZL

‖Rlyj − yi‖2. (2)

This solution works well at a high signal-to-noise ratio
(SNR), but performs poorly at low SNR. A more democratic
approach would be to calculate all of the pairwise relative
shift estimates δij before attempting to recover the shifts



{li}. The shifts could then be estimated by minimizing

min
l1,...,lN∈ZL

N∑
i,j=1

∣∣∣e( liL)− e( lj+δijL

)∣∣∣2 , (3)

where e(x) = e2πıx denotes the classical Fourier basis func-
tion. This approach is known as angular synchronization [31,
3] and (3) can be approximated via a SDP-based relaxation
or a spectral method.

The main shortcome of these methods is that the only
information they use from the observations {yi} is the best
relative shifts δij . This means that the performance of a
given choice of {li} can only be evaluated by comparing
li − lj with δij (in shift space) across pairs (i, j). This does
not take into account the cost associated with other possi-
ble relative shifts of yi and yj . On the other hand, for a
candidate solution {li}, relating R−liyi and R−liyj (in sig-
nal space) would take into account information about all
possible shifts instead of just the best one (2). The quasi
maximum likelihood estimator (Section 2) attempts to do
exactly that by solving the minimization problem:

min
l1,...,lN∈ZL

N∑
i,j=1

∥∥R−liyi −R−ljyj∥∥2 . (4)

Finding the MLE (4) is a non-trivial computational task
because its parameter space is of exponential size, and the
likelihood function is non-convex. While one can apply op-
timization methods such as gradient descent, simulated an-
nealing, or expectation-maximization (EM), these are only
guaranteed to find local minima of (4), but not the global
minimum.

In this paper we take a different approach and propose
a semidefinite relaxation for the quasi maximum likelihood
problem (4). This particular SDP is inspired by an approxi-
mation algorithm designed to solve the Unique Games prob-
lem [7] (Section 3).

Convex relaxations of hard combinatorial problems have
seen many successes in applied mathematics. They became
particularly popular in the last decade with the introduction
of Compressed Sensing, in the seminal work of Donoho, Can-
des, Tao, and others [5, 10]. This idea has since been applied
to a vast list of problems. Semidefinite programming (SDP)
has served as a convex surrogate for problems arising in ap-
plications such as low-rank matrix completion [4], phase re-
trieval [6], Robust PCA [23], multiple-input multiple-output
(MIMO) channel detection [26], and many others. In many
of these applications the same phenomenon is present: for
typical instances, solving the convex problem is often equiv-
alent to solving the original combinatorial problem [1].

Semidefinite relaxations also play a central role in the de-
sign of approximation algorithms in theoretical computer
science. Almost two decades ago, Goemans and Williamson
[13] proposed an SDP based approximation algorithm for the
MAX-CUT problem with approximation ratio αGW ≈ 0.878.
That is, for any instance of the problem, the computed so-
lution is guaranteed to provide performance (in this case, a
cut) at least αGW of the optimum. Many semidefinite re-
laxations have since been proposed as approximation algo-
rithms for a long list of NP-hard problems [35].

In order to better understand the theoretical limitations of
approximation algorithms, substantial work has been done
to establish limits on the approximation ratios achievable by

poly-time algorithms for certain NP-hard problems (hard-
ness of approximation). The Unique Games conjecture by
Khot [16] is central to many recent developments: For δ, ε >
0, it is impossible for a polynomial-time algorithm to distin-
guish between δ-satisfiable and (1 − ε)-satisfiable Unique-
Games instances. A Unique-Games instance consists of a
graph along with a permutations for each edge. The problem
is to choose the best assignment of labels to each vertex such
that as many of the edge permutations are satisfied. The
validity of the UGC would imply the optimality of certain
poly-time approximation ratios, in particular the Goemans-
Williamson constant αGW for the MAX-CUT problem [13,
17].

The best known polynomial time approximation to the
unique games problem [7] is based on an SDP relaxation
of a quadratic programming formulation that uses indicator
variables. We note that this SDP is quite different from the
relaxations normally used in applications (such as those de-
scribed above). In particular, the variable matrix has size
NL×NL and Ω

(
N2L2

)
constraints. The relaxation we pro-

pose consists of an adaptation of this SDP to approximate
the quasi maximum likelihood problem (4).

As we show that it is Unique-Games hard to approximate
(4) within any constant (assuming no noise model on {yi},
see Section 2) it is hopeless to aim for good guarantees for
general instances. However worst case analysis is often too
pessimistic and not indicative of performance observed in
practice. In fact, under the random noise model we assume
for the observations, numerical simulations suggest that the
SDP relaxation performs remarkably well, seeming to out-
perform existing methods. In an attempt to explain this
phenomenon we show that, under our noise model, the SDP
is stable at high SNR levels and even tight at extremely high
SNR levels. By stability, we mean that with high probabil-
ity the solution to the SDP does not deviate much from the
true solution (see Section 4). The stability for this SDP
is particularly interesting as it offers a new challenge in
comparison with previously analyzed random instances of
Unique-Games [2, 20]. This is because our noise model is
on vertices, which translates into dependent noise on the
edges. Still, these results fall short of properly explaining
the remarkable performance that we see in simulations and
more research is needed towards understanding the typical
behavior of this relaxation.

In an attempt to simplify the SDP we also study a version
with fewer constraints. Interestingly, this weaker SDP can
be solved explicitly and is equivalent to the pairwise align-
ment method called phase correlation [14]. This method
does not take into account information between all pairs of
measurements, which suggests that the full complexity of
the Unique-Games SDP [7] is needed to obtain a good ap-
proximation to (4).

The fact that a global shift does not affect the solution
to (4) creates symmetries in our SDP relaxation. In fact,
we leverage such structure, using symmetry reduction tech-
niques to simplify the analysis of the SDP and greatly de-
crease its computational cost. This is particularly relevant
given the high computational cost of state of the art semidef-
inite programming algorithms.

Contributions: Our main contribution is applying tech-
niques from theoretical computer science to a problem from
applied math. We introduce an Unique Games style SDP
relaxation for the alignment problem, that is novel for the



applied math community. From the theoretical computer
science point of view, we introduce a new problem that has
a similar flavor to the Unique Games problem, and show that
a worst case version is at least as hard as Unique Games.
We introduce a natural average case version of this align-
ment problem, aligning several shifted copies of a signal cor-
rupted by independent Gaussian noise. Existing analyses of
semi-random models of Unique Games do not seem to apply
to this problem due to the structure of the noise. We show
that for sufficiently high SNR, the SDP solution is close to
an integer solution. This is a first step to establishing a
signal recovery result which we leave as an open problem.
We believe that future investigations into this problem will
yield interesting insights into the Unique Games SDP and
on dealing with correlated noise in average case analysis.

