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Abstract. The cryo-electron microscopy (cryo-EM) reconstruction problem is to find the three-dimensional
structure of a macromolecule given noisy versions of its two-dimensional projection images at un-
known random directions. We introduce a new algorithm for identifying noisy cryo-EM images of
nearby viewing angles. This identification is an important first step in three-dimensional structure
determination of macromolecules from cryo-EM, because once identified, these images can be rota-
tionally aligned and averaged to produce “class averages” of better quality. The main advantage
of our algorithm is its extreme robustness to noise. The algorithm is also very efficient in terms
of running time and memory requirements, because it is based on the computation of the top few
eigenvectors of a specially designed sparse Hermitian matrix. These advantages are demonstrated
in numerous numerical experiments.

Key words. cryo-electron microscopy, class averaging, random matrices, semicircle law, angular synchroniza-
tion, hairy ball theorem, parallel transport, tomography

AMS subject classifications. 92E10, 68U10, 33C55, 60B20

DOI. 10.1137/090778390

1. Introduction. In this paper we address the class averaging problem in cryo-electron
microscopy (cryo-EM) [10]. The goal in cryo-EM is to determine three-dimensional (3D)
macromolecular structures from noisy projection images taken by an electron microscope at
unknown random orientations, i.e., a random computational tomography (CT). Determining
3D macromolecular structures for large biological molecules remains vitally important, as
witnessed, for example, by the 2003 Nobel Prize in Chemistry, co-awarded to MacKinnon
for resolving the 3D structure of the Shaker K+ channel protein [8, 17], and by the 2009
Nobel Prize in Chemistry, awarded to Ramakrishnan, Steitz, and Yonath for studies of the
structure and function of the ribosome. The standard procedure for structure determination
of large molecules is X-ray crystallography. The challenge in this method is often more in the
crystallization itself than in the interpretation of the X-ray results, since many large proteins
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Figure 1. Schematic drawing of the imaging process: Every projection image corresponds to some unknown
3D rotation of the unknown molecule.

have so far withstood all attempts to crystallize them.
In cryo-EM, an alternative to X-ray crystallography, the sample of macromolecules is

rapidly frozen in an ice layer so thin that their tomographic projections are typically disjoint;
this seems the most promising alternative for molecules that defy crystallization. The cryo-EM
imaging process produces a large collection of tomographic projections of the same molecule,
corresponding to different and unknown projection orientations. The goal is to reconstruct the
3D structure of the molecule from such unlabeled projection images, where data sets typically
range from 104 to 105 projection images whose size is roughly 100× 100 pixels. The intensity
of the pixels in a given projection image is proportional to the line integrals of the electric
potential induced by the molecule along the path of the imaging electrons (see Figure 1). The
highly intense electron beam destroys the frozen molecule, and it is therefore impractical to
image the same molecule at known different directions as in the case of classical CT. In other
words, a single molecule can be imaged only once, rendering an extremely low signal-to-noise
ratio (SNR) for the images (see Figure 2 for a sample of real microscope images), mostly due
to shot noise induced by the maximal allowed electron dose (other sources of noise include the
varying thickness of the ice layer and partial knowledge of the contrast transfer function of the
microscope). In the basic homogeneity setting considered hereafter, all imaged molecules are
assumed to have the exact same structure; they differ only by their spatial rotation. Every
image is a projection of the same molecule from an unknown random direction, and the cryo-
EM problem is to find the 3D structure of the molecule from a collection of noisy projection
images.

The rotation group SO(3) is the group of all orientation preserving orthogonal transfor-
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Figure 2. A collection of four real electron microscope images of the E. coli 50S ribosomal subunit.

mations about the origin of the 3D Euclidean space R
3 under the operation of composition.

Any 3D rotation can be expressed using a 3× 3 orthogonal matrix R:

R =

⎛
⎝ | | |

R1 R2 R3

| | |

⎞
⎠

satisfying
RRT = RTR = I, detR = 1,

where I is the 3×3 identity matrix. The column vectors R1, R2, R3 of R form an orthonormal
basis to R

3.
To each projection image P there corresponds a 3×3 unknown rotation matrix R describing

its orientation (see Figure 1). Excluding the contribution of noise, the intensity P (x, y) of
the pixel located at (x, y) in the image plane corresponds to the line integral of the electric
potential induced by the molecule along the path of the imaging electrons; that is,

(1.1) P (x, y) =

∫ ∞

−∞
φ(xR1 + yR2 + zR3) dz,

where φ : R3 �→ R is the electric potential of the molecule in some fixed “laboratory” coordinate
system. The projection operator (1.1) is also known as the X-ray transform [19].

We therefore identify the third column R3 of R as the imaging direction, also known as
the viewing angle of the molecule. We will often refer to the viewing angle of R as v; that is,
v : SO(3) �→ R

3 is given by v = v(R) = R3. The viewing angle v can be realized as a point
on S2 (the unit sphere in R

3) and can therefore be described using two parameters.
The first two columns R1 and R2 form an orthonormal basis for the plane in R

3 perpen-
dicular to the viewing angle v. All clean projection images of the molecule that share the
same viewing angle v look the same up to some in-plane rotation. That is, if Ri and Rj are
two rotations with the same viewing angle v(Ri) = v(Rj), then R1

i , R
2
i and R1

j , R
2
j are two

orthonormal bases for the same plane and the rotation matrix R−1
i Rj has the form

(1.2) R−1
i Rj =

⎛
⎝ cos θij − sin θij 0

sin θij cos θij 0
0 0 1

⎞
⎠ ,
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where θij ∈ [0, 2π) is the angle in which we have to in-plane rotate image j in the counter-
clockwise direction in order for it to be aligned with image i. On the other hand, two rotations
with opposite viewing angles v(Ri) = −v(Rj) give rise to two projection images that are the
same after reflection (mirroring) and some in-plane rotation.

As projection images in cryo-EM have extremely low SNRs, a crucial initial step in all
reconstruction methods is “class averaging” [10]. Class averaging is the grouping of a large
data set of n noisy raw projection images P1, . . . , Pn into clusters, such that images within
a single cluster have similar viewing angles (it is possible to artificially double the number
of projection images by including all mirrored images). Averaging rotationally aligned noisy
images within each cluster results in “class averages”; these are images that enjoy a higher
SNR and are used in later cryo-EM procedures such as the angular reconstitution procedure
[27] that requires better quality images. Finding consistent class averages is challenging due
to the high level of noise in the raw images as well as the large size of the image data set. A
sketch of the class averaging procedure is shown in Figure 3.

(a) Clean image (b) Pi (c) Pj (d) Average

Figure 3. The class averaging problem is to find, align, and average images with similar viewing angles: (a)
a clean simulated projection image of the ribosomal subunit generated from its known density map; (b) noisy
instance of (a), denoted Pi, obtained by the addition of white Gaussian noise. For the simulated images we
chose the SNR to be higher than that of experimental images in order for image features to be clearly visible;
(c) noisy projection, denoted Pj , of the subunit taken at the same viewing angle but with a different in-plane
rotation. The in-plane rotation angle is θij = 3π/2, because image Pj needs to be rotated by π/2 in the clockwise
direction in order to be aligned with Pi (see also text following (1.3)); (d) averaging the noisy images (b) and
(c) after in-plane rotational alignment. The class average of the two images has a higher SNR than that of the
noisy images (b) and (c), and it has better similarity to the clean image (a).

Penczek, Zhu, and Frank [20] introduced the rotationally invariant K-means clustering
procedure to identify images that have similar viewing angles. Their invariant distance dij
between image Pi and image Pj is defined as the Euclidean distance between the images
when they are optimally aligned with respect to in-plane rotations (assuming the images are
centered):

(1.3) dij = min
θ∈[0,2π)

‖Pi −R(θ)Pj‖,

where R(θ) is the rotation operator of an image by an angle θ in the counterclockwise direc-
tion. Prior to computing the invariant distances of (1.3), a common practice is to center all
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images by correlating them with their total average 1
n

∑n
i=1 Pi, which is approximately radial

(i.e., has little angular variation) due to the randomness in the rotations. The resulting centers
usually miss the true centers by only a few pixels (as can be validated in simulations during
the refinement procedure). Therefore, as in [20], we also choose to focus first on the more
challenging problem of rotational alignment by assuming that the images are properly cen-
tered. The problem of translational alignment will be considered elsewhere. Other methods
for class averaging are reviewed in [28].

It is worth noting that the specific choice of metric to measure proximity between images
can make a big difference in class averaging. The cross-correlation and Euclidean distance
(1.3) are by no means optimal measures of proximity. In practice, it is common to denoise
the images prior to computing their pairwise distances. A popular smoothing scheme is to
convolve the images with a Gaussian kernel, and other linear and nonlinear filters are also
used. Although the discussion which follows is independent of the particular choice of filter or
distance metric, we stress again that filtering can have a dramatic effect on finding meaningful
class averages.

The invariant distance (1.3) is invariant to in-plane rotations and as such it induces a
metric on the viewing angle space S2. The invariant distance between noisy images that share
the same viewing angle (with perhaps a different in-plane rotation) is expected to be small.
Ideally, all neighboring images of some reference image Pi in a small invariant distance ball
centered at Pi should have similar viewing angles, and averaging such neighboring images
(after proper rotational alignment) would amplify the signal and diminish the noise.

Unfortunately, due to the low SNR, it often happens that two images of completely dif-
ferent viewing angles have a small invariant distance. This can happen when the realizations
of the noise in the two images match well for some random in-plane rotational angle, leading
to spurious neighbor identification. Therefore, averaging the nearest neighbor images can
sometimes yield a poor estimate of the true signal in the reference image.

Clustering algorithms, such as the K-means algorithm, perform much better than this
naive nearest neighbor averaging, because they take into account all pairwise distances, not
just distances to the reference image. Such clustering procedures are based on the philosophy
that images that share a similar viewing angle with the reference image are expected to have
a small invariant distance not only to the reference image but also to all other images with
similar viewing angles. This observation was utilized in the rotationally invariant K-means
clustering algorithm [20]. Such clustering algorithms make it harder for spurious neighbors
to sneak their way into the neighborhood. Still, noise is our enemy, and the rotationally
invariant K-means clustering algorithm may suffer from misidentifications at the low SNR
values present in experimental data.

