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Spectral methods that are based on eigenvectors and eigenvalues of discrete graph Laplacians, such as
Diffusion Maps and Laplacian Eigenmaps, are often used for manifold learning and nonlinear dimension-
ality reduction. It was previously shown by Belkin & Niyogi (2007, Convergence of Laplacian eigenmaps,
vol. 19. Proceedings of the 2006 Conference on Advances in Neural Information Processing Systems. The
MIT Press, p. 129.) that the eigenvectors and eigenvalues of the graph Laplacian converge to the eigen-
functions and eigenvalues of the Laplace–Beltrami operator of the manifold in the limit of infinitely
many data points sampled independently from the uniform distribution over the manifold. Recently, we
introduced Vector Diffusion Maps and showed that the connection Laplacian of the tangent bundle of
the manifold can be approximated from random samples. In this article, we present a unified framework
for approximating other connection Laplacians over the manifold by considering its principle bundle
structure. We prove that the eigenvectors and eigenvalues of these Laplacians converge in the limit of
infinitely many independent random samples. We generalize the spectral convergence results to the case
where the data points are sampled from a non-uniform distribution, and for manifolds with and without
boundary.

Keywords: graph connection Laplacian; vector diffusion maps; vector diffusion distance; orientable
diffusion maps; diffusion maps; principal bundle; connection Laplacian.

1 Introduction

A recurring problem in fields such as neuroscience, computer graphics and image processing is that of
organizing a set of 3-dimension/dimensional objects by pairwise comparisons. For example, the objects
can be 3-dimension/dimensional brain functional magnetic resonance imaging (fMRI) images [21] that
correspond to similar functional activity. In order to separate the actual sources of variability among the
images from the nuisance parameters that correspond to different conditions of the acquisition process,
the images are initially registered and aligned. Similarly, the shape space analysis problem in computer
graphics [29] involves the organization of a collection of shapes. Also in this problem it is desired to
factor out nuisance shape deformations, such as rigid transformations.

Once the nuisance parameters have been factored out, methods such as Diffusion Maps (DM) [11]
or Laplacian Eigenmaps (LE) [3] can be used for nonlinear dimensionality reduction, classification
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and clustering. In [33], we introduced Vector Diffusion Maps (VDM) as an algorithmic framework for
organization of such data sets that simultaneously takes into account the nuisance parameters and the data
affinities by a single computation of the eigenvectors and eigenvalues of the graph connection Laplacian
(GCL) that encodes both types of information. In [33], we also proved pointwise convergence of the
GCL to the connection Laplacian of the tangent bundle of the data manifold in the limit of infinitely many
sample points. The main contribution of the current article is a proof for the spectral convergence of the
CGL to the connection Laplacian operator over the vector bundle of the data manifold. In passing, we
also provide a spectral convergence result for the graph Laplacian (normalized properly) to the Laplace–
Beltrami operator in the case of non-uniform sampling and for manifolds with non-empty boundary,
thus broadening the scope of a previous result of Belkin & Niyogi [5].

At the center of LE, DM and VDM is a weighted undirected graph, whose vertices correspond to
the data objects, and the weights quantify the affinities between them. A commonly used metric is the
Euclidean distance, and the affinity can then be described using a kernel function of the distance. For
example, if the data set {x1, x2, . . . , xn} consists of n functions in L2(R

3), then the distances are given by

dE(xi, xj) := ‖xi − xj‖L2(R3), (1.1)

and the weights can be defined using the Gaussian kernel with width
√

h as

wij = e− d2
E (xi ,xj )

2h . (1.2)

However, the Euclidean distance is sensitive to the nuisance parameters. In order to factor out the
nuisance parameters, it is required to use a metric which is invariant to the group of transformations
associated with those parameters, denoted by G. Let X be the total space from which data is sampled.
The group G acts on X and instead of measuring distances between elements of X , we want to measure
distances between their orbits. The orbit of a point x ∈ X is the set of elements of X to which x can
be mapped by the elements of G, denoted by

Gx = {g ◦ x | g ∈ G}. (1.3)

The group action induces an equivalence relation on X and the orbits are the equivalence classes, such
that the equivalence class [x] of x ∈ X is Gx. The invariant metric is a metric on the orbit space X /G
of equivalent classes.

One possible way of constructing the invariant metric dG is through optimal alignment, given as

dG([xi], [xj]) = inf
gi ,gj∈G

dE(gi ◦ xi, gj ◦ xj). (1.4)

If the action of the group is an isometry, then

dG([xi], [xj]) = inf
g∈G

dE(xi, g ◦ xj). (1.5)

For example, if X = L2(R3) and G is O(3) (the group of 3×3 orthogonal matrices), then the left action

(g ◦ f )(x) = f (g−1x) (1.6)
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is an isometry, and

d2
G([ fi], [ fj]) = min

g∈O(3)

∫
R3

| fi(x)− fj(g
−1x)|2 dx. (1.7)

In this article we only consider groups that are either orthogonal and unitary, for three reasons. First,
this condition guarantees that the GCL is symmetric (or Hermitian). Secondly, the action is an isometry
and the invariant metric (1.5) is well defined. Thirdly, it is a compact group and the minimizer of (1.7)
is well defined.

The invariant metric dG can be used to define weights between data samples, for example, the
Gaussian kernel gives

wij = e− d2
G([xi],[xj ])

2h . (1.8)

While LE and DM with weights given in (1.2) correspond to diffusion over the original space X , LE
and DM with weights given in (1.8) correspond to diffusion over the orbit space X /G. In VDM, the
weights (1.8) are also accompanied by the optimal transformations

gij = argmin
g∈G

dE(xi, g ◦ xj). (1.9)

VDM corresponds to diffusion over the vector bundle of the orbit space X /G associated with the group
action. The following existing examples demonstrate the usefulness of such a diffusion process in data
analysis (see [12,23,25] for more applications):

• Manifold learning: Suppose we are given a point cloud randomly sampled from a d-
dimension/dimensional smooth manifold M embedded in R

p. Due to the smoothness of M, the
embedded tangent bundle of M can be estimated by local principal component analysis (PCA) [33].
All bases of an embedded tangent plane at x form a group isomorphic to O(d). Since the bases of
the embedded tangent planes form the frame bundle O(M), from this point cloud we obtain a set of
samples from the frame bundle which form the total space X = O(M). Since the set of all the bases
of an embedded tangent plane is invariant under the action of O(d), for the purpose of learning the
manifold M, we take O(d) as the nuisance group, and hence the orbit space is M = O(M)/O(d).
As shown in [33], the generator of the diffusion process corresponding to VDM is the connection
Laplacian associated with the tangent bundle. With the eigenvalues and eigenvectors of the con-
nection Laplacian, the point cloud is embedded in an Euclidean space. We refer to the Euclidean
distance in the embedded space as the vector diffusion distance (VDD), which provides a metric for
the point cloud. It is shown in [33] that VDD approximates the geodesic distance between nearby
points on the manifold. Furthermore, by VDM, we extend the earlier spectral embedding theorem
[6] by constructing a distance in a class of closed Riemannian manifolds with prescribed geometric
conditions, which leads to a pre-compactness theorem on the class under consideration [40].

• Orientability: Suppose we are given a point cloud randomly sampled from a d-dimension/
dimensional smooth manifold M and we want to learn its orientability. Since the frame bundle encodes
whether or not the manifold is orientable, we take the nuisance group as Z2 defined as the determinant
of the action O(d) from the previous example. In other words, the orbit of each point on the manifold is
Z2, the total spaceX is the Z2 bundle on M following the orientation, and the orbit space is M. With the
nuisance group Z2, Orientable Diffusion Maps (ODM) proposed in [32] can be considered as a vari-
ation of VDM in order to estimate the orientability of M from a finite collection of random samples.
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• Cryo-EM: The X-ray transform often serves as a mathematical model to many medical and biological
imaging modalities, for example, in cryo-electron microscopy [15]. In cryo-electron microscopy, the
2-dimension/dimensional projection images of the 3-dimension/dimensional object are noisy and
their projection directions are unknown. For the purpose of denoising, it is required to classify the
images and average images with similar projection directions, a procedure known as class averaging.
When the object of interest has no symmetry, the projection images have a one-to-one correspondence
with a manifold diffeomorphic to SO(3). Notice that SO(3) can be viewed as the set of all right-handed
bases of all tangent planes to S2, and the set of all right-handed bases of a tangent plane is isomorphic
to SO(2). Since the projection directions are parameterized by S2 and the set of images with the same
projection direction is invariant under the SO(2) action, we learn the projection direction by taking
SO(2) as the nuisance group and S2 as the orbit space. The VDD provides a metric for classification
of the projection directions in S2, and this metric has been shown to outperform other classification
methods [19,34,41].

The main contribution of this article is twofold. First, we use the mathematical framework of the
principal bundle [8] in order to analyze the relationship between the nuisance group and the orbit
space, and how their combination can be used to learn the dataset. In this setup, the total space is the
principal bundle, the orbit space is the base manifold, and the orbit is the fiber. This principal bundle
framework unifies LE, DM, ODM and VDM by providing a common mathematical language to all of
them. Secondly, for data points that are independently sampled from the uniform distribution over a
manifold, in addition to showing pointwise convergence of VDM in the general principal bundle setup,
in Theorem 5.4 we prove that the algorithm converges in the spectral sense, that is, the eigenvalues and
the eigenvectors computed by the algorithm converge to the eigenvalues and the eigen-vector-fields of
the connection Laplacian of the associated vector bundle. Our pointwise and spectral convergence results
also hold for manifolds with boundary, and in the case where data points are sampled independently from
non-uniform distributions (that satisfy mild technical conditions). We also show spectral convergence of
the GCL to the connection Laplacian of the associated tangent bundle in Theorem 6.2 when the tangent
bundle is estimated from the point cloud. The importance of these spectral convergence results stem
from the fact that they provide a theoretical guarantee in the limit of infinite number of data samples
for the above listed problems, namely, estimating VDDs, determining the orientability of a manifold
from a point cloud, and classifying the projection directions of cryo-EM images. In addition, we show
that ODM can help reconstruct the orientable double covering of non-orientable manifolds by proving
a symmetric version of Nash’s isometric embedding theorem [26,27].

The rest of the article is organized as follows. In Section 2, we review VDM and clarify the relationship
between the point cloud sampled from the manifold and the bundle structure of the manifold. In Section
3, we introduce background material and set up the notations. In Section 4, we unify LE, DM, VDM
and ODM by taking the principal bundle structure of the manifold into account. In Section 5, we prove
the first spectral convergence result that assumes knowledge of the bundle structure. The non-empty
boundary and non-uniform sampling effects are simultaneously handled. In Section 6, we prove the
second spectral convergence result when the bundle information is missing and needs to be estimated
directly from a finite random point cloud.

2 The graph connection Laplacian and vector diffusion maps

Consider an undirected affinity graph G = (V, E), where V = {xi}n
i=1 and fix a q ∈ N. Suppose each

edge (i, j) ∈ E is assigned a scalar value wij > 0 and a group element gij ∈ O(q). We call wij the affinity
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between xi and xj and gij the connection group between the vector status of xi and xj. We assume that
wij = wji and gT

ij = gji. Construct the following n × n block matrix Sn with q × q entries:

Sn(i, j) =
{

wijgij (i, j) ∈ E,
0q (i, j) /∈ E,

(2.1)

where 0q is the q × q zero matrix. Notice that the square matrix Sn is symmetric due to the assumption
of wij and gij. Define

di =
∑
(i,j)∈E

wij (2.2)

as the weighted degree of node i. Then define an n × n diagonal block matrix Dn with q × q entries,
where the diagonal blocks are scalar multiples of the identity given by

Dn(i, i) = diIq, (2.3)

where Iq is the q × q identity matrix. The un-normalized GCL and the normalized GCL are defined in
[2,33]

Ln := Dn − Sn, Ln := Iqn − D−1
n Sn, (2.4)

respectively. Given a v ∈ R
qn, we denote v[l] ∈ R

q to be the lth component in the vector by saying that
v[l] := [v((l − 1)q + 1), . . . , v(lq)]T ∈ R

q for all l = 1, . . . , n. The matrix D−1
n Sn is thus an operator

acting on v ∈ R
nq by

(D−1
n Snv)[i] =

∑
j:(i,j)∈E

wijgijv[j]
di

, (2.5)

which suggests the interpretation of D−1
n Sn as a generalized Markov chain in the following sense, so

that the random walker (e.g. diffusive particle) is characterized by a generalized status vector. Indeed,
a particle at i is endowed with a q-dimension/dimensional vector status, and at each time step it hops
from i to j with probability wij/di. In the absence of the group, these statuses are separately viewed as q
functions defined on G. Notice that the graph Laplacian arises as a special case for q = 1 and gij = 1.
However, when q > 1 and gij are not identity matrices, in general the coordinates of the status vectors
do not decouple into q independent processes due to the non-trivial effect of the group elements gij.
Thus, if a particle with status v[i] ∈ R

q moves along a path of length t from j0 to jt containing vertices
j0, j1, . . . , jt−1, jt so that (jl, jl+1) ∈ E for 0 = 1, . . . , t − 1, in the end it becomes

gj,jt−1 · · · gj2,j1gj1,iv[i]. (2.6)

That is, when the particle arrives j, its vector status is influenced by a series of rotations along the
path from i to j. In case there are more than two paths from i to j and the rotational groups on paths
vary dramatically, we may get cancelation while adding transformations of different paths. Intuitively,
‘the closer two points are’ or ‘the less variance of the translational group on the paths is’, the more
consistent the vector statuses are between i and j. We can thus define a new affinity between i and
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j by the consistency between the vector statuses. Notice that the matrix (D−1
n Sn)

2t(i, j), where t > 0,
contains the average of the rotational information over all paths of length 2t from i to j. Thus, the squared
Hilbert–Schmidt norm, ‖(D−1

n Sn)
2t(i, j)‖2

HS, can be viewed as a measure of not only the number of paths
of length 2t from i to j, but also the amount of consistency of the vector statuses that propagated along
different paths connecting i and j. This motivates to consider the notion of affinity between i and j as
‖(D−1

n Sn)
2t(i, j)‖2

HS.
To understand ‖(D−1

n Sn)
2t(i, j)‖2

HS, we consider the symmetric matrix S̃n = D−1/2
n SnD−1/2

n , which
is similar to D−1

n Sn. Since S̃n is symmetric, it has a complete set of eigenvectors v1, v2, . . . , vnq and
eigenvalues λ1, λ2, . . . , λnq, where the eigenvalues are the same as those of D−1

n Sn. Order the eigenvalues
so that λ1 ≥ λ2 ≥ . . . ≥ λnq. A direct calculation of the HS norm of S̃2t

n (i, j) leads to:

‖S̃2t
n (i, j)‖2

HS =
nq∑

l,r=1

(λlλr)
2t〈vl[i], vr[i]〉〈vl[j], vr[j]〉. (2.7)

The VDM Vt is defined as the following map from G to R
(nq)2 :

Vt : i 
→ (
(λlλr)

t〈vl[i], vr[i]〉
)nq

l,r=1
. (2.8)

We mention that when q = 1 and gij ∈ SO(1) for all i, j, Vt is still different from the well-known DM
[11], since DM is defined from G to R

n by

Φt : i 
→ (λt
lvl(i))

n
l=1. (2.9)

This, we could view Φt as a restricted VDM. In general, there is no simple relationship between DM
and VDM. With this map, ‖S̃2t

n (i, j)‖2
HS becomes an inner product for a finite dimensional Hilbert space,

that is,

‖S̃2t
n (i, j)‖2

HS = 〈Vt(i), Vt(j)〉, (2.10)

which in practice is common considered as an affinity between i and j. The VDD between nodes i and j
is defined as

d(VDD)
t (i, j) := ‖Vt(i)− Vt(j)‖2. (2.11)

Furthermore, |λl| ≤ 1 due to the following identity:

vT (In ± S̃n)v =
∑
(i,j)∈E

∥∥∥∥∥ v[i]√
di

± wijgijv[j]√
dj

∥∥∥∥∥
2

≥ 0, (2.12)

for any v ∈ R
nq. By the above we cannot guarantee that the eigenvalues of S̃n are non-negative, and

that is the main reason we define Vt through ‖S̃2t
n (i, j)‖2

HS rather than ‖S̃t
n(i, j)‖2

HS. On the other hand, we
know that the unnormalized GCL is positive semi-definite because

vT (Dn − Sn)v =
∑
(i,j)∈E

wij‖gijv[j] − v[i]‖2 ≥ 0. (2.13)
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We now come back to D−1
n Sn. The eigenvector of D−1

n Sn associated with eigenvalue λl is
wl = D−1/2

n vl. This motivates the definition of another VDM from G to R
(nq)2 as

V ′
t : i 
→ (

(λlλr)
t〈wl[i], wr[i]〉

)nq

l,r=1
, (2.14)

so that V ′
t (i) = Vt (i)

di
. In other words, V ′

t maps the data set in a Hilbert space upon proper normalization

by the vertex degrees. The associated VDD is thus defined as ‖V ′
t (i)− V ′

t (j)‖2.
We mention that when q = 1 and gij ∈ SO(1), that is, gij = 1 for all i, j, then the GCL is reduced

to the well-known graph Laplacian. The introduction of the connection group leads to a fundamentally
different meaning of the algorithm. For example, if gij = O(1), that is, gij could be 1 or −1, then
the algorithm could reflect different topological structure of the underlying space, like the orientability
if G is constructed from a manifold. Another illustrative example to show how the connection group
is fundamentally needed is the 2-dimension/dimensional sphere. Suppose G is constructed from a 2-
dimension/dimensional sphere and the connection group follows the connection structure of its frame
bundle. Then the well-known ‘hairy ball theory’ is inevitable; that is, the smallest eigenvalue of Ln is
greater than 0 and the associated eigenvector is not constant on G. However, if we ignore the connection
structure of its frame bundle, and simply set gij = I2, then the smallest eigenvalue of the GCL is 0 and the
associated eigenvector is constant on G. This difference plays an essential role in all the applications. For
further discussion of the motivation about VDM, VDD, other normalizations and its statistical properties,
please see [14,33].

3 Notations, background and assumptions

In this section, we collect all notations and background facts about differential geometry needed
throughout the article.

3.1 Notations and background of differential geometry

We refer the readers who are not familiar with the principal bundle structure to Appendix A for a quick
introduction and [7,8] for a general treatment.

Denote M to be a d-dimension/dimensional compact smooth manifold. If the boundary ∂M is non-
empty, it is smooth. Denote ι : M ↪→ R

p to be a smooth embedding of M into R
p and equip M with the

metric g induced from the canonical metric on R
p via ι. With the metric g we have an induced measure,

denoted as dV , on M. Denote

Mt :=
{

x ∈ M : min
y∈∂M

d(x, y) ≤ t

}
, (3.1)

where t ≥ 0 and d(x, y) is the geodesic distance between x and y.
Denote P(M, G) to be the principal bundle with a connection 1-form ω, where G is a Lie group right

acting on P(M, G) by ◦. Denote π : P(M, G) → M to be the canonical projection. We call M the base
space of the principal G bundle and G the structure group or the fiber of the principal bundle. From the
view point of orbit space, P(M, G) is the total space, G is the group acting on P(M, G), and M is the
orbit space of P(M, G) under the action of G. In other words, when our interest is the parametrization
of the orbit space, G becomes the nuisance group.
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Denote ρ to be a representation of G into O(q), where q > 0.1 When there is no danger of con-
fusion, we use the same symbol g to denote the Riemannian metric on M and an element of G. Denote
E (P(M, G), ρ, Rq), q ≥ 1, to be the associated vector bundle with the fiber diffeomorphic to R

q. By
definition, E (P(M, G), ρ, Rq) is the quotient space P(M, G)×R

q/ ∼, where the equivalence relationship
∼ is defined by the group action on P(M, G) × R

q by g : (u, v) → (g ◦ u, ρ(g)−1v), where g ∈ G,
u ∈ P(M, G) and v ∈ R

q. When there is no danger of confusion, we use E to simplify the notation.
Denote πE to be the associated canonical projection and Ex to be the fiber of E on x ∈ M; that is,
Ex := π−1

E (x). Given a fiber metric gE in E , which always exists since M is compact, we consider the
metric connection under which the parallel displacement of fiber of E is isometric related to gE . The
metric connection on E determined from ω is denoted as ∇E . Note that by definition, each u ∈ P(M, G)
turns out to be a linear mapping from R

q to Ex preserving the inner product structure, where x = π(u),
and satisfies

(g ◦ u)v = u(ρ(g)v) ∈ Ex, (3.2)

where u ∈ P(M, G), g ∈ G and v ∈ R
q. We interpret the linear mapping u as finding the point u(v) ∈ Ex

possessing the coordinate v ∈ R
q.

Example 3.1 An important example is the frame bundle of the Riemannian manifold (M, g), denoted
as O(M) = P(M, O(d)), and the tangent bundle TM, which is the associated vector bundle of the frame
bundle O(M) if we take ρ = id and q = d. The relationship among the principal bundle and its associated
vector bundle can be better understood by considering the practical meaning of the relationship between
the frame bundle and its associated tangent bundle. It is actually the change of coordinate (or change of
variable linearly). In fact, if we view a point u ∈ O(M) as the basis of the fiber TxM, where x = π(u),
then the coordinate of a point on the tangent plane TxM changes, that is, v → g−1v, according to the
changes of the basis, that is, u → g ◦ u, where g ∈ O(d).

Denote Γ (E ) to be the set of sections, Ck(E ) to be the set of kth differentiable sections, where k ≥ 0.
Also denote C(E ) := C0(E ) to be the set of continuous sections. Denote Lp(E ), 1 ≤ p < ∞ to be the
set of Lp integrable sections, that is, X ∈ Lp(E ) iff

∫ |gE(X, X)|p/2 dV < ∞. Denote ‖X‖L∞ to be the
L∞ norm of X.

The covariant derivative ∇E of X ∈ C1(E ) in the direction v at x is defined as

∇E
ċ(0)X(x) = lim

h→0

1

h
[u(0)u(h)−1(X(c(h)))− X(c(0))], (3.3)

where c : [0, 1] → M is the curve on M so that c(0) = x, ċ(0) = v and u(h) is the horizontal lift of
c(h) to P(M, G) so that π(u(0)) = x. Let //x

y denote the parallel displacement from y to x. When y is in

the cut locus of x, we set //x
yX(y) = 0; when h is small enough, //c(0)

c(h) = u(0)u(h)−1 by definition. For a
smooth section X , denote X (l), l ∈ N, to be the lth order covariant derivatives of X.

Example 3.2 We can better understand this definition in the frame bundle O(M) and its associated
tangent bundle. Take X ∈ C1(TM). The practical meaning of (3.3) is the following: find the coordinate

1 We may also consider representing G into U(q) if we take the fiber to be C
q. However, to simplify the discussion, we focus

ourselves on O(q) and the real vector space.
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of X(c(h)) by u(h)−1(X(c(h))), then view this coordinate to be associated with TxM, and map it back to
the fiber TxM by the basis u(0). In this way we can compare two different ‘abstract fibers’ by comparing
their coordinates.

Denote ∇2 the connection Laplacian over M with respect to E . Denote by R, Ric, and s the
Riemannian curvature tensor, the Ricci curvature and the scalar curvature of (M, g), respectively. The
second fundamental form of the embedding ι is denoted by II. Denote τ to be the largest positive number
having the property: the open normal bundle about M of radius r is embedded in R

p for every r < τ
[28]. Note that 1/τ can be interpreted as the condition number of the manifold. Since M is compact,
τ > 0 holds automatically. Denote inj(M) to be the injectivity radius of M.