2. QUASI MAXIMUM LIKELIHOOD ESTI-
MATOR

The log likelihood function for model (1) is given by

L(x, l1, . . . , lN ) =
N log(2π)

2
− 1

2σ

∑
i∈[N ]

‖R−liyi − x‖
2. (5)

Maximizing L is equivalent to minimizing the sum of squared
residuals

∑
‖R−liyi−x‖

2. Fixing the li’s, the minimal value

of L occurs at the average x = 1
N

∑N
i=1R−liyi. Making the

tame assumption that ‖x‖2 is estimable (indeed the norm
is shift-invariant) and thus fixed in (5), maximizing (5) is
equivalent to maximizing the sum of the inner products〈
R−liyi, R−ljyj

〉
across all pairs (i, j). Thus we consider

the estimator

argmax
l1,...,ln∈ZL

∑
i,j∈[N ]

〈R−liyi, R−ljyj〉 (6)

Unfortunately, the search space for this optimization prob-
lem has exponential size. Indeed, assuming no model for the
vectors {yi}, it is NP-hard to find the shifts which maximize
(6), or even estimate it within a close constant factor.

Theorem 2.1. Assuming no model on the observatinos
{yi}, it is NP-hard (under randomized reductions) to find a
set of labels approximating (6) within 16/17 + ε of its opti-
mum value. Furthermore, it is UG-hard (under randomized
reductions) to approximate (6) within any constant factor.

Proof. (outline) We give a randomized reduction from
the class of Γ-MAX-2LIN(q) instances consisting of a set of 2
variable linear equations of the form xi − xj ≡ cij (mod q),
with the goal of choosing an assignment for the variables
which maximizes the number of satisfied equations. We con-
struct a vector yk for every variable xk such that shifts of yk
correspond to an assignment to xk. We pick a random vec-
tor zij corresponding to a constraint on variables xi, xj and
place a copy of zij at specific locations in yi and yj . Shifts
of yi, yj corresponding to satisfying assignments of the con-
straint results in a superposition of the copies of zij . We
choose parameters so that the only non-trivial contributions
to the objective function (6) come from such superposition.
The value of the objective is (within small error) a scaled
version of the number of constraints of the Γ-MAX-2LIN(q)
instance satisfied by the assignment corresponding to the
shifts. Thus hardness results for Γ-MAX-2LIN(q) directly
translate to hardness results for the alignment problem. The
details are given in Appendix C.

The discrete optimization problem (6) may be formulated
using indicator variables as an integer programming problem

argmax
{uik}

N∑
i,j=1

∑
k,l∈ZL

uikujl〈R−kyi, R−lyj〉, (7)

where uik ∈ {0, 1} and, for each i, uik = 1 for exactly one
index k, corresponding to indicator variables uik = δ{li ≡
k}. These requirements can be described with quadratic
constraints (up to global sign, which cannot be fixed by
quadratic constraints)∑

k,l∈ZL

uikujl = 1, i, j ∈ [N ]

uikuil = 0, i ∈ [N ], k 6= l ∈ ZL (8)

uikujl ≥ 0, i, j ∈ [N ], k, l ∈ ZL.

Note that both the objective function (7) and the con-
straints (8) depend only on products of the form uikujl.
This means that we can write the problem in terms of the
Gram matrix U ∈ RNL×NL with entries Uik;jl = uikujl. To
ensure that U ∈ RNL×NL is indeed of the form U = uuT it
suffices to require that U � 0 and rank(U) = 1. This means
that (7) is equivalent to

max
U∈RNL×NL

tr(CU) (9)

subject to
∑
k,l

Uik;jl = 1 for i, j ∈ [N ]

Uik;il = 0 for i ∈ [N ], k 6= l ∈ ZL
U ≥ 0, U � 0, rank(U) = 1,

where C ∈ RNL×NL is the data Gram matrix, with entries
Cik;jl = 〈R−kyi, R−lyj〉.

Due to the global shift redundancy of the multireference
alignment problem, (9) will have L equivalent solutions (cor-
responding to the L shifts). We will deal with this redun-
dancy by averaging the L solutions. This corresponds to a
rank L matrix V satisfying Vik;ik = 1/L for all i ∈ [N ] and
k ∈ ZL. The L solutions uik lie in the L dimensional space
spanned by the L non-zero eigenvectors of V . Hence the
problem can be written as:

max
V ∈RNL×NL

tr(CV ) (10)

subject to
∑
k,l

Vik;jl = 1 for i 6= j ∈ [N ]

Vik;ik = 1/L for i ∈ [N ]

Vik;il = 0 for i ∈ [N ], k 6= l ∈ ZL
V ≥ 0, V � 0, rank(V ) ≤ L.

2.1 Data Gram matrix and a spectral method
The data Gram matrix C has special structural proper-

ties that may be leveraged. The following lemma describes
this structure. Let F be the normalized Fourier transform
F(yi, k) = 1√

L

∑L−1
l=0 e

(−kl
L

)
(yi)l.

Lemma 2.2. The data Gram matrix C with entries Cik;jl =
〈R−kyi, R−lyj〉 satisfies:

1. C � 0 and has rank L, with non-zero eigenvalues λk =
L
∑N
i=1 |F(yi, k)|2 .



2. There is a unitary matrix P for which PCP∗ =
diag(C0, . . . , CL−1) is block diagonal, where each Ck ∈
CN×N is a rank 1 matrix,

where

Proof. This follows from block circulance of (a permu-
tation of) C. Refer to Lemma B.1.

Ideally one would be able to read off the solution indicator
vectors 1{ik : k ≡ li} ∈ RNL from properties of C. In fact,
it is not difficult to see that in the noiseless case (σ = 0),
the span of the top L eigenvectors of C coincides with the
span of the indicator vectors corresponding to the L globally
shifted solutions.

Hence, one may try to recover a solution to (7) by exam-
ining the eigenvectors associated with the top eigenvalues
in the spectrum of C. For random signals x, Lemma 2.2
indicates that the spectral gap between the top L eigenval-
ues and the remaining eigenvalues of C will be large, on
the order mink

∑
i |F(yi, k)|2 = Ω(LN). This suggests that

a rounding procedure from the eigenvalues of C could be
robust to noise, and motivate the application of a spectral
method for the noisy case.

