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Viewing Direction Estimation in Cryo-EM Using Synchronization∗

Yoel Shkolnisky† and Amit Singer‡

Abstract. A central task in recovering the structure of a macromolecule from cryo-electron microscopy (cryo-
EM) images is to determine a three-dimensional model of the macromolecule given many of its
two-dimensional projection images. The direction from which each image was taken is unknown,
and the images are small and extremely noisy. The goal is to determine the direction from which each
image was taken and then to combine the images into a three-dimensional model of the molecule.
We present an algorithm for determining the viewing direction of all cryo-EM images at once,
which is robust to high levels of noise. The algorithm is based on formulating the problem as a
synchronization problem; that is, we estimate the relative spatial configuration of pairs of images
and then estimate a global assignment of orientations that maximizes the number of satisfied pairwise
relations. Information about the spatial relation between pairs of images is extracted from common
lines between triplets of images. These noisy pairwise relations are combined into a single consistent
assignment of orientations by constructing a matrix whose entries encode the pairwise relations.
This matrix is shown to have rank 3, and its nontrivial eigenspace is shown to reveal the projection
orientation of each image. In particular, we show that the nontrivial eigenvectors encode the rotation
matrix that corresponds to each image.
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1. Introduction. One of the fundamental tasks in structural biology is to recover the
three-dimensional structure of molecules. Electron microscopy is one of the popular methods
for that task, and in particular single particle reconstruction (SPR), where the structure is
determined from images of randomly oriented and positioned identical copies of the investi-
gated molecule. One of the available specimen preparation techniques for SPR is cryo-electron
microscopy (cryo-EM), in which many copies of the investigated molecule are rapidly frozen
in a thin layer of ice [5, 23]. This method is experimentally attractive as it does not require
crystallization as in X-ray crystallography. However, cryo-EM images have very low contrast
and are very noisy, due to the small electron dose that can be applied to the specimen.

As each particle in a cryo-EM experiment is free to move prior to the freezing of the
specimen, the orientation of each individual particle in the imaged specimen is unknown. The
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orientations need not even be uniform, as the molecule might have some preferred orientation
due to, for example, its interaction with the supporting grid. Due to the low electron dose
used in order to prevent damaging the specimen, each particle can be imaged only once.

The output from the electron microscope is a micrograph (a large two-dimensional im-
age) containing the two-dimensional projections of hundreds of particles, where each two-
dimensional projection corresponds to a randomly rotated copy of the underlying three-
dimensional volume. In section 3 we define precisely the image formation model in cryo-EM,
which explains the relation between the three-dimensional volume and its two-dimensional im-
ages. The individual particles are segmented and extracted from the micrograph, producing
a data set of thousands of raw projection images. Typical data sets contain 104–105 particle
images. The goal in cryo-EM structure determination is to compute the three-dimensional
structure from those two-dimensional noisy images.

The process of determining a three-dimensional structure from two-dimensional images
typically consists of two steps. In the first step, some low resolution ab initio model of the
structure is estimated. Then this model is refined by an iterative procedure using the set of
raw images. The accuracy of the ab initio model is crucial for the quality of the final refined
model. For background on cryo-EM imaging, see [5, 21].

There are two main approaches for estimating an ab initio model. If the molecule is known
to have some preferred orientation, then it is possible to find an ab initio three-dimensional
structure using the random conical tilt method [12, 13]. Algorithms which do not involve
tilting are typically based on the “angular reconstitution” method of Van Heel [20] in which
a coordinate system is established from three projections and the orientation of the particle
giving rise to each image is deduced from common lines among the images. Those algorithms
often fail when the particles are too small or when the signal-to-noise ratio is too low, as in
such cases it is difficult to correctly identify the common lines. For a detailed discussion of
common line methods, see [17]. There also exist other approaches [7, 14], based on the method
of moments, which exploit the known analytical relation between the second order moments of
the two-dimensional projection images and the second order moments of the (unknown) three-
dimensional volume in order to reveal the unknown orientations of the particles. However, the
method of moments is very sensitive to errors in the data and is of rather academic interest
[10, section 2.1, p. 251].

In this paper we present an algorithm for ab initio reconstruction that is also based
on common lines. In particular, we present an algorithm that, given N projection images,
estimates for each image the rotation applied to the three-dimensional volume prior to freezing,
which resulted in the given image. The algorithm first uses the common line property to
estimate the three-dimensional configuration of pairs of images. Then it robustly combines this
pairwise information to estimate the three-dimensional rotation of each copy of the volume.
The process of finding a global assignment from pairwise relations is known as synchronization
[15]. Thus, we refer to the algorithm in this paper as a synchronization algorithm. This point
is clarified in section 4. Unlike the angular reconstitution method [20], our method takes into
account all common lines between all pairs of images simultaneously. The resulting algorithm
is therefore robust to noise, as demonstrated in section 6.

The structure of the paper is as follows. In section 2 we describe previous work on common
line algorithms and their relation to the present work. In section 3 we revisit the FourierD
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1090 YOEL SHKOLNISKY AND AMIT SINGER

projection-slice theorem and the common line property. In section 4 we show that common
lines between triplets of projections enable us to estimate the relative configuration of pairs
of projections, and, moreover, that it is possible to estimate the absolute orientation of the
molecule giving rise to each of the images from those pairwise relative relations. In section 5
we analyze some important mathematical properties of the algorithm by considering the case
where the number of images goes to infinity. Section 6 then presents numerical examples of
the algorithm for simulated data sets, as well as for class averages produced from experimental
data. We conclude with a discussion and possible extensions of the algorithm in section 7.

2. Relation to previous work. The algorithm in this paper is a continuation of ongoing
research on ab initio reconstruction methods. The algorithm of the current paper together
with two previously published algorithms [4, 17] provide three different approaches to the ab
initio reconstruction problem. All three methods are based on common lines and estimate
the viewing parameters of each image from the eigenvectors of some matrix constructed from
common line information. However, the geometry and the local information used to construct
each matrix are different for each of the algorithms, and therefore they also have different
properties and robustness to noise. In [4] we used common line information to construct an
averaging operator on the sphere. The three-dimensional eigenspace was shown to encode the
three-dimensional direction vector of each of the Fourier rays, obtained by taking the polar
Fourier transform of the input images. Although the resulting algorithm in [4] is significantly
more robust to noise than the classical angular reconstitution [20], it is less robust than [17]
and the algorithm of this paper. The reason is that the spectral gap in the resulting matrix
between the eigenspace that encodes the orientations and the next eigenspace is smaller than
in the other algorithms. Next, in [17] we presented two algorithms that are based on formulat-
ing the orientation assignment problem as an optimization problem, followed by relaxing the
optimization problem into a computationally tractable one. The first algorithm in [17] was
based on relaxing the optimization problem into a problem of finding eigenvectors of a matrix
and required the viewing directions to be uniformly distributed. The spectral gap of this
algorithm was computed to be asymptotically equal to 5/12 (see also [8]). The second algo-
rithm was based on a relaxation to a semidefinite program and imposed no assumption on the
viewing directions. However, it is much more computationally intensive, and its performance
in the presence of noise is more difficult to analyze.