3.2 Notations and background of numerical finite samples

When the range of a random vector Y is supported on a d-dimension/dimensional manifold M embedded
in R

p via ι, where d < p, the notion of probability density function (p.d.f.) may not be defined. It is
possible to discuss more general setups, but we restrict ourselves here to the following definition for the
sake of the asymptotic analysis [10]. Consider a probability space (Ω , F , P), where Ω is the sample
space, F is the sigma algebra onΩ and P is a probability measure defined on F . Let the random vector
Y : (Ω , F , P)→ R

p be a measurable function defined on (Ω , F , P). Let B̃ be the Borel sigma algebra
of ι(M). Denote by dP̃Y the probability measure of Y , defined on B̃, induced from the probability
measure P. Assume that dP̃Y is absolutely continuous with respect to the volume measure on ι(M), that
is, dP̃Y (x) = p(ι−1(x))ι∗ dV(x).

Definition 3.3 We call p : M → R+ the p.d.f. of the p-dimension/dimensional random vector Y when
its range is supported on a d-dimension/dimensional manifold ι(M), where d < p. When p is constant,
we say the sampling is uniform; otherwise non-uniform.

From now on we assume p ∈ C4(M). With this definition, we can thus define the expectation and
other moments. For example, if f : ι(M)→ R is an integrable function, we have

Ef (Y) =
∫
Ω

f (Y(ω)) dP(ω) =
∫
ι(M)

f (x) dP̃Y (x)

=
∫
ι(M)

f (x)p(ι−1(x))ι∗ dV(x) =
∫

M
f (ι(x))p(x) dV(ι(x)), (3.4)

where the second equality follows from the fact that P̃Y is the induced probability measure, and the
last one comes from the change of variable. To simplify the notation, hereafter we will not distinguish
between x and ι(x) and M and ι(M), when there is no danger of ambiguity.

Suppose the data points X := {x1, x2, . . . , xn} ⊂ R
p are identically and independently (i.i.d.)

sampled from Y . For each xi we pick ui ∈ P(M, G) so that π(ui) = xi. To simplify the notation, we
denote ui := uxi when xi ∈ X and //i

j := //
xi
xj when xi, xj ∈ X . Denote the nq-dimension/dimensional

Euclidean vector spaces VX := ⊕xi∈XR
q and EX := ⊕xi∈X Exi , which represents the discretized vector

bundle. Note that VX is isomorphic to EX since Exi is isomorphic to R
q. Given a w ∈ EX , we denote

w = [w[1], . . . , w[n]] and w[l] ∈ Exl to be the lth component in the direct sum for all l = 1, . . . , n.
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We need a map to realize the isomorphism between VX and EX . Define operators BX : VX → EX

and BT
X : EX → VX by

BX v := [u1v[1], . . . , unv[n]] ∈ EX ,

BT
X w := [u−1

1 w[1], . . . u−1
n w[n]] ∈ VX , (3.5)

where w ∈ EX and v ∈ VX . Note that BT
X BX v = v for all v ∈ VX . We define δX : X ∈ C(E )→ EX

by

δX X := [X(x1), . . . , X(xn)] ∈ EX . (3.6)

Here δX is interpreted as the operator finitely sampling the section X and BX the discretization of the
action of a section from M → P(M, G) on R

q. Note that under the tangent bundle setup, the operator
BT

X can be understood as finding the coordinates of w[i] associated with ui; BX can be understood as
recovering the point on Exi from the coordinate v[i] associated with ui. We can thus define

X := BT
XδX X ∈ VX , (3.7)

which is the coordinate of the discretized section X associated with the samples on the principal bundle
if we are considering the tangent bundle setup.

Below, we follow the standard notation defined in [36] to discuss the Glivenko–Cantelli class.

Definition 3.4 Take a probability space (Ω , F , P). For a pair of measurable functions l : Ω → R

and u : Ω → R, a bracket [l, u] is the set of all measurable functions f : Ω → R with l ≤ f ≤ u.
An ε-bracket in L1(P), where ε > 0, is a bracket [l, u] with

∫ |u(y) − l(y)| dP(y) ≤ ε. Given a class
of measurable function F, the bracketing number N[](ε, F, L1(P)) is the minimum number of ε-brackets
needed to cover F.

Define the empirical measure from the i.i.d. samples X :

Pn := 1

n

n∑
i=1

δxi . (3.8)

For a given measurable vector-valued function F : M → R
m for m ∈ N, define

PnF := 1

n

n∑
i=1

F(xi) and PF :=
∫

M
F(x)p(x) dV(x). (3.9)

Definition 3.5 Take a sequence of i.i.d. samples X := {x1, . . . , xn} ⊂ M according to the p.d.f. p. We
call a class F of measurable functions a Glivenko–Cantelli class if

1. Pf exists for all f ∈ F

2. supf ∈F |Pnf − Pf | → 0 almost surely when n → ∞.
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Next, we introduce the following notations regarding the kernel used throughout the article. Fix h > 0.
Given a non-negative continuous kernel function K : [0, ∞)→ R+ decaying fast enough characterizing
the affinity between two sampling points x ∈ M and y ∈ M, we denote

Kh(x, y) := K
(‖x − y‖Rp√

h

)
∈ C(M × M), (3.10)

where x, y ∈ M. For 0 ≤ α ≤ 1, we define the following functions

ph(x) :=
∫

Kh(x, y)p(y) dV(y) ∈ C(M), Kh,α(x, y) := Kh(x, y)

pαh (x)p
α
h (y)

∈ C(M × M),

dh,α(x) :=
∫

Kh,α(x, y)p(y) dV(y) ∈ C(M), Mh,α(x, y) := Kh,α(x, y)

dh,α(x)
∈ C(M × M),

(3.11)

where ph(x) is an estimation of the p.d.f. at x by the approximation of identify. Here, the practical
meaning of Kh,α(x, y) is a new kernel function at (x, y) adjusted by the estimated p.d.f. at x and y; that
is, the kernel is normalized to reduce the influence of the non-uniform p.d.f. In practice, when we have
only finite samples, we approximate the above terms by the following estimators:

p̂h,n(x) := 1

n

n∑
k=1

Kh(x, xk) ∈ C(M), K̂h,α,n(x, y) := Kh(x, y)

p̂αh,n(x)̂p
α
h,n(y)

∈ C(M × M),

d̂h,α,n(x) := 1

n

n∑
k=1

K̂h,α,n(x, xk) ∈ C(M), M̂h,α,n(x, y) := K̂h,α,n(x, y)

d̂h,α,n(x)
∈ C(M × M).

(3.12)

Note that d̂h,α,n is always positive if K is positive.

4 Unifying VDM, ODM, LE and DM from the principal bundle viewpoint

Before unifying these algorithms, we state some of the known results relevant to VDM, ODM, LE and
DM. Most of the results that have been obtained are of two types: either they provide the topological
information about the data which is global in nature, or they concern the geometric information which
aims to recover the local information of the data. Fix the undirected affinity graph G = (V, E). When
it is built from a point cloud randomly sampled from a Riemannian manifold ι : M ↪→ R

p with the
induced metric g from the canonical metric of the ambient space, the main ingredient of LE and DM is
the Laplace–Beltrami operator Δg of (M, g) [11]. It is well known that the Laplace–Beltrami operator
Δg provides some topology and geometry information about M [16]. For example, the dimension of
the null space of Δg is the number of connected components of M; the spectral embedding of M into
the Hilbert space [6] preserves the geometric information of M. We can actually study LE and DM
in the principal bundle framework. Indeed, Δg is associated with the trivial bundle E (P(M, {e}), ρ, R),
where ρ is the trivial representation of {e} on R. If we consider a non-trivial bundle, we obtain different
Laplacian operators, which provide different geometric/topological information [16]. For example, the
core of VDM in [33] is the connection Laplacian associated with the tangent bundle TM, which provides
not only the geodesic distance among nearby points (local information), but also the 1-Betti number
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mixed with the Ricci curvature of the manifold. In addition, the notion of synchronization of vector
fields on G accompanied with translation group can be analyzed by the GCL [2].

4.1 Principal bundle setup

As the reader may have noticed, the appearance of VDM is similar to that of LE, DM and ODM. This
is not a coincidence if we take the notion of principal bundle and its connection into account. Based on
this observation, we are able to unify VDM, ODM, LE and DM in this section.

We make the following assumptions about the manifold setup.

Assumption 4.1 (A1) The manifold M is d-dimension/dimensional, smooth and smoothly embedded
in R

p via ι with the metric g induced from the canonical metric of R
p. If the manifold is not

closed, we assume that the boundary is smooth.

(A2) Fix a principal bundle P(M, G) with a connection 1-form ω. Denote ρ to be the representation
of G into O(q), where q > 0 depending on the application.2 Denote E := E (P(M, G), ρ, Rq) to
be the associated vector bundle with a fiber metric gE and the metric connection ∇E .3

The following two special principal bundles and their associated vector bundles are directly related
to ODM, LE and DM. The principal bundle for ODM is the non-trivial orientation bundle associated
with the tangent bundle of a manifold M, denoted as P(M, Z2), where Z2 = {−1, 1}. The construction of
P(M, Z2) is shown in Example A5. Since Z2 is a discrete group, we take the connection as an assignment
of the horizontal subspace of TP(M, Z2) as the simply tangent space of P(M, Z2); that is, TP(M, Z2).
Its associated vector bundle is E ODM = E (P(M, Z2), ρ, R), where ρ is the representation of Z2 so that
ρ satisfies ρ(g)x = gx for all g ∈ Z2 and x ∈ R. Note that Z2

∼= O(1). The principal bundle for LE
and DM is P(M, {e}), where {e} is the identify group. Its construction can be found in Example A3 and
we focus on the trivial connection. Its associated vector bundle is E DM = E (P(M, {e}), ρ, R), where the
representation ρ satisfies ρ(e)x = x and x ∈ R. In other words, E DM is the trivial line bundle on M.
Note that {e} ∼= SO(1).

Under the manifold setup assumption, we sample data from a random vector Y satisfying:

Assumption 4.2 (B1) The random vector Y has the range ι(M) satisfying Assumption 4.1. The p.d.f.
p ∈ C4(M) of Y is uniformly bounded from below and above; that is, 0 < pm ≤ p(x) ≤ pM <∞
for all x ∈ M.

(B2) The sample points X = {xi}n
i=1 ⊂ M are sampled independently from Y .

(B3) For each xi ∈ X , pick ui ∈ P(M, G) such that π(ui) = xi. Denote G = {ui : R
q → Exi}n

i=1.

2 We restrict ourselves to the orthogonal representation in order to obtain a symmetric matrix in the VDM algorithm. Indeed,
if the translation of the vector status from xi to xj satisfies u−1

j ui, where ui, uj ∈ P(M, G) and π(ui) = xi and π(uj) = xj , the

translation from xj back to xi should satisfy u−1
i uj , which is the inverse of u−1

j ui. To have a symmetric matrix in the end, we

thus need u−1
j ui = (u−1

i uj)
T , which is satisfied only when G is represented into the orthogonal group. We refer the reader to

Appendix A for further details based on the notion of connection.
3 In general, ρ can be the representation of G into O(q), which acts on the tensor space Tr

s (R
q) of type (r, s) or others. But we

consider R
q = T1

0 (R
q) to simplify the discussion.
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The kernel and bandwidth used in the following sections satisfy:

Assumption 4.3 (K1) The kernel function K ∈ C2(R+) is a positive function satisfying that K and
K ′ decay exponentially fast. Denote μ(k)r,l := ∫

Rd ‖x‖l∂k(Kr)(‖x‖) dx < ∞, where k = 0, 1, 2,
l = 0, 1, 2, 3, r = 1, 2 and ∂k denotes the kth order derivative. We assume μ(0)1,0 = 1.

(K2) The bandwidth of the kernel, h, satisfies 0 <
√

h < min{τ , inj(M)}.

4.2 Unifying VDM, ODM, LE and DM under the manifold setup

Suppose Assumption 4.1 is satisfied, and we are given X and G satisfying Assumption 4.2. The affinity
graph G = (V, E) is constructed in the following way. Take V = X and E = {(xi, xj)| xi, xj ∈ X }.
Under this construction G is undirected and complete. The affinity between xi and xj is defined by

wij := K̂h,α,n(xi, xj), (4.1)

where 0 ≤ α ≤ 1, K is the kernel function satisfying Assumption 4.3 and K̂h,α,n(xi, xj) is defined in
(3.12); that is, we define an affinity function w : E → R+. The connection group gij between xi and xj

is constructed from G by

gij := u−1
i //

i
juj, (4.2)

which form a group-valued function g : E → O(q). We call (G, w, g) a connection graph. With the
connection graph, the GCL can be implemented. Define the following n × n block matrix Sh,α,n with
q × q block entries:

Sh,α,n(i, j) =
{

wijgij (i, j) ∈ E,
0q×q (i, j) /∈ E.

(4.3)

Notice that the square matrix Sh,α,n is symmetric since wij = wji and gij = gT
ji . Then define an n × n

diagonal block matrix Dn with q×q entries, where the diagonal blocks are scalar multiples of the identity
matrices given by

Dh,α,n(i, i) =
∑

j:(i,j)∈E

wijIq = d̂h,α,n(x)Iq. (4.4)

Take v ∈ R
nq. The matrix D−1

h,α,nSh,α,n is thus an operator acting on v by

(D−1
h,α,nSh,α,nv)[i] =

∑n
j=1 K̂h,α,n(xi, xj)gijv[j]∑n

j=1 K̂h,α,n(xi, xj)
= 1

n

n∑
j=1

M̂h,α,n(xi, xj)gijv[j], (4.5)

where M̂h,α,n(xi, xj) is defined in (3.12).
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Recall the notation X := BT
XδX X defined in (3.7). Then, consider the following quantity:

(D−1
h,α,nSh,α,n − In

h
X
)
[i] =1

n

n∑
j=1

M̂h,α,n(xi, xj)
1

h
(gijX[j] − X[i])

=1

n

n∑
j=1

M̂h,α,n(xi, xj)
1

h
(u−1

i //
i
jX(xj)− u−1

i X(xi)). (4.6)

Note that geometrically gij is closely related to the parallel transport (3.3) from xj to xi. Indeed, rewrite
the definition of the covariant derivative in (3.3) by

∇ċ(0)X(xi) = lim
h→0

1

h
[u(0)u(h)−1X(c(h))− X(c(0))], (4.7)

where c : [0, 1] → M is the geodesic on M so that c(0) = xi and c(h) = xj, and u(h) is the horizontal
lift of c to P(M, G) so that π(u(0)) = xi. Next rewrite

u(0)−1∇ċ(0)X = lim
h→0

1

h

{
u(h)−1X(c(h))− u(0)−1X(c(0))

}
, (4.8)

where the right-hand side is exactly the term appearing in (4.6) by the definition of parallel transport since
u(h)−1 = u(0)−1//

c(0)
c(h). As will be shown explicitly in the next section, the GCL reveals the information

about the manifold by accumulating the local information via taking the covariant derivative into account.
Now we unify ODM, LE and DM. For ODM, we consider the orientation principal bundle P(M, Z2)

and its associated vector bundle E ODM. In this case, G is {uODM
i }n

i=1, uODM
i ∈ P(M, Z2) and uODM

i : R → Ei,
where Ei is the fiber of E ODM at xi ∈ M. Note that the fiber of E ODM is isomorphic to R. The connection
group gODM

ij between xi and xj is constructed by

gODM
ij = uODM

i
−1

uODM
j . (4.9)

In practice, uODM
j comes from the orientation of the sample from the frame bundle. Indeed, given xi and

ui ∈ O(M) so that π(ui) = xi, gODM
ij is defined to be the orientation of u−1

i //
i
juj; that is, the determinant

of u−1
i //

i
juj ∈ O(d). Define an n × n matrix with scalar entries SODM

h,α,n , where

SODM
h,α,n (i, j) =

{
wijgODM

ij (i, j) ∈ E,
0 (i, j) /∈ E

(4.10)

and an n × n diagonal matrix DODM
h,α,n , where

DODM
h,α,n (i, i) = di. (4.11)

It has been shown in [32, Section 2.3] that the orientability information of M can be obtained from
analyzing DODM

h,1,n
−1SODM

h,1,n . When the manifold is orientable, we get the ODM by taking the higher eigen-

vectors of DODM
h,1,n

−1SODM
h,1,n into account; when the manifold is non-orientable, we can recover the orientable

double covering of the manifold by the modified diffusion maps [32, Section 3]. In [32, Section 3], it is
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conjectured that any smooth, closed non-orientable manifold (M, g) has an orientable double covering
embedded symmetrically inside R

p for some p ∈ N. To make the unification self-contained, we will
show in Appendix D that this conjecture is true by modifying the proof of the Nash embedding theorem
[26,27]. This fact provides us with a better visualization of reconstructing the orientable double covering
by the modified diffusion maps.

For LE and DM, we consider the trivial principal bundle P(M, {e}) and its associated trivial line
bundle E DM. In this case, q = 1. Define an n × n matrix with scalar entries SDM

h,α,n:

SDM
h,α,n(i, j) =

{
wij (i, j) ∈ E,
0 (i, j) /∈ E

(4.12)

and an n × n diagonal matrix DDM
h,α,n:

DDM
h,α,n(i, i) = di. (4.13)

Note that this is equivalent to ignoring the connection group in each edge in GCL. Indeed, when we
study DM, we do not need the notion of connection group. This actually comes from the fact that
functions defined on the manifold are actually sections of the trivial line bundle of M—since the fiber
R and M are decoupled, we can directly take the algebraic relationship of R into consideration, so that
it is not necessary to mention the bundle structure. With the well-known normalized graph Laplacian,
In−DDM

h,0,n
−1SDM

h,0,n, we can apply DM or LE for dimension reduction, spectral clustering, reparametrization,
etc.

To sum up, we are able to unify the VDM, ODM, LE and DM by considering the principal bun-
dle structure. In the following sections, we focus on the pointwise and spectral convergence of the
corresponding operators.

5 Pointwise and spectral convergence of GCL

With the above setup, we now do the asymptotic analysis under Assumptions 4.1–4.3. In the asymptotical
analysis, we will apply the big O notation. We will spell out details when we need the small o notation
to avoid confusion. Recall the definition of the big O notation. For two functions f and g defined on
{h ∈ R; h ≥ 0}, f (h) = O(g(h)), as h → 0 means that there exists a positive constant C and h0 > 0 so
that |f (h)| ≤ C|g(h)| for all h < h0. Here we call C the implied constant in the big O notation. From
time to time, when we say that a quantity f (h) depending on h is of order hs when h → 0, where s ≥ 0,
it means that f (h)/hs converges to a positive constant when h → 0.

Throughout the proof, since p, M and ι are fixed, and p ∈ C4, M, ∂M and ι are smooth and M is
compact, we know that ‖p(l)‖L∞ , l = 0, 1, 2, 3, 4, the volume of ∂M, the curvature of M and ∂M and the
second fundamental form of the embedding ι, as well as their first few covariant derivatives are bounded
independent of h and n. Thus, they will exist in the implied constant in the big O term and we will not
explicitly mention them. However, when the implied constant in the big O term depends on a given
section (or function), it will be precisely stated.

The pointwise convergence of the normalized GL can be found in [4,11,17,20], and the spectral
convergence of the normalized GL when the sampling is uniform and the boundary is empty can be
found in [5]. Here we take care of simultaneously the boundary, the non-uniform sampling and the bundle
structure. Note that the asymptotical analysis of the normalized GL is a special case of the analysis in
this article, since it is unified to the current framework based on the trivial principal bundle P(M, {e}) and
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its associated trivial line bundle E DM. From a high level, except taking the possibly non-trivial bundle
structure into account, the analysis is standard.

5.1 Pointwise convergence

Definition 5.1 Define operators Th,α : C(E )→ C(E ) and T̂h,α,n : C(E )→ C(E ) as

Th,αX(y) :=
∫

M
Mh,α (y, x) //y

xX(x)p(x) dV(x), (5.1)

T̂h,α,nX(y) := 1

n

n∑
j=1

M̂h,α,n

(
y, xj

)
//y

xj
X(xj),

where X ∈ C(E ), 0 ≤ α ≤ 1 and Mh,α and M̂h,α,n are defined in (3.11) and (3.12), respectively.

First, we have the following theorem stating that the integral operator Th,α is an approximation of
identity, which allows us to obtain the connection Laplacian:

Theorem 5.2 Suppose Assumptions 4.1 and 4.3 hold. Take 0 < γ < 1/2. When 0 ≤ α ≤ 1, for all
x /∈ Mhγ and X ∈ C4(E ), we have

(Th,αX − X)(x) = h
μ
(0)
1,2

2d

(
∇2X(x)+ 2∇X(x) · ∇(p1−α)(x)

p1−α(x)

)
+ O(h2), (5.2)

where the implied constant in O(h2) depends on ‖X (�)‖L∞ , where � = 0, 1 . . . , 4; when x ∈ Mhγ , we
have

(Th,αX − X)(x) = √
h

mh,1

mh,0
//x

x0
∇∂d X(x0)+ O(h2γ ), (5.3)

where the implied constant in O(h2γ ) depends on ‖X (�)‖L∞ , where � = 0, 1, 2, x0 = argminy∈∂M d(x, y),
mh,1 and mh,0 are constants of order 1 defined in (B.12), and ∂d is the outer normal direction to the
boundary at x0.

Note that near the boundary, the constant mh,1/mh,0 is of order 1, so the first term
√

h
mh,1
mh,0

is of order√
h. When γ > 1/4, the first term will asymptotically dominate the second term O(h2γ ).

Secondly, we show that when n → ∞, asymptotically the matrix D−1
h,α,nSh,α,n − I behaves like the

integral operator Th,α−1. The main component in this asymptotical analysis in the stochastic fluctuation
analysis of the GCL. As is shown in Theorem 5.2, the term we have interest in is the connection
Laplacian (or Laplace–Beltrami operator when we consider GL), which is of order h, while the extra
irrelevant terms are of higher order. Therefore the stochastic fluctuation incurred by the finite sampling
points should be controlled to be much smaller than the connection Laplacian; otherwise the stochastic
fluctuation will distort the object of interest.

Theorem 5.3 Suppose Assumptions 4.1–4.3 hold and X ∈ C(E ).
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Take 0 < α ≤ 1. Suppose h = h(n) so that
√

log(n)

n1/2hd/4+1/2+s → 0, where s ≥ 0, and h → 0 as n → ∞.
With probability higher than 1 − 1/n2, for all i = 1, . . . , n,

(D−1
h,α,nSh,α,nX− X)[i] = u−1

i (Th,αX − X)(xi)+ O

(√
log(n)

n1/2hd/4

)
, (5.4)

where X is defined in (3.7).

Take α = 0 and 1/4 < γ < 1/2. Suppose h = h(n) so that
√

log(n)

n1/2hd/4+1/2 → 0 and h → 0 as n → ∞.
Then with probability higher than 1 − 1/n2, for all xi /∈ Mhγ we have

(D−1
h,0,nSh,0,nX− X)[i] = u−1

i (Th,0X − X)(xi)+ O

( √
log(n)

n1/2hd/4−1/2

)
. (5.5)

Suppose h = h(n) so that
√

log(n)

n1/2hd/4+1/2 → 0 and h → 0 as n → ∞, with probability higher than 1 − 1/n2,
for all xi ∈ Mhγ :

(D−1
h,0,nSh,0,nX− X)[i] = u−1

i (Th,0X − X)(xi)+ O

( √
log(n)

n1/2hd/4−1/4

)
. (5.6)

The proofs of Theorems 5.2 and 5.3 are postponed to the Appendix. Here
√

log(n) in the error term
shows up due to the probability bound we are seeking and the union bound for all i = 1, . . . , n. When
α > 0, we need to estimate the p.d.f. from finite sampling points. This p.d.f. estimation dominates and

slows down the convergence rate. Indeed,
√

log(n)

n1/2hd/4 /h
1/2+s → 0 when h → 0, which only implies that

the stochastic fluctuation incurred from the finite sampling points goes to zero faster than h1/2+s, which
might not be enough for us to recover the connection Laplacian we have interest in if s < 1/2.