Unfortunately, this spectral gap will be rather small for
a large class of signals. As long as a single power spectra
|F(x, k)|2 of x is near zero, the corresponding eigenvalue λk
will separate less from the small eigenvalues of C. Hence
with additional noise, it would be less reliable to try and re-
cover the solution indicator vector from the top L eigenvec-
tors of C. This suggests that in this context, the SNR should
be defined with respect to the spectral gap mink |F(x, k)|2.
Furthermore, our simulations suggest that recovery from a
spectral relaxation performs worse than the semidefinite re-
laxation we are about to propose.

3. SEMIDEFINITE RELAXATION
In (10), the only non-convex constraint imposed on V is

that of rank deficiency, which obstructs the use of convex
programming techniques. Removing this rank constraint
yields a semidefinite program:

max
V ∈RNL×NL

tr(CV ) (11)

subject to
∑
k,l

Vik;jl = 1 for i 6= j ∈ [N ]

Vik;ik = 1/L, Vik;il = 0 for k 6= l, (12)

V ≥ 0, V � 0.

This SDP is extremely similar to and motivated by SDPs
commonly used to approximate solutions to certain con-
straint satisfaction problems (CSPs), notably Unique-Games
instances. An Unique-Games instance consists of a graph
G = ([N ], E), a label set ZL, and a set of permutations
πij : ZL → ZL. The problem is to choose the best as-
signment of labels to each vertex such that as many of the
permutations (πij)(i,j)∈E as possible are satisfied. Γ-MAX-
2LIN(L) is a special case where the permutations πij are
cyclic. In our notation, the SDP studied for Unique-Games

is usually of the form

max
V

1

2
tr(C̃V ) (13)

subject to C̃, V ∈ RNL×NL, C̃ik;jl = δ{l = πij(k)},∑
k

Vik;ik = 1, Vik;il = 0 for k 6= l, (14)

V ≥ 0, V � 0.

This formulation attempts to count the number of satisfied
edge constraints for an Unique-Games instance. In this con-
text, the matrix C̃ is dubbed the label-extended adjacency
matrix [18]. One can treat the SDP (11) as an instance of
Γ-MAX-2LIN(L) on a weighted complete graph, with each
cyclic permutation weighted by Cik;jl = 〈R−liyi, R−ljyj〉.
Thus the significant body of literature conducted on Unique-
Games may be useful in understanding (11). Another com-
mon feature of the aligment SDP with Γ-MAX-2LIN(L) in-
stances is that the assigned labels may be chosen up to cyclic
symmetry. This induces a block circulant symmetry in the
semidefinite program. For example, it was this symmetry
that allowed us to obtain the constraints Vik;ik = 1/L from
the constraints

∑
k Vik;ik = 1.

A major feature of (11) which distinguishes it from the
general Unique-Games problem is the structure of the data
coefficient matrix C (see Lemma 2.2). While Unique-Games
specifies constraints on edges of a graph (there are N2 pieces
of information), the alignment problem only specifies infor-
mation on its vertices (N pieces of information). While this
does assist our understanding of the semidefinite program,
since it enables us to apply more symmetry conditions, it
also will complicate some of our analysis (see Section 4).

The number of constraints in our SDP (11) is dominated
by the positivity constraints V ≥ 0. One source of intuition
behind it is that it enforces triangle inequality constraints
‖vik − 0‖ + ‖0 − vjl‖ ≥ ‖vik − vjl‖ [7]. From the next
section, as well as from empirical results, we see that the
constraint V ≥ 0 seems to cause the SDP solution to be
more stable around integral instances. As a trade-off, the
computational cost of solving the SDP scales with the num-
ber of constraints, so we investigated the effect of removing
the positivity constraints in (11). Interestingly, without this
positivity constraint, the SDP (11) can be solved in closed
form, and is effectively equivalent to applying phase corre-
lation (see Appendix A) to each pair of the observations.

Theorem 3.1. There is a matrix V ∈ RNL×NL composed
of circulant L × L blocks which solves the program (11),
excluding the positivity constraint V ≥ 0. V has rank L,
corresponding to one eigenspace of eigenvalue N/L. This
eigenspace contains the vector vphase ∈ RNL satisfying

vphaseik =
1√
L

L−1∑
l=0

e
(−kl
L

)
· F(y1, l)F∗(yi, l)
|F(y1, l)F∗(yi, l)|

which is the concatenation of phase correlation vectors be-
tween y1 and yi.

Proof. (outline) The existence of a solution V composed
of circulant blocks follows from symmetry. Hence, as in
Lemma 2.2, V may block diagonalized as PV P∗ =
diag(V0, . . . ,VL−1) for Vk ∈ CN×N . When the SDP con-
straints are written with respect to the entries of the Vk’s,
one resulting constraint is that the magnitude of each entry



of Vk is bounded. As a consequence, the objective function
(11) would be maximized when the entries of Vk have max-
imal magnitudes, and have the same complex phases as the
corresponding entries in Ck. This choice of V indeed lies
in the SDP feasibility region (ignoring the positivity con-
straints). Analogous to phase correlation, the information
used from the data matrix is entirely phase information. The
details are given in the proof of Theorem B.3.

From the SDP solution, one must round back to a solu-
tion in the original search space. There is a significant body
of literature on the topic of rounding the solutions to vari-
ous SDPs for Unique Games. The analysis and guarantees
for these rounding schemes are usually expressed in terms
of percentage of constraints satisfied by the SDP solution
and do not immediately give a result about signal recov-
ery in our setting. For example, in studying semi-random
instances of Unique-Games, the authors of [19] give a round-
ing technique that uses both SDP and LP solutions when
the SDP is known to be somewhat sparse. This is similar
to a condition we obtain in the following stability section.
Exploiting these ideas to establish an exact signal recovery
guarantee is an interesting open problem.

4. STABILITY
For simplicity, we will assume, without loss of generality,

that all the ground truth shifts correspond to the zero shift.
Hence yi = x+ ξi, where ξi ∼ N (0, σ2IL) i.i.d.. The ground
truth integral instance for the SDP will be (up to block cyclic
symmetry) the indicator matrix V int ∈ RNL×NL, defined as
V intik;jl = δk=l/L. It is not difficult to see that, if there is a set
of labels {li} which are pairwise optimal (in the sense that
〈R−liyi, R−ljyj〉 = maxk〈yi, R−kyj〉 for all pairs (i, j)) the
SDP (11) will return the integral instance. While this may
be likely in a very high signal-to-noise setting, it is a rather
stringent condition. We relax this condition and show that
the SDP solution must still resemble the integral instance
at a reasonably high SNR. The exact definition for the SNR
will be deferred for later, but will be characterized in terms
of the gap between the correct offset and incorrect shifts

∆ = ‖x‖2 −max
l 6=0
〈x,Rlx〉, (15)

and the noise level.
For any V ∈ RNL×NL lying in the SDP feasibility region,

we can characterize the distance of V from the integral in-
stance by the differences

Dij =
∑

k 6=l∈ZL

Vik;jl = 1−
∑
k∈ZL

Vik;jk ∈ [0, 1].