The algorithm in the present paper is also based on constructing a matrix using common
line information and computing eigenvectors of this matrix. However, besides the different
mathematical approach, there are two important differences between this algorithm and the
algorithms in [4, 17], which translate into significantly improved robustness to noise. First,
the information used for constructing the matrix is based on triplets of projections, unlike the
algorithms in [4, 17] which are based on common lines between pairs of projections. This has
the effect of denoising the resulting matrix and thus increasing the robustness to noise (see
section 7 for a discussion). Second, the resulting matrix is of rank 3, and its spectral gap is
asymptotically 2/3. This gap is 60% larger than the gap for the algorithm in [17], which again
translates into further noise robustness.

3. Common lines and local geometry. In this section we review the well-known Fourier
projection-slice theorem (see, for example, [9]) and its induced common line property.D
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Given N projection images, the pixel intensities in each image are given by

(3.1) Pi(x, y) =

∫ ∞

−∞
φ (Rir) dz,

where r = (x, y, z)T , φ(r) is the electric potential of the molecule in some fixed “laboratory”
coordinate system, and R1, . . . , RN are unknown rotations corresponding to the orientation of
the molecule at the moment of freezing (elements of SO(3), the group of rotations of the three-
dimensional space). Each image is thus formed by projecting φ in some random direction and
is therefore known as a “projection image.”

The “orientation assignment problem” is to estimate the rotations R1, . . . , RN given a
finite set of images P1, . . . , PN . In the simplified image formation model (3.1), we assume that
all projection images Pi correspond to exactly the same molecule (same potential function φ)
and differ only in the rotation Ri associated to each image, that is, in the imaging orientation
that generated each image. In particular, we assume that all images are centered. In practice,
each image also contains some unknown shift, which needs to be estimated. However, the
estimation of the shifts can be decoupled from the problem of estimating the rotations (see [18]
for details).

To reproduce the Fourier projection-slice theorem and to set up the notation for the
derivation of the next section, we take the Fourier transform of both sides of (3.1). We use
the following definition of the two-dimensional Fourier transform:

f̂(ωx, ωy) =

∫∫
R2

f(x, y)e−ı(xωx+yωy) dxdy.

For the three-dimensional case, we use

f̂(ωx, ωy, ωz) =

∫∫∫
R3

f(x, y, z)e−ı(xωx+yωy+zωz) dxdydz.

Also, we denote the three columns of the rotation matrix Ri by R
(1)
i , R

(2)
i , and R

(3)
i , and the

dot product between two vectors u, v ∈ R
3 by 〈u, v〉. By taking the two-dimensional Fourier

transform of both sides of (3.1) and using the notation ω = (ωx, ωy, 0) and u = Rir, we obtain

(3.2)

P̂i(ωx, ωy) =

∫∫
R2

Pi(x, y)e
−ı(xωx+yωy) dxdy

=

∫∫
R2

(∫ ∞

−∞
φ (Rir) e

−ı(xωx+yωy) dz

)
dxdy

=

∫∫∫
R3

φ(u)e−ı〈ω,RT
i u〉 dxdydz =

∫∫∫
R3

φ(u)e−ı〈Riω,u〉 dxdydz

= φ̂(Riω) = φ̂
(
ωxR

(1)
i + ωyR

(2)
i

)
.

Equation (3.2) states that the two-dimensional Fourier transform of a projection image equals
a planar slice from the three-dimensional Fourier transform of the molecule. Specifically, it
shows that the Fourier transform P̂i of the projection Pi is equal to the values of φ̂ (theD
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1092 YOEL SHKOLNISKY AND AMIT SINGER

Fourier transform of the molecule φ) on the plane ωxR
(1)
i + ωyR

(2)
i or, equivalently, on the

plane 〈ω,R(3)
i 〉 = 0. This is the well-known Fourier projection-slice theorem.

Thus, the Fourier transforms P̂i and P̂j of any two projection images Pi and Pj correspond

to two different planar sections (through the origin) from φ̂, and therefore there exists a line
that is common to both planes. We will derive this in detail below. We refer to this line as
the “common line” between Pi and Pj . We denote by qij ∈ R

3 a unit vector in the direction
of the common line between Pi and Pj and express qij in terms of the rotations Ri and Rj

corresponding to the projections Pi and Pj . Consider the unit vector

(3.3) qij =
(
R

(3)
i ×R

(3)
j

)
/‖R(3)

i ×R
(3)
j ‖,

that is, the normalized cross product between the third columns of the matrices Ri and Rj .

By definition of the cross product, this vector is orthogonal to both R
(3)
i and R

(3)
j , that is,

〈qij, R(3)
i 〉 = 0 and 〈qij , R(3)

j 〉 = 0, and therefore it belongs to the planes whose equations are

given by 〈ω,R(3)
i 〉 = 0 and 〈ω,R(3)

j 〉 = 0.

We can write the unit vector qij explicitly in the orthonormal bases {R(1)
i , R

(2)
i } and

{R(1)
j , R

(2)
j } of the planes 〈ω,R(3)

i 〉 = 0 and 〈ω,R(3)
j 〉 = 0, respectively, as

(3.4) qij = cosαijR
(1)
i + sinαijR

(2)
i = cosαjiR

(1)
j + sinαjiR

(2)
j

for some angles αij and αji. Thus, along the three-dimensional line whose direction vector is
qij, we get from (3.2) that for any ξ ∈ R

(3.5)

P̂i(ξ cosαij, ξ sinαij) = φ̂
(
ξ cosαijR

(1)
i + ξ sinαijR

(2)
i

)
= φ̂(ξqij)

= φ̂
(
ξ cosαjiR

(1)
j + ξ sinαjiR

(2)
j

)
= P̂j(ξ cosαji, ξ sinαji),

which is an explicit statement of the common line property described above.