The above two Theorems lead to the following pointwise convergence of the GCL. Here, the error
term consists of the stochastic fluctuation (variance) when the number of samples is finite, and the error
term in Theorem 5.2 is the bias term introduced by the kernel approximation.

Corollary 5.1 Suppose Assumptions 4.1–4.3 hold. Take 0 < γ < 1/2 and X ∈ C4(E ). Take

0 < α ≤ 1. Suppose h = h(n) so that
√

log(n)

n1/2hd/4+1 → 0 and h → 0 as n → ∞. Then with probability
higher than 1 − 1/n2, the following holds for all xi /∈ Mhγ :

h−1(D−1
h,α,nSh,α,nX− X)[i] =μ

(0)
1,2

2d
u−1

i

{
∇2X(xi)+ 2∇X(xi) · ∇(p1−α)(xi)

p1−α(xi)

}
+ O(h)+ O

( √
log(n)

n1/2hd/4+1

)
,

where ∇X(xi) · ∇(p1−α)(xi) := ∑d
l=1 ∇∂l X∇∂l (p1−α) and {∂l}d

l=1 is a normal coordinate around xi; the
following holds for all xi ∈ Mhγ :

(D−1
h,α,nSh,α,nX− X)[i] =√

h
mh,1

mh,0
u−1

i //
xi
x0

∇∂d X(x0)+ O(h2γ )+ O

(√
log(n)

n1/2hd/4

)
, (5.7)
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where x0 = argminy∈∂M d(xi, y), mh,1 and mh,0 are constants defined in (B.12), and ∂d is the normal
direction to the boundary at x0.

Take α = 0. If h = h(n) so that
√

log(n)

n1/2hd/4+1/2 → 0 and h → 0 as n → ∞, then with probability higher
than 1 − 1/n2, the following holds for all xi /∈ Mhγ :

h−1(D−1
h,0,nSh,0,nX− X)[i] =μ

(0)
1,2

2d
u−1

i

{
∇2X(xi)+ 2∇X(xi) · ∇p(xi)

p(xi)

}
+ O(h)+ O

( √
log(n)

n1/2hd/4+1/2

)
;

the following holds for all xi ∈ Mhγ :

(D−1
h,α,nSh,α,nX)[i] =u−1

i

(
X(x)+ √

h
mh,1

mh,0
//xi

x0
∇∂d X(x0)

)
+ O(h2γ )+ O

( √
log(n)

n1/2hd/4−1/4

)
. (5.8)

We have several remarks for the above theorems and corollary.

Remark 5.1 Several existing results regarding normalized GL and the estimation of Laplace–Beltrami
operator are unified in Theorems 5.2, 5.3 and Corollary 5.1. Indeed, when the principal bundle structure
is trivial, the above results are reduced to the case of the normalized GL. In particular, when α = 0, the
p.d.f. is uniform and the boundary does not exist, the results in [4,17] are recovered; when α = 0,
the p.d.f. is non-uniform and the boundary is not empty, we recover results in [11,31]; when α �= 0
and the boundary is empty, we recover results in [20].

Remark 5.2 We now discuss how GCL converges from the discrete setup to the continuous setup,
and the how to choose the optimal bandwidth under the assumption that ∂M = ∅. Similar argu-
ments hold when ∂M �= ∅. Take α = 0. Asymptotically h−1(D−1

h,0,nSh,0,nX − X)[i] converges to
μ
(0)
1,2

2d u−1
i

{
∇2X(xi)+ 2∇X(xi)·∇p(xi)

p(xi)

}
a.s. by the Borel–Cantelli Lemma. Note that based on the assump-

tion about the relationship between n and h, we have
√

log(n)

n1/2hd/4+1/2 → 0 and h → 0 as n → ∞, but the

convergence rate of
√

log(n)

n1/2hd/4+1/2 → 0 might be slower than h → 0. If we want to balance the variance

and squared bias, that is, log(n)
nhd/2+1 is of the same order of h2, then the number of samples we need should

satisfy that n
log(n) is of the same order of 1

hd/2+3 .

Take α �= 0. Similarly, h−1(D−1
h,α,nSh,α,nX− X)[i] converges to

μ
(0)
1,2

2d u−1
i

{
∇2X(xi)+ 2∇X(xi)·∇(p1−α)(xi)

p1−α(xi)

}
a.s. In this case, if we want to balance the variance and squared bias, the number of samples we need
should satisfy that n

log(n) is of the same order of 1
hd/2+4 . In conclusion, if we want to guarantee that the

order of the estimation accuracy of the connection Laplacian is h when the p.d.f. is non-uniform and
α = 1, we need more points than that when the p.d.f. is uniform and α = 0.

Remark 5.3 In Theorem 5.2 and Corollary 5.1, the regularity of X and the p.d.f. p are assumed to be
C4. These conditions can be relaxed to C3 and the proof remains almost the same, except that the bias
term in Corollary 5.1 becomes h1/2.

Remark 5.4 A consequence of Corollary 5.1 and the above discussion about the error terms is that the
eigenvectors of D−1

h,1,nSh,1,n − In are discrete approximations of the eigen-vector-fields of the connection
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Laplacian operator with homogeneous Neumann boundary condition that satisfy{ ∇2X(x) = −λX(x), for x ∈ M,
∇∂d X(x) = 0, for x ∈ ∂M.

(5.9)

Also note that the above results are pointwise in nature. The spectral convergence will be discussed in
the coming section.

5.2 Spectral convergence

As informative as the pointwise convergence results in Corollary 5.1 are, they are not strong enough
to guarantee the spectral convergence of our numerical algorithm, in particular those depending on the
spectral structure of the underlying manifold. In this section, we explore this problem and provide the
spectral convergence theorem.

It is well known that the spectrum of ∇2 is discrete inside {x ≤ 0}, and the only possible accumulation
point is −∞. Note that in general 0 might not be an eigenvalue of the connection Laplacian ∇2. For
example, when the manifold is S2, the smallest eigenvalue of the connection Laplacian associated with
the tangent bundle is strictly negative due to the vanishing theorem [7, p. 126]. When 0 is an eigenvalue,
we denote the spectrum of ∇2 by {−λl}∞

l=0, where 0 = λ0 < λ1 ≤ . . . , and the corresponding eigenspaces
are denoted by El := {X ∈ L2(E ) : ∇2X = −λlX}, l = 0, 1, . . . ; otherwise we denote the spectrum
by {−λl}∞

l=1, where 0 < λ1 ≤ . . . , and the eigenspaces by El. When 0 is not an eigenvalue, E0 = ∅. It
is well known [16] that dim(El) < ∞, the eigen-vector-fields are smooth and form a basis for L2(E ),
that is, L2(E ) = ⊕l∈N∪{0}El, where the over line means completion according to the measure associated
with g. To simplify the statement and proof of the spectral convergence, we assume that λl for each l
are simple and Xl is the normalized basis of El.4

The first theorem states the spectral convergence of (D−1
h,1,nSh,1,n)

t/h to et∇2
. Note that in the statement

of the theorem, we use T̂h,1,n instead of D−1
h,1,nSh,1,n. As we will see in the proof, they are actually equivalent

under proper transformation.

Theorem 5.4 Suppose Assumptions 4.1–4.3 hold, and 2/5 < γ < 1/2. Fix t > 0. Denote μt,i,h,n to
be the ith eigenvalue of T̂ t/h

h,1,n with the associated eigenvector Xt,i,h,n. Also denote μt,i > 0 to be the ith

eigenvalue of the heat kernel of the connection Laplacian et∇2
with the associated eigen-vector field Xt,i.

We assume thatμt,i are simple, and bothμt,i,h,n andμt,i decrease as i increases, respecting the multiplicity.
Fix i ∈ N. Then there exists a sequence hn → 0 such that in probability

lim
n→∞μt,i,hn ,n = μt,i and lim

n→∞ ‖Xt,i,hn ,n − Xt,i‖L2(E) = 0. (5.10)

Remark 5.5 Recall that for a finite integer n, as is discussed in (2.12), μt,i,h,n may be negative while μt,i

is always non-negative. We mention that the existence of γ is for the sake of dealing with the boundary,
whose effect is shown in (5.3). When the boundary is empty, we can ignore the γ assumption.

4 When any of the eigenvalues is not simple, the statement and proof are complicated by the need to introduce the notion of
eigen-projection [9], while the proof is almost the same.
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The second theorem states the spectral convergence of h−1(D−1
h,1,nSh,1,n − Iqn) to ∇2.

Theorem 5.5 Suppose Assumptions 4.1–4.3 hold, and 2/5 < γ < 1/2. Denote −λi,h,n to be the ith
eigenvalue of h−1(T̂h,1,n − 1) with the associated eigenvector Xi,h,n. Also denote −λi, where λi > 0, to
be the ith eigenvalue of the connection Laplacian ∇2 with the associated eigen-vector field Xi. Assume
that λi are simple, and both λi,h,n and λi increase as i increases, respecting the multiplicity. Fix i ∈ N.
Then there exists a sequence hn → 0 such that in probability

lim
n→∞ λi,hn ,n = λi and lim

n→∞ ‖Xi,hn ,n − Xi‖L2(E) = 0. (5.11)

Note that the statement and proof hold for the special cases associated with DM and ODM. We
prepare some bounds for the proof.

Lemma 5.1 Take 0 ≤ α ≤ 1 and h > 0. Assume Assumptions 4.1–4.3 hold. Then the following uniform
bounds hold

δ ≤ ph(x) ≤ ‖K‖L∞ , δ ≤ p̂h,n(x) ≤ ‖K‖L∞

δ

‖K‖2α
L∞

≤ Kh,α(x, y) ≤ ‖K‖L∞

δ2α
,

δ

‖K‖2α
L∞

≤ K̂h,α,n(x, y) ≤ ‖K‖L∞

δ2α

δ

‖K‖2α
L∞

≤ dh,α(x) ≤ ‖K‖L∞

δ2α
,

δ

‖K‖2α
L∞

≤ d̂h,α,n(x) ≤ ‖K‖L∞

δ2α

δ1+2α

‖K‖1+2α
L∞

≤ Mh,α(x, y) ≤ ‖K‖1+2α
L∞

δ1+2α
,

δ1+2α

‖K‖1+2α
L∞

≤ M̂h,α,n(x, y) ≤ ‖K‖1+2α
L∞

δ1+2α
,

(5.12)

where δ := inf t∈[0,D/
√

h] K(t) and D =: maxx,y∈M ‖x − y‖Rp .

Proof. By the assumption that the manifold M is compact, there exists D > 0 so that ‖x − y‖Rp ≤ D for
all x, y ∈ M. Under the assumption that the kernel function K is positive in Assumption 4.3, for a fixed
h > 0, for all n ∈ N and x, y ∈ M, we have

Kh(x, y) ≥ δ := inf
t∈[0,D/

√
h]

K(t). (5.13)

Then, for all x, y ∈ M, the bounds in (5.12) hold immediately. �

To prove Theorems 5.4 and 5.5, we need the following Lemma to take care of the pointwise conver-
gence of a series of vector fields in the uniform norm on M with the help of the notion of Glivenko–Cantelli
class:

Lemma 5.2 Take 0 ≤ α ≤ 1 and fix h > 0. Suppose Assumptions 4.1–4.3 are satisfied. Denote two
functional classes

Kh := {Kh(x, ·); x ∈ M}, Kh,α := {Kh,α(x, ·); x ∈ M}. (5.14)
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Then the above classes are Glivenko–Cantelli classes. Take X ∈ C(E ) and a measurable section
q0 : M → P(M, G), and denote

X ◦ Mh,α :=
{

Mh,α(x, ·)q0(x)
T//x

· X(·); x ∈ M
}

. (5.15)

Then the above classes satisfy

sup
W∈X◦Mh,α

‖PnW − PW‖Rq → 0 (5.16)

a.s. when n → ∞.

Note that Wx ∈ X ◦ Mh,α is an R
q-valued function defined on M. Also recall that when y is in the

cut locus of x, we set //x
yWx(y) = 0. The above notations are chosen to be compatible with the matrix

notation used in the VDM algorithm.

Proof. We prove (5.16). The proof for Kh and Kh,α can be found in [37, Proposition 11]. Take
Wx ∈ X ◦ Mh,α . Since X ∈ C(E ), M is compact, ∇E is metric and q(x) : R

q → Ex preserving the
inner product, we know

‖Wx‖L∞ ≤ ‖K‖1+2α
L∞

δ1+2α
‖q(x)−1//x

· X(·)‖L∞ = ‖K‖1+2α
L∞

δ1+2α
‖X‖L∞ , (5.17)

where the first inequality holds by the bound in Lemma 5.1. Under Assumption 4.1, gx is isometric
pointwisely, so X ◦ Mh,α is uniformly bounded.

We now tackle the vector-valued function Wx component by component. Rewrite a vector-valued
function Wx as Wx = (Wx,1, . . . , Wx,q). Consider

M (j)
h,α :=

{
Mh,α(x, ·)Wx,j(·), x ∈ M

}
, (5.18)

where j = 1, . . . q. Fix ε > 0. Since M is compact and Wx is uniformly bounded over x, we can choose
finite ε-brackets [lj,i, uj,i], where i = 1, . . . , N(j, ε), so that its union contains M (j)

h,α and P|uj,i − lj,i| < ε
for all i = 1, . . . , N(j, ε). Then, for every f ∈ M (j)

h,α , there is an ε-bracket [lj,l, uj,l] in L1(P) such that
lj,l ≤ f ≤ uj,l, and hence

|Pnf − Pf | ≤ |Pnf − Puj,l| + P|uj,l(y)− f (y)| ≤ |Pnuj,l − Puj,l| + P|uj,l − f | (5.19)

≤ |Pnuj,l − Puj,l| + P|uj,l − lj,l| ≤ |Pnuj,l − Puj,l| + ε.

Hence we have

sup
f ∈M

(j)
h,α

|Pnf − Pf | ≤ max
l=1,...,N(j,ε)

|Pnuj,l − Puj,l| + ε, (5.20)
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where the right-hand side converges a.s. to ε when n → ∞ by the strong law of large numbers and the
fact that N(j, ε) is finite. As a result, we have

|PnWx − PWx| ≤
q∑

l=1

sup
f ∈M

(j)
h,α

|Pnf − Pf | ≤
q∑

j=1

max
l=1,...,N(j,ε)

|Pnuj,l − Puj,l| + qε, (5.21)

so that lim supWx∈X◦Mh,α
|PnWx − PWx| is bounded by qε a.s. as n → ∞. Since q is fixed and ε is

arbitrary, we conclude the proof. �

With these Lemmas, we now prove Theorems 5.4 and 5.5. The proof is long and is divided into
several steps. First, we study the relationship between the normalized GCL D−1

h,α,nSh,α,n and an integral
operator T̂h,α,n. Secondly, for a given fixed bandwidth h > 0, we show a.s. spectral convergence of T̂h,α,n

to Th,α when n → ∞, the spectral convergence of T t/h
h,1 to et∇2

and h−1(Th,1 − 1) to ∇2 in L2(E ) as h → 0
is provided. Finally, we put all ingredients together and finish the proof. Essentially the proof follows
[5,11,37], while we take care simultaneously the non-empty boundary, the non-uniform sampling and
the non-trivial bundle structure. Note that when we work with the trivial principal bundle, that is, we
work with the normalized GL, α = 0, the p.d.f. is uniform and the boundary is empty, then we recover
the result in [5].

Proof of Theorems 5.4 and 5.5. Step 1: Relationship between D−1
h,α,nSh,α,n and T̂h,α,n.

We immediately have that

(BT
XδX T̂h,α,nX)[i] = 1

n

n∑
j=1

M̂h,α,n

(
xi, xj

)
u−1

i //
i
jX(xj) = (D−1

h,α,nSh,α,nX)[i], (5.22)

which leads to the relationship between the eigen-structure of h−1(T̂h,α,n − 1) and h−1(D−1
h,α,nSh,α,n − I).

Suppose X is an eigen-section of h−1(T̂h,α,n − 1) with eigenvalue λ. We claim that X = BT
XδX X is an

eigenvector of D−1
h,α,nSh,α,n with eigenvalue λ. Indeed, for all i = 1, . . . , n,

h−1[(D−1
h,α,nSh,α,n − I)X][i] = 1

hn

n∑
j=1

M̂h,α,n

(
xi, xj

)
u−1

i [//i
jX(xj)− X(xi)] (5.23)

= u−1
i

1

hn

n∑
j=1

M̂h,α,n

(
xi, xj

) [//i
iX(xj)− X(xi)] = u−1

i h−1(T̂h,α,n − 1)X(xi) = λu−1
i X(xi) = λX[i].

On the other hand, consider an eigenvector v of h−1(D−1
h,α,nSh,α,n − Ind) with eigenvalue λ, that is,

(D−1
h,α,nSh,α,nv)[i] = (1 + hλ)v[i]. (5.24)

When 0 ≥ hλ > −1, we show that there is an eigen-vector field of h−1(T̂h,α,n − 1) with eigenvalue λ. In
order to show this fact, we note that if X is an eigen-vector field of h−1(T̂h,α,n − 1) with eigenvalue λ so
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that 0 ≥ hλ > −1, it should satisfy

X(xi) = T̂h,α,nX(xi)

1 + hλ
=

1
n

∑n
j=1 M̂h,α,n

(
xi, xj

)
//i

jX(xj)

1 + hλ

=
1
n

∑n
j=1 M̂h,α,n

(
xi, xj

)
//i

juju
−1
j X(xj)

1 + hλ
=

1
n

∑n
j=1 M̂h,α,n

(
xi, xj

)
//i

jujX[j]
1 + hλ

. (5.25)

The relationship in (5.25) leads us to consider the vector field

Xv(x) :=
1
n

∑n
j=1 M̂h,α,n

(
x, xj

)
//x

xj
ujv[j]

1 + hλ
(5.26)

to be the related eigen-vector field of h−1(T̂h,α,n−1) associated with v. To show this, we directly calculate:

T̂h,α,nXv(y) = 1

n

n∑
j=1

M̂h,α,n

(
y, xj

)
//y

xj
Xv(xj) = 1

n

n∑
j=1

M̂h,α,n

(
y, xj

)
//y

xj

(
1
n

∑n
k=1 M̂h,α,n

(
xj, xk

)
//

xj
xk ukv[k]

1 + hλ

)

= 1

1 + hλ

1

n

n∑
j=1

M̂h,α,n

(
y, xj

)
//y

xj
(1 + hλ)ujv[j] = (1 + hλ)Xv(y), (5.27)

where the third equality comes from the expansion (5.22) and the last equality comes from the definition
of Xv. Thus we conclude that Xv is the eigen-vector field of h−1(T̂h,α,n − 1) with eigenvalue λ since
0 ≥ hλ > −1.

The above one to one relationship between eigenvalues and eigenfunctions of h−1(T̂h,α,n − 1) and
h−1(D−1

h,α,nSh,α,n − I)when 0 ≥ hλ>−1 allows us to analyze the spectral convergence of h−1(D−1
h,α,nSh,α,n−

I) by analyzing the spectral convergence of h−1(T̂h,α,n − 1) to h−1(Th,α − 1). A similar argument shows
that when the eigenvalue of D−1

h,α,nSh,α,n is between (0, 1], the eigen-structures of D−1
h,α,nSh,α,n and T̂h,α,n

are again related. Note that in general the eigenvalues of D−1
h,α,nSh,α,n might be negative when n is finite,

as is shown in (2.12).

Step 2: Compact convergence of T̂h,α,n to Th,α a.s. when n → ∞ and h is fixed.
Recall the definition of compact convergence of a series of operators in the Banach space C(E )with

the L∞ norm [9, p. 122]. We say that a sequence of operators Tn : C(E )→ C(E ) compactly converges
to T : C(E )→ C(E ) if and only if

(C1) Tn converges to T pointwisely, that is, for all X ∈ C(E ), we have ‖TnX − TX‖L∞(E) → 0;

(C2) for any uniformly bounded sequence {Xl : ‖Xl‖L∞ ≤ 1}∞
l=1 ⊂ C(E ), the sequence {(Tn −T)Xl}∞

l=1

is relatively compact.

Now we show (C1)—the pointwise convergence of T̂h,α,n to Th,α a.e. when h is fixed and n → ∞. By a
simple bound we have

‖T̂h,α,nX − Th,αX‖L∞(E) = sup
y∈M

|PnM̂h,α,n(y, ·)//y
· X(·)− PMh,α(y, ·)//y

· X(·)|

≤ sup
y∈M

|PnM̂h,α,n(y, ·)//y
· X(·)− PnM̂

(dh,α)

h,α,n (y, ·)//y
· X(·)| (5.28)
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+ sup
y∈M

|PnM̂
(dh,α)

h,α,n (y, ·)//y
· X(·)− PnMh,α(y, ·)//y

· X(·)| (5.29)

+ sup
y∈M

|PnMh,α(y, ·)//y
· X(·)− PMh,α(y, ·)//y

· X(·)|, (5.30)

where M̂
(dh,α)

h,α,n (x, y) := Kh,α(x,y)

d̂h,α,n(x)
∈ C(M × M).