Dij is a measure of how much the SDP would weight shift
preferences other than the ground truth. Note that Dij is
always non-negative and moreover, when all Dij = 0 we
obtain the integral instance.

For convenience, we make the definitions ξ0 = 2x and
ηij = 2 maxl |〈Rlξi, ξj〉| ≥ 0 for i, j = 0, 1, . . . , N . The fol-
lowing Lemma provides a control on Dij from the difference
of the signal term ∆ and the noise terms ηij .

Lemma 4.1. If tr(CV ) ≥ tr(CV int), then
∑
i 6=j(∆−ηij−

ηj0)Dij ≤ 0.

Proof. We can find a block circulant matrix which at-
tains the same SDP objective value as V , so without loss of

generality presume V is block circulant. Hence
∑
k Vik;j0 =

1/L and Dij = 1− LVi0;j0. Expanding,

0 ≥ tr(CV int)− tr(CV )

=
∑
i,j

∑
k

〈R−kyi, yj〉 (δk=0 − LVik;j0)

≥
∑
i,j

(
〈yi, yj〉(1− LVi0;j0)−max

l 6=0
〈Rlyi, yj〉

∑
k 6=0

LVik;j0

)

=
∑
i,j

(
〈yi, yj〉 −max

l 6=0
〈Rlyi, yj〉

)
Dij .

The second inequality requires the SDP constraint V ≥
0. Expanding the inner products and applying pessimistic
bounds,

〈yi, yj〉 −max
l 6=0
〈Rlyi, yj〉 ≥ ∆− (ηi0/2 + ηj0/2 + ηij),

and rearrangement gives the desired inequality.

Theorem 4.2. With probability 1 − e−N+o(N), the solu-
tion to the SDP satisfies∑

i,j

Dij ≤
(‖x‖+ σ2

√
L) · 12 log eL

∆
·N2.

Proof. For sufficiently high SNR, we would expect that
the inequality in Lemma 4.1 would fail to hold. Indeed, by
Lemma D.2, the inequality∑
i 6=j

(ηij + ηj0)Dij ≤ O(logL) ·
(

2‖x‖+
1

N

∑
i

‖ξi‖
)
N2,

holds with probability at least 1 − e−N+O(logN). It arises
from tail bounds on the sum of slightly dependent random
variables, and is independent of the structure of the SDP
(as opposed to Lemma 4.1). Combined with Lemma 4.1, we
can obtain a guarantee on the deviation between the SDP
solution and the integral instance. The full proof may be
found following Theorem D.3.

Theorem 4.2 indicates that at a sufficiently high SNR,
the UG-based SDP will produce a matrix V , of which each
L × L block has most weight concentrated on its main di-
agonal. A rounding scheme would likely interpret this as
the identity shift being the optimal shift. This motivates us
to choose a definition for the SNR to be along the lines of
SNR = ∆/[(‖x‖ + σ2

√
L) logL] (for reference, for random

signals x, we would expect that ∆ = L − O(
√
L)). This

characterization of SNR is significantly more lenient than
that for spectral relaxation, in Section 2. For example, if
the signal x was a sum of a few sinusoids, it would have sev-
eral small power spectra, but as long as the least common
multiple of their periods does not divide L, then ∆ will still
be large. Note further that we have more flexibility when
defining ∆: for example, suppose there is a set of shifts `∗

(including the identity element) of size |`∗| = O(1) for which
maxl∈`∗〈x,Rlx〉 > ∆ + minl/∈`∗〈x,Rlx〉. The above results
may be modified to describe the concentration of the SDP
solution on the entries of the shifts in `∗ (not just along the
identity shift) for each pair of observations yi, yj .

This result may be strengthened in other manners. For
constants 0 < δ, ε� 1, we can attain a tighter concentration



condition of the form∑
Dij ≥ (1 + δ)2N

√∑
D2
ij/SNR+ 2εN2 (16)

instead of the current condition
∑
Dij ≥ N2/SNR. The

argument is based on the analysis of the SDP for adversarial
semi-random Unique-Games instances by [19]. However, the
proof must be more nuanced in our case, due to correlations
in the noise model of C, caused by the smaller source of
randomness available to us. Hence we omit the full details,
but provide a sketch below.

Any SDP feasible matrix V can alternatively be repre-
sented as Vik;jl = 〈vik, vjl〉/L for a set of unit vectors vik ∈
RNL. With this notation, 2Dij = 2(1 − LVi0;j0) = ‖vi0 −
vj0‖2. The space of these unit vectors can be approximately
discretized by a random projection due to the Johnson-
Lindenstrauss lemma. More precisely, Lemma D.4 provides
a set of unit vectors N of size |N| = exp

(
O
(
δ−2 log2(1/ε)

))
such that the set of unit vectors {vi0}Ni=1 can be approxi-
mated under a random projection ϕ by an N -tuple in N.
Specifically, if Dϕ

ij = ‖ϕ(vi0) − ϕ(vj0)‖2/2, then the Dij ’s
lie within an αJL-ball of Dϕ

ij , this ball being defined as

{D : α−1
JL(Dϕ) ≤ D ≤ αJL(Dϕ)} for αJL(D) = (1+δ)D+ε.

Instead of finding a global tail bound in Lemma D.2, we
can derive a local tail bound for each αJL-ball of Dϕ

ij ’s, each

tail bound holding with probability at least 1 − 2Ne−t
2N .

For 0 < δ, ε = ε′ � 1 constants, the number of N -tuples
of vectors in N is of size exp(O(N)). With a sufficiently
large constant t, the local tail bound may be union bounded
across all balls of vectors in NN , and thus will hold for all
SDP-feasible V . With some care, this argument would yield
a concentration condition of the form (16).

5. NUMERICAL RESULTS
We implemented several baseline methods for multirefer-

ence alignment, and plotted their average error performance
across 500 iterations in Figure 5. For each iteration, we
chose a signal x randomly from the distribution N (0, IL), as
well as N i.i.d. noise vectors ξi ∼ N (0, σ2IL), and applied
each of our methods. These simulations confirm our intu-
ition that the UG-based SDP performs better than other
benchmark techniques. In particular, they suggest that the
UG-based SDP is highly stable around integral instances.