Following (3.4) and (3.5), we parameterize the common line between the projections Pi

and Pj by the unit vector cij = (cosαij , sinαij)
T in Pi, and by cji = (cosαji, sinαji)

T in Pj .
With a slight abuse of notation, we consider these vectors as vectors in R

3 by zero padding,
that is,

(3.6) cij = (cosαij , sinαij , 0)
T , cji = (cosαji, sinαji, 0)

T .

Equation (3.4) can then be written as

(3.7) Ricij = qij = Rjcji.

The vectors cij and cji of (3.6), as well as the common line property of (3.7), are illustrated
in Figure 1.D
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Projection Pi

Projection Pj

P̂i

P̂j

3D Fourier space

3D Fourier space

(cosαij, sinαij)

(cosαji, sinαji)

Ricij = qij

Ricij = Rjcji = qij

Figure 1. Fourier projection-slice theorem and the common line property.

Note that the vector −qij is also a vector in the direction of the common line between Pi

and Pj . However, this poses no problem since we first choose qij in (3.3) and then choose αij

and αji accordingly in (3.4). Note, however, that if

cij = (cosαij , sinαij , 0)
T , cji = (cosαji, sinαji, 0)

T

are the common lines between the projections Pi and Pj , then so are

(3.8) c̃ij = (cos (αij + π) , sin (αij + π) , 0)T , c̃ji = (cos (αji + π) , sin (αji + π) , 0)T ,

since the common line between two projections is a line through the origin whose direction
vector can be assigned to be either cij or c̃ij . Since the last coordinate of cij and c̃ij is zero,
we get

(3.9) Ric̃ij = −Ricij = −qij.

That is, both vectors qij and −qij correspond to the same line through the origin in three-
dimensional space, and an arbitrary choice between the two dictates the choice between the
angles (αij , αji) and (αij + π, αji + π) in (3.4).

4. Global synchronization. We next use (3.7) to construct a symmetric matrix of size
2N×2N , whose three-dimensional nontrivial eigenspace encodes the rotations Ri, i = 1, . . . , N ,
of (3.1). We refer to this matrix as the “synchronization matrix” for a reason that will be
explained below.

First, we show that we can compute the upper-left 2 × 2 block of the unknown matrix
R−1

i Rj for any i and j by using only common line information. For given i and j with i �= j,
pick some arbitrary k from the range 1, . . . , N with k �= i and k �= j, and define the matrix
Qijk ∈ R

3×3 by

(4.1) Qijk = (qij, qik, qjk) ,D
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where qij, qik, and qjk are defined in (3.3). By combining (3.7) with the orthogonality of Ri

and Rj we get that the matrix Gijk = QT
ijkQijk can be expressed as

(4.2) Gijk =

⎛
⎝ 1 〈qij , qik〉 〈qij , qjk〉

〈qik, qij〉 1 〈qik, qjk〉
〈qjk, qij〉 〈qjk, qik〉 1

⎞
⎠ =

⎛
⎝ 1 〈cij , cik〉 〈cji, cjk〉

〈cik, cij〉 1 〈cki, ckj〉
〈cjk, cji〉 〈ckj , cki〉 1

⎞
⎠ .

Equation (4.2) shows that the matrix Gijk can be constructed using only common line informa-
tion between the triplet of projections Pi, Pj, and Pk. Applying the Cholesky decomposition
or the SVD [6] to Gijk gives the factorization Gijk = QT

ijkQijk, thus recovering the matrix
Qijk of (4.1), whose columns are three-dimensional unit vectors in the directions of the lines of
intersection between the Fourier planes corresponding to the three projections. This decom-
position is not unique, as any matrix of the form Q̃ijk = OijkQijk, where Oijk is an orthogonal
3× 3 matrix, also satisfies Gijk = Q̃T

ijkQ̃ijk.
We distinguish between two cases: det(Oijk) = 1 and det(Oijk) = −1. In the first case,

Oijk is a rotation. We define the matrices

Ci = (cij , cik, cij × cik) , Qi = (qij , qik, qij × qik) ,(4.3)

Cj = (cji, cjk, cji × cjk) , Qj = (qji, qjk, qji × qjk) ,(4.4)

and since for any rotation matrix R and any vectors u and v we have that R(u×v) = Ru×Rv,
we get from (3.7), (4.3) and (4.4) that RiCi = Qi and RjCj = Qj or, equivalently,

(4.5) Ri = QiC
−1
i , Rj = QjC

−1
j .

Thus,

(4.6) R−1
i Rj = CiQ

−1
i QjC

−1
j .

Deriving (4.6) requires the unknown matrix Qijk of (4.1) in order to construct the matrices
Qi and Qj in (4.3) and (4.4). Instead, by factoring Gijk in (4.2) we obtain the matrix
Q̃ijk = OijkQijk, whose columns are Oijkqij, Oijkqik, and Oijkqjk for some unknown rotation
Oijk. Thus, we can only construct the matrices

Q̃i = (Oijkqij, Oijkqik, Oijkqij ×Oijkqik) = OijkQi,(4.7)

Q̃j = (Oijkqji, Oijkqjk, Oijkqji ×Oijkqjk) = OijkQj.(4.8)

Using these matrices, we recover the rotations

R̃i = Q̃iC
−1
i = OijkQiC

−1
i , R̃j = Q̃jC

−1
j = OijkQjC

−1
j ,

which are different from those in (4.5). However, it holds that

(4.9) R̃−1
i R̃j = CiQ

−1
i O−1

ijkOijkQjC
−1
j = CiQ

−1
i QjC

−1
j = R−1

i Rj ,

and so this product is invariant to the arbitrary rotation matrix Oijk.D
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At this point, before considering the case where det(Oijk) = −1, we explain the intuition
behind the construction, as well as the name “synchronization matrix.” Suppose we were
able to use (4.9) to compute all 3× 3 matrices R−1

i Rj, i, j = 1, . . . , N . Then we could define
the 3N × 3N matrix S, consisting of N × N blocks of size 3 × 3, where the (i, j) block of
S equals R−1

i Rj . Such a matrix of ratios of group elements is known in the literature as a
synchronization matrix [15]. Now consider the 3 × 3N matrix denoted U , consisting of N
blocks of size 3× 3, whose jth block equals the (unknown) matrix Rj . The matrix S is then
given by S = UTU ; that is, in the noise-free case, S is of rank 3. Moreover, all rotations
can be extracted from the SVD decomposition of S. Unfortunately, we cannot always recover
R−1

i Rj from common line information, as we see next, the reason being that the determinant
of the unknown arbitrary matrix Oijk can be either (+1) or (−1).