Is it possible to further improve the detection of neighboring images at even lower SNR
values? In this paper we provide a positive answer to this question. First, we note that
the rotationally invariant distance neglects an important piece of information, namely, the
optimal angle that realizes the best rotational alignment in (1.3). Second, we observe that
these optimal rotation angles must satisfy a global system of consistency relations, namely,
that if three projection images correspond to similar viewing angles, then the three optimal
rotational angles should add up to 0 modulo 2π. Based on these observations, we use the
optimal in-plane rotation angles to construct a sparse n× n Hermitian matrix, which we call
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“the class averaging matrix,” and show how to identify nearby viewing directions from the
top three eigenvectors of the matrix.

The main advantage of the algorithm presented here is that it successfully identifies images
with nearby viewing directions even in the presence of high levels of noise in the images. For
such high levels of noise, it is possible for pairs of images with viewing angles that are far apart
to have relatively small rotationally invariant distances. Our algorithm is extremely robust
to such outliers, as we demonstrate both theoretically and in various numerical experiments.
This robustness to outliers is explained using random matrix theory, similar to the way we
showed robustness of our 3D eigenvector reconstruction algorithm from common lines [24].
Another advantage of the algorithm is that it has a low computational complexity as it requires
only the computation of the top three eigenvectors of the class averaging matrix, which is a
sparse matrix.

In [23] we presented an algorithm for estimating angles from noisy measurements of their
offsets modulo 2π using the top eigenvector of a Hermitian matrix constructed in exactly
the same way the class averaging matrix is constructed. The reason why three eigenvectors
(instead of one) are needed here is due to the special topology of the sphere S2 as rendered
in the “hairy ball” theorem that says that a continuous tangent vector field to the sphere
must vanish at some point. We also conducted numerical experiments that demonstrate how
the identification of nearby viewing directions can be improved by using more than three
eigenvectors. Finally, we show that the class averaging matrix is a discretization of a local
version of the parallel transport operator on the sphere. This interpretation leads to a complete
understanding of the spectrum of the class averaging matrix and to a rigorous proof of the
admissibility (correctness) of the algorithm presented in this paper. The complete spectral
analysis will be presented in a separate publication [13].

2. Small-world graph on S2, triplets consistency, and angular synchronization. The
purpose of this section is to motivate the construction of the class averaging matrix. We
provide here the intuition that leads to the construction of the class averaging matrix, whose
mathematical meaning will become apparent only in section 4.

As mentioned earlier, the information in the optimal in-plane rotation angles has yet to
be utilized in existing class averaging algorithms. We incorporate this additional information
as follows. When computing the optimal alignment of images Pi and Pj and their invariant
distance dij , we also record the rotation angle θij that brings the distance between the two
images to a minimum,

(2.1) θij = argmin
θ∈[0,2π)

‖Pi −R(θ)Pj‖, i, j = 1, . . . , n.

Note that

(2.2) θij = −θji mod 2π,

as the optimal rotation from Pj to Pi is in the opposite direction as that from Pi to Pj .
We assume that there is a unique optimal in-plane rotation angle θij for which the mini-

mum in (2.1) is attained. Note that this assumption excludes, for example, projection images
of symmetric molecules when the viewing direction coincides with the symmetry axis, and
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perhaps other projection images are also excluded. Note that if Pi and Pj are clean images
having the same viewing angle vi = vj , then the optimal in-plane rotation angle θij computed
in the optimization procedure (2.1) agrees with the angle θij introduced in (1.2). In that
sense, the computed angles θij provide additional information about the unknown rotation
matrices R1, . . . , Rn.

In practice, however, we cannot expect two projection images to have exactly the same
viewing angle. Still, we may assume that the molecule is “nice” enough1 such that projec-
tion images that correspond to nearby viewing angles would look similar (up to an in-plane
rotation). In such cases, it is reasonable to assume that the optimal in-plane rotation angle
θij computed in (2.1) provides a good approximation to the angle θ̃ij that “aligns” the ortho-
normal bases for the planes2 v⊥i , v

⊥
j , given by the vectors R1

i , R
2
i and R1

j , R
2
j , respectively. In

other words, for clean images, it is expected that a small distance between vi and vj would
imply that θij approximates the angle θ̃ij given by

(2.3) θ̃ij = argmin
θ∈[0,2π)

‖Riρ(θ)−Rj‖F ,

where

(2.4) ρ(θ) =

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠

and ‖·‖F is the Frobenius norm of the matrix (square root of the sum of its squared elements).
The reader may verify that θ̃ij satisfies

cos θ̃ij =
(R−1

i Rj)11 + (R−1
i Rj)22√[

(R−1
i Rj)11 + (R−1

i Rj)22
]2

+
[
(R−1

i Rj)21 − (R−1
i Rj)12

]2 ,(2.5)

sin θ̃ij =
(R−1

i Rj)21 − (R−1
i Rj)12√[

(R−1
i Rj)11 + (R−1

i Rj)22
]2

+
[
(R−1

i Rj)21 − (R−1
i Rj)12

]2 ,(2.6)

in accordance with (1.2) even when vi differs from vj . Thus, computing θij provides indis-
pensable information about the unknown rotations R1, . . . , Rn.

By making a histogram of all
(n
2

)
distances dij , one can choose some threshold value ε, such

that dij ≤ ε is indicative that perhaps Pi and Pj have nearby viewing angles. The threshold
ε defines an undirected graph G = (V,E) with n vertices corresponding to the projection
images, with an edge between nodes i and j iff their invariant distance is smaller than ε:

(2.7) {i, j} ∈ E ⇐⇒ dij ≤ ε.

1If φ ∈ L2(R3) and has compact support, then the X-ray transform (1.1) is a continuous function from
SO(3) to L2(R2). A similar statement for the Radon transform is given as an exercise in Epstein’s book on
the mathematics of medical imaging [9, Exercise 6.6.1, p. 215]. The proof is based on the fact that continuous
functions are dense in L2 and on the fact that for functions with compact support, the L2 norm of the projection
image is bounded by the L2 norm of φ.

2v⊥ is a shorthand notation of the plane perpendicular to v and passing through the origin.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

730 A. SINGER, Z. ZHAO, Y. SHKOLNISKY, AND R. HADANI

Alternatively, an undirected graph may be constructed from the identification of nearest
neighbors, such that {i, j} ∈ E iff i is one of the N nearest neighbors of j or j is one of the N
nearest neighbors of i, where N 	 n is a fixed parameter. Yet another possibility is to take
the intersection instead of the union; i.e., {i, j} ∈ E iff i is one of the N nearest neighbors of
j and j is one the N nearest neighbors of i.

Either way, in an ideal noiseless world, the topology of the graph is that of S2; for each
vertex there corresponds a viewing angle, which is a unit vector in three-space realized as
a point on the sphere. If all invariant distances were trustworthy such that small distances
imply similar viewing angles, then the edges of G would link neighboring points on S2. The
drawing of such a graph in 3D space would show scattered points (vertices) on the sphere
connected by short chords (edges). The experimental world, however, is far from ideal and
is ruled by noise, giving rise to false edges that shortcut the sphere by long chords. Such
graphs are known as “small-world” graphs [29], a popular model to describe social network
phenomena such as the six degrees of separation: our social network consists of people living
in our own town (neighboring edges), but also some other family and friends who live across
the world (shortcut edges). Planar drawings of a ring graph and its corresponding small-world
graph are given in Figure 4.

(a) (b)

Figure 4. (a) A ring graph with 20 vertices each of which is connected to its six nearest neighbors with
short edges; (b) a small-world graph obtained by randomly rewiring the edges of the ring graph with probability
0.2 leading to about 20% of shortcut edges.

Can we tell the good edges (short chords) from the bad edges (long chords)? It is possible
to denoise small-world graphs based on the fact that they have many more “triangles” than
random graphs: two images Pi and Pj that have nearby viewing angles should have com-
mon neighboring images Pk whose viewing angles are close to theirs. All three edges {i, j},
{j, k}, and {k, i} are in E forming a triangle (i, j, k). On the other hand, shortcut edges are
not expected to be sides of as many triangles. This “cliquishness” property of small-world
graphs was used by Goldberg and Roth [11] to denoise protein-protein interaction maps by
thresholding edges that appear in only a few triangles.

In the class averaging problem of cryo-EM, we can further test for the consistency of the
triangles. Indeed, if the three images Pi, Pj , and Pk share the same viewing angle, then the
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three corresponding rotation angles θij , θjk, and θki must satisfy

(2.8) θij + θjk + θki = 0 mod 2π,

because rotating first from Pi to Pj , followed by a rotation from Pj to Pk, and finally a rotation
from Pk to Pi together complete a full circle. Equation (2.8) is a consistency relation that
enables us to detect image triplets with similar viewing angles and to identify good triangles.
Similarly, we may write consistency relations that involve four or more images.

At first (but incorrect3) inspection, the triplet consistency relation seems to be a byproduct
of an underlying angular synchronization problem [23]. If all projection images can be initially
rotated such that they are optimally rotationally aligned, then we can let θi be the rotation
angle of image Pi that brings it in sync with all other images. The mutual rotation angles θij
should satisfy the difference equations

(2.9) θi − θj = θij mod 2π for (i, j) ∈ E,

from which the consistency relation (2.8) immediately follows:

θij + θjk + θki = θi − θj + θj − θk + θk − θi = 0 mod 2π.

In [23] we introduced a robust and efficient synchronization algorithm for estimating the
angles θ1, . . . , θn from noisy offset measurements of the form (2.9). The first step of the
synchronization algorithm is to construct an n× n Hermitian matrix H as

(2.10) Hij =

{
eıθij , {i, j} ∈ E,
0, {i, j} /∈ E,

where ı =
√
−1. The matrix H is Hermitian, i.e., Hij = H̄ji, because the offsets are skew-

symmetric; i.e., θij = −θji mod 2π. As H is Hermitian, its eigenvalues are real. The second
step of the synchronization algorithm is to compute the top eigenvector v1 of H with maximal
eigenvalue, and to derive an estimator θ̂1, . . . , θ̂n for the angles in terms of this top eigenvector
as

(2.11) eıθ̂i =
v1(i)

|v1(i)|
, i = 1, . . . , n.

The motivation and analysis of this eigenvector-based synchronization algorithm are detailed
in [23].

3. Hairy ball theorem. Unfortunately, the top eigenvector of H constructed with the
offset angles given in (2.1) does not provide rotation angles that would bring all the projection
images in sync. This is due to the fact that such rotation angles simply do not exist! That is,
there is no way to rotate all images such that every pair of images with nearby viewing angles
would be rotationally aligned. This somewhat surprising fact is a consequence of the topology
of S2 and, more specifically, a mathematical theorem known as the hairy ball theorem.

3The explanation for this incorrectness is given in section 3.
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The hairy ball theorem says that a continuous tangent vector field to S2 must vanish at
some point on the sphere. In other words, if f is a continuous function that assigns a vector
in R

3 to every point v on the sphere such that f(v) is always tangent to the sphere at v, then
there is at least one v ∈ S2 such that f(v) = 0. The theorem attests to the fact that it is
impossible to comb a hairy (spherical) cat without creating a cowlick. For example, consider
the tangent vector field f given by

(3.1) f(v) = v ×

⎛
⎝ 0

0
1

⎞
⎠ =

⎛
⎝ y

−x
0

⎞
⎠ for v =

⎛
⎝ x

y
z

⎞
⎠ .

The tangent vector field f is continuous but vanishes at the north and south poles ±(0, 0, 1).
The normalized tangent vector field

f

‖f‖ =
1√

x2 + y2
f =

1√
1− z2

f

is discontinuous at the poles z = ±1. The hairy ball theorem implies that any attempt to
find a nonvanishing continuous tangent vector field to the sphere would ultimately fail. An
elementary proof of the theorem can be found in [18].

We now explain the way the hairy ball theorem relates to the rotational alignment problem
of the projection images. Each projection image P whose corresponding rotation is R can
be viewed as a tangent plane to S2 at the viewing direction v = v(R) = R3. The first two
columns of R, namely, R1 and R2, are vectors in R

3 that form an orthogonal basis for the
tangent plane. Together with the imaging direction v they make an orthogonal basis of R3. An
in-plane rotation of the projection image can thus be viewed as changing the basis vectors R1

and R2 while keeping v fixed. A successful rotational alignment of all projection images means
that we can choose orthogonal bases to all tangent planes such that the basis vectors vary
smoothly from one tangent plane to the other. However, this is a contradiction to the hairy
ball theorem! We conclude that the rotational alignment of all images cannot be considered
as an angular synchronization problem, because there does not exist a set of angles θ1, . . . , θn
such that θij = θi − θj, not even approximately. We refer the reader to Appendix B for a
discussion about the relevance of the hairy ball theorem in the discrete case of a finite number
of images.

4. Parallel transport and spectral properties of the class averaging matrix. We note
that (2.8) can hold (approximately) without (2.9). So, instead of getting too pessimistic from
the hairy ball theorem, we observe that the matrix H is a well-defined Hermitian matrix,
and nothing prevents us from computing its eigenvectors and eigenvalues. In fact, we expect
the eigenvectors of H to somehow capture the consistency relation (2.8) and all higher-order
consistency constraints that correspond to cycles longer than three. The question is whether
or not the eigenvectors of H are meaningful in the sense that they will allow us to identify
images with nearby viewing angles, and if so, how?

We show that there is indeed a relatively simple algorithm that successfully identifies im-
ages with nearby viewing directions using the top three (or more) eigenvectors of H. The
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underpinning of the algorithm is the connection between the matrix H and the parallel trans-
port operator on the sphere. To that end, consider the case in which the underlying graph is
a neighborhood graph on S2, without any shortcut edges.4 More specifically, we assume that
the neighborhood of every vertex corresponds to a small spherical cap with an opening angle
α; that is, if v1, v2 ∈ S2 are two different viewing angles, then there is an edge between v1 and
v2 iff 〈v1, v2〉 > cosα. We denote the resulting matrix by Hclean to emphasize that there are
no shortcut edges, which will be the case if the matrix is constructed from clean projection
images that contain no noise.

As mentioned earlier, we may think of a projection image P with corresponding rotation
matrix R as living on the tangent plane to the sphere at the viewing angle v = R3. The
tangent plane at the point v can be identified with the standard Euclidean plane R2 using the
first two columns R1, R2 of R. Let us denote5 this copy of R2 by TR. In addition, we note
that TR can be further identified with C: any vector (ab ) ∈ TR is identified with the complex
number z = a+ıb ∈ C. This complex structure is the one induced from the orientation defined
by the viewing angle v.

Between any two nonantipodal points vi, vj ∈ S2 there is a unique geodesic line (a great
circle) that connects them. We can slide any vector tangent to the sphere at vj along this
geodesic line in such a way that the sliding vector remains tangent to the sphere until it
reaches the point vi, where it becomes a tangent vector to the sphere at vi. During this
transportation, we make sure that the angle that the tangent vector makes with the geodesic
remains constant. The transportation that takes vectors in TRj to vectors in TRi is a linear
transformation denoted by TRi,Rj : TRj �→ TRi and is known in differential geometry as the
parallel transport operator on the sphere [7, Chapter 4] (see Figure 5).

The main observation is that whenever two projection images Pi and Pj have nearby
viewing angles vi and vj satisfying 〈vi, vj〉 > cosα, the matrix element Hclean

ij = eıθij is an
approximation to the parallel transport operator TRi,Rj : TRj �→ TRi , viewed as an operator

from C to C. That is, if zj ∈ TRj , then e
ıθijzj ≈ TRi,Rjzj ∈ TRi (in Appendix A.5 we give the

explicit formula of the parallel transport operator on the sphere and show that it coincides
with the rotation implied by the optimization procedure (2.3)).

This implies that the limiting class averaging matrix H = limn→∞ 1
nH

clean in the limit
of an infinite number of clean images whose viewing angles are independently drawn from
the uniform distribution on S2 is a local version of the parallel transport operator T on the
sphere. The parallel transport operator takes tangent vector fields to the sphere to tangent
vector fields on the sphere. The (global) parallel transport operator T can be written in terms
of the following integral over SO(3):

(4.1) (T f)(R) =
∫
SO(3)

TR,Uf(U) dU,

4We remind the reader at this point that the molecule is assumed to be generic and in particular to have a
trivial point group symmetry (that is, it has no special symmetry), to ensure that projection images taken at
different imaging directions cannot be perfectly rotationally aligned.

5Our notation is somewhat nonstandard. The reader should not confuse TR with the tangent plane to
SO(3) at the point R. For us, TR denotes the tangent plane to S2 at the point v(R), where the subscript R
conveys the information that we equip this tangent space with the orthonormal basis given by the columns
R1, R2 of the matrix R.
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Figure 5. Illustration of the parallel transport operator on the sphere (taken from http://en.wikipedia.org/
wiki/Connection (mathematics)).

where dU is the uniform (invariant Haar) measure over SO(3), and f is any complex-valued
function on SO(3) satisfying f(R) ∈ TR for all R ∈ SO(3). We define the local parallel
transport operator Th by the integral

(4.2) (Thf)(R) =
∫
U∈SO(3): 〈v(U),v(R)〉>1−h

TR,Uf(U) dU,

where h = 1− cosα ∈ [0, 2] and α is the opening angle of the spherical cap. To conclude, we
obtain

(4.3) H = Th.

In this regard, the matrix Hclean should be considered as a discretization of Th. Note that
from the experimental data obtained from rotationally aligning the images we are only able to
extract (a discretization of) the local parallel transport operator. This is due to the fact that
we do not know at this point how to transport vectors between projection images (tangent
planes) whose viewing angles are far apart, because the angle θij obtained from the rotational
alignment (2.1) of dissimilar images is meaningless in such cases in the sense that it has
nothing to do with parallel transportation.

It follows that the spectral properties of the matrix Hclean are governed by the spectral
properties of the operator Th. We now state without proof6 a few results concerning the
spectrum of Th.

The first result states that the multiplicities of the eigenvalues λn(h) of Th are 3, 5, 7, 9, . . . ,
that is, the following:

The multiplicity of λn(h) is 2n+ 1, n = 1, 2, . . . .

6For a complete proof of the results we refer the curious reader to [13], which builds on the analysis presented
in [12].

http://en.wikipedia.org/wiki/Connection_(mathematics)
http://en.wikipedia.org/wiki/Connection_(mathematics)
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Note that the multiplicity 1 that appears in the angular synchronization problem disappears
from the spectrum of Th, a fact that may be attributed to the hairy ball theorem. The precise
formula for the first four eigenvalues is

λ1(h) =
1

2
h− 1

8
h2,

λ2(h) =
1

2
h− 5

8
h2 +

1

6
h3,

λ3(h) =
1

2
h− 11

8
h2 +

25

24
h3 − 15

64
h4,

λ4(h) =
1

2
h− 19

8
h2 +

27

8
h3 − 119

64
h4 +

7

20
h5.

These formulas are valid for all values of h ∈ [0, 2]. The graphs of λn(h), for n = 1, 2, 3, 4, are
given in Figure 6.

0 0.5 1 1.5 2
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0

0.1
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0.4
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h

λ n(h
)

 

 

n=1
n=2
n=3
n=4

Figure 6. The eigenvalues λn(h) of the local parallel transport operator Th for n = 1, 2, 3, 4.

The second result states that the eigenspace of multiplicity 3 (n = 1) corresponds to the
largest eigenvalue of Th. That is, λ1(h) > λn(h) for n ≥ 2 and for all h ∈ [0, 2]. For example,
Figure 6 demonstrates that λ1(h) dominates λ2(h), λ3(h), and λ4(h). The spectral gap is
evident from Figure 6, which shows that for small values of h the second largest eigenvalue
among the first four eigenvalues is λ2(h). In fact, λ2(h) > λn(h) for all h ≤ 1/2 and n ≥ 3
(note that λ2(h) has its maximum at h = 1/2). Hence, the spectral gap Δ(h) is

(4.4) Δ(h) = λ1(h) − λ2(h) =
5

8
h2 − 1

8
h2 − 1

6
h3 ∼ 1

2
h2 for h	 1.

The third result states that if Ri, Rj ∈ SO(3) are two rotations, and ψ1, ψ2, ψ3 form an
orthonormal basis for the top eigenspace of Th of multiplicity 3, that is, ψ1, ψ2, ψ3 are the top
three eigenfunctions of Th satisfying

Thψm = λ1(h)ψm, m = 1, 2, 3,
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then

(4.5) 〈v(Ri), v(Rj)〉 = 2
|〈Ψ(Ri),Ψ(Rj)〉|
‖Ψ(Ri)‖‖Ψ(Rj)‖

− 1,

where for every rotation R ∈ SO(3) we define the vector Ψ(R) ∈ C
3 as

(4.6) Ψ(R) = (ψ1(R), ψ2(R), ψ3(R)).