The implementation using bispectrum-like invariants is
discussed in Appendix A. For each of the other procedures,
we construct a NL × L matrix W which records alignment
preferences of shifts of yi with y1. For cross- or phase- cor-
relation, Wik;l is the (k − l)th entry of the cross- or phase-
correlation vector between y1 and yi. For the spectral round-
ing off the Gram matrix C, and the solution of the UG-SDP,
W is formed by the top L eigenvectors of the respective ma-
trix. The shifts are read off this matrix, and the un-shifted
yi are averaged to produce an estimate for x. The first plot
shows the difference between this estimate and x.

A second measurement of performance we looked at is how
easy it would be to determine the best shifts from W . A
natural method is to identify an indicator vector 1{ik : li ≡
k} lying close to the column span of W , for some labelling
{li}. The heuristic we implemented was to apply a linear
transformation to W such that the top L × L block of W
is the identity matrix IL (although there is no reason to
believe this rounding is robust, it is sufficient for the purpose

Figure 1: Averages of errors of several alignment
methods across 500 iterations. The top plot has pa-
rameters σ = 1 and L = 5, and the bottom plot has
parameters N = 12 and L = 5.

of having an easy benchmark between multiple methods).
Then, for each i, the maximal entry in the first column of
W gives the choice of shift for yi. The second plot shows
the distance this indicator vector lies from the column span
of W .

Another, perhaps more robust method, is to apply the the-
ory of sparse recovery. The desired indicator vector u ∈ RNL
is a sparse vector lying near the column space of W . As
suggested by Spielman, et al, in [33], such a sparse vec-
tor could be found by solving the `1-minimization problem
minb∈RL ‖Wb‖1 and setting u = Wb. To prevent the solu-
tion from collapsing to zero, the search space can be limited
by an affine constraint bT c = 1 for an appropriate choice of
c ∈ RL. In [33], this `1-minimization is done by choosing c
from the rows of W .

6. GENERALIZATIONS AND FUTURE WORK
It is worth noting that the discrete multireference align-

ment problem naturally generalizes from shifts over ZL to
actions of finite groups G over finite spaces S. In this case,
the analogue of phase correlation [25] is defined in terms of
the generalized Fourier transform FG,S(·, ρ) : CS → Cdρ×dρ ,
where ρ : G → Cdρ×dρ are irreducible matrix representa-



tions. The Unique Games SDP may also be generalized in a
natural manner, in rough analogy with SDP variants studied
for Γ-MAX-2LIN instances. In the case of an abelian group
G = S, the proof of Theorem 3.1 follows in the same fashion,
and hence the alignment UG-based SDP without positivity
constraints will remain equivalent to phase correlation.

The symmetry of the SDP in this case can be described
naturally by the theory of C∗-matrix algebras. Symmetries
in semidefinite programs can be written with respect to lin-
ear combinations of {0, 1} matrices, which form a basis of
a ∗-matrix algebra. Under sufficiently nice conditions, this
basis can be block diagonalized, for example by Wedder-
burn’s decomposition or by regular ∗-representations [28].
Hence, the ∗-matrix algebra can be represented by a lower-
dimensional block diagonalized version. From a computa-
tional perspective, this can make highly symmetric SDPs
much more amenable to sparse SDP solvers [9]. In our case,
diagonalization by the block DFT allows the SDP to be
rewritten as an optimization problem across L PSD matrices
of size N ×N instead of one PSD matrix of size NL×NL.

It would be interesting to see how the performance of the
SDP changes when we study the alignment problem across
more difficult groups, especially non-abelian ones. For ex-
ample, [32] applies angular synchronization to resolve an
alignment problem over SO(3).

The numerical simulations in Section 5 suggest that the
UG-based SDP achieves exact recovery with high probabil-
ity for sufficiently high SNR. That is, the resulting SDP
matrix is integral, and by solving the SDP we obtain the
solution to the quasi-ML estimator. Indeed, as the SNR de-
creases, there appears to be a phase transition during which
the SDP almost always recovers an integral solution. Our
analysis of the stability of the semidefinite program does not
fully explain this phenomenon. The authors believe this to
be an interesting direction for future work, especially since
guarantees of exact recovery are attainable in high SNR set-
tings for a few semidefinite relaxations, for example for the
MIMO problem [26].

Another important question is to understand the sample
complexity of our approach to the alignment problem. Since
the objective is to recover the underlying signal x, a larger
number of observations N should yield a better recovery.
The question can be formalized as: for a given value of L
and σ, how large does N need to be in order to allow for a
reasonably accurate recovery? Methods like the bispectral
invariants would be expected to require N = Ω(σ2L2 logL)
observations. We would hypothesize, on the strength of our
numerical results, that the UG-based SDP requires fewer
observations for meaningful recovery.

Along with expanding the domain of the alignment prob-
lem, it would be interesting to attempt the style of analysis
discussed in this paper for other maximum likelihood prob-
lems. Maximum likelihood estimators play an important
role in many estimation problems, but often (as in our prob-
lem) computing or approximating the MLE is a challenging
problem and semidefinite programming could perhaps pro-
vide a tractable alternative in an average case setting.
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APPENDIX
A. PHASE CORRELATION AND THE BIS-

PECTRUM
Variations of the alignment problem crop up in many sci-

entific fields, and thus many methods for alignment have
been independently proposed. Such methods include itera-
tive template aligning [21], zero phase representations [36],
angular synchronization [32], and machine learning [29]. Un-
fortunately, to the authors’ knowledge, no proposal exists for
a multireference alignment method which fairly treats each
input observation, makes use of all available information,
and has rigorous performance discussion. We outline a cou-
ple of foundational techniques used in alignment literature
in this section.

When aligning a pair of noisily shifted vectors (N = 2), a
natural approach is to assign a score to each possible offset
between the two vectors, and to estimate the best shift as
the one with the highest score. A straightforward score is
the inner product between the vectors, also known as cross-
correlation. For two observations yi, yj ∈ RL, the selected

shift is the maximal entry l̂ = argmax vcrossl of the cross-
correlation vector vcrossl = 〈yi, R−lyj〉. More frequently used
in practice is the phase correlation vector, whose compo-
nents are

vphasek =
1√
L

L−1∑
l=0

e
(−kl
L

)
· F(yi, l)F∗(yj , l)
|F(yi, l)F∗(yj , l)|

. (17)

Essentially this measures the similarity of the observations
in frequency space. For human-friendly images, phase cor-
relation tends to be more appealing, since vphase tends to



have a sharper peak as compared to vcross [14]. The relation
between cross- and phase correlation can be seen from the
convolution theorem:

Lemma A.1. Convolution theorem: (F∗vcross)k =
√
L ·

F(yi, k)F∗(yj , k).

