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a b s t r a c t

This paper studies the limiting behavior of Tyler’s M-estimator for the scatter matrix, in
the regime that the number of samples n and their dimension p both go to infinity, and
p/n converges to a constant y with 0 < y < 1. We prove that when the data samples
x1, . . . , xn are identically and independently generated from the Gaussian distribution
N (0, I), the operator norm of the difference between a properly scaled Tyler’s M-estimator
and

n
i=1 xix

⊤

i /n tends to zero. As a result, the spectral distribution of Tyler’s M-estimator
converges weakly to the Marčenko–Pastur distribution.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many statistical estimators and signal processing algorithms require the estimation of the covariance matrix of the data
samples. When the underlying distribution of the data samples x1, . . . , xn ∈ Rp is assumed to have zero mean, a commonly
used estimator is the sample covariance matrix Sn =

n
i=1 xix

⊤

i /n.
However, the estimator Sn is sensitive to outliers, and performs poorly in terms of statistical efficiency (i.e., it has a large

variance) for heavy-tailed distributions, e.g., when the tail decays slower than the Gaussian tail.
A popular robust covariance estimator is an M-estimator introduced by Tyler [20], denoted by Σ̂ , which is the unique

solution to

Σ̂ =
p
n

n
i=1

xix⊤

i

x⊤

i Σ̂−1xi
, tr(Σ̂) = 1. (1)

Tyler’s M-estimator gives the ‘‘shape’’ of the covariance, but is missing its magnitude. However, for many applications the
‘‘shape’’ of the covariance suffices, for example, the principal components can be obtained from the ‘‘shape’’.

Compared with the sample covariance estimator, Tyler’s M-estimator is more robust to heavy-tailed elliptical
distributions. The density function of elliptical distributions in Rp takes the form

f (x; Σ, µ) = |Σ |
−1/2g{(x − µ)⊤Σ−1(x − µ)},

where g is some nonnegative function such that


∞

0 xp−1g(x) dx is finite. This family of distributions is a natural
generalization of the Gaussian distribution by allowing heavier or lighter tails while maintaining the elliptical geometry
of the equidensity contours. Elliptical distributions are considered important in portfolio theory and financial data, and we
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refer to the work by El Karoui [11, Section 4] for further discussion. Besides, elliptical distributions are used by Ollila and
Tyler [19] in modeling radar data, where the empirical distributions are heavy-tailed because of outliers.

Tyler [20] showed thatwhen adata set follows anunknownelliptical distribution (withmean zero), Tyler’sM-estimator is
the most robust covariance estimator in the sense of minimizing the maximum asymptotic variance. This property suggests
that Tyler’s M-estimator should be more accurate than the sample covariance estimator for elliptically distributed data.
Empirically, it has been shown to outperform the sample covariance estimator in applications such as finance in the work
by Frahm and Jaekel [13], anomaly detection in wireless sensor networks by Chen et al. [4], antenna array processing by
Ollila and Koivunen [18], and radar detection by Ollila and Tyler [19].

1.1. Asymptotic analysis in a high-dimensional setting

Many scientific domains customarily deal with sets of high dimensional data samples, and therefore it is increasingly
common to work with data sets where the number of variables, p, is of the same order of magnitude as the number of
observations, n. Under this high-dimensional setting, the asymptotic spectral properties of Sn at the limit of infinite number
of samples and infinite dimensions have been well studied by Johnstone [15]. A noticeable example is the convergence of
the spectral distribution. Denoting the eigenvalues of a matrix A by λ1(A), . . . , λn(A), its spectral distribution is a discrete
probability measure

P = P(·|A) =
1
n

n
i=1

δλi(A)

with δs denoting Dirac measure at s ∈ R. Marčenko and Pastur [16] showed that when the entries of {xi}ni=1 are Gaussian
independent identically distributed random variables with mean 0 and variance 1, p, n → ∞ and p/n → y, where
0 < y ≤ 1, the spectral distribution of the eigenvalues of Sn converges weakly to the Marčenko–Pastur distribution defined
by

ρMP,y(x) =
1
2π

y
√

(y+ − x)(x − y−)

x
1[y−,y+], where y± =


1 ±

√
y
2

. (2)

Tyler’s M-estimator is closely related to and can be considered as a special case of Maronna’s M-estimator, which is
defined by

Σ̄ =
1
n

n
i=1

u(x⊤

i Σ̄−1xi)xix⊤

i (3)

for a nonnegative function u : [0, ∞) → [0, ∞). The properties of Maronna’s M-estimator in the high-dimensional
regime when p, n → ∞, p/n → y and 0 < y < 1 have been analyzed in recent works by Couillet et al. [7,8], which
obtained convergence results for a properly scaled Maronna’sM-estimator under the assumptions that u(x) is nonnegative,
nonincreasing and continuous; xu(x) is nondecreasing and bounded and supx xu(x) > 1. Moreover, spiked random matrix
models were also studied by Couillet [5]. However, these results do not apply to Tyler’s M-estimator, although Frahm and
Jaekel [13] have conjectured that the spectral distribution converges weakly to the Marčenko–Pastur distribution. Some
works focused on the performance of Tyler’sM-estimator for the case p, n → ∞ and p/n → 0: Dümbgen [10] showed that
the condition number of Tyler’s estimator is 1+ 4

√
p/n+ o(

√
p/n), and Frahm and Glombek [12] showed that the spectral

distribution of
√
n/p(Σ̄ − I) converges weakly to a semicircle distribution.

1.2. Main results

In this paper, we analyze Tyler’s M-estimator in the high-dimensional setting. Our main results, Theorem 2.3 and
Corollary 2.4, show that as p, n → ∞ and p/n → y, 0 < y < 1, the spectral distribution of a properly scaled Tyler’s
M-estimator convergesweakly to theMarčenko–Pastur distributionρMP,y(x). Based on the properties of Tyler’sM-estimator,
this paper analyzes the spectral distribution when data samples are i.i.d. drawn from other distributions, such as elliptical
distributions.

When data samples are generated from elliptical distributions, the spectral distribution of the sample covariance
estimator has been studied by El Karoui [11, Theorem 2]. Compared to Corollary 2.4, the limiting spectral distribution of
Sn is much more complicated, and therefore our result might be more applicable in practice.

High-dimensional analysis of Maronna’s M-estimator of the covariance are generally obtained by showing that the
operator norm of the difference between M-estimator and a standard Wishart matrix (or sample covariance matrix) tends
to 0: Dümbgen [10] proved it by a linear expansion of the M-estimator, and Couillet et al. [7,8] proved it by representing
Maronna’sM-estimator as a weighted sum of xix⊤

i and proved the uniform convergence of the weights. We follow the same
direction while giving an alternate proof for the convergence of the weights, by considering the weights as the solution to
an optimization problem, which can handle Tyler’sM-estimator that is not covered by the results in Couillet et al. [7,8]. We
remark that this approach can also be applied to Maronna’sM-estimator to prove some of the results in Couillet et al. [7,8].
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The rest of the paper is organized as follows. In Section 2 we introduce the representation of Tyler’s M-estimator as a
linear combination of xix⊤

i and present themain result that when the data set is i.i.d. sampled from the Gaussian distribution
N (0, I), a properly scaled Tyler’s is asymptotically equivalent to Sn in the sense that ∥pΣ̂ −Sn∥ → 0. As a result, the spectral
distribution of Tyler’s M-estimator converges weakly to the Marčenko–Pastur distribution. We also extend the result to
elliptical distributions. The technical proofs are given in Section 3. While some Lemmas and technical proofs are also used
by Couillet et al. [7,8] (for example, Lemma 3.2 and the analysis in the proof of Theorem 2.3 are similar to Couillet et al.
[7, Lemma 2, Theorem 1] and Couillet et al. [8, Lemma 6]), we still include them for the completeness of the paper.

As for notations,we use c, c ′, C, C ′ to denote any fixed constants as p, n → ∞ (though theymay depend on y). Depending
on the context, they might denote different values in different equations.

2. Tyler’sM-estimator in the high-dimensional regime

We introduce the representation of Tyler’s M-estimator as a linear combination of xix⊤

i in Section 2.1, and present the
main result in Section 2.2 thatwhen the data set is i.i.d. sampled from theGaussian distributionN (0, I), ∥pΣ̂−Sn∥ converges
to 0 almost surely. Based on this observation,weprove that the spectral distribution of Tyler’sM-estimator convergesweakly
the Marčenko–Pastur distribution in Section 2.3. The generalization of the results to more general settings is also discussed
in Section 2.3.

2.1. Properties of Tyler’s M-estimator

The analysis for Tyler’s M-estimator in this paper is based on the following representation, whose proof is deferred
to Section 3. We remark that Eq. (5) in Lemma 2.1 has appeared in the work by Wiesel [21, (27)] and Hardt and Moitra
[14, SectionA] as ‘‘covariance estimation in scaledGaussian distributions’’ and ‘‘Barthe’s convex program’’, but its connection
to Tyler’sM-estimator has not been rigorously justified yet.

Lemma 2.1. Tyler’s M-estimator can be written as

Σ̂ =

n
i=1

ŵixix⊤

i


tr
 n

i=1

ŵixix⊤

i


, (4)

where {ŵi}
n
i=1 are uniquely defined by

(ŵ1, . . . , ŵn) = argmin
wi>0,

n
i=1

wi=1

−

n
i=1

lnwi +
n
p
ln det

 n
i=1

wixix⊤

i


. (5)

2.2. Isotropic Gaussian distribution

In this subsection, we assume that {xi}ni=1 ⊂ Rp are i.i.d. drawn fromN (0, I). Themain result, Theorem 2.3, characterizes
the convergence and convergence rate of Tyler’s M-estimator to Sn in terms of the operator norm. Its proof applies
Lemma 2.2, whose proof is rather technical and deferred to Section 3.

Tyler’s M-estimator does not exist when p > n (see the argument by Zhang [22, Theorem III.1]) and it is not unique
when p = n (one may check that when xi = ei for all 1 ≤ i ≤ p, all diagonal matrices with trace 1 satisfy (1)). As a result,
throughout the paper we assume y < 1.

Lemma 2.2. If {xi}ni=1 are i.i.d. sampled fromN (0, I), thenmax1≤i≤n |n ŵi−1| converges to 0 almost surely as p, n → ∞: There
exist C, c, c ′ > 0 such that for any ε < c ′,

Pr

max
1≤i≤n

|n ŵi − 1| ≤ ε


≥ 1 − Cne−cε2n. (6)

Theorem 2.3. Suppose that {xi}ni=1 are i.i.d. sampled fromN (0, I), p, n → ∞ and p/n = y, where 0 < y < 1, then the operator
norm of the difference between Sn and a scaled Tyler’s M-estimator converges to 0 almost surely, and there exist C, c, c ′ > 0 such
that for any ε < c ′,

Pr

p Σ̂ −
1
n

n
i=1

xix⊤

i

 ≤ ε


≥ 1 − Cne−cε2n. (7)

Theorem 2.3 implies that all first order properties of the sample covariance matrix extend to Tyler’s estimator. The
strategy of the proof for Theorem 2.3 is as follows. According to Lemma 2.1, a scaled Tyler’s M-estimator is a linear
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combination of xix⊤

i , i.e., it can be written as
n

i=1 ŵixix⊤

i (up to a scaling). Then Lemma 2.2 shows that nŵi converges
to 1 uniformly. Based on the following matrix analysis, Theorem 2.3 is concluded.

Proof of Theorem 2.3. We first prove that for ε < c ′,

Pr

 n
i=1

ŵixix⊤

i −
1
n

n
i=1

xix⊤

i

 ≤ ε


≥ 1 − Cne−cε2n. (8)

Let Bn =
n

i=1(ŵi − 1/n)xix⊤

i =
n

i=1 ŵixix⊤

i −
n

i=1 xix
⊤

i /n, then

∥Bn∥ = sup
∥v∥=1

v⊤Bnv = sup
∥v∥=1

n
i=1


ŵi −

1
n


(v⊤xi)2

≤ sup
∥v∥=1

n
i=1

ŵ −
1
n
1


∞

(v⊤xi)2 ≤ ∥nŵ − 1∥∞

1n
n

i=1

xix⊤

i

 .

Since ∥nŵ − 1∥∞ → 0 with probability estimated in (6), and Davidson and Szarek [9, Theorem II.13] showed that
∥
n

i=1 xix
⊤

i /n∥ is bounded above by (1 + 2
√
y)2 with probability 1 − C exp(−cn), (8) is proved.

Second, since n
i=1

ŵixix⊤

i

 ≤

 n
i=1

ŵixix⊤

i −

n
i=1

xix⊤

i /n

+

 n
i=1

xix⊤

i /n

 ,

Pr

 n
i=1

ŵixix⊤

i

 < C ′


> 1 − Cn exp(−cn). (9)

Besides, tr(
n

i=1 ŵixix⊤

i ) =
n

i=1 ŵix⊤

i xi → p in the same rate as in (9): applying the concentration of high-dimensional
Gaussian measure on the sphere by Barvinok [2, Corollary 2.3], we have

max


Pr


n

i=1

ŵix⊤

i xi < p(1 − ε)


, Pr


n

i=1

ŵix⊤

i xi > p/(1 − ε)



≤ max

Pr

min
1≤i≤n

∥xi∥2 < p(1 − ε)


, Pr


max
1≤i≤n

∥xi∥2 > p/(1 − ε)


< ne−ε2p/4. (10)

Combining (9), (10) and (4), n
i=1

ŵixix⊤

i − p Σ̂

 =

 n
i=1

ŵixix⊤

i



1 − p/tr


n

i=1

ŵixix⊤

i


(11)

converges in the same rate as specified in (8). (7) is then proved by combining (8), (11) and the triangle inequality. �

From the probabilistic estimation (7) we obtain a convergence rate of O(
√
ln n/n). The logarithmic factor is due to a

‘‘max’’ bound of {ŵi}
n
i=1 in Lemma 2.2, while in fact, an ‘‘average’’ bound is expected. As a result, we conjecture that this

√
ln n factor could be possibly removed by a more rigorous argument.

2.3. More general distributions and spectral distribution

We remark that Theorem 2.3 can be extended from the setting of the normal distribution N (0, I) to any elliptical
distribution µp, which is characterized by the probability density function µp(x) = C(gp) det(Tp)

−1/2gp(x⊤T−1
p x), where

Tp is a positive definite matrix in Rp×p, gp : [0, ∞) → [0, ∞) satisfies


∞

0 gp(x)xp−1 < ∞, and C(gp) is a normalization
parameter that only depends on gp. Then ∥tr(Tp)Σ̂ −

n
i=1 xix

⊤

i /n∥ → 0 almost surely as p, n → ∞. The analysis is based
on Theorem 2.3, the affine equivariance property of Tyler’sM-estimator, and the fact that Tyler’sM-estimator is unchanged
if {xi}ni=1 are replaced by {cixi}ni=1.

Another direction of generalization of Theorem 2.3 is the model by Couillet et al. [7]: The elements of {xi}ni=1 are i.i.d.
sampled from an either real or circularly symmetric complex distribution with E(xij) = 0, E(x2ij) = 1, and E(|xij|8+η) < α
for some η, α > 0. Then, following the proof in this paper (while replacing Lemma 3.2 by [7, Lemma 2]), one can show thatp Σ̂ −

n
i=1 xix

⊤

i /n
 → 0 almost surely as p, n → ∞.

We have the following results on the weak convergence of the spectral distribution of Tyler’s M-estimator, where the
first part proves the conjecture by Frahm and Jaekel [13].
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Corollary 2.4. • If {xi}ni=1 are i.i.d. sampled from N (0, I), then the spectral measure P(·|pΣ̂) converges weakly to the
Marčenko–Pastur distribution.

• If {xi}ni=1 are i.i.d. sampled from an elliptical distribution C(gp)gp(x⊤T−1
p x) such that the spectral measure of Tp converges

weakly to a distribution H on R. Then the spectral measure P(·|tr(Tp)Σ̂) converges weakly to a probabilistic measure ρ whose
Stieltjes transform s(z) =


1/(x − z)ρ( dx) (z ∈ C \ R) is given implicitly by

s(z) =


1

t{1 − y − yz s(z)} − z
dH(t).

This corollary can be proved by combining ∥tr(Tp)Σ̂−
n

i=1 xix
⊤

i /n∥ → 0, the analysis on the perturbation of eigenvalues
by Bhatia [3, Corollary III.4.2], the spectral measure of

n
i=1 xix

⊤

i /n by Marčenko and Pastur [16], Bai and Silverstein
[16,1, (6.1.2)] and Slutsky’s Lemma.

3. Proof of lemmas

3.1. Proof of Lemma 2.1

We start with the definition

(ẑ1, . . . , ẑn) = argmin
n

i=1
zi=1

ln det
 n

i=1

ezixix⊤

i


(12)

and

Σ̂z =

n
i=1

eẑixix⊤

i . (13)

The solution to (12) is unique, which follows from the convexity of the objective function (see Wiesel [21, Lemma 4]).
Besides, noticing the equivalence between (12) and (5) (by pluggingwi = ezi/(

n
i=1 e

zi) and zi = lnwi−(
n

i=1 lnwi−1)/n),
there exists c1 > 0 such that Σ̂z = c1Σ̂ .

Next we will prove that Σ̂z satisfies

n
i=1

xix⊤

i

x⊤

i Σ̂−1
z xi

= cΣ̂z, for some c > 0. (14)

By checking the directional derivative of the objective function in (12), for any (δ1, . . . , δn) with
n

i=1 δi = 0,

n
i=1

δieẑix⊤

i Σ̂−1
z xi = 0.

Therefore, there exists c2 such that

eẑix⊤

i Σ̂−1
z xi = c2, for all 1 ≤ i ≤ n. (15)

Therefore, (14) is proved by applying (15) and (13):
n

i=1

xix⊤

i

x⊤

i Σ̂−1
z xi

=

n
i=1

eẑixix⊤

i /c2 = Σ̂z/c2,

Since Σ̂z = c1Σ̂ , (14) also holds when Σ̂z is replaced by Σ̂:

n
i=1

xix⊤

i

x⊤

i Σ̂−1xi
= cΣ̂, for some c > 0. (16)

At last, we will prove that Σ̂ satisfies the definition of Tyler’s M-estimator in (1), that is, the constant c in (16) is given
by c = n/p. For the objective function

F(Σ) =

n
i=1

ln(x⊤

i Σ−1xi) + c ln det(Σ),
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its derivative with respect to Σ−1 is given by
n

i=1

x⊤

i (x⊤

i Σ−1xi)−1xi − cΣ .

Therefore, Σ̂ is a stationary point of F(Σ). Since F(Σ) is geodesically convex (argument follows directly from Wiesel [21]
and Zhang [22]), Σ̂ is the global minimizer of F(Σ).

However, the minimizer of F(Σ) exists only when c = n/p. Since F(aI) =
n

i=1 ln(x⊤

i xi) − n ln a + c p ln a, we have

F(aI) → −∞


as a → 0, if c > n/p
as a → ∞, if c < n/p.

Therefore, the constant c in (16) is given by c = n/p, and Lemma 2.1 is proved.

3.2. Proof of Lemma 2.2

Westartwith anoutline of the proof,which consists of three parts. First,we rewrite the constrained optimizationproblem
(5) to the problem of finding the root of g(w), which will be defined in (17). Since the root of g(w) is nŵ − 1, we only need
to show the convergence of the root of g(w). Second, wewill show that g(0) converges to 0,∇g(0) is large and the variation
of ∇g(w) is bounded. Finally, we will use a perturbation analysis and the observations on g(0) and ∇g(w) to show that the
root of g(w) converges to 0.

The proof depends on Lemmas 3.2, 3.3 and 3.1, and their proofs are postponed to subsequent sections.

Lemma 3.1. For a function f (w) : Rp
→ Rp, assume that ∇f (0) = I, and ∥∇f (w) − ∇f (0)∥∞ = maxi≤i≤p ∥∇fi(w) −

∇fi(0)∥∞ < C5∥w∥∞ for ∥w∥∞ ≤ 1, and ∥f (0)∥∞ < min(1/9C5, 1/3). Then there exists w̃ such that ∥w̃∥∞ < 3∥f (0)∥∞

and f (w̃) = 0.

Lemma 3.2. If xi ∼ N (0, I) for all 1 ≤ i ≤ n, and S =
n

i=1 xix
⊤

i /n, then there exists c, C, c ′ > 0 such that for any ε < c ′,

Pr

max
1≤i≤n

1px⊤

i S
−1xi − 1

 < ε


≥ 1 − Cne−cε2n.

Lemma 3.3. For the n × n matrix A defined by Aij = (x⊤

i S
−1xj)2/(n p), (a) ∥A∥∞ < 2 with probability 1 − Cn exp(−cn).

(b) There exists c = c(p, n) > 0 and C2 = C2(y) > 0 such that ∥(I−A+c11⊤)−1
∥∞ < C2 with probability 1−Cn exp(−cn).

We start the first part of the proof with the construction of g(w). We let

g(w) = ∇G(w + 1), (17)

where

G(w) = −

n
i=1

lnwi +
n
p
ln det


n

i=1

wixix⊤

i


+

c0
2


n

i=1

wi − n

2

, (18)

and the constant c0 will be specified later before (34).
It is easy to prove that theminimizer ofG(w) and the zeros of∇G(w)must satisfy

n
i=1 wi = n (otherwise nw/(

n
i=1 wi)

is a better minimizer and ∇G(w) is nonzero). Therefore minimizing (18) is equivalent to minimizing −
n

i=1 lnwi + n/p ·

ln det(
n

i=1 wixix⊤

i ) with constraint
n

i=1 wi = n, which is the same as (5) except for the constraint. Noticing that a scaling
of w increases −

n
i=1 lnwi + n/p · ln det(

n
i=1 wixix⊤

i ) by a constant only depending on the scale, the minimizer of (18)
is unique and it is nŵ, where ŵ is defined in (5). By the convexity of its equivalent problem (12), the root of g(w) is also
unique and it is nŵ − 1.

For the second part of the proof, we start by proving that g(0) is small. By calculation, the ith component of function
g(w) is

gi(w) = −
1

wi + 1
+

n
p
x⊤

i


nS +

n
i=1

wixix⊤

i

−1

xi + c0
n

i=1

wi.

Applying Lemma 3.2,

Pr (∥g(0)∥∞ < ε) ≥ 1 − Cne−cε2n. (19)
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Now we will prove that ∇g(0) is bounded from below. By calculation, its (i, j)th entry is
∇g(w)


i,j = I(i = j)

1
(wi + 1)2

−
n
p


x⊤

i


nS +

n
i=1

wixix⊤

i

−1
xj
2

+ c0.

Applying Lemma 3.3,

∥{∇g(0)}−1
∥∞ < C2 with probability 1 − Cne−cn. (20)

Now we bound the variation of ∇g(w) in the region ∥w∥∞ < 1/2. Apply |1/(wi + 1)2 − 1| < 3|wi − 1| ≤ 3∥w∥∞ and
coordinatewise comparison,

|∇i,jg(w) − ∇i,jg(0)| ≤ I(i = j) (3∥w∥∞) + 3∥w∥∞ ·
n
p
|Aij|.

Therefore, the variation of ∇g(w) is bounded by

∥∇g(w) − ∇g(0)∥∞ < (3 + 3n∥A∥∞/p)∥w∥∞. (21)

At last we finish the third part of the proof of Lemma 2.2 by applying Lemma 3.1 to f (w) = {∇g(0)}−1g(w/2). It is easy
to verify that ∇f (0) = I. Due to (19) and (20), ∥f (0)∥∞ ≤ ∥(∇g(0))−1

∥∞∥g(0)∥∞ → 0 in the same rate as in (19) and
∥f (0)∥∞ < min(1/9C5, 1/3)holdswith probability 1−Cne−cn. Due to (19), (21), and the boundedness of ∥A∥∞ (Lemma3.3),
∥∇f (w) − ∇(0)∥∞ < C5∥w∥∞ also holds with probability 1 − Cne−cn. Therefore the assumption in Lemma 3.1 holds with
probability 1 − Cne−cn and there exists w̃ such that f (w̃) = 0 and

∥w̃∥∞ < 3∥f (0)∥∞. (22)

When f (w̃) = 0, we have g(2w̃) = 0 and by previous discussion 2w̃ = nŵ − 1. therefore (22) gives

∥nŵ − 1∥∞ < 6∥f (0)∥∞.

Since ∥f (0)∥∞ converges to 0 in the rate as in (19), ∥nŵ − 1∥∞ converges in the same rate and Lemma 2.2 is proved.

3.2.1. Proof of Lemma 3.1

Proof. When ∥w∥∞ ≤ 1,

fj(w) − fj(0) =

 1

t=0


ejw⊤, ∇f (t w)


dt

=

 1

t=0


ejw⊤, ∇f (t w) − ∇f (0) + I


dt = wj +

 1

t=0
w⊤

{∇f (t w) − ∇f (0)}ej dt

≤ wj +

 1

t=0
w⊤

{∇f (t w) − ∇f (0)}


∞

≤ wj + C5∥w∥
2
∞

. (23)

Similarly

fj(w) − fj(0) ≥ −C5∥w∥
2
∞

+ wj. (24)

To prove it, we consider the continuous mapping h(w) = w − f (w)/(4 + 9C5) and will prove that h maps A to itself,
where

A = {w : w ∈ [−3η, 3η]
n
} and η = ∥f (0)∥∞.

1. |wi| < 2η. Then apply (23) and (24) (they are applicable since for any w ∈ A, ∥w∥∞ ≤ 1), we have |fi(w)| < |fi(0)| +

C5∥w∥
2
∞

+|wi| ≤ η+C5(3η)2+3η < (4+9C5)η (η2 < η sinceη < 1). Therefore, |hi(w)| ≤ |wi|+|fi(w)|/(4+9C5) ≤ 3η.
2. wi > 2η, then applying (24),

fi(w) ≥ −|fi(0)| + wi − C5∥w∥
2
∞

≥ −η + 2η − C5(3η)2.

Since η < 1/9C5, we have fi(w) < 0 and therefore hi(w) ≤ wi ≤ 3η.
Similar to case 1 we can prove that hi(w) ≥ −3η. Therefore |hi(w)| < 3η.

3. Similar to case 2, when wi < −2η, |hi(w)| < 3η.

Therefore the continuousmapping hmaps the convex, compact setA to itself. By Schauder fixed point theorem, h(x) has
a fixed point in A and Lemma 3.1 is proved with w̃ being the fixed point. �
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3.2.2. Proof of Lemma 3.2
Assuming the SVD decomposition of X is X = UΣV⊤, where U ∈ Rn×p and U⊤U = I. Since xi ∼ N (0, I) for all

1 ≤ i ≤ n,U is uniformly distributed over the space of all orthogonal n × pmatrices. Since

XS−1X = (UΣV⊤)


1
n
VΣ2V⊤

−1

(UΣV⊤), (25)

if we write the row of U by u1, . . . , un, then 1
nxiS

−1xi = u⊤

i ui = ∥ui∥
2.

Since U can be considered as the first p columns of a random n× n orthogonal matrix (with haar measure over the set of
all n × n orthogonal matrices), ui can be considered as the first p entries from a random vector of length n that is sampled
from the uniform sphere in Rn.

Therefore, ∥ui∥
2

∼
p

j=1 g
2
j /
n

j=1 g
2
j for i.i.d. random variables {gj}nj=1 ∼ N (0, 1). Applying the concentration result by

Barvinok [2, Corollary 2.3], we have

Pr


n

i=1

g2
i ≥

n
1 − ε


≤ e−ε2n/4 (26)

and

Pr


n

i=1

g2
i ≤ n(1 − ε)


≤ e−ε2n/4, (27)

therefore

Pr

p(1 − ε)2

n
≤ ∥u1∥

2
≤

p
n(1 − ε)2


≥ Pr


p(1 − ε) ≤

p
i=1

g2
i ≤

p
1 − ε



+ Pr


n(1 − ε) ≤

n
i=1

g2
i ≤

n
1 − ε


≥ 1 − 2e−ε2p/4

− 2e−ε2n/4.

For ε ≤ 0.1, we have

Pr

max
1≤i≤n

1px⊤

i S
−1xi − 1

 ≤ ε


≥ 1 − n Pr

∥u1∥
2
−

p
n

 >
p
n
ε


≥ 1 − n

1 − Pr


p(1 − ε/3)2

n
≤ ∥u1∥

2
≤

p
n(1 − ε/3)2


(28)

≥ 1 − 2ne−ε2p/36
− 2ne−ε2n/36, (29)

where the second inequality follows from 1 − 3ε ≤ (1 − ε)2 and 1/(1 − ε)2 ≤ 1 + 3ε.

3.2.3. Proof of Lemma 3.3
(a) Since ∥A∥∞ = max1≤i≤n(


1≤j≤n Aij), and

1≤j≤n

Aij =


1≤j≤n

1
np

x⊤

i S
−1xjx⊤

j S
−1xi = x⊤

i S
−1


1≤j≤n

xjx⊤

j


S−1xi/np (30)

= x⊤

i S
−1(nS)S−1xi/np = x⊤

i S
−1xi/p, (31)

it follows from (29) with ε = 0.1 that ∥A∥∞ < 2 holds with probability 1 − Cn exp(−cn).
(b) We first prove that there exists C3 = C3(y) such that

∥A − c011⊤
∥∞ ≤ C3 < 1 with probability 1 − Cn exp(−cn). (32)

We start with the proof of (32) with another lemma:

Lemma 3.4. There exists a c4 > 0 such that with probability 1 − C exp(−cn),
n

j=1

I

x⊤

1 xj > c4
√
p


> 0.75n.
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Davidson and S. Szarek [9, Theorem II.13] showed that there exists C4 = C4(y) such that ∥S∥ < C4 with probability
1 − Cn exp(−cn). Therefore x⊤

i S
−1xj ≥ x⊤

i xj/C4 and Lemma 3.4 implies that for any 1 ≤ i ≤ n:

n
j=1

I

x⊤

i S
−1xj > c4

√
p/C4


> 0.75 with probability 1 − C exp(−cn). (33)

Let c0 = (c4/C4)
2/n, then (33) implies

1≤j≤n

|Ai,j − c| ≤


1≤j≤n

|Ai,j| − 0.25c n ≤ x⊤

i S
−1xi/p − 0.25(c4/C4)

2, (34)

where the last step follows from (31).
Applying the estimation of x⊤

i S
−1xi/p in (29) and a union bound argument over all 1 ≤ i ≤ n to (34), (32) is proved for

C3 = 1 + η − 0.25(c4/C4)
2.

Lemma 3.3(b) follows from (32) with C2 = 1/(1 − C3), where the expansion of (I − A + c11⊤)−1 exists since
∥A + c11⊤

∥ ≤ ∥A + c11⊤
∥∞ < 1. Applying ∥B1B2∥∞ ≤ ∥B1∥∞∥B2∥∞, we have

∥(I − A + c11⊤)−1
∥∞ =

 ∞
k=0

(c11⊤
− A)k


∞

≤

∞
k=0

∥c11⊤
− A∥

k
∞

≤

∞
k=0

C i
3 =

1
1 − C3

. (35)

3.2.4. Proof of Lemma 3.4
We first show that there exists c4 such that for all p,

E

I

|x⊤

1 x2| > c4
√
p


≥ 0.85. (36)

WLOG we rotate x1 such that it is nonzero only at the first coordinate, and x2 = (g1, g2, . . . , gp) where gi ∼ N (0, 1). Then
|x⊤

1 x2| = |g1| ∥x1∥.
Notice that ∥x1∥2 is the sum of p independent χ2

1 distribution and Eχ2
1 = 1, by central limit theorem, ∥x1∥ ≤

√
2p

with probability 1 − Ce−cn. Besides, Pr(|g1| >
√
2 c4) ≥ 0.85 for c4 = Φ−1(1 − 0.85/2)/

√
2. Therefore (36) is proved by

combining the estimations on |g1|, x1 and |x⊤

1 x2| = |g1| ∥x1∥.
To obtain Lemma 3.4 from (36), we apply Hoeffding’s inequality to the indicator function I(|x⊤

i xj| > c4
√
p) over all

1 ≤ j ≤ n, j ≠ i.

4. Summary

We showed that Tyler’s M-estimator is asymptotically equivalent to Sn in the sense that ∥pΣ̂ − Sn∥ → 0 as p, n → ∞

and p/n → y, where 0 < y < 1 and data samples follow the distribution of N (0, I). We also proved the conjecture that
the spectral distribution of Tyler’s M-estimator converges weakly to the Marčenko–Pastur distribution, and extended the
results to elliptical distributions.

There are several possible future directions of thiswork. First, itwould be interesting to analyze the second order statistics
of Tyler’s M-estimator, considering that Couillet [6] has already investigated Maronna’s M-estimators. Second, we would
like to theoretically quantify the behavior of Tyler’s M-estimator in the spiked covariance model by Couillet [5], which
includes the analysis of the distribution of the top eigenvalue for the null cases and the analysis of the non-null case. A
recent work by Morales-Jimenez et al. [17] on the non-null case introduced a mixture model that consists of a Gaussian
distribution and somedeterministic or randomoutliers, and analyzed the performance ofMaronna’sM-estimator. Analyzing
the performance of Tyler’sM-estimator in this model would be another possible future direction.
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