Note that the dot product on the left-hand side of (4.5) is between vectors in R
3, while the dot

product and norms on the right-hand side are of vectors in C
3. The result (4.5) means that the

top three eigenvectors of H allow us to express the dot product between the unknown viewing
angles v(Ri) and v(Rj) in terms of the Hermitian dot product between their corresponding

unit vectors Ψ(Ri)
‖Ψ(Ri)‖ and

Ψ(Rj)
‖Ψ(Rj)‖ in C

3. The third result is of extreme importance as it lies

at the heart of our algorithm. In Appendix A we give an elementary proof of this result.
That proof requires neither knowledge of representation theory nor familiarity with the tools
developed in [12, 13].

5. Algorithm. Taking these three spectral properties into account leads to a simple algo-
rithm for finding images that correspond to similar viewing angles. The input to the algorithm
consists of n projection images P1, . . . , Pn (n is often twice as large as the number of raw im-
ages, because for every raw image we artificially add its mirrored image). We now detail the
various steps of the algorithm:

1. Compute the rotationally invariant distances7 dij and the optimal alignment angles
θij as in (1.3) and (2.1) between all pairs of images.8

2. Construct the sparse n × n Hermitian matrix H as defined in (2.10), with the edge
set E defined in (2.7) or, preferably, by taking the N nearest neighbors of every image
(where N 	 n is a fixed parameter).

3. Since some vertices may have more edges than others, we define H̃ = D−1H, where
D is an n× n diagonal matrix with Dii =

∑n
j=1 |Hij|. Notice that H̃ is similar to the

Hermitian matrix D−1/2HD−1/2.
4. Compute the top three normalized eigenvectors of H̃, denoted ψ1, ψ2, ψ3 ∈ C

n. Since
H̃ is a sparse matrix, its top three eigenvectors are most efficiently computed using an
iterative method, such as the MATLAB eigs function.

5. Use ψ1, ψ2, ψ3 to define n vectors Ψ1, . . . ,Ψn ∈ C
3 by

(5.1) Ψi = (ψ1(i), ψ2(i), ψ3(i)), i = 1, . . . , n,

where ψj(i) is the ith entry of the vector ψj (j = 1, 2, 3).

7The specific metric to measure distances between images need not be the Euclidean distance, and we leave
its specific choice to the user. It is possible of course to first denoise the images (e.g., by applying a radial
mask and filtering) and normalize the images (so that all of them have the same Euclidean norm) in order to
have distances that are statistically more significant.

8There is no need to store all O(n2) distances and rotation angles. To save on storage we store only distances
and angles corresponding to edges in the graph defined in step 2.
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6. Define a measure of affinity Gij between images Pi and Pj as

(5.2) Gij = 2
|〈Ψi,Ψj〉|
‖Ψi‖‖Ψj‖

− 1, i, j = 1, . . . , n.

7. Declare neighbors of Pi as

(5.3) neighbors of Pi = {j : Gij > 1− γ},

where 0 < γ 	 1 controls the size of the neighborhood, or, alternatively, it is also
possible to choose some fixed number of the largest Gij values to define neighbors.

In section 6 we consider a specific model for which the algorithm is shown to successfully
detect the true neighbors, while in section 7 we detail the results of numerous experiments that
demonstrate its usefulness in practice. Moreover, in subsection 7.4 we describe a generalization
of the algorithm that uses more than three eigenvectors and discuss the reason for which it
succeeds even if the viewing directions are not uniformly distributed.

6. Probabilistic model and random matrix theory. We now explain why the algorithm
succeeds in identifying the true neighbors. To that end, we will assume a specific probabilistic
model for the entries of H. Our simplified model tries to capture and approximate the main
features of the matrix H when it is constructed by computing rotationally invariant distances
and optimal angles between noisy images.

We start by randomly generating n rotations R1, . . . , Rn uniformly (according to the Haar
measure) on SO(3). Our model assumes that if Pi and Pj are two projection images whose
viewing angles both belong to a small spherical cap of size α, then with probability p the
rotationally invariant distance dij will be small enough such that there would be an edge
between them in the graph (i.e., {i, j} ∈ E) and that the optimal angle θij would be accurate
in the sense that it would be given by (2.5)–(2.6). With probability 1 − p the distance dij
is not small enough for creating an edge between i and j, and instead there would be a link
between i to some random vertex, drawn uniformly at random from the remaining vertices
(not already connected to i). We assume that if the link between i and j is a random link
(such that the corresponding viewing angles are far away from each other), then the optimal
in-plane rotation angle θij is uniformly distributed in [0, 2π). In our model, the only links
existing between projection images Pi and Pj whose viewing angles do not belong to a small
spherical cap of size α are these shortcut edges obtained by rewiring other good links, and
there are no other links between them. In other words, our model assumes that the underlying
graph of links between noisy images is a small-world graph on the sphere, with edges being
randomly rewired with probability 1 − p. The angles take their correct values for true links
and random values for shortcut edges.

The matrix H is a random matrix under this model. Since the expected value of the
random variable eıθ vanishes for θ ∼ Uniform[0, 2π), that is, Eeıθ = 0, we have that the
expected value of the matrix H is

(6.1) EH = pHclean,

where Hclean is the class averaging matrix that corresponds to p = 1 obtained in the case that
all links and angles are inferred correctly. Here we take full advantage of our construction of
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H that sets the elements of H to be complex-valued numbers that average to 0 (instead of
nonnegative entries like 0 and 1 of the adjacency matrix that cannot have zero mean). We
conclude that the matrix H can be decomposed as

(6.2) H = pHclean +R,

where R is a random matrix whose elements are independent and identically distributed
(i.i.d.) zero mean random variables with finite moments (the elements of R are all bounded).
The decomposition (6.2) is extremely useful, as it means that the top eigenvectors of H
approximate the top eigenvectors of Hclean as long as the 2-norm of R is not too large.
Bounds on the spectral norm of random sparse matrices are proved in [16, 15]. Adapting [16,
Theorem 2.1, p. 126] to our case shows that ‖R‖2 = O(α

√
n) with high probability, since the

average degree of the graph is n sin2 α
2 = O(α2n). In the next section we provide the results

of numerical experiments from which it seems that the distribution of the eigenvalues of R
follows Wigner’s semicircle law [30, 31]. Moreover, we note that the spectral norm of Hclean

is O(nα2), since 1
nH

clean converges to the operator H (given in (4.2)) whose spectral norm is
O(h) = O(α2). Similarly, the spectral gap of Hclean is O(nh2) = O(nα4), since the spectral
gap of H is O(h2) = O(α4) (see (4.4)). The decomposition (6.2) and the bound on ‖R‖2
imply that the top three eigenvectors of H approximate the top three eigenvectors of Hclean

as long as ‖R‖2 is smaller than the spectral gap of pHclean or, equivalently, for p > pc, where
pc = pc(α, n) = O( 1

α3
√
n
) is the threshold probability that depends on the size of the cap and

the number of images.
As discussed earlier, the matrix 1

nH
clean converges almost surely to the operator H in the

limit n→ ∞. This convergence rate is at least as fast as 1√
n
due to the law of large numbers.

Altogether, it follows that for large enough n, the linear span of the top three eigenvectors
of H is a discrete approximate of the top eigenspace of H, because the top eigenvectors of H
approximate the top eigenvectors of Hclean, but these approximate the top eigenfunctions of
H. Finally, the spectral properties of H (section 4) ensure the success of the algorithm under
this probabilistic model.

7. Numerical experiments. We conducted two types of numerical experiments. The first
type involves simulations of the probabilistic model of section 6. The second type mimics
the experimental setup by applying the algorithm to noisy simulated projection images of a
given 3D volume. We point out that there is no direct way to compare the performance of
classification algorithms on real microscope images, since their viewing angles are unknown.
The only way to compare classification algorithms on real data is indirectly, by evaluating
the resulting 3D reconstructions. Here we conduct only numerical experiments from which
conclusions can be drawn directly.

All experiments in this section were executed on a Linux machine with eight Xeon 2.93GHz
cores and 48GB of RAM. Unless otherwise specified, the executed code was not parallelized
and so only one core was active.

7.1. Experiments with the probabilistic model. The purpose of the first experiment
of this type is to illustrate the emergence of Wigner’s semicircle law and the performance
of the algorithm for n = 1000, cosα = 0.7 (α = 45.6◦), and different values of p. We
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chose this relatively small value for n (n = 1000), because showing the semicircle requires
the computation of all eigenvalues of H, not just the few top ones that are required by the
algorithm. Also, the value of α = 45.6◦ is too large to be considered realistic, as it implies that
projection images whose viewing angles differ by as much as 45◦ are similar enough to have
a small rotationally invariant distance. We chose this high value of α so that the underlying
graph would have enough edges and the spectral gap would be noticeable. The number of
graph edges in this experiment is m ≈ 37,500. We emphasize once again that the purpose of
this experiment is of an illustrational nature.

Figure 7 summarizes the results of the first experiment. Evident from the histogram of
the eigenvalues of H (left column) is the emergence of the semicircle that gets slightly wider
as p decreases (the right edges of the semicircles never exceed 25). The multiplicities 3, 5, 7, . . .
of the top eigenvalues are clearly demonstrated in the bar plots of the eigenvalues (middle
column). The top three eigenvalues of H are separated from the semicircle as long as p is
not too small. Note that the decrease of these three eigenvalues as p is decreased stands in
full agreement with (6.2), which shows that they scale linearly with p as they correspond to
the eigenvectors of Hclean. The right column shows scatter plots of the Gij values that were
estimated from the algorithm (y-axis) against the dot products 〈vi, vj〉 of the simulated (true)
rotations R1, . . . , Rn with vi = R3

i , i = 1, . . . , n. Figure 7(c) shows that the dot products
between the normalized unit vectors in C

3 that are computed from the top three eigenvectors
of H are equal (up to numerical errors) to the dot products of the corresponding viewing
angles. In particular, large Gij values imply large 〈vi, vj〉 values; that is, they indicate the
correct neighbors. The scattered points get more spread as the value for p decreases. The
numerical results show that the spreading is wider for large distances (small values of the
dot product, bottom-left corner) and is narrower for small distances. This narrowing near the
top-right corner is very appealing, because it allows us to better distinguish the true neighbors.