Proof. LetMl denote the modulation operator (Mlx)k =
xke(kl/L), defined such that FRlx = MlFx. By Parseval’s
Theorem,

〈yi, R−lyj〉 = 〈Fyi,M−lFyj〉 =

L−1∑
l=0

e
(−kl
L

)
F(yi, l)F∗(yj , l).

Cross- and phase correlation may be directly applied for
the problem of multireference alignment, say by aligning all
of the observations against the first one. However, this is
not a robust method.

Another relevant notion for characterizing alignments are
the moment spectra, which are shift-invariant properties of
the observations. The kth power spectrum of a real signal
x ∈ RL is defined by |F(x, k)|2 = F(x, k)F∗(x, k). This
can be extended to the d-th order bispectrum (or moment
spectra)

b(k1, k2, . . . , kd) = F
(
x,Σdi=1ki

) d∏
i=1

F∗(x, ki); (18)

its shift invariance can be seen since it is the Fourier trans-
form of the d-th order autocorrelation function

a(k1, k2, . . . , kd) =

L−1∑
l=0

xlxl−k1xl−k2 · · ·xl−kd , (19)

by the Wiener-Khinchin theorem. How much information
do these invariants capture about the signal x? Sadler and
Giannakis give iterative and least squares algorithms in [30]
for reconstructing the Fourier phases from full knowledge of
the bispectrum, and Kakarala in [15] show the uniqueness
of real function given all of its higher order moment spectra.
These arguments generally tend to be of a more number-
theoretic flavor and may be tedious to implement in practice.

A simple special case occurs when we take k1 = k2 =
. . . = kd = 1 for d = 1, . . . , L. This gives us the set of
bispectral invariants F(x, d)F∗(x, 1)d, which can be consis-
tently estimated from our observations yi. With an estimate
for the phase of the first Fourier coefficient F(x, 1) (say, sam-
ple over a discretization of the unit circle), we can recover
the remaining Fourier phases F(x, d) and thus the signal x.
This approach is one of the baseline methods used in Section
5.

B. RELAXATIONS FOR MAXIMUM LIKE-
LIHOOD

Lemma B.1. The data Gram matrix C with entries Cik;jl =
〈R−kyi, R−lyj〉 satisfies the following properties:

1. C � 0 and has rank L, with non-zero eigenvalues λk =
L
∑N
i=1 |F(yi, k)|2 .

2. There is a unitary matrix P for which PCP∗ =
diag(C0, . . . , CL−1) is block diagonal, where each Ck ∈
CN×N .

Proof. C has Cholesky decomposition

C = (Ry)(Ry)T ∈ RLN×LN where Ry =


...

− R−kyi −
...


i,k

,

so C � 0 has rank L. Since the inner product of two observa-
tions is invariant under a global shift of all the observations,
C is composed of N×N circulant blocks of size L×L. After
permuting the rows and columns of C, one may write C as
a block circulant matrix

PTCP =


C0 C1 · · · CL−1

CL−1 C0 · · · CL−2

...
...

. . .
...

C1 C2 · · · C0

 ,

where (Ck)ij = 〈yi, R−kyj〉 encodes the pairwise informa-
tion between yi and yj , and P is the appropriate permu-
tation matrix. PTCP is block diagonalized by the block
Discrete Fourier Transform matrix DFTL ⊗ IN [24], where
⊗ denotes the Kronecker product and DFTL is the matrix
representation of the normalized Discrete Fourier Transform
on CL. P = (DFTL ⊗ IN )PT ∈ CNL×NL is thus a unitary
transformation such that

PCP∗ = diag(C0, . . . , CL−1); Ck ∈ CN×N (20)

is block diagonal. These block diagonals are componentwise
Discrete Fourier Transforms of the entries of C0, C1, . . . , CL−1:

Ck =

L−1∑
l=0

e
(
kl
L

)
Cl = {L · F(yi, k)F∗(yj , k)}ij

by Lemma A.1. Note also that each Ck is Hermitian and
rank 1 (C is of rank L, and each of the blocks Ck has positive
rank). The unique nonzero eigenvalue λk of Ck is given by

λk = tr(Ck) = L

N∑
i=1

|F(yi, k)|2 . (21)

For notation reference in the next lemma, consider a pri-
mal semidefinite problem of the form

minimize tr(C0V ) (22)

subject to V � 0 and tr(CiV ) = bi,

where V is the semidefinite matrix to optimize over, and
Ci ∈ Rn×n are data matrix constraints and b = (b1, . . . , bm)
are given, for i ∈ {1, 2, . . . ,m}. For a finite group G acting
on a finite space S, let Pg denote the permutation matrix
associated with the action of g ∈ G. A matrix A ∈ C|S|×|S|
is G-invariant if PTg APg = A.

Lemma B.2. In the semidefinite program (22), suppose
the constraint matrices C0, C1, . . . , Cm are G-invariant. Then
there is a solution V to the SDP which is also G-invariant.

Proof. If V ′ is a solution of (22), then the matrix V ∈
Cn×n given by

V = RG(V ) :=
1

|G|
∑
g∈G

PTg V
′Pg



is G-invariant, feasible, and has the same objective value
as V ′. The averaging map RG is known as the Reynolds
operator.

This is a special case of a more general theorem about
symmetry reductions in semidefinite programs from the the-
ory of ∗-matrix algebras [9]. Informally speaking, if all of the
constraint matrices C0, C1, . . . , Cm satisfy a class of symme-
tries, then there is a real solution V to (22) which also sat-
isfies the same symmetries (for details refer to [9], Corollary
2.5.2).

Theorem B.3. There is a matrix V ∈ RNL×NL com-
posed of circulant L × L blocks which solves the program
(11), excluding the positivity constraint V ≥ 0. V has rank
L, corresponding to one eigenspace of eigenvalue N/L. This
eigenspace contains the vector vphase ∈ RNL satisfying

vphaseik =
1√
L

L−1∑
l=0

e
(−kl
L

)
· F(y1, l)F∗(yi, l)
|F(y1, l)F∗(yi, l)|

.