In the case where det(Oijk) = −1, the matrix Q̃i from (4.7) is given by

Q̃i = (Oijkqij, Oijkqik, Oijkqij ×Oijkqik)

= (Oijkqij, Oijkqik,−Oijk (qij × qik))(4.10)

= OijkQiJ,(4.11)

where

J =

⎛
⎝1

1
−1

⎞
⎠ ,

and in (4.10) we have used the fact that for any orthogonal matrix O with det(O) = −1 and
any two vectors u and v, it holds that Ou×Ov = −O (u× v). Similarly, the matrix Q̃j from
(4.8) is given by

Q̃j = OijkQjJ.

The matrices R̃i and R̃j are then given by

R̃i = OijkQiJC
−1
i , R̃j = OijkQjJC

−1
j ,

and since J = J−1, the product R̃−1
i R̃j is given by

R̃−1
i R̃j = CiJQ

−1
i QjJC

−1
j .

Since the third coordinate in all vectors cij is zero, by a direct calculation we get that CiJ =
JCi and JC−1

i = C−1
i J . Thus, from (4.6)

(4.12) R̃−1
i R̃j = JCiQ

−1
i QjC

−1
j J = JR−1

i RjJ.

Equations (4.9) and (4.12) state that using common line data between a triplet of projec-
tions (Pi, Pj , Pk), we can recover either the productR−1

i Rj from (4.6) or the product JR−1
i RjJ

from (4.12). Moreover, there is no way to distinguish which of the two is obtained, since Oijk

is unknown. This is a manifestation of the well-known fact in cryo-EM reconstruction which
states that the handedness or the chirality of the molecule cannot be deduced from common
line information. In other words, there exist two different sets of rotations in (3.7) that satisfy
all common line constraints; the two sets result in two different reconstructions.D
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1096 YOEL SHKOLNISKY AND AMIT SINGER

However, the sum R−1
i Rj+JR−1

i RjJ is invariant under this ambiguity; that is, no matter
if we recover the product R−1

i Rj or JR
−1
i RjJ , the sum R−1

i Rj +JR−1
i RjJ remains the same.

To understand this sum, we write the rotation matrix R−1
i Rj explicitly as

R−1
i Rj =

⎛
⎜⎜⎝

r
(ij)
11 r

(ij)
12 r

(ij)
13

r
(ij)
21 r

(ij)
22 r

(ij)
23

r
(ij)
31 r

(ij)
32 r

(ij)
33

⎞
⎟⎟⎠ ,

from which we get by a direct calculation that

(4.13) R−1
i Rj + JR−1

i RjJ =

⎛
⎜⎜⎝

2r
(ij)
11 2r

(ij)
12 0

2r
(ij)
21 2r

(ij)
22 0

0 0 2r
(ij)
33

⎞
⎟⎟⎠ .

We define the matrix B
(k)
ij as the upper-left 2× 2 block of

(
R−1

i Rj + JR−1
i RjJ

)
/2, namely

(4.14) B
(k)
ij =

(
r
(ij)
11 r

(ij)
12

r
(ij)
21 r

(ij)
22

)
,

where the division by 2 eliminates the spurious factor of 2 in (4.13). The superscript k of B
(k)
ij

is used to indicate that constructing this matrix required a triplet of projections Pi, Pj , and Pk

(see (4.3), (4.4), and (4.6)). Since R−1
j Ri = (R−1

i Rj)
T we get that B

(k)
ji = (B

(k)
ij )T . In practice,

due to common line misidentifications, each block B
(k)
ij might contain some error. We therefore

improve the estimate of the 2 × 2 upper-left block of the matrix
(
R−1

i Rj + JR−1
i RjJ

)
/2 by

averaging the matrices B
(k)
ij over all k; that is, we define

(4.15)
Sij =

1

N − 2

∑
k �=i,j

B
(k)
ij , i �= j,

Sii = I2,

where i, j = 1, . . . , N and I2 is the 2 × 2 identity matrix. The synchronization matrix S is
then defined as the 2N × 2N matrix whose (i, j) block of size 2 × 2 is Sij . The matrix S is
symmetric and is easily checked to admit the decomposition S = HTH, where H is the 3×2N
matrix obtained by concatenating the first two columns of all N rotation matrices, namely,

(4.16) H =
(
R

(1)
1 , R

(2)
1 , . . . , R

(1)
N , R

(2)
N

)
.

Therefore, the matrix S is of rank 3, and its columns are linear combinations of the three
vectors that are the columns of HT of (4.16). Thus, the three nontrivial eigenvectors of S
are also linear combinations of the columns of HT or, equivalently, of the first two columns of
R1, . . . , RN .D
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In practice, we do not average in (4.15) over all k �= i, j, since in the presence of noise,
the common lines detected among triplets of projections do not necessarily correspond to
any physical assignment of orientations to the three projections. This is explained in detail
in [16]. Thus, we replace the averaging in (4.15) with an average based on a voting procedure,

following the approach in [16]. Namely, we average in (4.15) only over matrices B
(k)
ij such that

the common lines between projections Pi, Pj , and Pk have passed the voting procedure.
Once the three nontrivial eigenvectors of S have been computed, we need to unmix the

columns of H from these eigenvectors. The third column of each rotation matrix is then given
by the cross product of the first two columns. We denote the three nontrivial eigenvectors of
the matrix S by v1, v2, v3, each of length 2N , and define the 2N×3 matrix V by V = (v1, v2, v3).
For an arbitrary 3 × 3 matrix A, the columns of the matrix V AT are linear combinations of
the columns of V , that is, of the eigenvectors v1, v2, and v3. We are looking for the linear
combination that will recover HT ; namely, we are looking for A such that V AT = HT or,
equivalently, AV T = H. For convenience, we split V T into two matrices V1 and V2, each of
size 3×N , consisting of the odd and even columns of V T , respectively,

V1 =

⎛
⎜⎜⎝

v
(1)
1 v

(3)
1 · · · v

(2N−1)
1

v
(1)
2 v

(3)
2 · · · v

(2N−1)
2

v
(1)
3 v

(3)
3 · · · v

(2N−1)
3

⎞
⎟⎟⎠ , V2 =

⎛
⎜⎜⎝

v
(2)
1 v

(4)
1 · · · v

(2N)
1

v
(2)
2 v

(4)
2 · · · v

(2N)
2

v
(2)
3 v

(4)
3 · · · v

(2N)
3

⎞
⎟⎟⎠ .

The unmixing problem is to find a 3× 3 matrix A such that

(4.17) AV1 =
(
R

(1)
1 , R

(1)
2 , . . . , R

(1)
N

)
, AV2 =

(
R

(2)
1 , R

(2)
2 , . . . , R

(2)
N

)
.

The orthogonality relations among the columns of the rotation matrices R1, . . . , RN imply
that (

R
(1)
i

)T
R

(1)
i = 1,

(
R

(2)
i

)T
R

(2)
i = 1,

(
R

(1)
i

)T
R

(2)
i = 0, i = 1, . . . , N,

or, using (4.17), that

(4.18) (V T
1 ATAV1)ii = 1, (V T

2 ATAV2)ii = 1, (V T
1 ATAV2)ii = 0

for i = 1, . . . , N . Equation (4.18) gives 3N linear equations for the six unknowns of ATA,
which can be solved, for example, by least-squares. Once the entries of ATA have been
computed, the matrix A can be recovered using Cholesky decomposition or SVD, and (4.17)
will recover the required rotations.

5. The limit of the matrix S. In this section we show that as N goes to infinity, the
matrix S in (4.15) (normalized by N) converges to an integral operator over SO(3). Since
we know from (4.15) and the discussion thereafter that the first two columns of the rotation
matrices Ri form the nontrivial eigenspace of S, we can explicitly construct the eigenfunctions
of this integral operator. Then, by a direct calculation, we show that the top three eigenvalues
of the integral operator equal 2/3. In particular, for large N , the nontrivial eigenvalues of the
matrix S of (4.15) are approximately 2N/3.D
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1098 YOEL SHKOLNISKY AND AMIT SINGER

Without noise, all blocks B
(k)
ij from (4.14) are the same for all k and are equal to Sij

of (4.15). We rewrite Sij as S(Ri, Rj) to express explicitly its dependence on Ri and Rj .
Specifically,

(5.1)

S(Ri, Rj) = Sij =

(
1 0 0
0 1 0

)
R−1

i Rj

(
1 0 0
0 1 0

)T

for i �= j,

S(Ri, Ri) = Bii =

(
1 0
0 1

)
for i = j.

We will analyze the multiplication of S by a vector f of length 2N as N goes to infinity.
For convenience, we will consider f as the concatenation of N vectors in R

2, each obtained
by sampling some function f : SO(3) → R

2 at Ri, i = 1, . . . , N , that is,

fi = f(Ri), i = 1, . . . , N.

The ith block of size 2× 1 of the product Sf is then given by

(5.2) (Sf)i =

N∑
j=1

S(Ri, Rj)f(Rj), i = 1, . . . , N.

If the rotations are independent samples from the uniform distribution on SO(3), then the
terms S(Ri, Rj)f(Rj) are independent and identically distributed random variables, and by
the law of large numbers

(5.3) lim
N→∞

1

N
(Sf) (R) = E [S(R,U)f(U)] =

∫
SO(3)

S(R,U)f(U)dU,

where dU is the Haar measure. That is, in the limit N → ∞, the matrix S converges to the
integral operator

(5.4) (Sf) (R) =

∫
SO(3)

S(R,U)f(U)dU,

where S(R,U) is the kernel of the operator, given by (5.1), and f : SO(3) → R
2.

We will compute the nontrivial eigenvalues of S. We define the function g : SO(3) → R
2×3

by

g(R) =

(
1 0 0
0 1 0

)
R−1.

The function g(R) extracts the first two rows of the rotation matrix R−1, that is, the first
two columns of R. This function can be considered as a concatenation of three functions from
SO(3) to R

2, and thus the operator S operates on such a function column by column. We will
show that g(R) is an eigenfunction of the integral operator S. This will show that the first
two columns of all rotation matrices are eigenfunctions of S.D
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By a direct evaluation of the integrand in (5.4), we get using the notation e3 = (0, 0, 1)T

that

S(R,U)g(U) =

(
1 0 0
0 1 0

)
R−1U

(
1 0 0
0 1 0

)T (
1 0 0
0 1 0

)
U−1

=

(
1 0 0
0 1 0

)
R−1U(I − e3e

T
3 )U

−1

=

(
1 0 0
0 1 0

)
R−1

(
I − U (3)U (3)T

)
,

where U (3) is the third column of the matrix U . By denoting the unit vector U (3) as

U (3) = (x, y, z)T , x2 + y2 + z2 = 1,

we get that

U (3)U (3)T =

⎛
⎝x2 xy xz
xy y2 yz
xz yz z2

⎞
⎠ ,

and

(Sg) (R) =

∫
SO(3)

(
1 0 0
0 1 0

)
R−1

(
I − U (3)U (3)T

)
dU

=

(
1 0 0
0 1 0

)
R−1

∫
SO(3)

(
I − U (3)U (3)T

)
dU

=

(
1 0 0
0 1 0

)
R−1

∫
SO(3)

(
1−x2 −xy −xz
−xy 1−y2 −yz
−xz −yz 1−z2

)
dU.(5.5)

To calculate (5.5), we parameterize the rotation U ∈ SO(3) of the molecule by a viewing
direction and a rotation around that axis; that is, we write SO(3) as S2 × [0, 2π). We choose
the measure dμ on S2 such that

∫
S2 dμ = 1. Since the integral in (5.5) is only a function of

U (3), the integral collapses to an integral over S2. From symmetry of S2 it follows that∫
S2

xy dμ =

∫
S2

xz dμ =

∫
S2

yz dμ = 0

and that ∫
S2

x2dμ =

∫
S2

y2dμ =

∫
S2

z2dμ.

Since ∫
S2

x2dμ+

∫
S2

y2dμ+

∫
S2

z2dμ =

∫
S2

(
x2 + y2 + z2

)
dμ =

∫
S2

dμ = 1,

we get that ∫
S2

x2dμ =

∫
S2

y2dμ =

∫
S2

z2dμ = 1/3.
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1100 YOEL SHKOLNISKY AND AMIT SINGER

We conclude that (see (5.5))∫
SO(3)

(
1−x2 −xy −xz
−xy 1−y2 −yz
−xz −yz 1−z2

)
dU =

(
2/3 0 0
0 2/3 0
0 0 2/3

)
,

and so

(Sg) (R) =
2

3

(
1 0 0
0 1 0

)
R−1 =

2

3
g(R),

where the multiplicity of this eigenspace is three as g(R) has three columns in R
2.

The above calculation shows that the spectral gap of the operator is 2/3. This gap is
larger than the gap of 5/12 ≈ 0.4167 of the algorithm in [17], and it is therefore expected that
the algorithm in this paper will be more robust to noise than the one in [17].

6. Numerical experiments. The algorithm described in section 4 was implemented in
MATLAB and was tested on simulated projections as well as on experimental class averages
of the 50S subunit of the E. coli ribosome.

6.1. Simulated data. First, we applied the algorithm in a noiseless environment to demon-
strate the properties of the matrix S given by (4.15). To that end, we created three simulated
data sets by generating three sets of noiseless images, with N = 10, N = 100, and N = 1000
projections. The images in each set are projections of a three-dimensional density map of
the 50S subunit of the E. coli ribosome, at orientations drawn uniformly at random from the
uniform distribution on SO(3). Each image is of size 129×129. For each image, we computed
L = 360 radial Fourier lines, with n = 100 samples per Fourier line. The common line between
two projections was estimated by computing the correlation between all 360 lines from one
image and all 360 lines from the other image, and taking the common line to be the pair with
maximum normalized cross-correlation.

Figures 2(a)–2(c) show the largest 10 eigenvalues of the matrix S for N = 10, N = 100,
and N = 1000, respectively. It is evident that the matrix S has three dominant eigenvalues.
Note that the fourth and higher eigenvalues are not exactly zero due to the discretization of
Fourier space using L = 360, but are rather much smaller than the first three. As mentioned
in section 5, the top eigenvalue of the matrix S should approximately equal 2N/3. This is in
agreement, for example, with the first three eigenvalues in Figure 2(c), whose values are 681,
676, and 644 (rounded to the nearest integer), whereas the expected value for N = 1000 is
667.

Figures 3(a)–3(c) show the error histogram of the recovered orientations. To generate this
histogram, we first estimated the rotations from the matrix S as described in section 4. We
denote the estimated rotations by R̃1, . . . , R̃N , to distinguish them from the true rotations
R1, . . . , RN used for generating the simulated projections. As described above, for a projection
Pi, we sampled its Fourier transform P̂i along L radial lines, specifically, along the directions

c
(l)
i = (cos 2πl/L, sin 2πl/L), l = 0, . . . , L − 1, with n = 100 samples in each direction, cen-
tered around the origin. As before, for convenience, we lift these vectors to three dimensions;

that is, we define c
(l)
i = (cos 2πl/L, sin 2πl/L, 0), l = 0, . . . , L−1. Then, we compute for each

pair of i and l, where i = 1, . . . , N , l = 0, . . . , L− 1, the angle (in degrees) between Ric
(l)
i and

R̃ic
(l)
i . This gives the error in estimating the three-dimensional position of Fourier ray c

(l)
i .D
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Figure 2. Applying the algorithm of section 4 on noiseless projections. Ten largest eigenvalues of the
matrix S in (4.15) for (a) N = 10, (b) N = 100, and (c) N = 1000 images. The x-axis corresponds to the
index of the eigenvalue. The y-axis corresponds to its value.
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Figure 3. Histogram of angle estimation errors (in degrees) for (a) N = 10, (b) N = 100, and (c) N = 1000
noiseless images. The x-axis corresponds to the estimation error in degrees.

Since the true and estimated rotations may differ by an arbitrary global rotation, we first reg-

ister the two sets of three-dimensional vectors Ric
(l)
i and R̃ic

(l)
i , i = 1, . . . , N , l = 0, . . . , L− 1,

as described in [1]. The histogram of the estimation errors (after registration) for all pairs
of i and l is shown in Figures 3(a), 3(b), and 3(c) for N = 10, N = 100, and N = 1000,
respectively. We see that the estimation error is very small even for N = 10 and decreases
as N increases. Note that the error is not zero even in the noiseless case. This is due to the
discretization of Fourier space into L = 360 radial lines, which means that we do not find the
precise common line between two projections, but rather some approximation of it accurate to
within 360/(2L) degrees, which in our case of L = 360 equals 0.5 degrees (assuming correlation
always finds the correct common lines between noiseless projections). In other words, each
of the equations in (3.7) contains some small noise. Also note that the maximal estimation
errors are 1.12, 0.29, and 0.12 degrees for N = 10, N = 100, and N = 1000, respectively,
and the average estimation errors are 0.46, 0.0078, and 0.0027 degrees. This is less than the
angular resolution used of 1 degree. Thus, without noise the algorithm estimates the rotations
R1, . . . , RN to very high accuracy, where the only errors are due to the angular discretization
of L = 360.

All tests were executed on a dual Intel Xeon X5560 CPU (8 cores in total), with 48GB
of RAM running Linux. Whenever possible, all 8 cores were used simultaneously, eitherD
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1102 YOEL SHKOLNISKY AND AMIT SINGER

Figure 4. Top row: Sample of 4 simulated noiseless projections of the 50S subunit of the E. coli ribosome.
Middle row: Noisy realizations at SNR = 1/16. Bottom row: Noisy realizations at SNR = 1/32. The noisy
projections are corrupted with additive Gaussian white noise with the prescribed SNR.

explicitly using the MATLAB parfor or implicitly, by taking advantage of the MATLAB
implementation of BLAS, which takes advantage of multicore computing. For each experiment
we measured the time required to construct the matrix S from (4.15) once the common line
matrix has been computed. The time required to find the top three eigenvectors of S and to
unmix the rotations from those eigenvectors is negligible. The time required for constructing
S for N = 10, N = 100, and N = 1000 was 0.25, 20.6, and 16277 seconds, respectively. The
running time of the algorithm scales cubically with N but is acceptable for practical values
of N . Moreover, it can be easily parallelized, as each block Sij in (4.15) can be computed
independently.

Next, we tested the algorithm on two sets of noisy projections. We took 500 noiseless
projections of the same density map as above and corrupted them with additive Gaussian
white noise with SNR = 1/16 and SNR = 1/32, where SNR (signal-to-noise ratio) is defined
as the ratio between the energy (variance) of the signal and the energy of the noise. Figure 4
shows four clean projections (top), their noisy realizations at SNR = 1/16 (middle row), and
their noisy realizations at SNR = 1/32 (bottom row). We then applied the algorithm to each
of the noisy data sets. The output of the algorithm is illustrated in Figure 5 for SNR = 1/16
and in Figure 6 for SNR = 1/32. As can be seen from Figures 5(a) and 6(a), in the presence
of noise, the matrix S still has three dominant eigenvalues, but the remaining eigenvalues are
no longer small due to misidentifications of common lines. Still, there is a significant gap
between the third and fourth eigenvalues. Figures 5(b) and 6(b) show the histogram of the
eigenvalues, where the gap between the largest three eigenvalues and the remaining bulk of
the spectrum is evident but gets smaller as the SNR decreases. The histogram of the angle
estimation errors is shown in Figures 5(c) and 6(c), where we see that due to misidentificationsD
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Figure 5. Applying the algorithm of section 4 on 500 simulated projections at SNR = 1/16 with L = 360.
(a) Ten largest eigenvalues of the matrix S. (b) Histogram of the eigenvalues of S. The three largest eigenvalues
are clearly separated from the remaining bulk of the spectrum, which is due to misidentifications of common
lines (noise). (c) Angle estimation errors (in degrees).
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Figure 6. Applying the algorithm of section 4 on 500 simulated projections at SNR = 1/32 with L = 360.
See Figure 5 for details.

of common lines (due to noise), the embedding errors become larger. Still, for SNR = 1/16,
the mean estimation error is 3.6 degrees, and the embedding error of more than 90% of the
Fourier rays is smaller than 10 degrees. For SNR = 1/32, the mean estimation error is 6.55
degrees, and the embedding error of almost 80% of the Fourier rays is smaller than 10 degrees.
For SNR = 1/16 only 34% of the common lines were initially identified correctly, where we
define a common line as correctly identified if it deviates from the true common line computed
according to (3.3) and (3.4) by up to 5 degrees. This means that at least 66% of the blocks Sij

are completely wrong (the ones for which the common line between Pi and Pj was misidentified

and so all blocks B
(k)
ij are necessarily wrong), and almost all the other blocks also contain some

error, due to the averaging in (4.15) of blocks for which the common lines between Pi and
Pk or between Pj and Pk are wrong. For SNR = 1/32 only 18% of the common lines were
identified correctly. This demonstrates the impressive robustness to noise of the algorithm.

Once the orientations have been estimated, the volume was reconstructed by using the
three-dimensional pseudopolar Fourier transform [3, 2]. A two-dimensional rendering of the
reconstructed volumes is shown in Figure 7 (all volumes were rendered using UCSF Chimera
[11]). All volumes were filtered using a Gaussian filter with σ = 0.9 pixels. Figures 7(b)
and 7(e) show the volume reconstructed from 500 noisy projections and the estimated ori-D
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(a) Reference volume.

(b) NE 1/16. (c) CE 1/16. (d) NT 1/16.

(e) NE 1/32. (f) CE 1/32. (g) NT 1/32.

Figure 7. Reconstructed density maps. (a) Noiseless density map used to generate the projections. Other
figures are labeled as follows: NE, reconstruction from noisy projections and estimated orientations; CE, re-
construction from clean projections and estimated orientations; NT, reconstruction from noisy projections and
true orientations.

entations (for SNR = 1/16 and SNR = 1/32, respectively). For comparison, Figures 7(c)
and 7(f) show the reconstruction from the estimated orientations and the noiseless projec-
tions, and Figures 7(d) and 7(g) show the reconstruction from noisy projections and the true
orientations. The various reconstructions allow one to gauge the effect of noise in the pro-
jections versus the effect of errors in estimating the orientations. For reference, we also show
in Figure 7(a) the noiseless density map from which the noiseless projections were generated.
In Figure 8 we show the Fourier shell correlation curves for the various reconstructions, com-
puted against the reference density map of Figure 7(a). These curves show that the loss of
resolution due to errors in estimating the rotations is smaller than that due to noise in the
projections.D

ow
nl

oa
de

d 
09

/2
7/

12
 to

 1
28

.1
12

.7
0.

75
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VIEWING DIRECTIONS USING SYNCHRONIZATION 1105

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
NE16
CE16
NT16
NE32
CE32
NT32

Figure 8. Fourier shell correlation curves for the various reconstructions. See Figure 7 for a description
of the letter codings in the legend.

Table 1
MSE of the estimated rotations.

SNR MSE N = 100 MSE N = 500

1 0.00046 0.00022
1/2 0.00095 0.00060
1/4 0.00234 0.00215
1/8 0.01052 0.00963
1/16 0.05044 0.03626
1/32 0.24335 0.12611
1/64 1.70947 0.61562
1/128 2.74514 2.21980
1/256 4.09763 3.32657
1/512 4.80354 4.66475

To compare the performance of the algorithm with the performance of the algorithms
in [17], we show in Table 1 the mean square error (MSE) of the estimated rotations for
various levels of noise. Table 1 was generated using L = 72 in accordance with the angular
resolution in [17]. As above, we denote by R1, . . . , RN the true rotations used to generate the
simulated projections, and by R̃1, . . . , R̃N the rotations estimated by the algorithm. Then we
define

MSE =
1

N

N∑
i=1

‖Ri − ÕR̃i‖2F ,

where Õ is the global orthogonal transformation that optimally aligns the true and estimated
rotations, that is,

(6.1) Õ = argmin
O∈SO(3)

N∑
i=1

‖Ri −OR̃i‖2F .
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The solution to (6.1) is given explicitly in [17]. We see from Table 1 that the estimation errors
of our algorithm are lower than the errors in Table 5.3 in [17].

6.2. Experimental data. A set of 1500 class averages of the 50S subunit of the E. coli
ribosome was used to test the algorithm on experimental data. This data set is the same data
set used in [16]. The 1500 class averages were generated from a set of 27121 particle images,
which were classified using the MSA function of the IMAGIC software package [19, 22] into
1500 classes. Each class average in the data set is of size 90 × 90 pixels. The raw images
used to generate the class averages were phase-flipped to remove the phase-reversals in the
contrast transfer function (CTF) and were bandpass filtered at 1/150 Å and 1/8.4 Å. They
were also normalized and translationally aligned with the rotationally averaged total sum.
Unlike the simulated projections from section 6.1, the resulting class averages are affected by
the CTF of the microscope, are contaminated by non-Gaussian noise, and contain unknown
two-dimensional shifts. These factors make the detection of common lines much more difficult
and also introduce artifacts to the resulting reconstruction.

However, the most severe problem with class averages generated from experimental data
is that they do not necessarily correspond to actual projections of the molecule. Ideally, when
generating class averages, the class averaging algorithm finds projections that correspond to
exactly the same viewing direction, aligns them rotationally and translationally, and averages
them. This results in an actual projection of the molecule at improved SNR. In practice,
due to the high levels of noise, many times the class averaging algorithm incorrectly identifies
completely different images as corresponding to the same viewing direction. The resulting class
average thus consists of projections that correspond to completely different viewing directions,
and therefore it does not correspond to any actual projection of the molecule.