Rewrite (5.30) as supW∈X◦Mh,α
‖PnW − PW‖Rm . Since ui preserves the inner product structure, by

Lemma 5.2, (5.30) converges to 0 a.s. when n → ∞. Next, by a direct calculation and the bound in
Lemma 5.1, we have

sup
y∈M

|PnM̂h,α,n(y, ·)//y
· X(·)− PnM̂

(dh,α)

h,α,n (y, ·)//y
· X(·)| ≤ ‖X‖L∞ sup

x,y∈M

∣∣∣∣∣ K̂h,α,n(x, y)− Kh,α(x, y)

d̂h,α,n(x)

∣∣∣∣∣
≤ ‖X‖L∞

‖K‖2α
L∞
δ

sup
x,y∈M

|K̂h,α,n(x, y)− Kh,α(x, y)|

≤ ‖X‖L∞
‖K‖2α+1

L∞
δ

sup
x,y∈M

∣∣∣∣ 1

p̂αh,n(x)̂p
α
h,n(y)

− 1

pαh (x)p
α
h (y)

∣∣∣∣
≤ 2‖X‖L∞‖K‖2α+1

L∞
δα+1

sup
y∈M

∣∣∣∣ 1

p̂αh,n(y)
− 1

pαh (y)

∣∣∣∣ ≤ 2‖X‖L∞‖K‖2α+1
L∞

δ3α+1
sup
y∈M

∣∣̂pαh,n(y)− pαh (y)
∣∣

≤ 2α‖X‖L∞‖K‖2α+1
L∞

δ2α+2
sup

f ∈Kh

‖(Pnf )− (Pf )‖, (5.31)

where the last inequality holds due to the fact that when A, B ≥ c > 0, |Aα − Bα| ≤ α

c1−α |A − B| and
p̂h,n(y), ph(y) > δ by Lemma 5.1. Note that since h is fixed, δ is fixed. Thus, the term (5.28) converges
to 0 a.s. as n → ∞ by Lemma 5.2. The convergence of (5.29) follows the same line:

sup
y∈M

|PnM̂
(dh,α)

h,α,n (y, ·)//y
· X(·)− PnMh,α(y, ·)//y

· X(·)| ≤ ‖X‖L∞‖K‖L∞ sup
x∈M

∣∣∣∣ 1

d̂h,α,n(x)
− 1

dh,α(x)

∣∣∣∣
≤ ‖X‖L∞‖K‖3−2α

L∞ sup
x∈M

|̂dh,α,n(x)− dh,α(x)|, (5.32)

where the last term is bounded by

sup
x∈M

|̂dh,α,n(x)− dh,α(x)| ≤ sup
x∈M

|̂dh,α,n(x)− d̂
(ph)
h,α,n(x)| + sup

x∈M
|̂d(ph)

h,α,n(x)− dh,α(x)|

≤ ‖K‖L∞

δ3α
sup
x∈M

|̂pαh,n(x)− pαh (x)| + ‖K‖L∞ sup
f ∈Kh,α

‖Pnf − Pf ‖, (5.33)

where d̂(ph)
h,α,n(x) := 1

n

∑n
k=1 Kh,α(x, xk) ∈ C(M), which again converges to 0 a.s. as n → ∞ by Lemma

5.2. We thus conclude the pointwise convergence of T̂h,α,n to Th,α a.e. as n → ∞.
Next we check the condition (C2). Since Th,α is compact, the problem is reduced to show that T̂h,α,nXn

is pre-compact for any given sequence of vector fields {X1, X2, . . .} ⊂ C(E ) so that ‖Xl‖L∞ ≤ 1 for all
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l ∈ N. We count on the Arzela–Ascoli theorem [13, IV.6.7] to finish the proof. By Lemma 5.1, a direct
calculation leads to

sup
n≥1

‖T̂h,α,nXn‖L∞ = sup
n≥1,y∈M

∣∣∣∣∣1n
n∑

j=1

M̂h,α,n(y, xi)//
y
xi

Xn(xi)

∣∣∣∣∣ ≤ ‖K‖2α+1
L∞

δ2α+1
, (5.34)

which guarantees the uniform boundedness. Next we show the equi-continuity of T̂h,α,nXn. For a given
pair of close points x ∈ M and y ∈ M, a direct calculation leads to

|T̂h,α,nXn(y)− //y
xT̂h,α,nXn(x)| = ∣∣PnM̂h,α,n(y, ·)//y

· Xn(·)− //y
xPnM̂h,α,n(x, ·)//x

· Xn(·)
∣∣

≤ ‖Xn‖L∞ sup
z∈M

∣∣PnM̂h,α,n(y, z)− PnM̂h,α,n(x, z)
∣∣ ≤ sup

z∈M

∣∣M̂h,α,n(y, z)− M̂h,α,n(x, z)
∣∣

≤ ‖K‖4α
L∞
δ2

sup
z∈M

∣∣̂dh,α,n(y)K̂h,α,n(x, z)− d̂h,α,n(x)K̂h,α,n(y, z)
∣∣

≤ ‖K‖4α+1
L∞

δ2+2α

(
sup
z∈M

∣∣K̂h,α,n(x, z)− K̂h,α,n(y, z)
∣∣ + ∣∣̂dh,α,n(y)− d̂h,α,n(x)

∣∣)
≤ ‖K‖4α+1

L∞
δ2+2α

(
sup
z∈M

∣∣K̂h,α,n(x, z)− K̂h,α,n(y, x)
∣∣ + |̂dh,α,n(y)− d̂(pn)

h,α,n(y)|

+|̂d(pn)
h,α,n(y)− d̂(pn)

h,α,n(x)| + |̂d(pn)
h,α,n(x)− d̂h,α,n(x)|

)
≤ ‖K‖4α+1

L∞
δ2+2α

(
sup
z∈M

∣∣K̂h,α,n(x, z)− K̂h,α,n(y, z)
∣∣ + |̂d(pn)

h,α,n(y)− d̂(pn)
h,α,n(x)| + 2‖̂d

(ph)
h,α,n − d̂h,α,n‖L∞

)
,

(5.35)

where the last term is further controlled by |̂d(pn)
h,α,n(y)− d̂(pn)

h,α,n(x)| ≤ supz∈M |Kh,α(y, z)− Kh,α(x, z)|,
sup
z∈M

∣∣K̂h,α,n(x, z)− K̂h,α,n(y, z)
∣∣

≤ sup
z∈M

1

p̂αh,n(x)̂p
α
h,n(y)̂p

α
h,n(z)

∣∣̂pαh,n(y)Kh(x, z)− p̂αh,n(x)Kh(y, z)
∣∣

≤ 1

δ3α

(
sup
z∈M

p̂αh,n(y)|Kh(x, z)− Kh(y, z)| + sup
z∈M

Kh(y, z)|̂pαh,n(y)− p̂αh,n(x)|
)

≤ ‖K‖L∞

δ3α

(
sup
z∈M

|Kh(x, z)− Kh(y, z)| + sup
z∈M

α

δ1−α |̂ph,n(y)− p̂h,n(x)|
)

≤ ‖K‖L∞

δ3α

(
sup
z∈M

|Kh(x, z)− Kh(y, z)| + α

δ1−α sup
z∈M

|Kh(y, z)− Kh(x, z)|
)

, (5.36)

and similarly

‖̂d
(ph)
h,α,n − d̂h,α,n‖L∞ = sup

z∈M

∣∣∣∣∣1n
n∑

k=1

(
Kh(z, xk)

p̂αh,n(z)̂p
α
h,n(xk)

− Kh(z, xk)

pαh (z)p
α
h (xk)

)∣∣∣∣∣ (5.37)
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≤ ‖K‖L∞

δα
sup
z∈M

∣∣∣∣ 1

p̂αh,n(z)̂p
α
h,n(xk)

− 1

pαh (z)p
α
h (xk)

∣∣∣∣ ≤ ‖K‖L∞

δ3α
sup
z∈M

∣∣̂pαh,n(z)− pαh (z)
∣∣

≤ ‖K‖L∞

δ3α

α

δ1−α
∥∥̂ph,n − ph

∥∥
L∞ .

As a result, we have the following bound

|T̂h,α,nXn(y)− //y
xT̂h,α,nXn(x)| ≤ ‖K‖4α+2

L∞
δ2+5α

((
1 + α

δ1−α

)
sup
z∈M

|Kh(x, z)− Kh(y, z)|

+ δ3α

‖K‖L∞
sup
z∈M

|Kh,α(y, z)− Kh,α(x, z)| + α

δ1−α
∥∥̂ph,n − ph

∥∥
L∞

)
. (5.38)

Thus, when y → x, supz∈M |Kh(x, z)−Kh(y, z)| and supz∈M |Kh,α(y, z)−Kh,α(y, z)| both converge to 0 since
Kh and Kh,α are both continuous. Also,

∥∥̂ph,n − ph

∥∥
L∞ converges to 0 a.s. as n → ∞ by the Glivenko–

Cantali property; that is, for a given small ε > 0, we can find N > 0 so that
∥∥̂ph,n − ph

∥∥
L∞ ≤ ε a.s. for

all n ≥ N . Thus, by the Arzela–Ascoli theorem, we have the compact convergence of T̂h,α,n to Th,α a.s.
when n → ∞.

Since the compact convergence implies the spectral convergence (see [9] or Proposition 6 in [37]),
we get the spectral convergence of T̂h,α,n to Th,α a.s. when n → ∞.

Step 3: Spectral convergence of T t/h
h,1 to et∇2

and h−1(Th,1 − 1) to ∇2 in L2(E ) as h → 0.

First we consider the case when ∂M = ∅. We assume μ2
d = 1 to simplify the notation. To show the

spectral convergence, we restrict the operator to a finite dimensional subspace determined by the first
few eigenvector fields. To do so, fix l0 ≥ 0 and consider the finite dimensional subspace ⊕k≤l0 Ek . For
all x ∈ M, by Theorem 5.2, we have uniformly

Th,1Xl(x)− Xl(x)

h
= ∇2Xl(x)+ O(h), (5.39)

where the implied constant in O(h) depends on ‖X (k)l ‖L∞(E), where k = 0, 1, 2, 3. To control the O(h)
term, by the Sobolev embedding theorem [30, Theorem 9.2], for all l ≤ l0 we have

‖X (3)l ‖L∞(E) � ‖Xl‖Hd/2+4(E) � 1 + ‖(∇2)d/4+2Xl‖L2(E) = 1 + λd/4+2
l , (5.40)

where we choose d/2 + 4 for convenience. Similar bounds hold for ‖Xl‖L∞(E), ‖X (1)l ‖L∞(E) and
‖X (2)l ‖L∞(E). Thus, for all l ≤ l0, since λl ≤ λl0 by assumption, we have∥∥∥∥Th,1Xl − Xl

h
− ∇2Xl

∥∥∥∥
L2(E)

�
(

1 + λd/4+2
l0

)
h. (5.41)

Thus, if we choose h small enough so that
(
1 + λd/4+2

l0

)
h ≤ h1/2, that is, λl0 ≤ (h−1/2 − 1)4/(d+8), we

reach the fact that ∥∥∥∥Th,1 − 1

h
− ∇2

∥∥∥∥
L2(E)

� h1/2 (5.42)
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on ⊕k≤l0 Ek . Note that ⊕k≤l0 Ek = ⊕Ih Ek , where Ih := {k; λk ≤ (h−1/2 −1)4/(d+8)}, and ⊕Ih Ek approaches
L2(E ) when h decreases. As a result, when h → 0, h−1(Th,1 − 1) spectrally converges to ∇2 in the
boundary-free case.

Next we show the spectral convergence of T t/h
h,1 to the heat semigroup et∇2

for a fixed t > 0 as h → 0.
Again, fix l0 ≥ 0 and consider the finite dimensional subspace ⊕k≤l0 Ek . First, we study the difference
between (I + h∇2)t/h and T t/h

h,1 . Note that on ⊕k≤l0 Ek , from (5.41) we have

Th,1 = I + h∇2 + Eh, (5.43)

where ‖Eh‖L2(E) � (1 + λd/4+2
l0

)h2. When h < 1
2λl0

is small enough, we have 1/2 ≤ ‖I + h∇2‖L2(E) ≤ 1

and (1 + λd/4+2
l0

)h2 < 1/2. Thus, by the binomial expansion, we have

‖T t/h
h,1 − (I + h∇2)t/h‖L2(E) ≤ t

h
‖I + h∇2‖t/h−1

L2(E)
‖Eh‖L2(E)

+ 1

2

t

h

(
t

h
− 1

)
‖I + h∇2‖t/h−2

L2(E)
‖Eh‖2

L2(E)
+ . . .

= (1 + ‖Eh‖2
L2(E)

)t/h − 1. (5.44)

When t/h ≤ 1, then clearly by the binomial approximation, ‖T t/h
h,1 − (I +h∇2)t/h‖L2(E) ≤ 2 t

h ‖Eh‖2
L2(E)

�
(1+λd/4+2

l0
)th; when t/h > 1, h could be chosen further small, if needed, so that ‖Eh‖2

L2(E)
< 21/(t/h−1)−1,

which leads to ‖T t/h
h,1 − (I + h∇2)t/h‖L2(E) ≤ 2 t

h ‖Eh‖2
L2(E)

� (1 + λd/4+2
l0

)th. To sum up, for a chosen l0,
we could find h > 0 small enough so that

‖T t/h
h,1 − (I + h∇2)t/h‖L2(E) ≤ 2

t

h
‖Eh‖2

L2(E)
� (1 + λd/4+2

l0
)th. (5.45)

Secondly, we take a careful look at the difference between (I +h∇2)t/h and et∇2
. When 0 < h < 1

2λl0
,

I + h∇2 is invertible on ⊕k≤l0 Ek with norm 1
2 ≤ ‖I + h∇2‖ ≤ 1. So, for all l ≤ l0 we have

(I + h∇2)t/hXl = (1 − hλl)
t/hXl (5.46)

and

et∇2
Xl = e−tλl Xl. (5.47)

By the binomial expansion, we have the following bound

|(1 − hλl)
t/h − e−tλl |

=
∣∣∣[1 − t

h
(hλl)+ 1

2

t

h

(
t

h
− 1

)
(hλl)

2 − 1

3!
t

h

(
t

h
− 1

)(
t

h
− 2

)
(hλl)

3 + . . .
]

−
[
1 − tλl + 1

2
(tλl)

2 − 1

3! (tλl)
3 + . . .

]∣∣∣



SPECTRAL CONVERGENCE OF THE CONNECTION LAPLACIAN 85

= λ2
l th

∣∣∣ − 1

2
− 1

3! (−3t + 2h)+ 1

4! (−6t2 + 11th − 6h2)− . . .
∣∣∣

� λ2
l th, (5.48)

where the last inequality holds since the denominator is factorial and the numerator is polynomial.
Therefore, when 0 < h < 1

2λl0
, on ⊕k≤l0 Ek the following holds

‖et∇2 − (I + h∇2)t/h‖L2(E) � λ2
l0

th. (5.49)

Now, we put the above results together. On ⊕k≤l0 Ek , as d ≥ 1, by (5.45) and (5.49), we have∥∥∥T t/h
h,1 − et∇2

∥∥∥
L2(E)

≤
∥∥∥T t/h

h,1 − (I + h∇2)t/h
∥∥∥

L2(E)
+
∥∥∥et∇2 − (I + h∇2)t/h

∥∥∥
L2(E)

� (1 + λd/4+2
l0

)th. (5.50)

Thus, if we choose h small enough, which depends on t, so that (1 + λ
d/4+2
l0

)th ≤ h1/2, that is,
λl0 ≤ (h−1/2t−1 − 1)4/(d+8), we reach the fact that∥∥∥T t/h

h,1 − et∇2
∥∥∥

L2(E)
� h1/2 (5.51)

on ⊕Ih Ek . As a result, when h → 0, T t/h
h,1 spectrally converges to et∇2

in the boundary-free case.
When ∂M �= ∅, the proof is exactly the same, except that we have to take the boundary effect (5.3)

and the Neuman’s condition into account. We skip the details.

Final step: Putting everything together.
We now finish the Proof of Theorem 5.4 here. The proof holds when the boundary is empty or

non-empty. Fix i and denote μt,i,h to be the ith eigenvalue of Th,1 with the associated eigenvector Yt,i,h.
By Step 1, we know that all the eigenvalues inside (−1/h, 0] of T̂h,1,n and D−1

h,1,nSh,1,n are the same and
their eigenvectors are related. By Step 2, since we have the spectral convergence of T̂h,1,n to Th,1 almost
surely as n → ∞, for each j ∈ N large enough, we have by the definition of convergence in probability
that for hj = 1/j, we can find nj ∈ N so that

P{‖Yt,i,hj − Yt,i,hj ,nj‖L2(E) ≥ 1/j} ≤ 1/j. (5.52)

Take nj as an increasing sequence. By step 3, for each j ∈ N, there exists j′ ≥ j so that

‖Yt,i − Yt,i,hj′ ‖L2(E) < 1/2j′. (5.53)

Arrange j′ as an increasing sequence. As j is chosen as an increasing sequence toward ∞, j′ is also an
increasing sequence toward ∞. Thus, for the increasing sequence {j′} ⊂ N, we could find an increasing
sequence {nj′ } ⊂ N so that

P{‖Yt,i − Yt,i,hj′ ,nj′ ‖L2(E) ≥ 1/j′} ≤ P{‖Yt,i,hj′ − Yt,i,hj′ ,nj′ ‖L2(E) ≥ 1/2j′} ≤ 1/2j′. (5.54)

Therefore, we conclude the convergence of the eigenvectors in probability. Similar statements hold for
the eigenvalue, μt,i,h. Since the proof for Theorem 5.5 is the same, we skip it. �



86 A. SINGER AND H.-T. WU

6 Extract more topological/geometric information from a point cloud

In Section 2, we understand VDM under the assumption that we have an access to the principal bundle
structure of the manifold. However, in practice the knowledge of the bundle structure is not always
available and we may only have access to the point cloud sampled from the manifold. Is it possible to
obtain any principal bundle under this situation? The answer is yes if we restrict ourselves to a special
principal bundle, the frame bundle.

The main ingredient added in this section is the estimation of the frame bundle from the point cloud.
Recall that the frame bundle is composed of two components—the bundle itself, and the connection
between the fibers. The estimation of the frame bundle thus depends on two algorithms—the local PCA
algorithm is applied to estimate the frame bundle, while the rotational alignment algorithm is applied to
estimate the connection between fibers. The theoretical analysis of these algorithms have been detailed
in [33], so we will just summarize the analysis result. However, to have the spectral convergence proof
of the algorithm, we have to better quantify the probability of getting the satisfactory estimation from the
finite sampling points. Below, we will start from summarizing the algorithm, and provide the spectral
convergence theory and its proof.

We summarize the proposed reconstruction algorithm considered in [33] below. Take a point cloud
X = {xi}n

i=1 sampled from M under Assumptions 4.1 (A1), 4.2 (B1) and 4.2 (B2). The algorithm consists
of the following three steps:

(Step a) Reconstruct the frame bundle from X . It is possible since locally a manifold can be well
approximated by an affine space up to second order [1,18,22,24,33,38,39]. Thus, the embed-
ded tangent bundle is estimated by local PCA with the kernel bandwidth hpca > 0. Indeed,
the top d eigenvectors, vx,k ∈ R

p, k = 1, . . . , d, of the covariance matrix of the dataset near
x ∈ M, Nx := {xj ∈ X ; ‖x − xj‖Rp ≤ √

hpca}, are chosen to form the estimated basis of the
embedded tangent plane ι∗TxM. Denote Ox to be a p × d matrix, whose kth column is vx,k .
Note that x may or may not be in X . Here Ox can be viewed as an estimation of a point ux

of the frame bundle such that π(ux) = x. When x = xi ∈ X , we use Oi to denote Oxi . See
[33] for details.

(Step b) Estimate the connection (parallel transport) between tangent planes by aligning Ox and
Oy by

Ox,y = argmin
O∈O(d)

‖O − OT
x Oy‖HS ∈ O(d), (6.1)

where ‖ · ‖HS is the Hilbert–Schmidt norm. It is proved that Ox,y is an approximation of
the parallel transport from y to x when x and y are close enough in the following sense
[33, (B.6)]:

Ox,yXy ≈ OT
x ι∗//

x
yX(y), (6.2)

where X ∈ C(TM) and Xy = OT
y ι∗X(y) ∈ R

d is the coordinate of X(y) with related to
the estimated basis. Note that x and y may or may not be in X . When x = xi ∈ X and
y = xj ∈ X , we use Oij to denote Oxi ,xj and Xj to denote Xxj .
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(Step c) Build GCL mentioned in Section 2 based on the connection graph from X and {Oij}. We
build up a block matrix SO

h,α,n with d × d entries, where h > hpca:

SO
h,α,n(i, j) =

{
K̂h,α,n(xi, xj)Oij (i, j) ∈ E,
0d×d (i, j) /∈ E,

(6.3)

where 0 ≤ α ≤ 1 and the kernel K satisfies Assumption 4.3, and an n × n diagonal block
matrix Dh,α,n with d × d entries defined in (4.4). Denote operators OT

X : TMX → VX ,
OX : VX → TMX

OX v := [ιT∗ O1v[1], . . . ιT∗ Onv[n]] ∈ TMX ,

OT
X w := [(OT

1 ι∗w[1])T , . . . , (OT
n ι∗w[n])T ]T ∈ VX ,

(6.4)

where w ∈ TMX and v ∈ VX . Here VX means the coordinates of a set of embedded tangent
vectors on M with related to the estimated basis of the embedded tangent plane. The pointwise
convergence of GCL has been shown in [33, Theorem 5.3]; that is, a.s. we have

lim
h→0

lim
n→∞

1

h
(D−1

h,α,nS
O
h,α,nX̄− X̄)[i] = μ

(0)
1,2

2d
OT

i ι∗

{
∇2X(xi)+ 2∇X(xi) · ∇(p1−α)(xi)

p1−α(xi)

}
, (6.5)

where X ∈ C4(TM) and X̄ = OT
XδX X. This means that by taking α = 1, we reconstruct the

connection Laplacian associated with the tangent bundle TM.

Note that the errors introduced in (a) and (b) may accumulate and influence spectral convergence of the
GCL. In this section we study the spectral convergence under this setup, which answers our question in
the beginning and affirms that we are able to extract further geometric/topological information simply
from the point cloud.

Definition 6.1 Define operators T̃ O
h,α,n : C(TM)→ C(TM) as

T̃ O
h,α,nX(y) = ιT∗ Oy

1

n

n∑
j=1

M̂h,α,n

(
y, xj

)
Oy,xj O

T
j ι∗X(xj). (6.6)

The main result of this section is the following spectral convergence theorems stating the spectral
convergence of (D−1

h,1,nS
O
h,1,n)

t/h to et∇2
and h−1(D−1

h,1,nS
O
h,1,n − Idn) to ∇2. Note that except the estimated

parallel transport, the statements of Theorems 6.2 and 6.3 are the same as those of Theorems 5.4
and 5.5.

Theorem 6.2 Assume Assumptions 4.1 (A1), 4.2 (B1), 4.2 (B2) and 4.3 hold. Estimate the parallel
transport and construct the GCL by Step a, Step b and Step c. Fix t > 0. Denote μ̃t,i,h,n to be the
ith eigenvalue of (T̃ O

h,1,n)
t/h with the associated eigenvector Ỹt,i,h,n. Also denote μt,i > 0 to be the ith

eigenvalue of the heat kernel of the connection Laplacian et∇2
with the associated eigen-vector field Yt,i.
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We assume that both μt,i,h,n and μt,i decrease as i increases, respecting the multiplicity. Fix i ∈ N. Then
there exists a sequence hn → 0 such that

lim
n→∞ μ̃t,i,hn ,n = μt,i and lim

n→∞ ‖Ỹt,i,hn ,n − Yt,i‖L2(TM) = 0 (6.7)

in probability.

Theorem 6.3 Assume Assumptions 4.1 (A1), 4.2 (B1), 4.2 (B2) and 4.3 hold. Estimate the parallel
transport and construct the GCL by Step a, Step b and Step c. Denote −̃λi,h,n to be the ith eigenvalue
of h−1(T̂ O

h,1,n − 1) with the associated eigenvector X̃i,h,n. Also denote −λi, where λi > 0, to be the ith
eigenvalue of the connection Laplacian ∇2 with the associated eigen-vector field Xi. We assume that both
λi,h,n and λi increase as i increases, respecting the multiplicity. Fix i ∈ N. Then there exists a sequence
hn → 0 such that

lim
n→∞ λ̃i,hn ,n = λi and lim

n→∞ ‖X̃i,hn ,n − Xi‖L2(TM) = 0 (6.8)

in probability.

The proofs of Theorems 6.2 and 6.3 are essentially the same as those of Theorems 5.4 and 5.5, except
the fact that we lack the knowledge of the parallel transport. Indeed, in (4.2) the parallel transport is
assumed to be accessible to the data analyst, while in this section we only have access to the point cloud.
Thus, the key ingredient of the proofs of Theorems 6.2 and 6.3 is controlling the error terms coming
from two estimations, the estimation of the frame bundle and the estimation of the connection, while
the other comments and details are the same as those in Section 5.

To better appreciate the role of these two estimations, we consider an intermediate scenario. We
assume that we only have an access to the embedding ι and the knowledge of the embedded tangent
bundle, which are represented as affine spaces inside R

p, but the parallel transport is not accessible to
us. Denote the basis of the embedded tangent plane ι∗Txi M to be a p × d matrix Qi. By [33, (B.68)], we
can approximate the parallel transport from xi to xj from Qi and Qj with a tolerable error; that is,

//i
jX(xj) ≈ ιT∗ QiQijQ

T
j ι∗X(xj), (6.9)

where Qij := argminO∈O(d) ‖O − QT
i Qj‖HS. Notice that even we know bases of these embedded tangent

planes, the optimization step to obtain Qij is still needed since in general QT
i Qj is not orthogonal due to

the curvature. In this intermediate scenario, to get the spectral convergence, we only need to control the
error incurred by the estimation of the connection.