Proof. The existence of a solution V composed of circu-
lant blocks follows by a block-wise application of the Reynolds
operator from Lemma B.2. Let P be the unitary matrix de-
fined in Lemma 2.2. Then, PV P∗ = diag(V0, . . . ,VL−1)

where Vk =
∑L−1
l=0 e

(
kl
L

)
Vl ∈ CN×N is positive semidefi-

nite. The SDP constraints

V ∈ RNL×NL, V � 0, Vik;il = 0 for k 6= l,
∑
k,l

Vik;jl = 1

are respectively equivalent to the Fourier side constraints

Vk = VL−k, Vk � 0, (Vk)ii = 1/L, (V0)ij = 1/L. (23)

Since Vk � 0, the magnitude of each entry of Vk is bounded
by the maximum of its diagonal entries, which is 1/L. Hence

tr(CV ) =
∑
k∈ZL

tr(CkVk) ≤ 1

L

∑
k∈ZL

∑
i,j∈[N ]

|(Ck)ij |, (24)

with equality occuring when Vk has the entries of Ck, nor-
malized to magnitude 1/L. Here, the Vk’s are also rank-one
matrices

(Vk)ij =
F(yi, l)F∗(yj , l)
|F(yi, l)F∗(yj , l)|

.

Define wi ∈ RL to be the vector with entries (wi)k = (Vk)i,1
(the choice of the index 1 is arbitrary). The concatenation
of the wi’s is an eigenvector of the block diagonalization of
V , and thus vphase := P∗w is an eigenvector of V . Its entries
are given by

vphaseik := F∗(wi, k) =
1√
L

L−1∑
l=0

e
(−kl
L

)
· F(y1, l)F∗(yi, l)
|F(y1, l)F∗(yi, l)|

.

Let W phase ∈ RNL×L be the matrix whose column vectors
are generated by circulating the N blocks of L entries of
vphase. Its columns are linearly independent since the top
L × L block of W phase is the identity matrix IL, and the
column vectors span the eigenspace of V .

C. NP-HARDNESS OF QUASI MLE
A special case of the Unique-Games class of problems is

that of MAX-2LIN(q). The labels {xi} can be thought of as
equivalence classes modulo q, and each constraint is repre-
sented by a linear equation in two variables aijxi + bijxj ≡

cij (mod q). The subclass Γ-MAX-2LIN(q) consists of the
cases where each constraint has the form xi − xj ≡ cij
(mod q). It is known to be as hard as the general Unique-
Games problem [17]. Associating each variable xi as a vertex
of a graph and each constraint as an edge, the instance is as-
sociated with a graph G = (V (G), E(G)), where V (G) = [N ]
and |E(G)| = M .

Theorem C.1. Consider the problem ALIGN(y1, . . . , yN ):
for vectors y1, . . . , yN ∈ RL, find the shifts ` = (l1, . . . , lN )
which maximize

A(l1, . . . , lN ) =
∑

i,j∈[N ]

〈R−liyi, R−liyj〉.

Let A∗ = max`A(`). It is NP-hard (under randomized re-
ductions) to esimate A∗ within 16/17 + ε of its true value.
It is UG-hard (under randomized reductions) to estimate A∗
within any constant factor.

We demonstrate this by a poly-time approximation pre-
serving reduction from (a connected instance of) Γ-MAX-
2LIN(q). Suppose that at most ρ∗ fraction of the M con-
straints xi − xj ≡ cij (mod q) may be simultaneously satis-
fiable.

Let poly(M) be the space of integer functions which are
bounded by polynomial order, i.e. f ∈ poly(M) iff there are
constants C, k such that f(M) ≤ CMk for all M ≥ 1. We
say that an event occurs w.h.p if it occurs with probability
1 − ε(q,G), where 1

ε(q,G)
/∈ poly(q · |E(G)|). Notice under

this definition that if poly(qM) events occur w.h.p, then by
an union bound the event that all occur will also be w.h.p.

Construct a parameter s = s(q,M) ∈ poly(qM). We take
the vectors y1, . . . , yN to be of length L = qMs. The indices
of the vector yi can be expressed in mixed radix notation by
elements of the tuple (Zq, E(G), [s]). For example, we would
associate the tuple index (x, ek, t) of yi by the index x ·qM+
ek ·M + t, where ek is the kth edge in some enumeration of
E(G). Note that a shift by c · qM takes this tuple index to
(x, ek, t) + c · qM → (x+ c, ek, t).

For each edge constraint xi − xj ≡ cij , let zij be a vector
uniformly at random chosen from {±1}s. Assign the entries
(0, {i, j}, ·) of yi to zij , and the entries (cij , {i, j}, ·) of yj to
zij . The remaining entries of the yi’s will be sampled from
i.i.d Rademacher random variables ({±1} with probability
1/2). Intuitively, a relative shift of cij ·qM between yi and yj
will produce a large inner product due to the overlapping of
the zij ’s, while any other shift between them would produce
low inner products.

Lemma C.2. Suppose γ ∈ poly(qM). Consider two ran-
dom vectors y1, y2 of length γ whose entries are i.i.d sampled
from the Rademacher distribution. W.h.p, for any 0 < ε�
1, the inner product of every possible shift R`y1 of y1 with
y2 is bounded in absolute value by

√
γ ·mε.

Proof. By independence, each inner product is the sum
of γ independent Bernoulli random variables which take val-
ues±1 with probability 1/2. Hoeffding’s inequality indicates

Pr(〈R`y1, y2〉 ≥
√
γ · (qM)ε) ≤ 2 exp {−(qM)ε/2} ,

so 1
Pr(〈R`y1,y2〉≥

√
γ(qM)ε)

/∈ poly(qM). Union bounding over

all γ = poly(qM) such inner products, w.h.p all of the inner
products are simultaneously bounded by

√
γ · (qM)ε.



We say an edge {i, j} ∈ E(G) is cij-satisfied under a la-
belling ` if li − lj ≡ cijqM (mod L). From Lemma C.2, we
observe that w.h.p, for any choices of shifts li, lj ,

|〈R−liyi, R−ljyj〉 − s · δ({i, j} ∈ E(G) is cij-satisfied)|

< (qM)ε
√
L.

It follows that if the labelling ` induces exactly k cij-satisfied
edges, w.h.p∣∣A(`)− 2ks

∣∣ < k(qM)ε
√
L+

(
N2 − k

)
(qM)ε

√
L

≤ qεM2+ε
√
L. (25)

Theorem C.3. From a given labelling `, w.h.p one may
in polynomial time construct (x1, . . . , xN ) ∈ ZNq satisfying at

least
(
A(`) − qεM2+ε

√
L
)
/(2s) edge-constraints xi − xj ≡

cij. Conversely, w.h.p there is a labelling `max w.h.p satisfy-

ing A (`max) > 2s · ρ∗M − qεM2+ε
√
L.

Proof. Consider the subgraph H of G with vertex set
V (G) and edge set comprising all edges cij-satisfied under
`. For each connected component of H, arbitrarily choose a
vertex i of the component to have xi = 0. Follow a spanning
tree of each connected component and assign each neighbor
j by xj ≡ xi − cij (mod q). The first implication of the
lemma follows immediately by applying (25). Conversely,
construct the labelling `max by setting lmax

i = xi · qM . This
labelling induces at least ρ∗M cij-satisfied edges, and (25)
completes the lemma.

It is UG-hard (and thus NP-hard assuming the Unique
Games conjecture) to approximate Γ-MAX-2LIN(q) within
any constant factor [17]. As a corollary to Theorem C.3,
any poly-time approximation ratio for ALIGN will also be a
poly-time approximation ratio for Γ-MAX-2LIN(q). Thus the
same hardness of approximation results for Γ-MAX-2LIN(q)
hold for ALIGN (under randomized reductions). MAX-CUT
is a special case of Γ-MAX-2LIN(q). Since it is NP-hard to
approximate MAX-CUT within 16/17+ε (independent of the
Unique Games conjecture), it is NP-hard (under randomized
reductions) to approximate ALIGN within 16/17 + ε.

D. STABILITY

Lemma D.1. E[ηij |ξi] ≤ µη‖ξi‖ and E[η2ij |ξi] ≤ ση‖ξi‖2,

where µη = 2σ(logL+ 1) and σ2
η = 4σ2(log2 L+ 1).

Proof. Take ζ ∼ N (0, IL), and choose a unit vector z ∈
RL. Define η(z) = maxl ηl(z), where the distribution of
ηl(z) = |〈Rlz, ζ〉| is independent of the choice of z. Union
bounding,

Pr (η(z) ≥ t) ≤
∑
l∈ZL

Pr
(
ηl(z) ≥ t

2

)
=
∑
l

Pr
(
|ζl| ≥ t

2

)
≤ min

{
1,

2L

t
· e
−t2/2
√

2π

}
.

Thus, for T > 1,

µη = E η(z) =

∫ ∞
0

Pr (η(z) ≥ t) dt

≤ T +
2L√
2π

∫ ∞
T

te−t
2/2 dt

≤ T + Le−T

and

σ2
η = E η(z)2 =

∫ ∞
0

2tPr (η(z) ≥ t) dt

≤ T 2 +
L√
2π

∫ ∞
T

te−t
2/2 dt

≤ T 2 + Le−T .

The lemma follows by taking T = logL, since ηij = 2σ‖ξi‖ ·
η
(
ξi/‖ξi‖

)
conditional on ξi.

Lemma D.2. Let t > 0. With probability at least 1 −
2Ne−t

2N ,∑
i 6=j

(ηij + ηj0)Dij ≤ (µη + σηt)

(
2‖x‖+

1

N

∑
i

‖ξi‖
)
N2.

(26)

holds for all Dij ∈ [0, 1].

Proof. Define the random variables Zij = (ηij+ηj0)Dij ≤
ηij + ηj0. For fixed i, the ηij ’s are independent positive
random variables. Applying the one-sided tail bound for
independent positive random variables by Maurer [27], the
probability the event∑

j

(ηij + ηj0)−
∑
j

E (ηij + ηj0) ≥ ti
√∑

j

E (η2ij + η2j0)

occurs is bounded under 2e−t
2
i . Choose ti = t

√
N . By union

bound, with probability at least 1− 2Ne−t
2N ,∑

i,j

Zij ≤
∑
i

µη(2‖x‖+ ‖ξi‖)N +
∑
i

t
√
N2σ2

η(4‖x‖2 + ‖ξi‖2)

≤ (µη + σηt)

(
2‖x‖+

1

N

∑
i

‖ξi‖
)
N2.

Theorem D.3. With probability 1− e−N+o(N), the solu-
tion to SDP (11) satisfies∑

i,j

Dij ≤
(‖x‖+ σ2

√
L) · 12 log eL

∆
·N2.

Proof. Let V be a solution matrix to the SDP, so that
tr(CV ) ≥ tr(CV int). It follows from Lemma 4.1 that

∆
∑
ij

Dij ≤
∑
ij

(ηij + ηj0)Dij .

The χ2-tail bound of Laurent-Massart [22] states

Pr

(
1

σ2

∑
i

‖ξi‖2 ≤ NL+ 2
√
NLt+ 2t

)
≥ 1− exp{−t}.

(27)

When t = NL this gives∑
i

‖ξi‖ ≤
√
N
∑
i

‖ξi‖2 ≤ σN
√

5L.

with probability at least 1 − e−NL. Union bounding with
the tail bound of Lemma D.2, and applying Lemma D.1,

∆
∑
ij

Dij ≤ (µη + ση)

(
2‖x‖+

1

N

∑
i

‖ξi‖
)
N2

≤ 12 log eL(‖x‖+ σ
√
L)N2



with probability at least 1− e−N+o(N).

Lemma D.4. Let 0 < δ, ε, ε′ � 1 be small constants, and
define αJL(x) = (1 + δ)x+ ε. There is a set of unit vectors
N of size at most

exp
(
O
(
δ−2 log(1/ε) log(1/ε′)

))
such that for any set of unit vectors {vi}, there is a map
ϕ : {vi} → N satisfying the inequality

α−1
JL

(
‖vi − vj‖2

)
≤ ‖ϕ(vi)− ϕ(vj)‖2 ≤ αJL

(
‖vi − vj‖2

)
for at least 1− ε′ fraction of the pairs (i, j) ∈ [N ]× [N ].

Proof. This lemma appears frequently in SDP litera-
ture, and in particular is used to analyze adversarial semi-
random Unique-Games instances in [19]. Notice that the size
of the set N is independent of the number of vectors in the
set {vi}.

Construct a ε/32-net N of the unit hypersphere in a
O(δ2 log(1/ε′))-dimensional space L. By the (strong version
of the) Johnson-Lindenstrauss lemma, there is a randomized
mapping ϕ′ : {vi} → L satisfying

(1−δ/2)‖vi−vj‖2 ≤ ‖ϕ′(vi)−ϕ′(vj)‖2 ≤ (1+δ/2)‖vi−vj‖2

with probability at least 1−ε′. Define ϕ(vi) to be the closest
point to ϕ′(vi) in N, and observe that

(1− δ/2)x− ε ≥ x− ε
1 + δ

= α−1
JL(x), (1 + δ/2)x+ ε ≤ αJL(x)

for all x > 0, so ϕ satisfies the conditions of the lemma.