As a result, a set of class averages generated from experimental data is likely to contain
some class averages which are inconsistent with the others, in the sense that they have no
common lines with the other class averages. A weakness of the synchronization algorithm,
as presented in this paper, is that it requires one to estimate the block Sij for each pair
of images i and j (see (4.15)). Thus, even if some of the class averages do not represent
any actual projection of the molecule and are therefore inconsistent as explained above, the
algorithm still tries to find the rotation matrices corresponding to these images, although no
such rotations exist. This necessarily affects all other estimated rotations, introducing large
errors in the estimation.

Hence, before processing experimental class averages with the synchronization algorithm,
we need to discard from the data set images that are unlikely to correspond to actual pro-
jections of the molecule. Although algorithms for that task are important in themselves,
here we just want to demonstrate that the synchronization algorithm is relevant in the case
of experimental class averages, and so we apply the following heuristic. We take the 1500
class averages and use the synchronization algorithm to estimate their rotations, denoted
R1, . . . , R1500. Then, for each pair of common lines cij and cji, we compute the angle between
Ricij and Rjcji. Ideally, this angle should be zero. For each projection, we count the number
of times this angle was above 20 degrees (this threshold was chosen arbitrarily, and its precise
value was found to hardly affect the outcome). This counts the number of times the projection
was inconsistent with the rest of the projections. Then we find the 100 projections with theD
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Figure 9. Sample of 4 out of 500 experimental class averages.
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(b) Common line consistency

Figure 10. Applying the algorithm of section 4 on experimental data. (a) Ten largest eigenvalues of the
matrix S. (b) Histogram of common line embedding errors (in degrees).

largest number of inconsistencies and discard them from our data set. We repeat this process
until we are left with only 500 class averages, which we use as an input to the synchronization
algorithm. Four projections from this data set are shown in Figure 9.

We take the set of 500 class averages and apply to them the synchronization algorithm.
Figure 10(a) shows the 10 largest eigenvalues of the matrix S. To see if the estimated rotations
respect the common lines we have detected, we compute for each pair of common lines cij and
cji the angle between Ricij and Rjcji (as was done during the projections’ filtration process
explained above). This gives the embedding error for the pair cij and cji. Figure 10(b) shows
the histogram of the embedding errors (in degrees). We see that many of the errors are
small, but there is a long tail of large errors. We postulate that common lines with large
embedding errors correspond to misidentified common lines. We thus discard common lines
whose embedding errors are larger than 20 degrees and run the synchronization algorithm
again. Figures 11(a) and 11(b) show the spectrum of the synchronization matrix and the
histogram of embedding errors, respectively, at the end of this run. As we see in Figure 11(b),
the embedding errors have been significantly reduced.

Next, we use the common lines to estimate the two-dimensional shift in each projection
as described in [18]. Finally, we take the 500 estimated rotations together with the 500
appropriately reshifted class averages and reconstruct a three-dimensional density map. A
two-dimensional rendering of the reconstructed volume is shown in Figure 12. Based on our
tests with simulated data and following the results in Figure 8, we speculate that the errors
in the reconstruction of the density map are attributed mainly to the effects of the CTF as
well as to errors in recentering the projections.
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Figure 11. Results of the synchronization algorithm after removing common lines whose embedding errors
are larger than 20 degrees. (a) Ten largest eigenvalues of the matrix S. (b) Histogram of common line embedding
errors (in degrees).

Figure 12. Density map reconstructed using the 500 experimental class averages.

7. Discussion and future extensions. The algorithm in this paper is based on common
lines between projections. Detecting common lines between cryo-EM projections is a nontrivial
task, as their SNR is typically very low (less than 1/100). Nevertheless, the encouraging
results described in section 6 show that the algorithm is robust to noise. This robustness
is attributed to three reasons. First, each block Sij in (4.15) is an average of many blocks

B
(k)
ij . This averaging process may help reducing the error in the estimate of each block Sij,

as long as the errors in the individual blocks B
(k)
ij have zero mean. Second, the algorithm

is based on computing the three eigenvectors of a symmetric matrix, which correspond to
its three largest eigenvalues. This is a global computation that takes into account all local
pieces of information about common lines simultaneously. Thus, even if some of the blocks Sij

are wrong, those errors are averaged out in the global eigenvector computation. Third, the
(clean) matrix S is of rank 3 and has a large spectral gap. A large spectral gap means that
high levels of noise are required in order to cause crossing of the eigenvalues, which results
in breakdown of the algorithm. The spectral gap of 2/3 of the presented algorithm is larger
than was previously obtained in [4, 17].D
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The presented algorithm also has other properties which make it attractive in practice.
First, the algorithm does not depend on the number of projections. Second, although the
algorithm scales cubically with the number of images, its running time is acceptable even for
several thousands of images, and it can be easily implemented on parallel architectures.

As presented in section 4, the matrix S is a dense matrix and requires all the blocks Sij

to be estimated. However, the estimates of the various blocks are not equally reliable, and
some are even completely wrong (for example, blocks Sij for which the common line between
images i and j was misidentified). Thus, it would be better to try to estimate how reliable a
given block Sij is and to construct the matrix S using only the reliable blocks, leaving “holes”
in the matrix for the unreliable ones. We can then try to fill in the missing blocks in S by
using the properties of the matrix S.

From the computational point of view, storing a 2N × 2N dense matrix is prohibitive if
N is very large. However, there is no need to actually store the 2N × 2N matrix S, as we
need only its first three eigenvectors (2N × 3 numbers). Computing these eigenvectors does
not require us to store the matrix S, but just to apply it several times to three vectors (as in
the power method [6]). The large gap in the spectrum of S ensures that it should be applied
only a small number of times. Moreover, any such application can be implemented in parallel,
taking full advantage of existing parallel architectures.

The algorithm as presented assumes that all input images are projections of the same un-
derlying object. In practice, when class averages are estimated from experimental data, some
class averages are likely to be inconsistent in the sense that they have no common lines with
the other class averages, as explained in section 6.2. To process class averages produced from
experimental data, the algorithm needs to be modified to detect such inconsistent averages
and discard them. This is a future research direction for increasing the robustness of the
algorithm in order to adapt it to experimental data.

Finally, in its current form, the algorithm assumes that the underlying molecule has no
symmetries. This assumption is already implied in our statement of the Fourier projection-
slice theorem, which says that any two projections share a single common line. Our algorithm
is then based on detecting this single common line between pairs of projections. When the
molecule has symmetries, any two projections share more than one common line, and this
redundancy should be taken into account when estimating the structure of the molecule.
Thus, a possible extension of the algorithm is to adapt it to molecules with symmetries.
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