With the above discussion, we know that if the embedded tangent bundle information is further
missing and we have to estimate it from the point cloud, another resource of error comes to play. Indeed,
denote the estimated embedded tangent plane by a p × d matrix Ox. In [33], it has been shown that

OT
x ι∗X(x) ≈ QT

i ι∗X(x). (6.10)

This approximation is possible due to the following two facts. First, by definition locally a manifold is
isomorphic to the Euclidean space up to a second order error depending on the curvature. Secondly, the
embedding ι is smooth so locally the manifold is distorted up to the Jacobian of ι. We point out that
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in [33] we focus on the pointwise convergence so the error terms in [33] were simplified by the big O
notations.

Proof of Theorems 6.2 and 6.3. Step 1: Estimate the frame bundle and connection.
We show the proof when the boundary is empty. When the boundary is not empty, the proof is exactly

the same, except that the convergence rate is different near the boundary. Here we give an outline of
the proof and indicate how the error terms look like. We refer the reader to [33] for the other details.
Recall the following results in [33, Theorem B.1]: with the kernel bandwidth hpca, which is chosen so
that hpca/h → 0 as h → 0, with high probability we have

OT
i ι∗X(xi) = QT

i ι∗X(xi)+ O(h3/2), (6.11)

where xi ∈ X and the O(h3/2) term contains both the bias error and variance originating from the finite
sample. Here, the implied constant in O(h3/2) solely depends on the curvatures of the manifold and their
covariant derivatives. To show the spectral convergence, we have to further quantify this result.

For a fixed xi, the covariance matrix Ξi built up in the local PCA step is

Ξi = 1

n − 1

n∑
j �=i

Fi,jχ‖ι(xi)−ι(xj)‖≤
√

hpca
, (6.12)

where Fi,j are i.i.d. random matrix of size p × p

Fi,j = K

(
‖ι(xi)− ι(xj)‖Rp√

hpca

)
(ι(xj)− ι(xi))(ι(xj)− ι(xi))

T , (6.13)

so that its (k, l)th entry

Fi,j(k, l) = K

(
‖ι(xi)− ι(xj)‖Rp√

hpca

)
〈ι(xj)− ι(xi), vk〉〈ι(xj)− ι(xi), vl〉, (6.14)

where vl is the unit column vector with the lth entry 1. Since Fi,j are i.i.d. random matrices for all j �= i,
we could view them as an i.i.d. sample from a random matrix Fi. To simplify the discussion, we assume
that for some Ck,l > 0 depending on the second fundamental form of ι, Fi(k, l) is bounded by Ck,lhpca

when k, l = 1, . . . , d, bounded by Ck,lh2
pca when k, l = d + 1, . . . , p, and bounded by Ck,lh3/2

pca for the
other cases. Note that when the manifold is flat around xi, when hpca is small enough, Ck,l when k > d
or l > d. In this case, the proof of the bound is trivial.

The expectation of Fi(k, l) could be directly evaluated

EFi(k, l) =
∫

B√
hpca

(xi)

Khpca(xi, y)〈ι(y)− ι(xi), vk〉〈ι(y)− ι(xi), vl〉p(y) dV(y), (6.15)

and the variance could be evaluated in a similar way. It has been shown in [33, (B.33)–(B.35)] that
expectation of Fi(k, l) is of order hd/2+1

pca when l, k = 1, . . . , d and is O(hd/2+2
pca ) for the other cases;
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the variance of Fi(k, l), denoted as σ 2
k,l, is O(hd/2+2

pca ) when l, k = 1, . . . , d, O(hd/2+4
pca ) and when l, k =

d + 1, . . . , p, and O(hd/2+3
pca ) for the other cases. To simplify the discussion, we assume that there exists

ck,l > 0 so that σ 2
k,l = ck,lhd/2+2

pca , when l, k = 1, . . . , d; that is, σ 2
k,l is of order hd/2+2

pca . Similarly, we assume
that σ 2

k,l = ck,lhd/2+4
pca when l, k = 1, . . . , d, and σ 2

k,l = hd/2+3
pca for the other cases. When the variance is

of higher order, the deviation could be evaluated similarly and we skip the details. Also note that when
the manifold is flat around xi, when hpca is small enough, ck,l = 0 and when k > d or l > d, and the
deviation bound is trivial.

Clearly the variance is much smaller than the bound, so we could apply Berstein’s inequality to
control the deviation. For β > 0, we have

Pr {|Ξi(k, l)− EFi(k, l)| > β} ≤ exp

{
− (n − 1)β2

ck,lh
d/2+2
pca + Ck,lhpcaβ

}
, (6.16)

when k, l = 1, . . . , d;

Pr {|Ξi(k, l)− EFi(k, l)| > β} ≤ exp

{
− (n − 1)β2

ck,lh
d/2+4
pca + Ck,lh2

pcaβ

}
, (6.17)

when k, l = d + 1, . . . , p;

Pr {|Ξi(k, l)− EFi(k, l)| > β} ≤ exp

{
− (n − 1)β2

ck,lh
d/2+3
pca + Ck,lh

3/2
pcaβ

}
, (6.18)

for the other cases. β should be chosen so that β/hd/2+1
pca → 0 as hpca → 0 when k, l = 1, . . . , d,

and β/hd/2+2
pca → 0 as hpca → 0 for the other cases; that is, EFi(k, l) could be well approximated

when hpca is small enough and when k, l = 1, . . . , d, and for the other k, l, Ξi(k, l) should be no

larger than hd/2+2
pca . These lead to σ 2

k,l + Ck,lhpcaβ ≤ 2σ 2
k,l for all k, l, so that (n−1)β2

σ2
k,l+Ck,lh

2
pcaβ

≥ (n−1)β2

2σ2
k,l

. To

guarantee that the deviation greater than β happens with probability less than 1
3d2n3 , n should satisfy

n
log(n) ≥ 2σ 2

k,lβ
−2. Choose β1 > 0 to be of order

log(n)hd/4+1
pca

n1/2 so that with probability greater than 1 − 1
3d2n3 ,

|Ξi(k, l) − EFi(k, l)| ≤ β1 for all k, l = 1, . . . , d; choose β2 > 0 to be of order
log(n)hd/4+2

pca

n1/2 so that with
probability greater than 1− 1

3(p−d)2n3 , |Ξi(k, l)−EFi(k, l)| ≤ β2 for all k, l = d +1, . . . , p; choose β3 > 0

to be of order
log(n)hd/4+3/2

pca

n1/2 so that with probability greater than 1 − 1
3p(p−d)n3 , |Ξi(k, l)− EFi(k, l)| ≤ β3

for the other cases. Note that β1/hd/2+1
pca → 0 as hpca → 0 for all k, l = 1, . . . , d; β2/hd/2+2

pca → 0 as
hpca → 0 for all k, l = d + 1, . . . , p; β3/hd/2+2

pca → 0 as hpca → 0 for the other cases.
Denote Ωn,β1,β2,β3 to be the event space that for all i = 1, . . . , n, |Ξi(k, l) − EFi(k, l)| ≤ β1 for all

k, l = 1, . . . , d, |Ξi(k, l) − EFi(k, l)| ≤ β2 for all k, l = d + 1, . . . , p, |Ξi(k, l) − EFi(k, l)| ≤ β3 for
all k = 1, . . . , d, l = d + 1, . . . , p and l = 1, . . . , d, k = d + 1, . . . , p. By a direct calculation, we know
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that the probability of Ωn,β1,β2,β3 is bounded from below by

1 − n

(
d2 exp

{
− (n − 1)β2

1

ck,lh
d/2+2
pca + Ck,lhpcaβ1

}
+ (p − d)2 exp

{
− (n − 1)β2

2

ck,lh
d/2+4
pca + Ck,lh2

pcaβ2

}

+p(p − d) exp

{
− (n − 1)β2

3

ck,lh
d/2+3
pca + Ck,lh

3/2
pcaβ3

})
≥ 1 − 1/n2. (6.19)

As a result, when conditional on Ωn,β1,β2,β3 and a proper chosen hpca, that is, hpca = O(n−2/(d+2)) [33,
Theorem B.1], we have

OT
i ι∗X(x) = QT

i ι∗X(xi)+ h3/2
pca b1ι∗X(xi), (6.20)

where b1 : R
p → R

d is a bounded operator.
With the above probability control ofΩn,β1,β2,β3 , by [33, (B.76)], when conditional onΩn,β1,β2,β3 , we

have

OT
i Oi = QT

i Qi + (h3/2 + h3/2
pca )b2, (6.21)

and hence [33, Theorem B.2]

ιT∗ OiOijB
T
i X(xj) = //i

jX(xj)+ (h3/2 + h3/2
pca )b̃3X(xj), (6.22)

where b2 : R
d → R

d and b̃3 : Txj M → Txi M are bounded operators. It is shown in [33] that hpca should
be chosen so that hpca/h → 0 as h → 0, we could combine the error introduced by local PCA step with
the error introduced by parallel transport estimate, and obtain

ιT∗ OiOijB
T
i X(xj) = //i

jX(xj)+ h3/2b3X(xj), (6.23)

where b3 = 2b̃3. We emphasize that both Oi and Oij are random in nature, and they are dependent to
some extent. When conditional on Ωn,β1,β2,β3 , the randomness is bounded and we are able to proceed.

Define operators QT
X : TMX → VX and QX : VX → TMX by

QX v := [ιT∗ QT
1 v[1], . . . ιT∗ QT

n v[n]] ∈ TMX ,

QT
X w := [(Q1ι∗w[1])T , . . . , (Qnι∗w[n])T ]T ∈ VX ,

(6.24)

where w ∈ TMX and v ∈ VX .
Note that QT

X D−1
h,α,nSh,α,nX is exactly the same as BT

X D−1
h,α,nSh,α,nX, so its behavior has been under-

stood in Theorem 5.4. Therefore, if we can control the difference between QT
X D−1

h,α,nSh,α,nX and
OT

X D−1
h,α,nS

O
h,α,nX, where Sh,α,n is defined in (4.3) when the frame bundle information can be fully accessed,

by some modification of the proof of Theorem 5.4, we can conclude the theorem. By Lemma C1, we
know that conditional on the event space Ωp, which has probability higher than 1 − 1/n2, we have
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p̂h,n > pm/4. Thus, while conditional on Ωn,β1,β2,β3 ∩Ωp, by (6.23), for all i = 1, . . . , n,

∣∣QT
X D−1

h,α,nSh,α,nX[i] − OT
X D−1

h,α,nS
O
h,α,nX[i]∣∣ =

∣∣∣∣∣1n
n∑

j=1

M̂h,α,n(xi, xj)
(
//i

j − ιT∗ OiOijB
T
j

)
X(xj)

∣∣∣∣∣
= h3/2

∣∣∣∣∣1n
n∑

j=1

M̂h,α,n(xi, xj)b3X(xj)

∣∣∣∣∣ = O(h3/2), (6.25)

where the last inequality holds due to the fact that p̂h,n > pm/4 and O(h3/2) depends on ‖X‖L∞ . As a
result, when conditional on Ωn,β1,β2,β3 ∩Ωp, the error introduced by the frame bundle estimation is of
order high enough so that the object of interest, the connection Laplacian, is not influenced if we focus
on a proper subspace of L2(E ) depending on h.

Step 2: Spectral convergence
Based on the analysis on Step 1, when conditional on Ωn,β1,β2,β3 ∩ Ωp, we can directly study

QT
X D−1

h,α,nSh,α,nX with the price of a negligible error. Clearly all steps in the proof of Theorem 5.4
hold for QT

X D−1
h,1,nSh,1,n. As a result, conditional onΩn,β1,β2,β3 ∩Ωp, by the perturbation theory, the eigen-

vectors of OT
X D−1

h,1,nS
O
h,1,n is deviated from the eigenvectors of QT

X D−1
h,1,nSh,1,n by an error of order h3/2,

and we have finished the proof. �
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Appendix A. An introduction to principal bundle

In this Appendix, we collect relevant and self-contained facts about the mathematical framework
principal bundle which are used in the main text. We refer the readers to, for example [7,8], for more
general definitions which are not used in this article.

We start from discussing the notion of group action, orbit and orbit space. Consider a set Y and a
group G with the identity element e. The left group action of G on Y is a map from G × Y onto Y

G × Y → Y , (g, x) 
→ g ◦ x (A.1)

so that (gh) ◦ x = g ◦ (h ◦ x) is satisfied for all g, h ∈ G and x ∈ Y and e ◦ x = x for all x. The right
group action can be defined in the same way. Note that we can construct a right action by composing
with the inverse group operation, so in some scenarios it is sufficient to discuss only left actions. There
are several types of group action. We call an action transitive if for any x, y ∈ Y , there exists a g ∈ G
so that g ◦ x = y. In other words, under the group action we can jump between any pair of two points
on Y , or Y = G ◦ x for any x ∈ Y . We call an action effective for any g, h ∈ G, there exists x so that
g ◦ x �= h ◦ x. In other words, different group elements induce different permutations of Y . We call an
action free if g◦ x = x implies g = e for all g. In other words, there is no fixed points under the G action,
and hence the name free. If Y is a topological space, we call an action totally discontinuous if, for every
x ∈ Y , there is an open neighborhood U such that (g ◦ U) ∩ U = ∅ for all g ∈ G, g �= e.

The orbit of a point x ∈ Y is the set

Gx := {g ◦ x; g ∈ G}. (A.2)

The group action induces an equivalence relation. We say x ∼ y if and only if there exists g ∈ G so that
g ◦ x = y for all pairs of x, y ∈ Y . Clearly the set of orbits form a partition of Y , and we denote the set
of all orbits as Y/ ∼ or Y/G. We can thus define a projection map π by

Y → Y/G, x 
→ Gx. (A.3)

We call Y the total space or the left G-space, G the structure group, Y/G the quotient space, the base
space or the orbit space of Y under the action of G and π the canonical projection.

We define a principal bundle as a special G-space which satisfies more structure. Note that the
definitions given here are not the most general ones, but are enough for our purpose.

Definition A1 (Fiber bundle) Let F and M be two smooth manifolds and π a smooth map from F to
M. We say that F is a fiber bundle with fiber F over M if there is an open covering of M, denoted as
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{Ui}, and diffeomorphisms {ψi : π−1(Ui) → Ui × F} so that π : π−1(Ui) → Ui is the composition of
ψi with projection onto Ui.

By definition, π−1(x) is diffeomorphic to F for all x ∈ M. We call F the total space of the fiber
bundle, M is the base space, π the canonical projection, and F the fiber of F . With the above algebraic
setup, in a nutshell, the principal bundle is a special fiber bundle accompanied by a group action.

Definition A2 (Principal bundle) Let M be a smooth manifold and G a Lie group. A principal bundle
over M with structure group G is a fiber bundle P(M, G) with fiber diffeomorphic to G, a smooth right
action of G, denoted as ◦, on the fibers and a canonical projection π : P → M so that

1. π is smooth and π(g ◦ p) = π(p) for all p ∈ P and g ∈ G;

2. G acts freely and transitively;

3. the diffeomorphism ψi : π−1(Ui) → Ui × G satisfies ψi(p) = (π(p),φi(p)) ∈ Ui × G such that
φi : π−1(Ui)→ G satisfying φi(pg) = φi(p)g for all p ∈ π−1(Ui) and g ∈ G.

Note that M = P(M, G)/G, where the equivalence relation is induced by G. From the view point
of orbit space, P(M, G) is the total space, G is the structure group and M is the orbit space of P(M, G)
under the action of G. Intuitively, P(M, G) is composed of a bunch of sets diffeomorphic to G, all of
which are pulled together under some rules.5 We give some examples here:

Example A3 Consider P(M, G) = M × G so that G acts by g ◦ (x, h) = (x, hg) for all (x, h) ∈ M × G
and g ∈ G. We call such principal bundle trivial. In particular, when G = {e}, the trivial group, P(M, {e})
is the principal bundle, which we choose to unify the graph Laplacian and diffusion map.

Example A4 A particular important example of the principal bundle is the frame bundle, denoted as
GL(M), which is the principal GL(d, R)-bundle with the base manifold a d-dimension/dimensional
smooth manifold M. We construct GL(M) for the purpose of completeness. Denote Bx to be the set of
bases of the tangent space TxM, that is, Bx

∼= GL(d, R) and ux ∈ Bx is a basis of TxM. Let GL(M) be the set
consisting of all bases at all points of M, that is, GL(M) := {ux; ux ∈ Bx, x ∈ M}. Let π : GL(M)→ M
by ux 
→ x for all ux ∈ Bx and x ∈ M. Define the right GL(d, R) action on GL(M) by g ◦ ux = vx, where
g = [gij]d

i,j=1 ∈ GL(d, R), ux = (X1, . . . , Xd) ∈ Bx and vx = (Y1, . . . , Yd) ∈ Bx with Yi = ∑d
j=1 gijXj. By a

direct calculation, GL(d, R) acts on GL(M) from the right freely and transitively, and π(g◦ux) = π(ux).
In a coordinate neighborhood U, π−1(U) is 1–1 corresponding with U × GL(d, R), which induces a
differentiable structure on GL(M). Thus GL(M) is a principal GL(d, R)-bundle.

Example A5 Another important example is the orientation principal bundle, which we choose to unify
the orientable diffusion map. The construction is essentially the same as that of the frame bundle. First,
let P(M, O(1)) be the set of all orientations at all points of M and let π be the canonical projection from
P(M, O(1)) to M, where O(1) ∼= Z2

∼= {1, −1}. In other words, P(M, O(1)) := {ux; ux ∈ {1, −1}, x ∈
M}, where Z2 stands for the possible orientation of each point x. The O(1) ∼= {1, −1} group acts on
P(M, O(1)) simply by u → ug, where u ∈ P(M, O(1)) and g ∈ {1, −1}. The differentiable structure
in P(M, O(1)) is introduced in the following way. Take (x1, . . . , xd) as a local coordinate system in
a coordinate neighborhood U in M. Since Z2 is a discrete group, we take π−1(U) as two disjoint sets

5 These rules are referred to as transition functions.
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U ×{1} and U ×{−1} and take (x1, . . . , xd) as their coordinate systems. Clearly P(M, O(1)) is a principal
fiber bundle and we call it the orientation principal bundle.

If we are given a left G-space F, we can form a fiber bundle from P(M, G) so that its fiber is
diffeomorphic to F and its base manifold is M in the following way. By denoting the left G action on F
by ·, we have

E (P(M, G), ·, F) := P(M, G)×G F := P(M, G)× F/G, (A.4)

where the equivalence relation is defined as

(g ◦ p, g−1 · f ) ∼ (p, f ) (A.5)

for all p ∈ P(M, G), g ∈ G and f ∈ F. The canonical projection from E (P(M, G), ·, F) to M is denoted
as πE :

πE : (p, f ) 
→ π(p), (A.6)

for all p ∈ P(M, G) and f ∈ F. We call E (P(M, G), ·, F) the fiber bundle associated with P(M, G) with
standard fiber F or the associated fiber bundle whose differentiable structure is induced from M. Given
p ∈ P(M, G), denote pf to be the image of (p, f ) ∈ P(M, G) × F onto E (P(M, G), ·, F). By definition,
p is a diffeomorphism from F to π−1

E (π(p)) and

(g ◦ p)f = p(g · f ). (A.7)

Note that the associated fiber bundle E (P(M, G), ·, F) is a special fiber bundle and its fiber is diffeo-
morphic to F. When there is no danger of confusion, we denote E := E (P(M, G), ·, F) to simply the
notation.

Example A6 When F = V is a vector space and the left G action on F is a linear representation, the
associated fiber bundle is called the vector bundle associated with the principal bundle P(M, G) with
fiber V , or simply called the vector bundle if there is no danger of confusion. For example, take F = R

q,
denote ρ to be a representation of G into GL(q, R) and assume G acts on R

q via the representation ρ.
A particular example of interest is the tangent bundle TM := E (P(M, GL(d, R)), ρ, Rd), when M is a
d-dimension/dimensional smooth manifold and the representation ρ is identity. The practical meaning
of the frame bundle and its associated tangent bundle is change of coordinate. That is, if we view a point
ux ∈ GL(M) as the basis of the fiber TxM, where x = π(ux), then the coordinate of a point on the tangent
plane TxM changes, that is, vx → g · vx where g ∈ GL(d, R) and vx ∈ R

d , according to the changes of
the basis, that is, g → g ◦ ux. Also notice that we can view a basis of TxM as an invertible linear map
from R

d to TxM by definition. Indeed, if we take ei, i = 1, . . . , d to be the natural basis of R
d ; that is, ei

is the unit vector with 1 in the ith entry, a linear frame ux = (X1, . . . , Xd) at x can be viewed as a linear
mapping ux : R

d → TxM such that uxei = Xi, i = 1, . . . , d.

A (global) section of a fiber bundle E with fiber F over M is a map

s : M → E (A.8)
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so that π(s(x)) = x for all x ∈ M. We denote Γ (E ) to be the set of sections; Cl(E ) to be the space of
all sections with the lth regularity, where l ≥ 0. An important property of the principal bundle is that a
principal bundle is trivial if and only if C0(P(M, G)) �= ∅. In other words, all sections on a non-trivial
principal bundle are discontinuous. On the other hand, there always exists a continuous section on the
associated vector bundle E .

Let V be a vector space. Denote GL(V) to be the group of all invertible linear maps on V . If V comes
with an inner product, then define O(V) to be the group of all orthogonal maps on V with related to the
inner product. From now on we focus on the vector bundle, with fiber being a vector space V and the
action · being a representation ρ : G → GL(V), that is, E (P(M, G), ρ, V).

To introduce the notion of covariant derivative on the vector bundle E , we have to introduce the
notion of connection. Note that the fiber bundle E is a manifold. Denote TE to be the tangent bundle of
E and T ∗E to be the cotangent bundle of E . We call a tangent vector X on E vertical if it is tangential
to the fibers; that is, X(π∗

E f ) = 0 for all f ∈ C∞(M). Note that π∗
E f is a function defined on E which is

constant on each fiber, so we call X vertical when X(π∗
E f ) = 0 for all f ∈ C∞(M). Denote the bundle of

vertical vectors as VE , which is referred to as the vertical bundle, and is a subbundle of TE . We call a
vector field vertical if it is a section of the vertical bundle. Clearly the quotient of TE by its subbundle
VE is isomorphic to π∗TM, and hence we have a short exact sequence of vector bundles:

0 → VE → TE → π∗TM → 0. (A.9)

However, there is no canonical splitting of this short exact sequence. A chosen splitting is called a
connection. In other words, a connection is a G-invariant distribution H ⊂ TE complementary to VE .

Definition A7 (Connection 1-form) Let P(M, G)be a principal bundle. A connection 1-form on P(M, G)
is a g-valued 1-form ω ∈ Γ (T ∗P(M, G) ⊗ VP(M, G)) so that ω(X) = X for any X ∈ Γ (VP(M, G))
and is invariant under the action of G. The kernel of ω is called the horizontal bundle and is denoted as
HP(M, G).

Note that HP(M, G) is isomorphic to π∗TM. Clearly, a connection 1-form determines a splitting
of (A.9), or the connection on P(M, G). In other words, as a linear subspace, the horizontal subspace
HpP(M, G) ⊂ TpP(M, G) is cut out by dim G linear equations defined on TpP(M, G).

We call a section XP of HP(M, G) a horizontal vector field. Given X ∈ Γ (TM), we say that XP

is the horizontal lift with respect to the connection on P(M, G) of X if X = π∗XP. Given a smooth
curve τ := c(t), t ∈ [0, 1] on M and a point u(0)∈ P(M, G), we call a curve τ ∗ = u(t) on P(M, G) the
(horizontal) lift of c(t) if the vector tangent to u(t) is horizontal and π(u(t)) = c(t) for t ∈ [0, 1]. The
existence of τ ∗ is an important property of the connection theory. We call u(t) the parallel displacement
of u(0) along the curve τ on M.