In the second experiment, we used parameter values that are more realistic: n = 40,000,
cosα = 0.95 (α = 18.2◦), and different values of p. The number of edges was m ≈ 107.
The running time for each value of p was about 2 minutes, which includes the construction
of the graph and the computation of the top 20 eigenvalues of H using the MATLAB eigs
function. Note that this running time is negligible compared to the time required to compute
all n(n−1)/2 rotationally invariant distances. The results of this experiment are summarized
in Figure 8. The spectral gap between the top three eigenvalues of H and the remaining
spectrum, though small, is noticeable even for p = 0.1 (90% false links), and even the mul-
tiplicities 5 and 7 are easily distinguishable (see Figure 8(d)). The estimated Gij ’s provide
a very good approximation to the dot products 〈vi, vj〉 between the true viewing angles, and
the approximation is especially good for neighboring pairs, even for p = 0.2 (80% of shortcut
edges), as can be seen in Figure 8(h). Even for p = 0.1 (Figure 8(i)), the identification of the
neighbors based on the large Gij values is quite good, and there are only a few images that
the algorithm would confusingly consider as neighbors.

7.2. Experiments with noisy simulated images. In the second series of experiments, we
tested the eigenvector method on different sets of 20,000 simulated noisy projection images
of the ribosomal 50S subunit, each set corresponding to a different level of noise. Including
the mirrored images, the total number of images was n = 40,000. The simulated images
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Figure 7. n = 1000, α = 45.6◦, and different values of p. Left column: histogram of the eigenvalues of H.
Middle column: bar plot of the top 50 eigenvalues of H. Right column: scatter plot of Gij as estimated in step
6 of the algorithm (y-axis) against the dot product of the true simulated viewing angles 〈vi, vj〉 (x-axis).
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Figure 8. n = 40000, α = 18.2◦, and different values of p. Top two rows: bar plot of the top 20 eigenvalues
of H. Bottom two rows: scatter plot of Gij as estimated in step 6 of the algorithm (y-axis) against the dot
product of the true simulated viewing angles 〈vi, vj〉 (x-axis).
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(a) Clean (b) SNR=1 (c) SNR=1/2 (d) SNR=1/4 (e) SNR=1/8

(f) SNR=1/16 (g) SNR=1/32 (h) SNR=1/64 (i) SNR=1/128 (j) SNR=1/256

Figure 9. Simulated projection with various levels of additive Gaussian white noise.

were generated as noise-free centered projections of the macromolecule, whose corresponding
rotations were uniformly distributed on SO(3). Each projection was of size 129 × 129 pixels.
Next, we fixed a signal-to-noise ratio (SNR), and added to each clean projection additive
Gaussian white noise of the prescribed SNR. The SNR in all our experiments is defined by

(7.1) SNR =
Var(Signal)

Var(Noise)
,

where Var is the variance (energy), Signal is the clean projection image, and Noise is the
noise realization of that image. Figure 9 shows one of the projections at different SNR levels.

For each set of n = 40,000 simulated images with a fixed SNR, we need to compute all
(n
2

)
rotationally invariant distances (1.3) and optimal alignment angles (2.1). This computation
can be quite time consuming. Also, we need to pay special attention to making the compu-
tation accurate, as it involves rotating images that are specified on a Cartesian grid rather
than on a polar grid. There are quite a few papers that deal with the problem of fast and
accurate rotational alignment of images; see, e.g., [22, 14, 6]. In the experiments reported
here we rotationally align the images using a method that we recently developed that uses a
steerable basis of eigenimages [21, 32]. Using this method, we computed the

(
40,000

2

)
rotational

alignments in about 30 minutes using all eight cores (here the computation ran in parallel).
The images are first radially masked since pixels near the image boundaries (also known as
the “ears”) correspond to noise rather than signal. Then, the masked images are linearly pro-
jected onto the subspace spanned by a specified number M of eigenimages that correspond
to the largest eigenvalues of the images’ covariance matrix. After this linear projection, the
images are represented by their M expansion coefficients instead of their original pixelwise
representation, thus achieving significant compression for M 	 1292. This compression not
only facilitates a faster computation for rotational alignment but also amounts to filtering.
The particular choice of M can be assisted by inspecting the numerical spectrum of the co-
variance matrix, but we do not go into the details of this procedure. For SNR = 1/64 we used
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Figure 10. Histograms of the angle (in degrees, x-axis) between the viewing directions of 40,000 images and
the viewing directions of their 40 nearest neighboring images as found by computing the rotationally invariant
distances.
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Figure 11. Bar plots of the 10 largest eigenvalues {λi}10i=1 of H̃. Since the eigenvalues are very close to 1,
the y-axis corresponds to 1− λ.

M = 55 eigenimages, for SNR = 1/32 we used M = 90, for SNR = 1/16 we used M = 120,
and for higher values of the SNR we used M = 200.

The histograms of Figure 10 demonstrate the ability of small rotationally invariant dis-
tances to indicate images with similar viewing directions. For each image we use the rotation-
ally invariant distances to find its 40 nearest neighbors among the entire set of 40,000 images.
In our simulation we know the original viewing directions, so for each image we compute the
angles (in degrees) between the viewing direction of the image and the viewing directions
of its 40 neighbors. Small angles indicate successful identification of “true” neighbors that
belong to a small spherical cap, while large angles correspond to outliers, that later lead to
shortcut edges in the graph. We see that for SNR = 1/2 there are no outliers, and all the
viewing directions of the neighbors belong to a spherical cap whose opening angle is about 8◦.
However, for lower values of the SNR, there are outliers, indicated by arbitrarily large angles
(all the way to 180◦).

After computing the rotationally invariant distances and optimal alignment angles, we
use the N = 40 nearest neighbors of each image to construct the sparse matrix H using the
“intersection” rule (i.e., {i, j} ∈ E iff i is one of the 40 nearest neighbors of j and j is one of the
40 nearest neighbors of i). Note that, following the application of the intersection rule, it may
happen (especially for low values of the SNR) that some vertices are of degree 0 (i.e., vertices
that have no links with other vertices). We delete from the matrix H the rows and columns
corresponding to degree 0 vertices. After this removal, it is still possible for different vertices
to have different degrees (between 1 and 40), rendering the importance of the normalization
step H̃ = D−1H. We then compute the eigenvectors and eigenvalues of H̃. Figure 11 shows
the top 10 eigenvalues of H̃ for different values of the SNR. The multiplicity 3, and even the
multiplicity 5, are evident for high values of the SNR, such as SNR = 1/2 and SNR = 1/16.
Figure 12 shows scatter plots of the dot products between the viewing directions 〈vi, vj〉 and
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Figure 12. Scatter plots of Gij (computed from the top three eigenvectors of H̃) against 〈vi, vj〉.

the Gij ’s that are deduced from the computed eigenvectors. For SNR = 1/2, SNR = 1/16,
and SNR = 1/32 we get the desired linear correspondence between 〈vi, vj〉 and Gij from which
we can infer the true neighbors. For SNR = 1/64 we do not get the desired spectrum, and
from the values of Gij we cannot infer the true neighbors. Still, a closer examination of the
scatter plot for SNR = 1/64 reveals that points are not scattered randomly but rather have
some structure. In section 7.4 we discuss how to improve the identification of true neighbors,
but already at this point we have established that our method works well even for SNR as
low as 1/32.

7.3. Numerical comparison with diffusion maps. We compared our algorithm against
what we refer to as the “diffusion maps” approach. Diffusion maps were introduced in [3], but
here we do not assume the reader to be familiar with that method in its generality. We are not
aware of any earlier attempts to apply diffusion maps for the solution of the class averaging
problem in cryo-EM. We note, however, that the diffusion maps approach presented below is
quite similar to our solution to the problem of two-dimensional (2D) random tomography [5],
where the goal is to find the unknown viewing angles of one-dimensional (1D) tomographic
projections of an unknown 2D object; see also [1, 2]. In that regard, we emphasize that the
main difference between the 3D cryo-EM class averaging problem and its 2D counterpart is
perhaps the extra angular information that we encode in the class averaging matrix H. This
angular information does not exist in the 2D problem, where 1D projection signals (instead
of 2D images) are compared.

In the diffusion maps approach, the matrix H is replaced by the adjacency matrix A of
the graph G = (V,E). Specifically,

(7.2) Aij =

{
1, {i, j} ∈ E,
0, {i, j} /∈ E.

Notice that Aij = |Hij|. We normalize the matrix A the same way we normalized H. That

is, we define Ã as Ã = D−1A. Under the “clean” model of section 6, the eigenvectors of A
approximate the eigenfunctions of an integral operator over the sphere whose kernel function
is the characteristic function of a small spherical cap. As such, this operator commutes with
rotations, and from the Funk–Hecke theorem [19, p. 195] it follows that its eigenfunctions
are the spherical harmonics, whose multiplicities are 1, 3, 5, . . . (see, e.g., the discussion in [4,
section 4.4]). In particular, the second, third, and fourth eigenvectors φ2, φ3, and φ4 of Ã
correspond to the linear spherical harmonics x, y, and z (multiplicity 3), where v = (x, y, z)
is the viewing direction. The first eigenvector φ1 corresponds to the constant function and is
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Figure 13. Bar plots of the 10 largest eigenvalues {λi}10i=1 of Ã. Since the eigenvalues are very close to 1,
the y-axis corresponds to 1− λ.
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Figure 14. Scatter plots of G′
ij (computed from the second, third, and fourth eigenvectors of Ã) against

〈vi, vj〉.
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Figure 15. SNR = 1/40: scatter plots using the eigenvectors of H̃ (left) and using the eigenvectors of Ã
(right).

therefore not required by this method. This motivates us to define

Φi = (φ2(i), φ3(i), φ4(i))

and

G′
ij =

〈Φi,Φj〉
‖Φi‖‖Φj‖

.

The above discussion implies that under the “clean” model of section 6 we have that G′
ij =

〈vi, vj〉.
Figure 13 depicts bar plots of the largest 10 eigenvalues of the matrix Ã for different values

of the SNR. Notice that λ1 = 1 and that the multiplicity 3 of λ2, λ3, λ4 and the multiplicity
5 of λ5, . . . , λ9 are evident for SNR = 1/2 and SNR = 1/16. Figure 14 shows scatter plots of
G′

ij against 〈vi, vj〉. The diffusion maps approach works well even for SNR = 1/32, but also
breaks down for SNR = 1/64.

From the numerical experiments shown thus far we cannot conclude that the eigenvectors
of H̃ outperform the eigenvectors of Ã in terms of improving the identification of the true
neighbors. We therefore conducted another experiment with SNR = 1/40. From Figure 15 we
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draw the conclusion that the method based on the matrix H̃ outperforms the diffusion maps
approach.

7.4. Using more than three eigenvectors. Thus far we have seen the usefulness of the H
matrix method for SNRs as low as 1/40, but it was not successful for SNR = 1/64. Also, the
reader may question the validity of the assumption that the viewing directions are uniformly
distributed over the sphere, an assumption that seems essential in order to get the linear
relation between Gij and 〈vi, vj〉. We now address these important issues using both theory
and numerical simulations.

The first point that we would like to make here is that in the class averaging problem,
we are not required to find the viewing directions of the images. We just need to find images
with similar viewing directions. Once the neighboring images are identified, they can be
rotationally aligned and averaged to produce images of higher SNR, and later procedures that
are based on common lines and refinements can be used to deduce the viewing directions of
the class averages. Asking for the viewing directions is perhaps too much to require at this
preliminary stage of the data processing. Instead, we can settle for improving our identification
of neighbors.

The second point that we raise is that the eigenvectors of the matrix H̃ approximate
the eigenfunctions of an integral operator over SO(3), even if the viewing directions are not
uniformly distributed. Since the eigenfunctions are continuous (they become more oscillatory
for smaller eigenvalues of H̃), it follows that the eigenvectors of H̃ do not change by much
(as tangent vector fields to the sphere) for images whose viewing directions are restricted to
the same spherical cap. However, we do not need to restrict ourselves to just the top three
eigenvectors as we have done up to this point. We can use more than just three eigenvectors
in order to identify images with similar viewing directions. Let K ≥ 3 be the number of
eigenvectors ψ1, ψ2, . . . , ψK that we use. For the ith image (i = 1, . . . , n) we define ΨK

i ∈ C
K

as

(7.3) ΨK
i = (ψ1(i), ψ2(i), . . . , ψK(i)).

Moreover, we define the similarity measure GK
ij between image i and image j as

(7.4) GK
ij =

|〈ΨK
i ,Ψ

K
j 〉|

‖ΨK
i ‖‖ΨK

i ‖
,

and we postidentify an image j as a neighbor of image i if GK
ij is large enough.

This classification method is proved to be quite powerful in practice. We applied it with
K = 80 to the set of noisy images with SNR = 1/64, for which we observed already that K = 3
failed. For every image we find its 40 nearest neighbors based on GK

ij . In the simulation
we know the viewing directions of the images, and we compute for each pair of suspected
neighboring images the angle (in degrees) between their viewing directions. The histogram of
these angles is shown in Figure 16(a). About 92% of the identified images belong to a small
spherical cap of opening angle 20◦, whereas this percentage is only about 65% when neighbors
are identified by the rotationally invariant distances (Figure 16(c)). For the diffusion maps
approach, it is also possible to use K ≥ 3 eigenvectors. The result of the diffusion maps
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Figure 16. SNR = 1/64. Histogram of the angles (x-axis, in degrees) between the viewing directions of
each image (out of 40,000) and its 40 neighboring images. (a) Neighbors are postidentified using K = 80
eigenvectors of H̃. (b) Neighbors are postidentified using 80 eigenvectors of Ã. (c) Neighbors are identified
using the original rotationally invariant distances.

approach with K = 80 is shown in Figure 16(b). Also for this modified diffusion maps
approach about 92% of the identified images are in a spherical cap of opening angle 20◦. We
remark that for SNR = 1/50 this percentage goes up to about 98%. We did not experiment
with SNRs below 1/64.

8. Summary and discussion. In this paper we introduced a new algorithm for identifying
cryo-EM noisy projection images with nearby viewing angles. This identification is an impor-
tant first step in 3D structure determination of macromolecules from cryo-EM, because once
identified, these images can be rotationally aligned and averaged to produce “class averages”
of better quality. The main advantage of our algorithm is its extreme robustness to noise.
The algorithm is also very efficient in terms of running time and memory requirements, as it
is based on the computation of the top few eigenvectors of a sparse Hermitian matrix. These
advantages were demonstrated in our numerical experiments.

The main core of our algorithm is a special construction of a sparse Hermitian matrix H.
The nonzero entries of H correspond to pairs of images whose rotationally invariant distances
are relatively small. The nonzero entries are set to take complex-valued numbers of unit
magnitude, with phases that are equal to the optimal in-plane rotational alignment angles
between the images. We show that images with nearby viewing angles are identified from the
top three eigenvectors of that matrix. The construction of the matrix H here is similar to the
construction in our solution to the angular synchronization problem [23]. The main difference
is that while angular synchronization required only the top eigenvector, here we need the top
three eigenvectors in order to identify images with nearby viewing directions. We explain this
difference using the topology of the sphere and, more specifically, the hairy ball theorem.

The robustness of the algorithm is guaranteed by random matrix theory, whose application
here is made possible by the special construction of H, since the average of points on the unit
circle in the complex plane is 0. The admissibility (correctness) of the algorithm follows from
the spectral properties of H, which result from the fact that H is a discretization of a local
version of the parallel transport operator on S2. The exact analysis of the spectral properties
of this local parallel transport operator are reported in [13] using representation theory.

The assumption that the viewing angles are uniformly distributed over S2 is important to
our spectral analysis, though it may not hold for some experimental data sets. We emphasize
that our algorithm identifies the correct neighbors also for nonuniform distributions, because
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the eigenvectors ofH (and H̃) are continuous as a function of the viewing directions, regardless
of the underlying distribution. In other words, a large value for Gij indicates that Pi and Pj

have similar viewing angles also in the case of a nonuniform distribution. We also showed
numerical results in which using more than three eigenvectors improves the identification of
the true neighbors.

Throughout this paper we assumed the homogeneity case, that is, that all images corre-
spond to the exact same 3D structure of the molecule. In the heterogeneity case, the molecule
may have several different conformations, so that projection images also need to be classified
accordingly. This classification is often extremely difficult, due to the low SNR of the images
and the similarity between the 3D structures of the different conformations. We believe that
the algorithm presented here may assist in solving the conformational classification problem.

We are currently applying our algorithms to real microscope image data sets. Handling
real microscope images requires paying special attention to issues such as the contrast transfer
function of the microscope that may be changing from one image to another, translational
alignment, and other practical issues that are beyond the scope of this paper. Finally, the ideas
presented here can be used in other applications that require a global rotational alignment of
images, such as the structure-from-motion problem in computer vision.

Appendix A. Parallel transport on the sphere and related operators. Our algorithm is
heavily based on (4.5), which provides a way to express the dot product between unknown
viewing angles using the Hermitian dot product between vectors in C

3 obtained from an
orthonormal basis of the maximal eigenspace of multiplicity 3 of the local parallel transport
operator Th. In this appendix we calculate an explicit orthonormal basis for this eigenspace
and give an elementary verification of identity (4.5) without using representation theory. In
passing, we make a few important observations about the parallel transport operator that go
beyond the mere purpose of identifying its maximal eigenspace. In particular, we relate the
parallel transport operator to two other integral operators, which we call the common lines
operator and the orthographic lines operator, first introduced in [24] and [12], respectively, as
well as their localized versions. At first we disregard the complex structure, thinking of TRi,Rj

as a map from R
2 to R

2.

A.1. Common lines and orthographic lines. One of the fundamental concepts in cryo-EM
is that of the common line [26, 27]: if Pi and Pj are two projection images with corresponding
rotations Ri and Rj , then the two planes v(Ri)

⊥ and v(Rj)
⊥ must have a common line of

intersection whose normalized direction in R
3 is the unit vector

(A.1)
v(Ri)× v(Rj)

‖v(Ri)× v(Rj)‖
=

R3
i ×R3

j

‖R3
i ×R3

j‖
.

Using the orthonormal bases R1
i , R

2
i for v(Ri)

⊥ and R1
j , R

2
j for v(Rj)

⊥, the unit vector (A.1)

is identified with the unit vectors cij ∈ TRi = R
2 and cji ∈ TRj = R

2, given by

(A.2) cij =

(
1 0 0
0 1 0

)
R−1

i

R3
i ×R3

j

‖R3
i ×R3

j‖
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and

(A.3) cji =

(
1 0 0
0 1 0

)
R−1

j

R3
i ×R3

j

‖R3
i ×R3

j‖
.

Note that the cross product satisfies

(Rw1)× (Rw2) = R(w1 × w2) for all R ∈ SO(3) and w1, w2 ∈ R
3.

The common lines (A.2)–(A.3) can therefore be simplified using

(A.4) R−1
i (R3

i ×R3
j ) = (R−1

i R3
i )× (R−1

i R3
j ) = I3 × U3 =

⎛
⎝ −U23

U13

0

⎞
⎠

and

(A.5) R−1
j (R3

i ×R3
j ) = (R−1

j R3
i )× (R−1

j R3
j ) = (U−1)3 × I3 =

⎛
⎝ U32

−U31

0

⎞
⎠ ,

where U = R−1
i Rj , U

3 is its third column, and I3 = (0 0 1)T is the third column of the 3× 3
identity matrix I. As rotations are isometries, we also have that

(A.6) ‖R3
i ×R3

j‖2 = ‖Ri(I
3 × U3)‖2 = ‖I3 × U3‖2 = (U13)

2 + (U23)
2 = 1− (U33)

2.

It follows from (A.4)–(A.6) that the common lines (A.2)–(A.3) are given by

cij =
1√

1− (U33)2

(
−U23

U13

)
(A.7)

and

cji =
1√

1− (U33)2

(
U32

−U31

)
.(A.8)

We proceed to define the orthographic lines oij and oji. Let õij ∈ R
3 be the normalized

projection of v(Rj) onto v(Ri)
⊥, given by

(A.9) õij =
〈R1

i , R
3
j 〉R1

i + 〈R2
i , R

3
j 〉R2

i√
1− 〈R3

i , R
3
j 〉2

,

and let õji ∈ R
3 be the normalized projection of v(Ri) onto v(Rj)

⊥, given by

(A.10) õji =
〈R1

j , R
3
i 〉R1

j + 〈R2
j , R

3
i 〉R2

j√
1− 〈R3

i , R
3
j 〉2

.
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We identify õij and õji with the vectors oij ∈ TRi and oji ∈ TRj , respectively, written explicitly
as

oij =
1√

1− 〈R3
j , R

3
i 〉2

( 〈R1
i , R

3
j 〉

〈R2
i , R

3
j 〉

)
=

1√
1− (U33)2

(
U13

U23

)
(A.11)

and

oji =
1√

1− 〈R3
j , R

3
i 〉2

( 〈R1
j , R

3
i 〉

〈R2
j , R

3
i 〉

)
=

1√
1− (U33)2

(
U31

U32

)
.(A.12)

The common lines (A.7)–(A.8) and the orthographic lines (A.11)–(A.12) are related through

(A.13) cij = Joij , cji = −Joji,

where

(A.14) J =

(
0 −1
1 0

)

is the 2× 2 rotation matrix by 90◦. Note that JT = J−1 = −J and that multiplication by J
is equivalent to multiplication by ı in the complex structure. From (A.13) it follows that the
orthographic lines are perpendicular to the common lines, that is, cTijoij = cTjioji = 0, because

xTJx = 0 for every x ∈ R
2.

A.2. Common lines kernel, orthographic lines kernel, and parallel transport kernel.
We define the orthographic lines kernel as the 2 × 2 rank-one matrix ORi,Rj that maps the
orthographic line oji to the orthographic line oij :

(A.15) ORi,Rj = oijo
T
ji =

1

1− (U33)2

(
U13

U23

)(
U31 U32

)
.

Similarly, we define the common lines kernel as the 2 × 2 rank-one matrix CRi,Rj that
maps the common line cji to the common line cij :

CRi,Rj = cijc
T
ji = Joij(−Joji)T = −JORi,RjJ

−1(A.16)

=
1

1− (U33)2

(
−U23

U13

)(
U32 −U31

)
.

Note that unlike the parallel transport kernel TRi,Rj , the orthographic lines kernel ORi,Rj

and the common lines kernel CRi,Rj do not respect the complex structure: they can be con-
sidered as maps from R

2 to R
2, but not as maps from C to C.

Lemma A.1. The parallel transport kernel TRi,Rj admits the decomposition

(A.17) TRi,Rj = CRi,Rj −ORi,Rj .
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Proof. The geometric definition of the orthographic line implies that õji is the normalized
velocity vector of the geodesic path from v(Rj) to v(Ri) at v(Rj). Similarly, the orthographic
line õij is the normalized velocity vector of the geodesic path from v(Ri) to v(Rj) at v(Rj).
The differential geometric definition of parallel transport means that TRi,Rj maps oji to −oij.
Moreover, since TRi,Rj is a rotation, it must also map Joji to −Joij . Therefore, in order to
verify that TRi,Rj is indeed given by (A.17), we need to check that it satisfies

(A.18) TRi,Rjoji = −oij

and

(A.19) TRi,RjJoji = −Joij,

but these follow immediately from (A.15), (A.16), and the orthogonality of the common lines
and the orthographic lines:

(CRi,Rj −ORi,Rj )oji = (cijc
T
ji − oijo

T
ji)oji = −oij,

(CRi,Rj −ORi,Rj )Joji = (−JoijoTjiJ−1 − oijo
T
ji)Joji = −Joij .

A.3. Global and local integral operators. Using the kernels CRi,Rj , ORi,Rj , and TRi,Rj

we define the integral operators C, O, and T as follows:

(Cf)(Ri) =

∫
SO(3)

CRi,Rjf(Rj) dRj ,

(Of)(Ri) =

∫
SO(3)

ORi,Rjf(Rj) dRj ,

(T f)(Ri) =

∫
SO(3)

TRi,Rjf(Rj) dRj ,

where f is a function from SO(3) to R
2. We refer to C, O, and T as the global common lines

operator, the global orthographic lines operator, and the global parallel transport operator,
respectively.

We also define the local integral operators Ch, Oh, and Th, for h ∈ [0, 2], as

(Chf)(Ri) =

∫
Rj∈SO(3) : 〈v(Ri),v(Rj )〉>1−h

CRi,Rjf(Rj) dRj ,(A.20)

(Ohf)(Ri) =

∫
Rj∈SO(3) : 〈v(Ri),v(Rj )〉>1−h

ORi,Rjf(Rj) dRj ,(A.21)

(Thf)(Ri) =

∫
Rj∈SO(3) : 〈v(Ri),v(Rj )〉>1−h

TRi,Rjf(Rj) dRj .(A.22)

We refer to Ch, Oh, and Th as the local common lines operator, the local orthographic lines
operator, and the local parallel transport operator, respectively.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

752 A. SINGER, Z. ZHAO, Y. SHKOLNISKY, AND R. HADANI

A.4. Preliminary spectral analysis of the local operators. The following lemma is key
to the characterization of the maximal eigenspace of Th.

Lemma A.2. Each of the three columns of

(A.23) F (R) =

(
1 0 0
0 1 0

)
R−1 =

(
R11 R21 R31

R12 R22 R32

)

is an eigenfunction of both Ch, Oh, and Th, with

(ChF )(R) =
1

4
hF (R),(A.24)

(OhF )(R) = −
(
1

4
h− 1

8
h2

)
F (R),(A.25)

(ThF )(R) =
(
1

2
h− 1

8
h2

)
F (R).(A.26)

Proof. Recalling that U = R−1
i Rj gives

(A.27) F (Rj) = F (RiU) =

(
1 0 0
0 1 0

)
U−1R−1

i =

(
U11 U21 U31

U12 U22 U32

)
R−1

i .

Together with (A.16) we obtain

(A.28) CRi,RjF (Rj) =
1

1− (U33)2

(
U23

−U13

)(
−U32 U31

)( U11 U21 U31

U12 U22 U32

)
R−1

i .

We note that

(
−U32 U31

)( U11 U21 U31

U12 U22 U32

)
=

(
−U32 U31 0

)⎛⎝ U11 U21 U31

U12 U22 U32

U13 U23 U33

⎞
⎠

= (I3 × (U−1)3)TU−1 = [U(I3 × (U−1)3)]T = (U3 × I3)T =
(
U23 −U13 0

)
,

which, substituting in (A.28), results in

CRi,RjF (Rj) =
1

1− (U33)2

(
U23

−U13

)(
U23 −U13 0

)
R−1

i

=
1

1− z2

(
y2 −xy 0
−xy x2 0

)
R−1

i ,(A.29)

where U3 =
(
x y z

)T
. Similarly,

ORi,RjF (Rj) =
1

1− (U33)2

(
U13

U23

)(
U31 U32

)( U11 U21 U31

U12 U22 U32

)
R−1

i

=
1

1− (U33)2

(
U13

U23

)
[(U−1)3 − U33I

3]TU−1R−1
i

=
1

1− (U33)2

(
U13

U23

)(
I3 − U33U

3
)T
R−1

i

=
1

1− z2

(
−zx2 −zxy x(1− z2)
−zxy −zy2 y(1− z2)

)
R−1

i .(A.30)
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From (A.29) and (A.30) it follows that the integrals over SO(3) defining ChF and OhF in
(A.20)–(A.21) collapse to the following integrals over S2:

(ChF )(Ri) =

∫
Cap(h)

1

1− z2

(
y2 −xy 0
−xy x2 0

)
dS R−1

i ,(A.31)

(OhF )(Ri) =

∫
Cap(h)

1

1− z2

(
−zx2 −zxy x(1− z2)
−zxy −zy2 y(1− z2)

)
dS R−1

i ,(A.32)

where Cap(h) = {(x, y, z) ∈ S2 : z > 1−h} and dS is the uniform measure over S2 satisfying∫
S2 dS = 1. In spherical coordinates

x = sin θ cosφ, y = sin θ sinφ, z = cos θ,

the cap is given by 0 ≤ φ < 2π and 0 ≤ θ < α, where cosα = 1−h and dS = 1
4π sin θ dθdφ. In

order to simplify (A.31)–(A.32) we calculate the following integrals using spherical coordinates
and symmetry whenever possible:

∫
Cap(h)

xy

1− z2
dS =

∫
Cap(h)

zxy

1− z2
dS =

∫
Cap(h)

x dS =

∫
Cap(h)

y dS = 0,

∫
Cap(h)

x2

1− z2
dS =

∫
Cap(h)

y2

1− z2
dS =

1

2

∫
Cap(h)

x2 + y2

1− z2
dS =

1

2

∫
Cap(h)

dS

=
1

2

1

4π

∫ 2π

0
dφ

∫ α

0
sin θ dθ =

1

4
(1− cosα) =

1

4
h,

∫
Cap(h)

zx2

1− z2
dS =

∫
Cap(h)

zy2

1− z2
dS =

1

2

∫
Cap(h)

z(x2 + y2)

1− z2
dS =

1

2

∫
Cap(h)

z dS

=
1

2

1

4π

∫ 2π

0
dφ

∫ α

0
cos θ sin θ dθ =

1

8
(1− cos2 α) =

1

4
h− 1

8
h2.

Substituting the values of the integrals above into (A.31)–(A.32) gives

(ChF )(Ri) =
1

4
h

(
1 0 0
0 1 0

)
R−1

i =
1

4
hF (Ri),

(OhF )(Ri) = −
(
1

4
h− 1

8
h2

)(
1 0 0
0 1 0

)
R−1

i = −
(
1

4
h− 1

8
h2

)
F (Ri).

Together with Lemma A.1 we have

(ThF )(Ri) = (ChF )(Ri)− (OhF )(Ri) =
1

4
hF (Ri) +

(
1

4
h− 1

8
h2

)
F (Ri)

=

(
1

2
h− 1

8
h2

)
F (Ri),

and the proof of the lemma is completed.
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Note that from (A.16) it follows that f : SO(3) �→ R
2 is an eigenfunction of the operator

Oh satisfying
(Ohf)(R) = λf(R) for all R ∈ SO(3),

iff Jf is an eigenfunction of the operator Ch satisfying

(ChJf)(R) = −λJf(R) for all R ∈ SO(3).

Indeed, suppose (Ohf)(R) = λf(R) for all R ∈ SO(3); then

(ChJf)(Ri) =

∫
〈v(Ri),v(Rj )〉>1−h

CRi,RjJf(Rj) dRj

=

∫
〈v(Ri),v(Rj )〉>1−h

−JORi,RjJ
−1Jf(Rj) dRj

= −J
∫
〈v(Ri),v(Rj )〉>1−h

ORi,Rjf(Rj) dRj = −λJf(Rj).