With the connection on P(M, G), the connection on an associated vector bundle E with fiber V is
determined. As a matter of fact, we define the connection, or HE , to be the image of HP(M, G) under the
natural projection P(M, G)×V → E (P(M, G), ρ, V). Similarly, we call a section XE of HE a horizontal
vector field. Given X ∈ Γ (TM), we say that XE is the horizontal lift with respect to the connection on
E of X if X = πE∗XE . Given a smooth curve c(t), t ∈ [0, 1] on M and a point v0 ∈ E , we call a curve vt

on E the (horizontal) lift of c(t) if the vector tangent to vt is horizontal and πE(vt) = c(t) for t ∈ [0, 1].
The existence of such horizontal life holds in the same way as that of the principal bundle. We call vt

the parallel displacement of v0 along the curve τ on M. Note that we have interest in this connection on
the vector bundle since it leads to the covariant derivative we have interest.
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Definition A8 (Covariant derivative) Take a vector bundle E associated with the principal bundle
P(M, G) with fiber V . The covariant derivative ∇E of a smooth section X ∈ C1(E ) at x ∈ M in the
direction ċ0 is defined as

∇E
ċ0

X = lim
h→0

1

h
[//c(0)

c(h)X(c(h))− X(x)], (A.10)

where c : [0, 1] → M is a curve on M so that c(0) = x and //c(0)
c(h) denotes the parallel displacement of X

from c(h) to c(0).

Note that in general, although all fibers of E are isomorphic to V , the notion of comparison among
them is not provided. An explicit example demonstrating the derived problem is given in the appendix of
[33]. However, with the parallel displacement based on the notion of connection, we are able to compare
among fibers, and hence define the derivative. With the fact that

//
c(0)
c(h)X(c(h)) = u(0)u(h)−1X(c(h)), (A.11)

where u(h) is the horizontal lift of c(h) to P(M, G) so that π(u(0)) = x, the covariant derivative (A.10)
can be represented in the following format:

∇E
ċ0

X = lim
h→0

1

h
[u(0)u(h)−1(X(c(h)))− X(c(0))], (A.12)

which is independent of the choice of u(0). To show (A.11), set v := u(h)−1(X(c(h))) ∈ V . Clearly
u(t)(v), t ∈ [0, h], is a horizontal curve in E by definition. It implies that u(0)v = u(0)u(h)−1(X(c(h)))
is the parallel displacement of X(c(h)) along c(t) from c(h) to c(0). Thus, although the covariant
derivatives defined in (A.10) and (A.12) are different in their appearances, they are actually equivalent.
We can understand this definition in the frame bundle GL(Md) and its associated tangent bundle. First,
we find the coordinate of a point on the fiber X(c(h)), which is denoted as u(h)−1(X(c(h))), and then we
put this coordinate u(h)−1(X(c(h))) to x = c(0) and map it back to the fiber TxM by the basis u(0). In
this way we can compare two different ‘abstract fibers’ by comparing their coordinates. A more abstract
definition of the covariant derivative, yet equivalent to the above, is the following. A covariant derivative
of E is a differential operator

∇E : C∞(E )→ C∞(T ∗M ⊗ E ) (A.13)

so that the Leibniz’s rule is satisfied, that is, for X ∈ C∞(E ) and f ∈ C∞(M), we have

∇E(fX) = df ⊗ X + f ∇EX, (A.14)

where d is the exterior derivative on M. Denote ΛkT ∗M (resp ΛT ∗M) to be the bundle of kth exterior
differentials (resp. the bundle of exterior differentials), where k ≥ 1. Given two vector bundles E1 and
E2 on M with the covariant derivatives ∇E1 and ∇E2 , we construct a covariant derivative on E1 ⊗ E2 by

∇E1⊗E2 := ∇E1 ⊗ 1 + 1 ⊗ ∇E2 . (A.15)



SPECTRAL CONVERGENCE OF THE CONNECTION LAPLACIAN 99

A fiber metric gE in a vector bundle E is a positive-definite inner-product in each fiber V that varies
smoothly on M. For any E , if M is paracompact, gE always exists. A connection in P(M, G), and also
its associated vector bundle E , is called metric if

dgE(X1, X2) = gE(∇EX1, X2)+ gE(X1, ∇EX2), (A.16)

for all X1, X2 ∈ C∞(E ). We mainly focus on metric connection in this work. It is equivalent to say that
the parallel displacement of E preserves the fiber metric. An important fact about the metric connection
is that if a connection on P(M, G) is metric, given a fiber metric gE , then the covariant derivative on
the associated vector bundle E can be equally defined from a sub-bundle Q(M, H) of P(M, G), which is
defined as

Q(M, H) := {p ∈ P(M, G) : gE(p(u), p(v)) = (u, v)}, (A.17)

where (·, ·) is an inner product on V and the structure group H is a closed subgroup of G. In other
words, p ∈ Q(M, H) is a linear map from V to π−1

E (π(p)) which preserves the inner product. A direct
verification shows that the structure group of Q(M, H) is

H := {g ∈ G : ρ(g) ∈ O(V)} ⊂ G. (A.18)

Since orthogonal property is needed in our analysis, when we work with a metric connection on a
principal bundle P(M, G) given a fiber metric gE on E (P(M, G), ρ, V), we implicitly assume we work
with its sub bundle Q(M, H). With the covariant derivative, we now define the connection Laplacian.
Assume M is a d-dimension/dimensional smooth Riemmanian manifold with the metric g. With the
metric g we have an induced measure on M, denoted as dV .6 Denote Lp(E ), 1 ≤ p < ∞ to be the set
of Lp integrable sections, that is, X ∈ Lp(E ) if and only if∫

|gE
x (X(x), X(x))|p/2 dV(x) <∞. (A.19)

Denote E ∗ to be the dual bundle of E , which is paired with E by gE , that is, the pairing between E and
E ∗ is 〈X, Y〉 := gE(X , Y), where X ∈ C∞(E ) and Y ∈ C∞(E ∗). The connection on the dual bundle E ∗

is thus defined by

d〈X , Y〉 = gE(∇EX, Y)+ gE(X, ∇E∗
Y). (A.20)

Recall that the Riemannian manifold (M, g) possesses a canonical connection referred to as the Levi–
Civita connection ∇ [7, p. 31]. Based on ∇, we define the connection ∇T∗M⊗E on the tensor product
bundle T ∗M ⊗ E .

Definition A9 Take the Riemannian manifold (M, g), the vector bundle E := E (P(M, G), ρ, V) and
its connection ∇E . The connection Laplacian on E is defined as ∇2 : C∞(E )→ C∞(E ) by

∇2 := −tr(∇T∗M⊗E∇E), (A.21)

where tr : C∞(T ∗M ⊗ T ∗M ⊗ E )→ C∞(E ) by contraction with the metric g.

6 To obtain the most geometrically invariant formulations, we may consider the density bundles as is considered in [7, Chapter
2]. We choose not to do that in order to simplify the discussion.
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If we take the normal coordinate {∂i}d
i=1 around x ∈ M, for X ∈ C∞(E ), we have

∇2X(x) = −
d∑

i=1

∇∂i∇∂i X(x). (A.22)

Given compactly supported smooth sections X , Y ∈ C∞(E ), a direct calculation leads to

tr
[∇(gE(∇EX , Y))

]
=tr

[
gE(∇T∗M⊗E∇EX, Y)+ gE(∇EX, ∇EY)

]
=gE(∇2X , Y)+ trgE(∇EX, ∇EY). (A.23)

By the divergence theorem, the left-hand side disappears after integration over M, and we obtain
∇2 = −∇E∗∇E . Similarly we can show that ∇2 is self-adjoint. We refer the readers to [16] for further
properties of ∇2, for example the ellipticity, its heat kernel and its application to the index theorem.

Appendix B. Proof of Theorem 5.2

The proof is a generalization of [33, Theorem B.4] to the general principal bundle structure. Note that
in [33, Theorem B.4] dependence of the error terms on a given section is not explicitly shown. In order
to prove the spectral convergence, we have to make this dependence explicit. Denote B̃t(x) := ι−1

(BR
p

t (x) ∩ ι(M)), where t ≥ 0.

Lemma B1 Assume Assumptions 4.1 and 4.3 hold. Suppose X ∈ L∞(E ) and 0 < γ < 1/2. Then, when
h is small enough, for all x ∈ M the following holds:∣∣∣∣∣

∫
M\B̃hγ (x)

h−d/2Kh(x, y)//x
yX(y) dV(y)

∣∣∣∣∣ = O(h2), (B.1)

where the implied constant in O(h2) depends on ‖X‖L∞ .

Proof. We immediately have∣∣∣∣∣
∫

M\B̃hγ (x)
h−d/2Kh(x, y)//x

yX(y) dV(y)

∣∣∣∣∣ ≤ ‖X‖L∞

∣∣∣∣∣
∫

M\B̃hγ (x)
h−d/2Kh(x, y) dV(y)

∣∣∣∣∣
= ‖X‖L∞

∣∣∣ ∫
Sd−1

∫ ∞

hγ
h−d/2

[
K

(
t√
h

)
+ K ′

(
t√
h

) ‖Π(θ , θ)‖t3

24
√

h
+ O

(
t6

h

)]
× [

td−1 + Ric(θ , θ)td+1 + O(td+2)
]

dt dθ
∣∣∣

= ‖X‖L∞
[∫ ∞

hγ−1/2
K(s)

(
sd−1 + hsd+1

)
ds + h

∫ ∞

hγ−1/2
K ′(s)sd+2 ds

]
+ O(h2) = O(h2), (B.2)

where the implied constant in O(h2) depends on ‖X‖L∞ and the last inequality holds by the fact that K
and K ′ decay exponentially. Indeed, h(d−1)(γ−1/2)e−hγ−1/2

< h2 when h is small enough. �
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We need the next Lemma to handle the points near the boundary. Note that when x is near the
boundary, the integral domain is no longer symmetric, so its proof is different from the points away from
the boundary. In particular, the first order term cannot be canceled. In order to fully understand the first
order term, we have to take care of the possible nonlinearity of the manifold.

Lemma B2 Assume Assumption 4.1. Take 0 < γ < 1/2 and x ∈ Mhγ . Suppose miny∈∂M d(x, y) = h̃.
Fix a normal coordinate {∂1, . . . , ∂d} on the geodesic ball Bhγ (x) around x so that x0 = expx(h̃∂d(x)).
Divide exp−1

x (Bhγ (x)) into slices Sη defined by

Sη = {(u, η) ∈ R
d ; expx(u, η) ∈ Bhγ (x), ‖(u1, . . . , ud−1, η)‖ < hγ }, (B.3)

where η ∈ [−hγ , hγ ] and u = (u1, . . . , ud−1) ∈ R
d−1; that is, exp−1

x (Bhγ (x)) = ∪η∈[−hγ ,hγ ]Sη ⊂ R
d .

Define the symmetrization of Sη by

S̃η := ∩d−1
i=1 (RiSη ∩ Sη), (B.4)

where Ri is the reflective operator satisfying Ri(u1, . . . , ui, . . . , ud−1, η) = (u1, . . . , −ui, . . . , ud−1η) and
i = 1, . . . , d − 1. Then, we have∣∣∣∣∣

∫
Sη

∫ hγ

−hγ
dη du −

∫
S̃η

∫ hγ

−hγ
dη du

∣∣∣∣∣ = O(h2γ ). (B.5)

Proof. Note that in general the slice Sη is not symmetric with related to (0, . . . , 0, η), while the
symmetrization S̃η is. Recall the following relationship [33, (B.23)] when y = expx(tθ):

∂l(expx(tθ)) = //y
x∂l(x)+ t2

6
//y

x(R(θ , ∂l(x))θ)+ O(t3), (B.6)

where θ ∈ TxM is of unit norm and t when t is small enough, which leads to

//x0
x ∂l(x) = ∂l(x0)+ O(h̃2), (B.7)

for all l = 1, . . . , d. Also note that up to error O(h̃3), we can express ∂M ∩ Bhγ (x) by a homogeneous
degree 2 polynomial with variables {//x0

x ∂1(x), . . . , //
x0
x ∂d−1(x)}. Thus the difference between S̃η and Sη

is O(h2γ ) since h̃ ≤ hγ . �

Next we elaborate the error term in the kernel approximation.

Lemma B3 Assume Assumptions 4.1 and 4.3 hold. Take 0 < γ < 1/2. Fix x /∈ Mhγ and denote Cx to be
the cut locus of x. Take a vector-valued function F : M → R

q, where q ∈ N and F ∈ C4(M\Cx)∩L∞(M).
Then, when h is small enough, we have

∫
M

h−d/2Kh(x, y)F(y) dV(y) = F(x)+ h
μ
(0)
1,2

d

(
ΔF(x)

2
+ w(x)F(x)

)
+ O(h2), (B.8)
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where w(x) = s(x) + μ
(1)
1,3z(x)

24|Sd−1| , s(x) is the scalar curvature at x, and z(x) = ∫
Sd−1 ‖Π(θ , θ)‖ dθ and the

error term depends on ‖F(�)‖L∞ , where � = 0, 1, . . . , 4.
Fix x ∈ Mhγ . Then, when h is small enough, we have∫

M
h−d/2Kh(x, y)F(y) dV(y) = mh,0F(x)+ √

hmh,1∇∂d F(x)+ O(h2γ ), (B.9)

where the implied constant in O(h2γ ) depends on ‖F‖L∞ , ‖F(1)‖L∞ and ‖F(2)‖L∞ and mh,0 and mh,1 are
of order 1 and defined in (B.12).

Proof. By Lemma B1, we can focus our analysis on B̃hγ (x) since F is a section of the trivial bundle.
Also, we can view F as q functions defined on M with the same regularity. Then, the proof is exactly the
same as that of [11, Lemma 8], except the explicit dependence of the error term on F. Since the main
point is the uniform bound of the third derivative of the embedding function ι and F on M, we simply
list the calculation steps:∫

B̃hγ (x)
Kh(x, y)F(y) dV(y) =

∫
B̃hγ (x)

K

(‖x − y‖Rp√
h

)
F(y) dV(y)

=
∫

Sd−1

∫ hγ

0

[
K

(
t√
h

)
+ K ′

(
t√
h

) ‖Π(θ , θ)‖t3

24
√

h
+ O

(
t6

h

)]
×
[

F(x)+ ∇θF(x)t + ∇2
θ ,θF(x)

t2

2
+ ∇3

θ ,θ ,θF(x)
t3

6
+ O(t3)

]
× [

td−1 + Ric(θ , θ)td+1 + O(td+2)
]

dt dθ . (B.10)

By a direct expansion, the regularity assumption and the compactness of M, we conclude the first part
of the proof.

Next, suppose x ∈ Mhγ . By Taylor’s expansion and Lemma B2, we obtain∫
Bhγ (x)

h−d/2Kh(x, y)F(y) dV(y)

=
∫

Sη

∫ hγ

−hγ
h−d/2

[
K

(√‖u‖2 + η2

√
h

)
+ K ′

(√‖u‖2 + η2

√
h

)
‖Π((u, η), (u, η))‖(‖u‖2 + η2)3/2

24
√

h

+O

(
(‖u‖2 + η2)3

h

)](
F(x)+

d−1∑
i=1

ui∇∂i F(x)+ η∇∂d F(x)+ O(h̃2)

)
dη du

=
∫

S̃η

∫ hγ

−hγ
h−d/2K

(√‖u‖2 + η2

√
h

)(
F(x)+

d−1∑
i=1

ui∇∂i F(x)+ η∇∂d F(x)+ O(h̃2)

)
dη du + O(h2γ )

=
∫

S̃η

∫ hγ

−hγ
h−d/2K

(√‖u‖2 + η2

√
h

)(
F(x)+ η∇∂d F(x)+ O(h̃2)

)
dη du + O(h2γ )

= mh,0F(x)+ √
hmh,1∇∂d F(x)+ O(h2γ ), (B.11)
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where the third equality holds due to the symmetry of the kernel and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mh,0 :=

∫
S̃η

∫ hγ

−hγ
h−d/2K

(√‖u‖2 + η2

√
h

)
dη dx

mh,1 :=
∫

S̃η

∫ hγ

−hγ
h−d/2−1/2K

(√‖u‖2 + η2

√
h

)
η dη dx.

(B.12)

�

With the above Lemmas, we are able to finish the Proof of Theorem 5.2.

Proof of Theorem 5.2. Take 0 < γ < 1/2. By Lemma B1, we can focus our analysis of the numerator
and denominator of Th,αX on B̃hγ (x), no matter x is away from the boundary or close to the boundary.
Suppose x /∈ Mhγ . By Lemma B3, we get

ph(y) = p(y)+ h
μ
(0)
1,2

d

(
Δp(y)

2
+ w(y)p(y)

)
+ O(h3/2), (B.13)

which leads to

p(y)
pαh (y)

= p1−α(y)

[
1 − αh

μ
(0)
1,2

d

(
w(y)+ Δp(y)

2p(y)

)]
+ O(h3/2). (B.14)

Plug (B.14) into the numerator of Th,αX(x):∫
B̃hγ (x)

Kh,α(x, y)//x
yX(y)p(y) dV(y)

= p−α
h (x)

∫
B̃hγ (x)

Kh(x, y)//x
yX(y)p−α

h (y)p(y) dV(y)

= p−α
h (x)

∫
B̃hγ (x)

Kh(x, y)//x
yX(y)p1−α(y)

[
1 − αh

μ
(0)
1,2

d

(
w(y)+ Δp(y)

2p(y)

)]
dV(y)+ O(hd/2+3/2)

:= p−α
h (x)

(
A − h

αμ
(0)
1,2

d
B

)
+ O(hd/2+3/2), (B.15)

where ⎧⎪⎪⎨⎪⎪⎩
A :=

∫
B̃hγ (x)

Kh(x, y)//x
yX(y)p1−α(y) dV(y),

B :=
∫

B̃hγ (x)
Kh(x, y)//x

yX(y)p1−α(y)
(

w(y)+ Δp(y)
2p(y)

)
dV(y).

(B.16)
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When we evaluate A and B, the odd monomials in the integral vanish because the kernel we use has the
symmetry property. By Taylor’s expansion, A becomes

A =
∫

Sd−1

∫ hγ

0

[
K

(
t√
h

)
+ K ′

(
t√
h

) ‖Π(θ , θ)‖t3

24
√

h
+ O

(
t6

h

)]
×
[

X(x)+ ∇θX(x)t + ∇2
θ ,θX(x)

t2

2
+ ∇3

θ ,θ ,θX(x)
t3

6
+ O(t4)

]
×
[
p1−α(x)+ ∇θ (p1−α)(x)t + ∇2

θ ,θ (p
1−α)(x)

t2

2
+ ∇3

θ ,θ ,θ (p
1−α)(x)

t3

6
+ O(t3)

]
× [

td−1 + Ric(θ , θ)td+1 + O(td+2)
]

dt dθ. (B.17)

Due to the fact that K and K ′ decay exponentially, by the same argument as that of Lemma B1, we can
replace the integrals

∫
Sd−1

∫ hγ

0 by
∫

Sd−1

∫ ∞
0 by paying the price of error of order h2 which depends on

‖X (�)‖L∞ , where � = 0, 1, . . . , 4. Thus, after rearrangement we have

A = p1−α(x)X(x)
∫

Sd−1

∫ ∞

0

{
K

(
t√
h

) [
1 + Ric(θ , θ)t2

] + K ′
(

t√
h

) ‖Π(θ , θ)‖t3

24
√

h

}
td−1 dt dθ

+ p1−α(x)
∫

Sd−1

∫ ∞

0
K

(
t√
h

)
∇2
θ ,θX(x)

td+1

2
dt dθ

+ X(x)
∫

Sd−1

∫ ∞

0
K

(
t√
h

)
∇2
θ ,θ (p

1−α)(x)
td+1

2
dt dθ

+
∫

Sd−1

∫ ∞

0
K

(
t√
h

)
∇θX(x)∇θ (p1−α)(x)td+1 dt dθ + O(hd/2+2), (B.18)

where the implied constant in O(hd/2+2) depends on ‖X (�)‖L∞ , � = 0, 1, . . . , 4. Following the same
argument as that in [33], we have

∫
Sd−1

∇2
θ ,θX(x) dθ = |Sd−1|

d
∇2X(x) and

∫
Sd−1

Ric(θ , θ) dθ = |Sd−1|
d

s(x). (B.19)

Therefore,

A = hd/2p1−α(x)

{(
1 + hμ(0)1,2

d

Δ(p1−α)(x)
2p1−α(x)

+ hμ(0)1,2

d
w(x)

)
X(x)+ hμ(0)1,2

2d
∇2X(x)

}

+ hd/2+1μ
(0)
1,2

d
∇X(x) · ∇(p1−α)(x)+ O(hd/2+2), (B.20)

where the implied constant in O(hd/2+2) depends on ‖X (�)‖L∞ , � = 0, 1, . . . , 4.
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To evaluate B, denote Q(y) := p1−α(y)
(

w(y)+ Δp(y)
2p(y)

)
∈ C2(M) to simplify notation. We have

B =
∫

Bhγ (x)
Kh(x, y)//x

yX(y)Q(y) dV(y)

=
∫

Sd−1

∫ hγ

0

[
K

(
t√
h

)
+ O

(
t3

√
h

)] [
X(x)+ ∇θX(x)t + O(t2)

]
× [

Q(x)+ ∇θQ(x)t + O(t2)
] [

td−1 + O(td+1)
]

dt dθ

= hd/2X(x)Q(x)+ O(hd/2+1), (B.21)

where the implied constant in O(hd/2+1) depends on ‖X‖L∞ , ‖X (1)‖L∞ and ‖X (2)‖L∞ . In conclusion, the
numerator of Th,αX(x) becomes

hd/2 p1−α(x)
pαh (x)

{
1 + h

μ
(0)
1,2

d

[
Δ(p1−α)(x)

2p1−α(x)
− αΔp(x)

2p(x)

]}
X(x)

+ hd/2+1μ
(0)
1,2p

1−α(x)
dpαh (x)

{∇2X(x)

2
+ ∇X(x) · ∇(p1−α)(x)

p1−α(x)

}
+ O(hd/2+2), (B.22)

where the implied constant in O(hd/2+2) depends on ‖X (�)‖L∞ , � = 0, 1, . . . , 4. Similar calculation of
the denominator of the Th,αX(x) gives

hd/2 p1−α(x)
pαh (x)

{
1 + h

μ
(0)
1,2

d

(
Δ(p1−α)(x)

2p1−α(x)
− αΔp(x)

2p(x)

)}
+ O(hd/2+2). (B.23)

Putting all the above together, we then have x ∈ M\Mhγ ,

Th,αX(x) = X(x)+ h
μ
(0)
1,2

2d

(
∇2X(x)+ 2∇X(x) · ∇(p1−α)(x)

p1−α(x)

)
+ O(h2), (B.24)

where the implied constant in O(h2) depends on ‖X (�)‖L∞ , � = 0, 1, . . . , 4.
Next we consider the case when x ∈ Mhγ . By Lemma B3, we get

ph(y) = mh,0p(y)+
√

hmh,1∂dp(x)+ O(h2γ ), (B.25)

which leads to

p(y)
pαh (y)

= p1−α(y)
mα

h,0

[
1 − √

h
αmh,1

mh,0

∂dp(y)
p(y)

+ O(h2γ )

]
. (B.26)
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By Taylor’s expansion and Lemma B2, the numerator of Th,αX becomes∫
Bhγ (x)

Kh,α(x, y)//x
yX(y)p(y) dV(y)

= p−α
h (x)

mα
h,0

∫
Sη

∫ hγ

−hγ
K

(√‖u‖2 + η2

√
h

)(
X(x)+

d−1∑
i=1

ui∇∂i X(x)+ η∇∂d X(x)+ O(h2)

)

×
(

p1−α(x)+
d−1∑
i=1

ui∇∂i p1−α(x)+ η∇∂d p1−α(x)+ O(h2)

)

×
[

1 − √
h
αmh,1

mh,0

∂dp(y)
p(y)

]
dη du + O(hd/2+2γ )

= p−α
h (x)

mα
h,0

∫
S̃η

∫ hγ

−hγ
K

(√‖u‖2 + η2

√
h

)(
X(x)+

d−1∑
i=1

ui∇∂i X(x)+ η∇∂d X(x)+ O(h2)

)

×
(

p1−α(x)+
d−1∑
i=1

ui∇∂i p1−α(x)+ η∇∂d p1−α(x)+ O(h2)

)

×
[

1 − √
h
αmh,1

mh,0

∂dp(x)
p(x)

]
dη du + O(hd/2+2γ ), (B.27)

where the implied constant in O(hd/2+2γ ) depends on ‖X (�)‖L∞ , � = 0, 1, 2, and the last equality holds
due to Lemma B2. The symmetry of the kernel implies that for i = 1, . . . , d − 1,∫

S̃η

K

(√‖u‖2 + η2

√
h

)
ui du = 0, (B.28)

and hence the numerator of Th,αX(x) becomes

hd/2 m1−α
h,0

pαh (x)

[
X(x)p1−α(x)+ √

h
mh,1

mh,0

(
X(x)∂dp1−α(x)+ p1−α(x)∇∂d X(x)+ αX(x)∂dp(x)

mh,0p(x)

)]
+ O(hd/2+2γ ), (B.29)

where the implied constant in O(hd/2+2γ ) depends on ‖X‖L∞ , ‖X (1)‖L∞ and ‖X (2)‖L∞ and mh,0 and mh,1

are defined in (B.12). Similarly, the denominator of Th,αX can be expanded as:∫
Bhγ (x)

Kh,α(x, y)p(y) dV(y)

= hd/2 m1−α
h,0

pαh (x)

[
p1−α(x)+ √

h
mh,1

mh,0

(
∂dp1−α(x)+ α∂dp(x)

mh,0p(x)

)]
+ O(hd/2+2γ ). (B.30)

Moreover, by (B.7), we have

//x0
x ∂l(x) = ∂l(x0)+ O(h2γ ), (B.31)
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for all l = 1, . . . , d. Thus, together with the expansion of the numerator and denominator of Th,αX, we
have the following asymptotic expansion:

Th,αX(x) = X(x)+ √
h

mh,1

mh,0
//x

x0
∇∂d X(x0)+ O(h2γ ), (B.32)

where the implied constant in O(h2γ ) depends on ‖X (�)‖L∞ , � = 0, 1, 2, which finish the proof. �

Appendix C. Proof of Theorem 5.3

The proof is a generalization of that of [33, Theorem B.3] to the principal bundle structure. Note that
in [33, Theorem B.3] only the uniform sampling p.d.f. case was discussed. The main ingredient in the
stochastic fluctuation analysis of the GCL when n is finite is the large deviation analysis. Note that
the term in which we have interest, the connection Laplacian (or Laplace–Beltrami operator when we
consider GL), is the second order term, that is, it is of order h, which is much smaller than the 0th order
term. Thus, by applying the Berstein’s inequality with the large deviation to control the error to be much
smaller than h, we are able to achieve this rate. Here, for the sake of self-containment and clarifying
some possible confusions in [31], we provide a detailed proof for this large deviation bound.

Lemma C1 Assume Assumptions 4.1–4.3 hold. We have the following two statements.

(A) Suppose h = h(n) so that
√

log(n)

n1/2hd/4+s → 0 and h → 0 as n → ∞, where s ≥ 0. With probability
higher than 1 − 1/n2, the following kernel density estimation holds for all i = 1, . . . , n

p̂h,n(xi) = ph(xi)+ O

(√
log(n)

n1/2hd/4

)
. (C.1)

(B) Take f ∈ C4(M) and 1/4 < γ < 1/2. For the points away from the boundary, suppose h = h(n)

so that
√

log(n)

n1/2hd/4+1/2 → 0 and h → 0 as n → ∞. Then, with probability higher than 1−1/n2, the following
holds for all xi /∈ Mhγ :∑n

j=1 Kh(xi, xj)(f (xj)− f (xi))∑n
j=1 Kh(xi, xj)

= (Th,0f − f )(xi)+ O

( √
log(n)

n1/2hd/4−1/2

)
, (C.2)

and the following holds for all xi ∈ Mhγ :∑n
j=1 Kh(xi, xj)(f (xj)− f (xi))∑n

j=1 Kh(xi, xj)
= (Th,0f − f )(xi)+ O

( √
log(n)

n1/2hd/4−1/4

)
. (C.3)

Remark C1 In this lemma, (A) means that when we have enough points, the kernel density estimation

of the p.d.f. converges faster than h; that is, when s > 0,
√

log(n)

n1/2hd/4 /h
s → 0 as h → 0. This is important

for the convergence of the normalized GCL.

Proof. We will prove (B). The proof of (A) is the same by applying the Hoeffding’s inequality, and will

be shown when we prove (B). Fix xi. Note that
∑n

j=1 Kh(xi ,xj)(f (xj)−f (xi))∑n
j=1 Kh(xi ,xj)

is actually the un-normalized GL.
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Denote Fj := h−d/2Kh(xi, xj)(f (xj)− f (xi)) and Gj := h−d/2Kh(xi, xj), then the un-normalized GL could
be rewritten as ∑n

j=1 Kh(xi, xj)(f (xj)− f (xi))∑n
j=1 Kh(xi, xj)

=
1
n

∑n
j=1 Fj

1
n

∑n
j=1 Gj

. (C.4)

Define two random variables

F := h−d/2Kh(xi, Y)(f (Y)− f (xi)) and G := h−d/2Kh(xi, Y). (C.5)

Clearly, Fj (respectively Gj), when j �= i, can be viewed as randomly sampled i.i.d. from F (respectively
G). Note that the un-normalized GL is a ratio of two dependent random variables, therefore the variance
cannot be simply computed.

1
n

∑n
j=1 Fj

1
n

∑n
j=1 Gj

≈ E[F]
E[G] (C.6)

and to control the size of the fluctuation as a function of n and h by the Bernstein type inequality. Note
that we have

1

n

n∑
j=1

Fj = n − 1

n

[
1

n − 1

n∑
j=1,j �=i

Fj

]
(C.7)

since Kh(xi, xj)(f (xj)− f (xi)) = 0 when xj = xi. Also, since n−1
n → 1 as n → ∞, we can simply focus

on analyzing 1
n−1

∑n
j=1,j �=i Fj. A similar argument holds for 1

n

∑n
j=1 Gj—clearly, Kh(xi, xi) = K(0) > 0,

so this term will contribute to the error term of order 1
n . Thus, we have

1
n

∑n
j=1 Fj

1
n

∑n
j=1 Gj

=
1

n−1

∑n
j=1,j �=i Fj

1
n−1

∑n
j=1,j �=i Gj

+ O

(
1

n

)
. (C.8)

As we will see shortly, the O(1/n) term will be dominated, and can thus be ignored.
First of all, we consider xi /∈ Mhγ , By Theorem 5.2, we have

E[F] =
∫

M
h−d/2Kh(xi, y)(f (y)− f (xi))p(y) dV(y) = h

μ
(0)
1,2

2
Δ((f (y)− f (xi))p(y))|y=xi + O

(
h2
)

E[G] =
∫

M
h−d/2Kh(xi − y)p(y) dV(y) = p(xi)+ O(h) (C.9)

and

E[F2] =
∫

M
h−dK2

h (xi − y)(f (xi)− f (y))2p(y) dV(y)

= 1

hd/2−1

μ
(0)
2,2

2
Δ((f (xi)− f (y))2p(y))|y=xi + O

(
1

hd/2−2

)
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E[G2] =
∫

M
h−dK2

h (xi − y)p(y) dV(y) = 1

hd/2
μ
(0)
2,0p(xi)+ O

(
1

hd/2−1

)
(C.10)

Thus, we conclude that7

Var(F) = 1

hd/2−1

μ
(0)
2,2
2 Δ((f (y)− f (xi))

2p(y))|y=xi + O

(
1

hd/2−2

)
Var(G) = 1

hd/2
μ
(0)
2,0p(xi)+ O

(
1,

1

hd/2−1

)
.

(C.11)

With the above bounds, we could apply the large deviation theory. First, note that the random variable
F is uniformly bounded by

c = 2‖f ‖L∞‖K‖L∞h−d/2 (C.12)

and its variance, denoted as σ 2, is shown in (C.11). Here, to simplify the discussion, we assume that
μ
(0)
2,2
2 Δ((f (y) − f (xi))

2p(y))|y=xi �= 0 so that σ 2 = O(h−d/2+1) when h is small enough. In the case that
μ
(0)
2,2
2 Δ((f (y) − f (xi))

2p(y))|y=xi = 0, the variance is of higher order h−d/2+2, and the proof is the same.
We see that

σ 2/c → 0 as h → 0, (C.13)

so Bernstein’s inequality could in principle provide a tighter large deviation bound than that provided
by Hoeffding’s inequality. Recall Bernstein’s inequality

Pr

{
1

n − 1

n∑
j=1,j �=i

(Fj − E[F]) > β
}

≤ e
− nα2

2σ2+ 2
3 cα , (C.14)

where β > 0. Since our goal is to estimate a quantity of order h (the prefactor of the Laplacian), we
need to take β = β(h) much smaller than h in the sense that β/h → 0 as h → 0. In this case, cβ is
much smaller than 2‖f ‖L∞‖K‖L∞h−d/2+1, where the right-hand side is of the same order of σ 2. Hence,

7 Note that since

E[FG] =
∫

M
K2

h (xi − y)(f (xi)− f (y))p(y) dV(y) = 1

hd/2−1

μ
(0)
2,2

2
Δ((f (xi)− f (y))p(y))|y=xi + O

(
1

hd/2−2

)

Cov(F, G) =E[FG] − E[F]E[G] = 1

hd/2−1

μ
(0)
2,2

2
Δ((f (y)− f (xi))p(y))|y=xi + O

(
h,

1

hd/2−2

)
,

the correlation between F and G is

ρ(F, G) = Cov(F, G)√
Var(F)

√
Var(G)

= O

(√
hd/2+d/2−1

hd/2−1

)
= O(

√
h).
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2σ 2 + 2
3 cβ ≤ 3σ 2 when h is smaller enough. Thus, the exponent in Bernstein’s inequality is bounded

from below by

nβ2

2σ 2 + 2
3 cβ

≥ nβ2

3σ 2
≥ nβ2hd/2−1

3μ(0)2,2Δ((f (y)− f (xi))2p(y))|y=xi

. (C.15)

Suppose n is chosen large enough so that

nβ2hd/2−1

3μ(0)2,2Δ((f (y)− f (xi))2p(y))|y=xi

= 3 log(n); (C.16)

that is, the deviation from the mean is set to

β =
3
√

log(n)
√
μ
(0)
2,2Δ((f (y)− f (xi))2p(y))|y=xi

n1/2hd/4−1/2
= O

( √
log(n)

n1/2hd/4−1/2

)
, (C.17)

where the implied constant in O
( √

log(n)

n1/2hd/4−1/2

)
is 3

√
μ
(0)
2,2‖Δ((f (y)− f (x))2p(y))|y=x‖L∞ , where Δ acts

on y and ‖ · ‖L∞ acts on x. Note that by the assumption that h = h(n) so that
√

log(n)

n1/2hd/4+1/2 → 0 as h → 0,

we know that β/h =
√

log(n)

n1/2hd/4+1/2 → 0. It implies that the deviation happens with probability less than
1/n3.

To get the result for the numerator, note that when
μ
(0)
2,2
2 Δ((f (y)− f (xi))

2p(y))|y=xi = 0, the variance

is smaller than the case when
μ
(0)
2,2
2 Δ((f (y) − f (xi))

2p(y))|y=xi �= 0, and hence the deviation is smaller.
Thus, by a simple union bound, we have

Pr

{
1

n − 1

n∑
j=1,j �=i

(Fj − E[F]) > β; i = 1, . . . , n

}
≤ ne

− nα2

2σ2+ 2
3 cα , (C.18)

which implies that for all i = 1, . . . , n, the deviation happens with probability less than 1/n2.
To control the denominator, note that the variance of G, shown in (C.11), is of the same order as the

bound of G. Thus, by the same large deviation argument with the simple bound by Hoeffding’s inequality,
we have the deviation bound for the denominator; that is, with probability higher than 1 − 1/n2, for all
i = 1, . . . , n, we have ∣∣∣∣∣ 1

n − 1

n∑
j=1,j �=i

(Gj − E[G])
∣∣∣∣∣ = O

(√
log(n)

n1/2hd/4

)
, (C.19)

where we note that
√

log(n)

n1/2hd/4 /h
1/2 → 0 as h → 0 under the assumption of the relationship between n

and h. Note that the same argument holds for (A); that is, the assumption that
√

log(n)

n1/2hd/4+s → 0 leads to
β/hs = β(h)/hs → 0 as h → 0 for all i = 1, . . . , n, with probability higher than 1 − 1/n2.
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To finish proof of the first part of (B), note that by the assumption that p is uniformly bounded
from below, when h is small enough, E[G] is bounded from below by minx∈M p(x)/2. Altogether, with
probability higher than 1 − 1/n2, for all i = 1, . . . , n, we have

1
n−1

∑n
j=1,j �=i Fj

1
n−1

∑n
j=1,j �=i Gj

=
E[F] + O

( √
log(n)

n1/2hd/4−1/2

)
E[G] + O

(√
log(n)

n1/2hd/4

) = h

⎡⎢⎢⎣h−1
E[F] + O

( √
log(n)

n1/2hd/4+1/2

)
E[G] + O

(√
log(n)

n1/2hd/4

)
⎤⎥⎥⎦

= E[F]
E[G] + O

( √
log(n)

n1/2hd/4−1/2

)
, (C.20)

where the last equality holds since E[G] ≥ minx∈M p(x)/2. Therefore, since
√

log(n)

n1/2hd/4−1/2 dominates 1
n

when h = h(n) and n is large enough, we obtain the conclusion for all xi /∈ Mhγ .
For xi ∈ Mhγ , a similar argument holds and we provide key steps in the proof for the completion.

Again, the random variable F is uniformly bounded by

c = 2‖f ‖L∞‖K‖L∞h−d/2 (C.21)

and by (5.3), its variance is

σ 2 = h−d/2+1/2 m′
h,1

m′
h,0

∇∂d f (x0)+ O(h−d/2+2γ ), (C.22)

where x0 = argminy∈∂Md(xi, y), ∂d is the outer normal direction to the boundary at x0, and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m′

h,0 :=
∫

S̃η

∫ hγ

−hγ
h−d/2K2

(√‖u‖2 + η2

√
h

)
dη dx

m′
h,1 :=

∫
S̃η

∫ hγ

−hγ
h−d/2−1/2K2

(√‖u‖2 + η2

√
h

)
η dη dx.

(C.23)

Note that the first order term cannot be canceled when xi is near the boundary, so the variance is of
order h−(d/2−1/2) instead of order h−(d/2−1). Thus, under the assumption that β/h1/2 → 0 as h → ∞,
the Berstein’s inequality leads to the large deviation bound of the numerator, and similarly for the
denominator. As a result, with probability higher than 1 − 1/n2, for all i = 1, . . . , n, we obtain

1
n−1

∑n
j=1,j �=i Fj

1
n−1

∑n
j=1,j �=i Gj

=
E[F] + O

( √
log(n)

n1/2hd/4−1/4

)
E[G] + O

(√
log(n)

n1/2hd/4

) = h1/2

⎡⎢⎢⎣h−1/2
E[F] + O

( √
log(n)

n1/2hd/4+1/4

)
E[G] + O

(√
log(n)

n1/2hd/4

)
⎤⎥⎥⎦

= E[F]
E[G] + O

( √
log(n)

n1/2hd/4−1/4

)
, (C.24)

where the last term holds since E[G] ≥ minx∈M p(x)/2. �
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Proof of Theorem 5.3. The proof is essentially the same as that of Lemma (C1), so we will just show
the key steps without showing all details. Fix i and 0 < α ≤ 1. By definition we have

(D−1
h,α,nSh,α,nX− X)[i] =

1
n

∑n
j=1

Kh(xi ,xj)

p̂αh,n(xj)
(gijX[j] − X[i])

1
n

∑n
l=1

Kh(xi ,xl)

p̂αh,n(xl)

=
1
n

∑n
j=1

Kh(xi ,xj)

pαh (xj)
(gijX[j] − X[i])

1
n

∑n
l=1

Kh(xi ,xl)

pαh (xl)

(C.25)

+
1
n

∑n
j=1

(
1

p̂αh,n(xj)
− 1

pαh (xj)

)
Kh(xi, xj)(gijX[j] − X[i])

1
n

∑n
l=1

Kh(xi ,xl)

pαh (xl)

(C.26)

+ 1

n

n∑
j=1

Kh(xi, xj)

p̂αh,n(xj)
(gijX[j] − X[i])

⎛⎝ 1
1
n

∑n
l=1

Kh(xi ,xl)

p̂αh,n(xl)

− 1
1
n

∑n
l=1

Kh(xi ,xl)

pαh (xl)

⎞⎠. (C.27)

We will thus control the deviation by analyzing three terms, (C.25), (C.26) and (C.27).
Note that when j = i,

Kh(xi ,xj)

pαh (xj)
(gijX[j] − X[i]) = 0, thus we have the following re-formulation

1

n

n∑
j=1

Kh(xi, xj)

pαh (xj)
(gijX[j] − X[i]) = n − 1

n

(
1

n − 1

n∑
j=1,j �=i

Kh(xi, xj)

pαh (xj)
(gijX[j] − X[i])

)
. (C.28)

Note that n−1
n will converge to 1. Thus, we can focus on analyzing the stochastic fluctuation of

1
n−1

∑n
j=1,j �=i

Kh(xi ,xj)

pαh (xj)
(gijX[j] − X[i]). The same comment applies to the other terms. Clearly, Fj :=

Kh(xi ,xj)

pαh (xj)
(gijX[j] − X[i]), j �= i, are i.i.d. sampled from a q-dimension/dimensional random vector F,

and Gj := Kh(xi ,xj)

pαh (xj)
are i.i.d. sampled from a random variable G. Thus, the analysis of the random

vector
1

n−1
∑n

j=1,j �=i Fj
1

n−1
∑n

j=1,j �=i Gj
can be viewed as an analysis of q random variables. To apply Lemma C1, we

have to clarify the regularity issue of gijX[j] − X[i]. Note that by definition, gijX[j] := u−1
i //

i
jX(xj),

thus we can view gijX[j] as the value of the vector-valued function u−1
i //

xi
y X(y) at y = xj. Clearly,

u−1
i //

xi· X(·) ∈ C4(M\Cxi) ∩ L∞(M). Thus, the same argument as that in Lemma C1 (B) can be directly

applied. Indeed, we view
gijX[j]−X[i]

pαh (xj)

(
respectively 1

pαh (xj)

)
in the numerator (respectively denominator) as

a discretization of the function
u−1

i //
xi
y X(y)−X(xi)

pαh (y)

(
respectively 1

pαh (y)

)
. As a result, for all xi /∈ Mhγ , with

probability higher than 1 − 1/2n2

1
n−1

∑n
j=1,j �=i

Kh(xi ,xj)

pαh (xj)
(gijX[j] − X[i])

1
n−1

∑n
l=1,l �=i

Kh(xi ,xl)

pαh (xl)

= u−1
i

(
Th,αX − X

)
(xi)+ O

( √
log(n)

n1/2hd/4−1/2

)
. (C.29)

Denote Ω1 to be the event space that (C.29) holds.
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Similarly, by Lemma C1, with probability higher than 1 − 1/2n2,

∣∣̂ph,n(xj)− ph(xj)
∣∣ = O

(√
log(n)

n1/2hd/4

)
(C.30)

for all j = 1, ..., n. Thus, by Assumption 4.3, when h is small enough, we have for all xi ∈ X

pm/2 ≤ |ph(xi)| ≤ pM , pm/4 ≤ |̂ph,n(xi)| ≤ 2pM . (C.31)

Denote Ω2 to be the event space that (C.30) (and hence (C.31)) holds. Thus, when conditional on Ω2,
by Taylor’s expansion and (C.31) we have

|̂p−α
h,n (xi)− ph(xi)

−α| ≤ α

(pm/4)1+α |̂ph,n(xi)− ph(xi)| = O

(√
log(n)

n1/2hd/4

)
. (C.32)

With these bounds, when conditional on Ω2, (C.26) becomes O

(√
log(n)

n1/2hd/4

)
, where the implied constant

depends on ‖X‖L∞ . Similarly, when conditional onΩ2, we have the following bound for the difference
term in (C.27):∣∣∣∣∣∣ 1

1
n

∑n
l=1

Kh(xi ,xl)

p̂αh,n(xl)

− 1
1
n

∑n
l=1

Kh(xi ,xl)

pαh (xl)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1
n

∑n
l=1 Kh(xi, xl)

(
1

pαh (xl)
− 1

p̂αh,n(xl)

)
1
n

∑n
l=1

Kh(xi ,xl)

p̂αh,n(xl)
1
n

∑n
l=1

Kh(xi ,xl)

pαh (xl)

∣∣∣∣∣∣∣ = O

(√
log(n)

n1/2hd/4

)
.

Hence, (C.27) becomes O

(√
log(n)

n1/2hd/4

)
, where the implied constant depends on ‖X‖L∞ .

Putting the above together, when conditional on Ω1 ∩Ω2, we have

(D−1
h,α,nSh,α,nX− X)[i] = u−1

i (Th,αX − X)(xi)+ O

(√
log(n)

n1/2hd/4

)
, (C.33)

for all i = 1, . . . , n. Note that the measure of Ω1 ∩Ω2 is greater than 1 − 1/n2, so we finish the proof
when 0 < α ≤ 1.

When α = 0, clearly (C.26) and (C.27) disappear, and we only have (C.25). Since the convergence
behavior of (C.25) has been shown in (C.29), we thus finish the proof when α = 0. A similar argument
holds for xi ∈ Mhγ , and we skip the details. �

Appendix D. Symmetric isometric embedding

Suppose we have a closed, connected and smooth d-dimension/dimensional Riemannian manifold (M, g)
with free isometric Z2 := {1, z} action on it. Note that M can be viewed as a principal bundle P(M/Z2, Z2)

with the group Z2 as the fiber. Without loss of generality, we assume the diameter of M is less than 1.
The eigenfunctions {φj}j≥0 of the Laplace–Beltrami operator ΔM are known to form an orthonormal
basis of L2(M), where ΔMφj = −λjφj with λj ≥ 0. Denote Eλ the eigenspace of ΔM with eigenvalue
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λ. Since Z2 commutes with ΔM, Eλ is a representation of Z2, where the action of z on φj is defined by
z ◦ φj(x) := φj(z ◦ x).

We claim that all the eigenfunctions of ΔM are either even or odd. Indeed, since Z2 is an abelian
group and all the irreducible representations of Z2 are real, we know z ◦ φi = ±φi for all i ≥ 0. We can
thus distinguish two different types of eigenfunctions:

φe
i (z ◦ x) = φe

i (x) and φo
i (z ◦ x) = −φo

i (x), (D.1)

where the superscript e (resp. o) means even (resp. odd) eigenfunctions.
It is well known that the heat kernel k(x, y, t) of ΔM is a smooth function over x and y and analytic

over t > 0, and can be written as

k(x, y, t) =
∑

i

e−λi tφi(x)φi(y). (D.2)

We also know that for all t > 0 and x ∈ M,
∑

j e−λj tφj(x)φj(x) < ∞. Thus we can define a family of
maps by exceptionally taking odd eigenfunctions into consideration:

Ψ o
t : M → �2 for t > 0,

x 
→ {e−λj t/2φo
j (x)}j≥1

(D.3)

Lemma D1 For t > 0, the map Ψ o
t is an embedding of M into �2.