The other direction of the “iff” statement is verified in a similar manner. We conclude that
the three columns of JF (R) are also eigenfunctions of Th with the same eigenvalue λ1(h) =
1
2h− 1

8h
2. Overall, the multiplicity of the eigenvalue λ1(h) of Th is 6.

A.5. Complex structure of the parallel transport kernel. We return to the complex
structure and regard the parallel transport kernel TRi,Rj as a mapping9 from C to C. Since
parallel transport maps oji to −oij (A.11)–(A.12), the complex structure implies that

(A.33) TRi,Rj (U31 + ıU32) = −(U13 + ıU23),

and we conclude that the single matrix element for TRi,Rj is

(A.34) TRi,Rj = −U13 + ıU23

U31 + ıU32
.

We proceed to prove that the rotation angle θ̃ij of (2.5)–(2.6) obtained by optimal align-
ment of the bases (2.3) is the same rotation angle of the parallel transport kernel. Establishing
this fact would justify that the class averaging matrix H, which is computed from the image
data, is indeed the (discretized version of the) local parallel transport operator. Comparing
the expressions in (A.34) and (2.5)–(2.6), we conclude that the proof consists of verifying that
the identity

(A.35) −U13 + ıU23

U31 + ıU32
=

(U11 + U22) + ı (U21 − U12)√
(U11 + U22)

2 + (U21 − U12)
2

holds for all U ∈ SO(3) with v(U) �= ±(0, 0, 1)T (the parallel transport operator is not defined
for v(Ri) = ±v(Rj)). The sphere S3 ⊂ R

4 is a double cover of SO(3), and by Euler’s

9The parallel transport kernel TRi,Rj is either a 2×2 real-valued (rotation) matrix or a 1×1 complex-valued
matrix. Though our notation is ambiguous, the exact meaning of TRi,Rj should be clear from the context.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CLASSIFICATION OF CRYO-EM IMAGES BY EIGENVECTORS 755

formula, for any U ∈ SO(3) there corresponds a vector (a unit quaternion) (a, b, c, d) ∈ S3

(a2 + b2 + c2 + d2 = 1), unique up to its antipodal point (−a,−b,−c,−d), such that

(A.36) U =

⎛
⎝ a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd

2bc+ 2ad a2 − b2 + c2 − d2 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2

⎞
⎠ .

Using Euler’s formula (A.36), the right-hand side of (A.35) is given by

(U11 + U22) + ı (U21 − U12)√
(U11 + U22)

2 + (U21 − U12)
2
=

2(a2 − d2) + 4ıad

2(a2 + d2)
,

while the left-hand side is

−U13 + ıU23

U31 + ıU32
= −(U13U31 + U23U32) + ı(U23U31 − U13U32)

U2
31 + U2

32

= −−4(a2 − d2)(b2 + c2)− 8ıad(b2 + c2)

4(a2 + d2)(b2 + c2)
,

which verifies that the identity (A.35) holds for all U ∈ SO(3) with v(U) �= ±(0, 0, 1)T , and
the proof is completed.

A.6. Preliminary spectral analysis of the complex local parallel transport operator.
In the complex structure, multiplication by J is equivalent to multiplication by ı, so the
columns of JF (R) are linear combinations of the columns of F (R), and the multiplicity of the
eigenvalue λ1(h) of Th is only 3 (instead of 6 over the reals). We have the following pair of
lemmas.

Lemma A.3. The three functions ψ1, ψ2, ψ3 : SO(3) �→ C given by

ψ1(R) = R11 + ıR12,(A.37)

ψ2(R) = R21 + ıR22,(A.38)

ψ3(R) = R31 + ıR32(A.39)

are orthogonal eigenfunctions of Th satisfying

(A.40) Thψm = λ1(h)ψm, m = 1, 2, 3,

where

(A.41) λ1(h) =
1

2
h− 1

8
h2,

and

(A.42) ‖ψ1‖2 = ‖ψ2‖2 = ‖ψ3‖2 =
2

3
.
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Proof. The fact that ψ1, ψ2, ψ3 are eigenfunctions of Th with eigenvalue λ1(h) =
1
2h−

1
8h

2

follows immediately from (A.26) (Lemma A.2) and the complex structure. The orthogonality
of the eigenfunctions and their normalization are verified through

∫
SO(3)

F (R)TF (R) dR =

∫
SO(3)

R

⎛
⎝ 1 0

0 1
0 0

⎞
⎠(

1 0 0
0 1 0

)
R−1 dR

=

∫
SO(3)

R(I − I3(I3)T )R−1 dR =

∫
SO(3)

(I −R3R3T ) dR

= I −
∫
SO(3)

⎛
⎝ x2 xy xz

xy y2 yz
xz yz z2

⎞
⎠ dR = I − 1

3
I =

2

3
I,

where R3 =
(
x y z

)T
, and we used symmetry to calculate

∫
SO(3)

x2 dR =
1

3

∫
SO(3)

(x2 + y2 + z2) dR =
1

3

∫
SO(3)

dR =
1

3
.

Lemma A.4. Suppose ψ1, ψ2, ψ3 are the three eigenfunctions of Th given in (A.37)–(A.39),
and define Ψ : SO(3) �→ C

3 as

Ψ(R) = (ψ1(R), ψ2(R), ψ3(R)) for all R ∈ SO(3).

Then,

(A.43) 〈R3
i , R

3
j 〉 = 2

|〈Ψ(Ri),Ψ(Rj)〉|
‖Ψ(Ri)‖‖Ψ(Rj)‖

− 1

for all Ri, Rj ∈ SO(3).
Proof. We start the proof with an explicit computation of the absolute value of the

Hermitian dot product between Ψ(Ri) and Ψ(Rj):

|〈Ψ(Ri),Ψ(Rj)〉|2 = |〈R1
i + ıR2

i , R
1
j + ıR2

j 〉|2 = |(U11 + U22) + ı(U21 − U12)|2

= (U11 + U22)
2 + (U12 − U21)

2,(A.44)

where U = R−1
i Rj. The right-hand side of (A.44) can be further simplified using Euler’s

formula (A.36):

(U11 + U22)
2 + (U12 − U21)

2 = 4(a2 + d2)2 = (1 + U33)
2

for all U ∈ SO(3). Therefore,

(A.45) |〈Ψ(Ri),Ψ(Rj)〉|2 = (1 + U33)
2.

In particular,
‖Ψ(Ri)‖ = ‖Ψ(Rj)‖ =

√
2,
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because
‖Ψ(Ri)‖2 = 〈Ψ(Ri),Ψ(Ri)〉 = 1 + I33 = 2.

We conclude that
|〈Ψ(Ri),Ψ(Rj)〉|
‖Ψ(Ri)‖‖Ψ(Rj)‖

=
1 + U33√

2
√
2

or, equivalently,

〈R3
i , R

3
j 〉 = U33 = 2

|〈Ψ(Ri),Ψ(Rj)〉|
‖Ψ(Ri)‖‖Ψ(Rj)‖

− 1,

and the proof is completed.

Appendix B. Hairy ball theorem in the case of a finite number of images. One may
argue that we should not care too much about the hairy ball theorem, because the number
of images n is finite, so it is always possible to remove an arbitrarily small spherical cap from
the sphere that does not include any of the n viewing angles, and that the resulting chopped
sphere can be combed, using, e.g., the tangent vector field f given in (3.1). We move on
to explain that the hairy ball theorem affects the eigenvectors of the matrix H even when
the number of images is finite, and that the above argument for chopping off the sphere fails
already for moderate values of n.

To that end, recall that in the noise-free case, the underlying graph used to construct
H is a neighborhood graph on S2. It may be further assumed that an edge between Pi

and Pj exists iff the angle between their viewing angles is less than or equal to α, that is,
{i, j} ∈ E ⇐⇒ 〈vi, vj〉 > cosα. In other words, tilting the molecule by less than α results
in a projection image that is similar enough to be recognized as a neighbor of the original
(nontilted) image. Consider now the union of n spherical caps of opening angle α centered at
the viewing angles v1, . . . , vn. If this union of n spherical caps entirely covers the sphere, then
it would be impossible to chop an arbitrarily small cap off the sphere without affecting the
underlying graph and the matrix H. Since the surface area of a spherical cap with an opening
angle α is 4π sin2 α

2 , the total surface area covered by all n caps cannot exceed n4π sin2 α
2

(union bound). As the total surface area of the sphere is 4π, we see that a complete coverage
of the sphere with random spherical caps is impossible for n ≤ 1

sin2 α
2

. For such small values of

n we do not “see” the topology of the sphere through the connectivity graph, and the hairy
ball theorem would not be effective. However, we are much more interested in large values of
n corresponding to large image data sets that we want to class average in order to increase
the SNR.

For large values of n, the probability that the sphere is not fully covered is exponentially
small. The coverage problem of the sphere by random spherical caps is considered in [25,
Chapter 4, pp. 85–96]. Let Pr(n, α) be the probability that n random spherical caps of
opening angle α cover the sphere. Though we are not familiar with the exact value of Pr(n, α)
except for special values of α and n, it is easy to derive useful upper and lower bounds for
Pr(n, α) as well as its asymptotic behavior in the limit n→ ∞. For example, the probability
that the north pole is not covered by any cap is (1− sin2 α

2 )
n. If the sphere is covered, then in

particular the north pole is covered, and thus, a simple upper bound for Pr(n, α) is given by

Pr(n, α) ≤ 1−
(
1− sin2

α

2

)n
.
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A slightly more involved geometric argument [25] shows that a lower bound is given by

Pr(n, α) ≥ 1− 4

3
n(n− 1) sin2

α

2

(
1− sin2

α

2

)n−1
.

Combining the lower and upper bounds yields

lim
n→∞

log(1− Pr(n, α))

n
= log

(
1− sin2

α

2

)
.

In particular, Pr(n, α) goes to 1 exponentially quickly as n→ ∞; that is,

1− Pr(n, α) ∼ en log(1−sin2 α
2
).

In other words, the hairy ball theorem affects the eigenstructure of H as soon as the number
of images n is of the order of 1

− log(1−sin2 α
2
)
(∼ 1

sin2 α
2

for small α).
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