Proof. If xn → x, we have by definition

‖Ψ o
t (xn)− Ψ o

t (x)‖2
�2

=
∑

j

∣∣e−λj t/2φo
j (xn)− e−λj t/2φo

j (x)
∣∣2

≤
∑

j

∣∣e−λj t/2φo
j (xn)− e−λj t/2φo

j (x)
∣∣2 +

∑
j

∣∣e−λj t/2φe
j (xn)− e−λj t/2φe

j (x)
∣∣2

= k(xn, xn, t)+ k(x, x, t)− 2k(xn, x, t), (D.4)

which goes to 0 as n → ∞ due to the smoothness of the heat kernel. Thus Ψ o
t is continuous.

Since the eigenfunctions {φj}j≥0 of the Laplace–Beltrami operator form an orthonormal basis of
L2(M), it follows that they separate points. We now show that odd eigenfunctions are enough to separate
points. Given x �= y two distinct points on M, we can find a small enough neighborhood Nx of x that
separates it from y. Take a characteristic odd function f such that f (x) = 1 on Nx, f (z ◦ x) = −1 on
z ◦ Nx and 0 otherwise. Clearly we know f (x) �= f (y). Since f is odd, it can be expanded by the odd
eigenfunctions:

f =
∑

j

ajφ
o
j . (D.5)

Hence f (x) �= f (y) implies that there exists α such that φo
α(x) �= φo

α(y).
Suppose we have Ψ o

t (x) = Ψ o
t (y), then φo

i (x) = φo
i (y) for all i. By the above argument, we conclude

that x = y, that is, Ψ o
t is an 1–1 map. To show that Ψ o

t is an immersion, consider a neighborhood Nx
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so that Nx ∩ z ◦ Nx = ∅. Suppose there exists x ∈ M so that dΨ o
t (X) = 0 for X ∈ TxM, which implies

dφo
i (X) = 0 for all i. Thus by the same argument as above, we know df (X) = 0 for all f ∈ C∞

c (Nx),
which implies X = 0. In conclusion, Ψ o

t is continuous and 1–1 immersion from M, which is compact,
onto Ψ o

t (M), so it is an embedding. �

Note that Ψ o
t (M) is symmetric with respect to 0, that is, Ψ o

t (z ◦ x) = −Ψ o
t (x). However, it is not an

isometric embedding and the embedded space is of infinite dimension. Now we construct an isometric
symmetric embedding of M to a finite dimensional space by extending the Nash embedding theorem
[26,27]. We start from considering an open covering of M in the following way. Since Ψ o

t , t > 0 is an
embedding of M into �2, for each given p ∈ M, there exists d odd eigenfunctions {φo

i
p
j
}d

j=1 so that

vp : x ∈ M 
→ (φo
i
p
1
(x), ...,φo

i
p
d
(x)) ∈ R

d

vz◦p : z ◦ x ∈ M 
→ −(φo
i
p
1
(x), ...,φo

i
p
d
(x)) ∈ R

d
(D.6)

are of full rank at p and z ◦ p. We choose a small enough neighborhood Np of p so that Np ∩ z ◦ Np = ∅
and vp and vz◦p are embedding of Np and z ◦ Np. It is clear that {Np, z ◦ Np}p∈M is an open covering of M.

With the open covering {Np, z ◦ Np}p∈M, it is a well-known fact [35] that there exists an atlas of M

A = {(Vj, hj), (z ◦ Vj, hz
j )}L

j=1, (D.7)

where Vj ⊂ M, z ◦ Vj ⊂ M, hj : M → R
d , hz

j : M → R
d , so that the following holds and the symmetry

is taken into account:

(a) A is a locally finite refinement of {Np, z ◦ Np}p∈M, that is, for every Vi (resp. z ◦ Vi), there exists a
pi ∈ M (resp. z ◦ pi ∈ M) so that Vi ⊂ Npi (resp. z ◦ Vi ⊂ z ◦ Npi ),

(b) hj(Vj) = B2, hz
j (z ◦ Vj) = B2, and hj(x) = hz

j (z ◦ x) for all x ∈ Vj,

(c) for the pi chosen in (a), there exists φo
ipi

so that φo
ipi
(x) �= φo

ipi
(z ◦ x) for all x ∈ Vi,

(d) M = ∪j

(
h−1

j (B1) ∪ (hz
j )

−1(B1)
)
. Denote Oj = h−1

j (B1),

where Br = {x ∈ R
d : ‖x‖ < 1}. We fix the point pi ∈ M when we determine A , that is, if Vi ∈ A , we

have a unique pi ∈ M so that Vi ⊂ Npi . Note that (c) holds since Ψ o
t , t > 0 is an embedding of M into �2

and the eigenfunctions ofΔM are smooth. We will fix a partition of unity {ηi ∈ C∞
c (Vi), η

z
i ∈ C∞

c (z◦Vi)}
subordinate to {Vj, z◦Vj}L

j=1. Due to symmetry, we have ηi(x) = ηz
i (z◦x) for all x ∈ Vi. To ease notation,

we define

ψi(x) =
{
ηi(x) when x ∈ Vi

ηz
i (x) when x ∈ z ◦ Vi

(D.8)

so that {ψi}L
i=1 is a partition of unit subordinate to {Vi ∪ z ◦ Vi}L

i=1.

Lemma D2 There exists a symmetric embedding ũ : Md ↪→ R
N for some N ∈ N.
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Proof. Fix Vi and hence pi ∈ M. Define

ui : x ∈ M 
→ (φo
ipi
(x), vpi(x)) ∈ R

d+1, (D.9)

where vpi is defined in (D.6). Note that ui is of full rank at pi. Due to symmetry, the assumption (c) and
the fact that Vi ∩ z ◦ Vi = ∅, we can find a rotation Ri ∈ SO(d + 1) and modify the definition of ui:

ui : x 
→ Ri(φ
o
ipi
(x), vpi(x)), (D.10)

which is an embedding of Vi ∪ z ◦ Vi onto R
d+1 so that ui(Vi ∪ z ◦ Vi) does not meet all the axes of R

d+1.
Note that since vz◦p(z ◦ x) = −vp(x) and φo

ipi
(z ◦ x) = −φo

ipi
(x), we have ui(z ◦ x) = −ui(x). Define

ū : x 
→ (u1(x), ..., uL(x)). (D.11)

Since locally dū is of full rank and

ū(z ◦ x) = (u1(z ◦ x), ..., uL(z ◦ x)) = −(u1(x), ..., uL(x)) = −ū(x), (D.12)

ū is clearly a symmetric immersion from M to R
L(d+1). Denote

ε = min
i=1,...,L

min
x∈Vi∪z◦Vi

min
k=1,...,d+1

〈ui(x), ek〉, (D.13)

where {ek}k=1,...,d+1 is the canonical basis of R
d+1. By the construction of ui, ε > 0.

By the construction of the covering {Oi ∪ g ◦ Oi}L
i=1, we know L ≥ 2. We claim that by properly

perturbing ū, we can generate a symmetric 1–1 immersion from M to R
L(d+1).

Suppose ū is 1–1 in W ⊂ M, which is invariant under Z2 action by the construction of ū. Consider a
symmetric closed subset K ⊂ W . Let O1

i = W ∩ (Oi ∪ g ◦ Oi) and O2
i = (M\K)∩ (Oi ∪ g ◦ Oi). Clearly

{O1
i , O2

i }L
i=1 is a covering of M. Consider a partition of unity P = {θα} subordinate to this covering so

that θα(z ◦ x) = θα(x) for all α. Index P by integer numbers so that for all i > 0, we have suppθi ⊂ O2
i .

We will inductively define a sequence ũk of immersions by properly choosing constants bi ∈ R
L(d+1):

ũk = ū +
k∑

i=1

bisiθi, (D.14)

where si ∈ C∞
c (M) so that supp(si) ⊂ Ni ∪ z ◦ Ni and

si(x) =
{

1 when x ∈ Vi

−1 when x ∈ z ◦ Vi
. (D.15)

Note that uk by definition will be symmetric. Suppose uk is properly defined to become an immersion
and ‖ũj − ũj−1‖C∞ < 2−j−2ε for all j ≤ k.

Denote

Dk+1 = {(x, y) ∈ M × M : sk+1(x)θk+1(x) �= sk+1(y)θk+1(y)}, (D.16)
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which is of dimension 2d. Define Gk+1 : Dk+1 → R
L(d+1) as

Gk+1(x, y) = ũk(x)− ũk(y)

sk+1(x)θk+1(x)− sk+1(y)θk+1(y)
. (D.17)

Since Gk+1 is differentiable and L ≥ 2, by Sard’s Theorem Gk+1(Dk+1) is of measure zero. By choosing
bk+1 /∈ Gk+1(Dk+1) small enough, ũk+1 can be made an immersion and ‖ũk+1 − ũk‖ < 2−k−3ε. In this
case ũk+1(y1) = ũk+1(y2) implies

bk+1(sk+1(x)θk+1(x)− sk+1(y)θk+1(y)) = ũk(x)− ũk(y). (D.18)

Since bk+1 /∈ Gk+1(Dk+1), this can happen only if sk+1(x)θk+1(x) = sk+1θk+1(y) and ũk(x) = ũk(y).
Define

ũ = ũL. (D.19)

By definition ũ is a symmetric immersion and differs from ū by ε/2 in C∞.
Now we claim that ũ is 1–1. Suppose ũ(x) = ũ(y). Note that by the construction of bj this implies

sL(x)θL(x) = sL(y)θL(y) and uL−1(x) = uL−1(y). Inductively we have ū(x) = ū(y) and sj(x)θj(x) =
sj(y)θj(y) for all j > 0. Suppose x ∈ W but y /∈ W , then sj(y)θj(y) = sj(x)θj(x) = 0 for all j > 0, which
is impossible. Suppose both x and y are outside W , then there are two cases to discuss. First, if x and
y are both inside Vi for some i, then sj(x)θj(x) = sj(y)θj(y) for all j > 0 and ū(x) = ū(y) imply x = y
since ū embeds Vi. Secondly, if x ∈ Vi\Vj and y ∈ Vj\Vi where i �= j, then sj(x)θj(x) = sj(y)θj(y) for all
j > 0 is impossible. In conclusion, ũ is 1–1.

Since M is compact and ũ is continuous, we conclude that ũ is a symmetric embedding of M into
R

L(d+1). �

The above Lemma shows that we can always find a symmetric embedding of M into R
L(d+1) for

some L > 0. The next Lemma helps us to show that we can further find a symmetric embedding of M
into R

p for some p > 0, which is isometric. We define sp := p(p+1)
2 in the following discussion.

Lemma D3 There exists a symmetric smooth map Φ from R
p to R

sp+p so that ∂iΦ(x) and ∂ijΦ(x),
i, j = 1, ... p, are linearly independent as vectors in R

sp+p for all x �= 0.

Proof. Denote x = (x1, ... xp) ∈ R
p. We define the map Φ from R

p to R
sp+p by

Φ : x 
→
(

x1 , ..., xp , x1
ex1 + e−x1

2
, x1

ex2 + e−x2

2
, ... , xp

exp + e−xp

2

)
, (D.20)

where i, j = 1, ..., p and i �= j. It is clear that Φ is a symmetric smooth map, that is, Φ(−x) = −Φ(x).
Note that

∂ij

(
xk

ex� + e−x�

2

)
= δjk

exi − e−xi

2
+ δik

exj − e−xj

2
+ xkδj�

exi + e−xi

2
. (D.21)

Thus when x �= 0, for all i = 1, ..., p, ∂iΦ(x) and ∂ijΦ(x), i, j = 1, ... p, are linearly independent as
vectors in R

sp+p. �
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Combining Lemmas D2 and D3, we know there exists a symmetric embedding u : Md ↪→
R

sL(d+1)+L(d+1) so that ∂iu(x) and ∂iju(x), i, j = 1, ..., d, are linearly independent as vectors in R
sL(d+1)+L(d+1)

for all x ∈ M. Indeed, we define

u = Φ ◦ ũ. (D.22)

Clearly u is a symmetric embedding of M into R
sL(d+1)+L(d+1). Note that ũ(x) �= 0, otherwise ũ is not an

embedding. Moreover, by the construction of ũ, we know ui(Vi ∪ z ◦Vi) is away from the axes of R
L(d+1)

by ε/2, so the result.
Next we control the metric on u(M) induced by the embedding. By properly scaling u, we have

g − du2 > 0. We will assume properly scaled u in the following.

Lemma D4 Given the atlas A defined in (D.7), there exists ξi ∈ C∞(Vi, R
sd+d) and ξ z

i ∈ C∞(z ◦
Vi, R

sd+d) so that ξ z
i − ξi > cIsd+d for some c > 0 and

g − du2 =
m∑

j=1

η2
j dξ 2

j +
m∑

j=1

(ηz
j )

2( dξ z
j )

2. (D.23)

Proof. Fix Vi. By applying the local isometric embedding theorem [35], we have smooth maps
xi : hi(Vi) ↪→ R

sd+d and xz
i : hz

i (z ◦ Vi) ↪→ R
sd+d so that

(h−1
i )

∗g = dx2
i and ((hz

i )
−1)∗g = ( dxz

i )
2, (D.24)

where dx2
i (resp. ( dxz

i )
2) means the induced metric on hi(Vi) (resp. hz

i (z ◦ Vi)) from R
sd+d . Note that the

above relationship is invariant under affine transformation of xi and xz
i . By assumption (b) of A we have

hi(x) = hz
i (z ◦ x) for all x ∈ Vi, so we modify xi and xz

i , so that

xz
i = xi + ciIsd+d , (D.25)

where ci > 0, Isd+d = (1, ..., 1)T ∈ R
sd+d and xi(B1) ∩ xz

i (B1) = ∅. Denote c = maxL
i=1{ci} and further

set

xz
i = xi + cIsd+d (D.26)

for all i. By choosing xi and xz
i in this way, we have embedded Vi and z ◦Vi simultaneously into the same

Euclidean space. Note that

g = h∗
i (h

−1
i )

∗g = d(xi ◦ hi)
2 (D.27)

on Vi and

g = (hz
i )

∗((hz
i )

−1)∗g = d(xz
i ◦ hz

i )
2 (D.28)

on z ◦ Vi. Thus, by defining ξi = xi ◦ hi and ξ z
i = xz

i ◦ hz
i , and applying the partition of unity with (D.8),

we have the results. �



SPECTRAL CONVERGENCE OF THE CONNECTION LAPLACIAN 119

Theorem D1 Any smooth, closed manifold (M, g) with free isometric Z2 action admits a smooth
symmetric, isometric embedding in R

p for some p ∈ N.

Proof. By the remark following Lemma D2 and D3, we have a smooth embedding u : M ↪→ R
N so that

g − du2 > 0, where N = sL(d+1) + L(d + 1). By Lemma D4, with atlas A fixed, we have

g − du2 =
∑

j

η2
j dξ 2

j +
∑

j

(ηz
j )

2( dξ z
j )

2, (D.29)

where ξ z
i − ξi = cIsd+d . Denote c = (2�+1)π

λ
, where λ and � will be determined later. To ease the notion,

we define

γi(x) =
{
ξi(x) when x ∈ Ni

ξ z
i (x) when x ∈ g ◦ Ni

. (D.30)

Then by the definition (D.8), we have

g − du2 =
L∑

j=1

ψ2
j dγ 2

j . (D.31)

Given λ > 0, we can define the following map uλ : M → R
2L:

uλ =
(

1

λ
ψi cos (λγi) ,

1

λ
ψi sin (λγi)

)L

i=1

, (D.32)

where cos (λγi)means taking cosine on each entry of λγi. Set � so that (2�+1)π
λ

> 1 and we claim that uλ
is a symmetric map. Indeed,

ψi(z ◦ x) cos (λγi(z ◦ x)) = ψi(x) cos

(
λ

(
γi(x)+ (2�+ 1)π

λ

))
= −ψi(x) cos (λγi(x)) (D.33)

and

ψi(z ◦ x) sin (λγi(z ◦ x)) = ψi(x) sin

(
λ

(
γi(x)+ (2�+ 1)π

λ

))
= −ψi(x) sin (λγi(x)). (D.34)

Direct calculation gives us

g − du2 = du2
λ − 1

λ2

L∑
j=1

dψ2
j . (D.35)

We show that when λ is big enough, there exists a smooth symmetric embedding w so that

dw2 = du2 − 1

λ2

L∑
i

dψ2
i . (D.36)



120 A. SINGER AND H.-T. WU

Since for all λ > 0 we can find an � so that uλ is a symmetric map without touching ψi, we can thus
choosing λ as large as possible so that (D.36) is solvable. The solution w provides us with a symmetric
isometric embedding (w, uλ) : M ↪→ R

N+2L so that we have

g = du2
λ + dw2. (D.37)

Now we solve (D.36). Fix Vi and its relative p ∈ Vi. Suppose w = u + a2v is the solution where
a ∈ C∞

c (Vi) with a = 1 on suppη. We claim if ε := λ−1 is small enough, we can find a smooth map
v : Ni → R

N so that Equation D.36 is solved on Vi.
Equation D.36 can be written as

d(u + a2v)2 = du2 − 1

λ2

L∑
i

dψ2
i , (D.38)

which after expansion is

∂j(a
2∂iu · v)+ ∂i(a

2∂ju · v)− 2a2∂iju · v + a4∂iv · ∂jv + ∂i(a
3∂ja|v|2)+ ∂j(a

3∂ia|v|2)

= − 1

λ2
dψ2

i + 2a2(∂ia∂ja + a∂ija)|v|2.
(D.39)

To simplify this equation we will solve the following Dirichlet problem:{
Δ(a∂iv · ∂jv) = ∂i(aΔv · ∂jv)+ ∂j(aΔv · ∂iv)+ rij(v, a)
a∂iv · ∂jv|∂Vi = 0,

(D.40)

where

rij = Δa∂iv · ∂jv − ∂jaΔv · ∂jv − ∂ja∂ivΔv + 2∂�a∂�(∂iv · ∂jv)+ 2a(∂i�v · ∂j�v −Δv · ∂ijv). (D.41)

By solving this equation and multiplying it by a3, we have

a4∂iv · ∂jv = ∂i(a3Δ−1(aΔv · ∂jv))+ ∂j(a3Δ−1(aΔv · ∂iv))− 3a2∂iaΔ−1(aΔv · ∂jv)

−3a2∂jaΔ−1(aΔv · ∂iv)+ a3Δ−1rij(v, a).
(D.42)

Plug Equation (D.42) into Equation (D.39), we have

∂j(a
2∂iu · v − a2Ni(v, a))+ ∂i(a

2∂ju · v − a2Nj(v, a))− 2a2∂iju · v = − 1

λ2
dψ2

i − 2a2Mij(v, a),

(D.43)

where for i, j = 1, ... d{
Ni(v, a) = −aΔ−1(aΔv · ∂iv)− a∂ia|v|2
Mij(v, a) = 1

2 aΔ−1rij(v, a)− (a∂ija + ∂ia∂ja)|v|2 − 3
2 (∂iaΔ−1(aΔv · ∂jv))+ ∂jaΔ−1(aΔv · ∂iv).

(D.44)
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Note that by definition and the regularity theory of elliptic operator, we know both Ni(·, a) and Mij(·, a)
are maps in C∞(Vi). We will solve Equation (D.43) through solving the following differential system:

{
∂iu · v = Ni(v, a)
∂iju · v = − 1

λ2 dψ2
i − Mij(v, a).

(D.45)

Since by construction we know u has linearly independent ∂iu and ∂iju, i, j = 1, ..., d, we can solve the
under-determined linear system (D.45) by

v = E(u)F(v, h), (D.46)

where

E(u) =
[(

∂iu
∂iju

)T (
∂iu
∂iju

)]−1 (
∂iu
∂iju

)T

(D.47)

and

F(v, ε) =
(

Ni(v, a), − 1

λ2
dψ2

i − Mij(v, a)

)T

= (
Ni(v, a), −ε2 dψ2

i − Mij(v, a)
)T

. (D.48)

Next we will apply contraction principle to show the existence of the solution v. Substitute v = μv′ for
some μ ∈ R to be determined later. By the fact that Ni(0, a) = 0 and Mij(0, a) = 0, we can rewrite
Equation (D.46) as

w = μE(u)F(v′, 0)+ 1

μ
E(u)F(0, ε). (D.49)

Set

Σ = {
w ∈ C2,α(Vi, R

N); ‖w‖2,α ≤ 1
}

(D.50)

and

Tw = μE(u)F(v′, 0)+ 1

μ
E(u)F(0, ε). (D.51)

By taking

μ =
(‖E(u)F(0, ε)‖2,α

‖E(u)‖2,α

)1/2

, (D.52)
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we have

‖Tw‖2,α ≤ μ‖E(u)‖2,α‖F(v′, 0)‖2,α+ 1

μ
‖E(u)F(0, ε)‖2,α = C1(‖E(u)‖2,α‖E(u)F(0, ε)‖2,α)

1/2, (D.53)

where C1 depends only on ‖a‖4,α . Thus T maps Σ into Σ if ‖E(u)‖2,α‖E(u)F(0, ε)‖2,α ≤ 1/C2
1 . This

can be achieved by taking ε small enough, that is, by taking λ big enough.
Similarly we have

‖Tw1 − Tw2‖2,α ≤μ‖E(u)‖2,α‖F(w1, 0)− F(w2, 0)‖2,α (D.54)

≤ C2‖w1 − w2‖2,α(‖E(u)‖2,α‖E(u)F(0, ε)‖2,α)
1/2.

Then if ‖E(u)‖2,α‖E(u)F(0, ε)‖2,α ≤ 1
C2

1+C2
2

we show that T is a contraction map. By the contraction

mapping principle, we have a solution v ∈ Σ .
Further, since we have

v = μ2E(u)F(w, 0)+ E(u)F(0, ε), (D.55)

by definition of μ, we have

‖v‖2,α ≤ C‖E(u)F(0, ε)‖2,α , (D.56)

where C is independent of u and v. Thus by taking ε small enough, we can not only make w = u + a2v
satisfy Equation (D.36), but also make w an embedding. Thus we are done with the patch Vi.

Now we take care Vis companion z ◦ Vi. Fix charts around x ∈ Vi and z ◦ x ∈ z ◦ Vi so that y ∈ Vi

and g ◦ y ∈ z ◦ Vi have the same coordinates for all y ∈ Vi. Working on these charts, we have

∂ju = ∂j(Φ ◦ ũ) = ∂�Φ∂j ũ
� (D.57)

and

∂iju = ∂ij(Φ ◦ ũ) = ∂k�Φ∂iũ
k∂j ũ

� + ∂�Φ∂ij ũ
�. (D.58)

Note that, since the first derivative of Φ is an even function while the second derivative of Φ is an odd
function and ũ(g ◦ y) = −ũ(y) for all y ∈ Ni, we have

E(u)(z ◦ x) = −E(u)(x). (D.59)

Moreover, we have Ni(v, a) = Ni(−v, a) and Mij(v, a) = Mij(−v, a) for all i, j = 1, ..., d. Thus in g ◦ Ni,
we have −v as the solution to Equation (D.45) and w − a2v as the modified embedding. After finishing
the perturbation of Vi and z ◦ Vi, the modified embedding is again symmetric.

Inductively, we can perturb the embedding of Vi for all i = 1, ..., L. Since there are only finitely
many patches, by choosing ε small enough, we finish the proof. �
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Note that we do not show the optimal dimension p of the embedded Euclidean space, but simply
show the existence of the symmetric isometric embedding. How to take the symmetry into account in
the optimal isometric embedding will be reported in the future work.

Corollary D1 Any smooth, closed non-orientable manifold (M, g) has an orientable double covering
embedded symmetrically inside R

p for some p ∈ N.

Proof. It is well known that the orientable double covering of M has isometric free Z2 action. By applying
Theorem D1 we get the result. �


