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Abstract—We consider the problem of clustering a graphG into two communities by observing a subset of the vertex correlations.

Specifically, we consider the inverse problem with observed variables Y ¼ BGx� Z, where BG is the incidence matrix of a graphG, x

is the vector of unknown vertex variables (with a uniform prior), and Z is a noise vector with Bernoullið"Þ i.i.d. entries. All variables
and operations are Boolean. This model is motivated by coding, synchronization, and community detection problems. In particular,

it corresponds to a stochastic block model or a correlation clustering problem with two communities and censored edges. Without

noise, exact recovery (up to global flip) of x is possible if and only the graphG is connected, with a sharp threshold at the edge

probability logðnÞ=n for Erdo��s-R�enyi random graphs. The first goal of this paper is to determine how the edge probability p needs

to scale to allow exact recovery in the presence of noise. Defining the degree rate of the graph by a ¼ np=logðnÞ, it is shown that

exact recovery is possible if and only if a > 2=ð1� 2"Þ2 þ oð1=ð1� 2"Þ2Þ. In other words, 2=ð1� 2"Þ2 is the information theoretic

threshold for exact recovery at low-SNR. In addition, an efficient recovery algorithm based on semidefinite programming is

proposed and shown to succeed in the threshold regime up to twice the optimal rate. For a deterministic graph G, defining the

degree rate as a ¼ d=logðnÞ, where d is the minimum degree of the graph, it is shown that the proposed method achieves the

rate a > 4ðð1þ �Þ=ð1� �Þ2Þ= ð1� 2"Þ2 þ oð1=ð1� 2"Þ2Þ, where 1� � is the spectral gap of the graphG.

Index Terms—Synchronization problem, Information theoretic bounds, Stochastic block model, Semidefinite relaxations, graph-based codes

Ç

1 INTRODUCTION

A large variety of problems in information theory,
machine learning, and image processing are concerned

with inverse problems on graphs, i.e., problems where a
graphical structure governs the dependencies between the
variables that are observed and the variables that are
unknown. In simple cases, the dependency model is cap-
tured by an undirected graph with the unknown variables
attached at the vertices and the observed variables attached
at the edges. Let G ¼ ðV;EÞ be a graph with vertex set V

and edge set E, and let xV be the vertex- and yE the edge-
variables. In many cases of interest (detailed below), the
probabilistic model for the edge-variables conditionally on
the vertex-variables has a simple structure: it factorizes as

P ðyE jxV Þ ¼
Y
e2E

Qðye jx½e�Þ; (1)

where ye denotes the variable attached to edge e, x½e�
denotes the two vertex-variables incident to edge e, and Q is
a local probability kernel. In this paper, we consider
Boolean edge- and vertex-variables, and assume that the
kernel Q is symmetric and depends only on the XOR of the
vertex-variables.1 The edge-variables can then be viewed as

a random vector Y E that satisfies

Y E ¼ BGx
V � ZE; (2)

where BG is the incidence matrix of the graph, i.e., the
m� n matrix, with m ¼ jEj and n ¼ jV j, such that
BGðe; vÞ ¼ 1 if and only if edge e is incident to vertex v,
and Z is a random vector of dimension jEj representing
the noise.

In the above setting, the forward problem of recovering
the most likely edge-variables given the vertex-variables is
trivial and amounts to maximizing Q for each edge. The
inverse problem, however, is more challenging: the most
likely vertex-variables (say with a uniform prior) given the
edge-variables cannot be found by local maximization.

This problem can be interpreted as a community detec-
tion problem with censored edges: Consider a population
with n vertices and two communities, the blues and the
reds. The colors of the vertices, encoded by the binary varia-
bles fXigi2½n�, are unknown and the goal is to recover them

by observing pairwise interactions of these nodes. However,

not all n
2

� �
interactions are observed, only the ones encoded

by the graph G. In the noiseless case, the observation is
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1. Symmetry means thatQðy jx1; x2Þ ¼ P ðy jx1 � x2Þ for some P that
satisfies P ð1 j 1Þ ¼ P ð0 j 0Þ.
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perfect and allows to determine whether Xi and Xj are in
the same community or not, i.e., Yij ¼ Xi �Xj. Hence,
recovering the partition in this case amounts to having a
connected graph G, and the recovery is obtained by picking
a vertex label and recovering the other vertices along any
spanning tree. Note that we can only hope to recover the
partition and not the exact colors, as a global flipping of all
the colors gives the same observations. In the more interest-
ing setting, the observations are assumed to be noisy, i.e.,
with probability " an error is made on the parity of the two
colors: Yij ¼ Xi �Xj � Zij, where the Zij’s are i.i.d.
Bernoullið"Þ. In this case, the connectivity ofG is a necessary
condition, but it is in general not sufficient to cope with the
noise. This paper investigates how to strengthen the connec-
tivity assumption, in terms of the edge probability for ran-
dom graphs or in terms of the spectral gap for deterministic
graphs, in order to recover the partition despite the noise.

There are various interpretations and models that con-
nect to this problem.

� Community detection. It is worth connecting the above
model to other existing models for community net-
works. The model in (1) can be seen as a general
probabilistic model of networks, that extends the
basic Erdo��s-R�enyi model [2], which often turns out
to be too simplistic since all vertices have the same
expected degree and no cluster structure appears.
One possibility to obtain cluster structure is precisely
to attach latent variables to the vertices and assume
an edge distribution that depends on these variables.
There are various models with latent variables, such
as the exchangeable, inhomogeneous or stochastic
block models [3], [4], [5], [6], [7], [8]. The general
model in (1) can be used for this purpose, as
explained above in the special case of (2). The vertex-
variables represent the community assignment, the
edge-variables the connectivity, and the graph G
encodes where the information is available. The
model (2) is related to the stochastic block model
through the following censored block model, intro-
duced in [9] in a different context. Given a base-
graph G ¼ ðV;EðGÞÞ and a community assignment

X 2 f0; 1gV , the following random graph is gener-
ated on the vertex set V with ternary edge labels
Eij 2 f�; 0; 1g drawn independently with the follow-
ing probability distribution:

PfEij ¼ �jEðGÞij ¼ 0g ¼ 1 (3a)

PfEij ¼ 1jXi ¼ Xj;EðGÞij ¼ 1g ¼ q1; (3b)

PfEij ¼ 1jXi 6¼ Xj;EðGÞij ¼ 1g ¼ q2: (3c)

Put differently, (3) is a graph model where infor-
mation is only available on the base-graph G, the
�-variable encodes the absence of information, and
when information is available, two vertices are con-
nected with probability q1 if they are in the same
community and with probability q2 if they are in dif-
ferent communities. When G ¼ Kn is the complete
graph and X is uniformly distributed, this is the
standard stochastic block model with two

communities, and q1 ¼ a=n, q2 ¼ b=n gives the sparse
regime of [10], [11]. In the case of (2), the linear struc-
ture implies q1 ¼ 1� q2 ¼ ", which may be both of
order 1, whereas the base-graph may be sparse. This
raises an important distinction: in the sparse stochas-
tic block model, it is assumed that most node pairs
are unlikely to be connected, whereas in the model
of this paper, it is assumed that information is not
available for most node pairs. These are not the
same, and the latter may help preventing false-alarm
type of errors. However, we restrict ourselves in this
paper to the symmetric case q1 ¼ 1� q2 ¼ ", which
simplifies the computations.

� Correlation clustering. Bansal et al. [12] considers the
problem of clustering a complete graph with edges
labeled in f�;þg in order to maximize the number
of agreeing edges (having a þ label within a cluster
and a � label otherwise). Another variant is pro-
posed in [13]. The original motivation behind corre-
lation clustering is to let the number of clusters be a
design parameter, although the case of constraining
the number of clusters has also been considered [14].
In our setting, the number of clusters is fixed and
assumed to be 2. More importantly, our goal is to
understand how sparse the measurement graph can
be in order to still be able to recover the original clus-
tering, which is planted. In that regard, we are pro-
posing a planted correlation clustering problem with
a fixed number of clusters, censored measurements,
and with a probabilistic model.

� Coding. Equation (2) provides the output on a binary
symmetric channel of a code whose generator matrix
is the adjacency matrix of the graph G. More pre-
cisely, since here G is assumed to be a graph and not
a hyper-graph, this is a very simple code, namely a
2-right-degree LDGM code. While this is not a partic-
ularly interesting code by itself (e.g., at any fixed
rate, it has a constant fraction of isolated vertices), it
is a relevant primitive for the construction of other
codes such as LT or raptor codes [15], [16]. Note that
this paper will consider such a code at a vanishing
rate, namely c=logðnÞ, and determine for which val-
ues of c the successful decoding of this code is still
possible. Somehow unexpectedly, the Shannon
capacity will also arise in this regime as shown in
our main results.

� Constraint satisfaction problems (CSPs). Equation (1) is
a particular case of the graphical channel studied in
[9] in the context of hypergraphs. This class of mod-
els allows in particular to recover instances of
planted constraint satisfaction problems by choosing
uniform kernels Q, where the vertex-variables repre-
sent the planted assignment and the edge-variables
represent the clauses. In the case of a simple graph
and not a hypergraph, this provides a model for
planted formulae such as 2-XORSAT (model (2)).

� Synchronization. Equation (2) results also from the
synchronization problem studied in [17], [18], [19],
[20], [21], if the dimension is one (e.g., when each
vertex-variable is the 1-bit quantization of the reflec-
tion of a signal). The goal in synchronization over
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OðrÞ, the group of orthogonal matrices2 of size r� r,
is to recover the original values of the node-variables
fxjgj2½n� in OðrÞ given the relative measurements

fZijx
�1
i xjgi;j2½n�, where Zij is randomly drawn in

OðrÞ if the vertices i and j are adjacent and all-zero
otherwise.3 When r ¼ 1, we have Oð1Þ ¼ f�1;þ1g
and the synchronization problem is equivalent to (2).

While the above mentioned problems are all concerned
with related inverse problems on graphs, there are vari-
ous recovery goals that can be considered. This paper
focuses on exact recovery, which requires all vertex-varia-
bles to be recovered simultaneously with high probability
as the number of vertices diverges. The probability mea-
sure may depend on the graph ensemble or simply on the
kernel Q if the graph is deterministic. Note, as mentioned
previously, that exact recovery of all variables in the

model (2) is not quite possible: the vertex-variables xV

and 1V � xV produce the same output Y E . Exact recovery
is meant “up to a global flipping of the variables”. For
partial recovery, only a strictly dominant constant fraction
of the vertex-variables are to be recovered correctly with
high probability as the number of vertices diverges. Put
differently, the true assignment need only be positively
correlated with the reconstruction.4 The recovery require-
ments vary with the applications, e.g., exact recovery is
typically required in coding theory to ensure reliable
communication, while both exact and partial recovery are
of interest in community detection problems.

This paper focuses on exact recovery for the linear model
(2) with Boolean variables, and on random Erdo��s-R�enyi
and deterministic base-graphs G. For this setup, we identify
the information theoretic (IT) phase transition for exact
recovery in terms of the edge density of the graph and the
noise level and devise an efficient algorithm based on semi-
definite programming (SDP), which approaches the thresh-
old up to a factor of 2 in the Erdo��s-R�enyi case. This SDP
based method was first proposed in [17], and it shares
many aspects with the SDP methods in several other prob-
lems [23], [24].

2 RELATED WORK

While writing this paper we became aware of various excit-
ing related work that was being independently developed.

A similar exact recovery sufficient condition, as (44) for
the SDP, was independently obtained by Huang and Guibas
[24] in the context of consistent shape map estimation (see
Theorem 5.1. in [24]). Their analysis goes on to show, essen-
tially, that as long as the probability of a wrong edge is a
constant strictly smaller than 1

2, the probability of exact
recovery converges to 1 as the size of the graph is arbitrarily
large. In the context of our particular problem, that claim
was also shown in [19]. Later, this analysis was improved
by Chen et al. [25] and, when restricted to our setting, it

includes guarantees on the rates at which this phase transi-
tion happens. However, these rates are, to the best of our
knowledge, only optimal up to polylog factors. On the other
hand, we are able to show near tight rates. For a given � that

is arbitrarily close to 1
2 we give an essentially-tight bound

(off by at most a factor of 2) on the size of the graph and
edge density needed for exact recovery (Theorem 5.2). To
the best of our knowledge, our Theorem 5.3 is the only
available result for deterministic graphs.

On the IT side, both converse and direct guarantees were
independently obtained by Chen and Goldsmith [26]. How-
ever, while considering a more general problem, the results
they obtain are only optimal up to polylog factors.

3 MODEL AND RESULTS

In this paper, we focus on the linear Boolean model

Y E ¼ BGx
V � ZE; (4)

where the vector components are in f0; 1g and the addition

is modulo 2. We require exact recovery for xV and consider
for the underlying graph G ¼ ðV;EÞ, with V ¼ ½n�, both the
Erdo��s-R�enyi model ERðn; pÞ where the edges are drawn
i.i.d. with probability p, and deterministic d-regular graphs.

We assume that the noise vector ZE has i.i.d. components,
equal to 1 with probability ". We assume5 w.l.o.g. that
" 2 ½0; 1=2�, where " ¼ 0 means no noise (and exact recovery
amounts to having a connected graph) and " ¼ 1=2 means
maximal noise (and exact recovery is impossible no matter

how connected the graph is). The prior on xV is assumed to
be uniform. Note that the inverse problem would be much
easier if the noise model caused erasures with probability ",
instead of errors. Exact recovery would then be possible if
and only if the graph was still connected after the noisy
edges had been erased. Since there is a sharp threshold for

connectedness at p ¼ logðnÞ
n , this would happen a.a.s. if

p ¼ ð1þdÞ logðnÞ
nð1�"Þ for some d > 0. Hence 1=ð1� "Þ is a sharp

threshold in np=logðnÞ for the exact recovery problem with
erasures and base-graph ERðn; pÞ.

The goal of this paper is to find the replacement to the
erasure threshold 1� " for the setting where the noise
causes errors. Similarly to channel coding where the
Shannon capacity of the BSCð"Þ differs from the BECð"Þ
capacity, we obtain for the considered inverse problem
the expression

Dð1=2jj"Þ ¼ ð1� 2"Þ2=2þ oðð1� 2"Þ2Þ
¼ logð2Þ �Hð"Þ þ oðð1� 2"Þ2Þ;

(5)

where Dð1=2jj"Þ is the Kullback-Leibler divergence6

between 1=2 and ". Hence the Shannon capacity provides
the threshold for the low-SNR regime, although the

2. Note that OðrÞ denotes the group of orthogonal matrices of size
r� r and does not refer to the big-O notation frequently used in
algorithm analysis.

3. If Zij is the r� r identity matrix, then the measurement is
noise-free.

4. We have recently became aware that [22] studies partial recovery
for the model of this paper.

5. The noise model is assumed to be known, hence the regime
" 2 ½1=2; 1� can be handled by adding an all-one vector to Y E .

6. All logarithms have base e, i.e., we denote by Dð1=2jj"Þ ¼
1=2 logð1=ð2"ÞÞ þ 1=2 logð1=ð2ð1� "ÞÞÞ the Kullback-Leibler divergence
between 1=2 and " and by H "ð Þ ¼ " logð1="Þ þ ð1� "Þ log ð1=ð1� "ÞÞ
the entropy (in nats) of a binary random variable that assumes the
value 1with probability " 2 0; 1½ �.
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considered inverse problem is a priori not related to the
channel coding theorem.

More precisely, this paper establishes an IT necessary
condition that holds for every graph (Theorem 4.1), an IT
sufficient condition for Erdo��s-R�enyi graphs (Theorem 4.2),
and an IT sufficient condition that holds for any graph
(Theorem 4.3) and depends on the graph’s Cheeger con-
stant, a common measure of the connectivity of a graph (see
(33)) related to its spectral gap by Cheeger’s inequality (see
Theorem 5.5). Moreover, we also give a recovery guarantee
that holds for an efficient algorithm based on SDP (Theo-
rems 5.2 and 5.3).

In particular, we show that, for " ! 1
2 and 1

2 � " ¼
V n�tð Þ for every t > 0. The bounds for the necessary con-
dition for a general graph and the IT sufficient condition
for the Erdo��s-R�enyi graph match.7 Remarkably, the suffi-
cient condition for the efficient SDP-based method to
achieve exact recovery matches the IT bound up to a fac-
tor of 2.

If the noise parameter " is bounded away from both
zero and 1=2, then all conditions imply d ¼ Q log nð Þð Þ,
where d is the expected average degree: d ¼ pn. The fac-
tors by which the bounds differ decrease with an increas-
ing noise parameter ". Since in the noise-free case exact
recovery is possible if and only if the graph is connected,
which is true for trees (with d � 2) and, for Erdo��s-R�enyi
graphs only when d 	 log nð Þ, the factors between the nec-
essary condition and the sufficient conditions necessarily
approach infinity when " decreases to zero (since
Dð1=2jj"Þ diverges).

4 INFORMATION THEORETIC BOUNDS

This section presents necessary and sufficient conditions for
exact recovery of the vertex-variables xV from the edge-vari-

ables Y E . We speak of exact recovery if there is a decoding

algorithm that recovers the vertex-variables xV up to an

unavoidable additive offset f 2 0V ; 1V
� �

with some proba-

bility that converges to 1 as the number of vertices
approaches infinity.

By definition, maximum a posteriori (MAP) decoding
always maximizes the probability of recovering the correct
vertex-variables. Since we assume uniform priors, maxi-
mum likelihood (ML) and MAP decoding coincide. Hence,
our definition of exact recovery is tantamount to requiring
that ML decoding recovers the vertex-variables xV up to an

unavoidable additive offset f 2 0V ; 1V
� �

with some proba-

bility that converges to 1 as the number of vertices
approaches infinity. Note that an ML decoder produces ver-

tex-variables ~xV that minimize the number of edges ði; jÞ of
G for which Y E

ij � ~xi � ~xj is non-zero.

4.1 A Necessary Condition for Successful Recovery

For each graph G ¼ V;Eð Þ (drawn from the Erdo��s-R�enyi
model or not), the following result holds:

Theorem 4.1. Let 0 < t < 2=3 and let d be the average degree of
G. If d � nt then, recovery with high probability is possible

only if

d

log n
	 1� 3t=2

Dð1=2jj"Þ �
1

log n
þ o

1

Dð1=2jj"Þ

� �
: (6)

If " ! 1=2, this condition implies

d

log n
	 2

1� 3t=2

1� 2"ð Þ2
þ o

1

1� 2"ð Þ2

 !
: (7)

Before proving this Theorem, we compare it with the
necessary condition d 	 2=ð1�H "ð Þ=log 2Þ; previously
shown in [17, Section 5]. If " 2 0; 1=2ð Þ does not depend on
n, then this condition only implies d ¼ V 1ð Þ and is thus
weaker than d ¼ V log nð Þ, which follows from Theorem 4.1.

If " ! 1=2, then H "ð Þ ¼ log 2� ð1� 2"Þ2=2þ oðð1� 2"Þ2Þ,
and we can write the condition in [17] as 1� 2" ¼ V

� ffiffiffiffiffiffiffiffi
1=d

p �
.

If there is a t0 < 2=3 for which 1� 2" 	 n�t0=2, then Theorem

4.1 is tighter: it implies 1� 2" ¼ V
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log nð Þ=d
p �

. However, if

there is no such t0, then Theorem 4.1 cannot be applied.8

Proof [of Theorem 4.1]. Fix a vertex vj, and let Ej denote
the event that the variables attached to at least half of
the edges that are incident to vertex vj are noisy. As

we argue next, if event Ej occurs, then ML decoding

recovers vertex-variables other than xV or xV � 1V with
probability at least 1=2. Indeed, if ML decoding cor-
rectly recovers the vertex-variables that are attached to
the vertices adjacent to vj up to a global additive offset

f 2 0; 1f g, then—by assumption that event Ej occurs—

the probability that ML decoding recovers xj with off-

set f� 1 is at least 1=2. In particular, this implies that
ML decoding can only be successful if the eventT

vj2V Ec
j occurs. Let Q be an independent subset of ½n�,

i.e. a set such that no two vertices in it are adjacent.

Since the noise ZE is drawn IID, the events Ej

� �
j2Q are

independent and the probability of the event
T

j2Q Ec
j is

easily computable. Moreover, the event
T

j2½n� Ec
j can

only occur if
T

j2Q Ec
j occurs. A necessary condition for

exact recovery thus is that the probability of the eventT
j2Q Ec

j converges to one as the number of vertices

increases. In the following, we prove the claim by iden-
tifying an independent set Q and by upper-bounding
the probability of the event

T
j2Q Ec

j.

Let deg vj
� �

be the degree of vertex vj, and assume
w.l.o.g. deg v1ð Þ � deg v2ð Þ � 
 
 
 � deg vnð Þ. For every
0 < d � 1

dn 	
Xn

j¼ dnd e
deg vj
� �

	 1� dð Þnd edeg v dnd e
� �

: (8)

7. The regime " ! 1
2 is frequently studied in the synchronization

problem in dimension d ¼ 1.

8. Using Slud’s inequality [27] to lower-bound Prob Ej

	 

, one can

improve the bound for " ! 1=2 and show that whenever there is a

0 < t0 < 1 for which 1� 2" 	 n�t0=2, then a necessary condition is

1� 2" ¼ V
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log nð Þ=d
p �

.

ABBE ET AL.: DECODING BINARY NODE LABELS FROM CENSORED EDGE MEASUREMENTS: PHASE TRANSITION AND EFFICIENT... 13



For j � dnd e, we therefore find

deg vj
� �

� deg v dnd e
� �

� dn

1� dð Þnd e �
d

1� d
: (9)

This implies that for every set L � 1; . . . ; dnd ef g, the ver-

tices vj : j 2 L
� �

are disconnected from at least

dnd e � jLj 1þ d

1� d

� �
(10)

vertices in the set vj : j � dnd e
� �

. We can construct an

independent set Q � vj : j � dnd e
� �

by iteratively

including vertices in Q while keeping independence,
until no vertex can be added. In fact, using the degree
bound in (10), it is easy to see that this process constructs
an independent set Q such that

jQj 	 dnd e
1þ d

1�d

	 d 1� dð Þn
dþ 1� d

: (11)

To simplify notation, we introduce the variables

aj ¼
degðvjÞ

2

� �
; bj ¼

degðvjÞ
2


 �
:

If j � dnd e, then

Prob Ej

	 

¼
XdegðvjÞ
k¼bj

deg ðvjÞ
k

� �
"k 1� "ð ÞdegðvjÞ�k

	
degðvj

�
bj

 !
"bjð1� "Þaj

	
aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pdegðvjÞ

p
degðvjÞdeg vjð Þ"bj 1� "ð Þaj

e2
ffiffiffiffiffiffiffiffi
bjaj

p
b
bj
j a

aj
j

	
bÞ 2deg vjð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deg vj
� �q ffiffiffiffiffiffiffiffiffiffiffi

"

1� "

r
"
deg vjð Þ

2 1� "ð Þ
deg vjð Þ

2

¼ e�
1
2log

1�"
"ð Þ�log 2�deg vjð ÞDð1=2jj"Þ�1

2log deg vjð Þð Þ

	
cÞ

e�
1
2log

1�"
"

d
1�dð Þ�log 2�dDð1=2jj"Þ

1�d ;

(12)

where aÞ is due to Stirling’s formula

1 � ‘!ffiffiffiffiffiffiffiffi
2p‘

p
‘=eð Þ‘

� effiffiffiffiffiffi
2p

p ; ‘ 2 N;

bÞ is due to the inequality of arithmetic and geometric
means, the relation "= 1� "ð Þ < 1, the fact that for every
t 	 1

tþ 1
2

� �tþ1
2 t� 1

2

� �t�1
2

t2t
¼ 1� 1

4t2

� �t
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2t

1� 1
2t

s
< 1:3;

and the inequality 2
ffiffiffiffiffiffi
2p

p
= 1:3e2ð Þ 	 1

2, and cÞ is due to (9).

Since the events fEc
j : j 2 Qg are jointly independent,

Prob
\
j2Q

Ec
j

" #
¼
Y
j2Q

1� Prob Ej

	 
� �

�
aÞ
e
�
P

j2Q e
�1
2
log 1�"

"
d

1�dð Þ�log 2ð Þ�dDð1=2jj"Þ
1�d

�
bÞ
e�e

log
d 1�dð Þn
2ðdþ1�dÞ

ffiffiffiffiffi
1�d
d

p ffiffiffiffiffi
"

1�"

p� �
�dDð1=2jj"Þ

1�d

;

(13)

where aÞ holds since 1� x � e�x for x 	 0 and because of
(12), and bÞ is due to (11). Clearly, a necessary condition
for the RHS of (13) to converge to 1 is

dDð1=2jj"Þ
1� d

	 log
d 1� dð Þn

2ðdþ 1� dÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� d

d

r ffiffiffiffiffiffiffiffiffiffiffi
"

1� "

r !
: (14)

Take d ¼ 1=logðnÞ. Clearly, the average degree d must be
nonnegative. If d � 1, then

log
d 1� dð Þn

2ðdþ 1� dÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� d

d

r ffiffiffiffiffiffiffiffiffiffiffi
"

1� "

r !

	 log nþ log

 
dð1� dÞ

3
2

2 2� dð Þ

!
� 1

2
log

�
1� "

"

�

	
ðaÞ

log nþ log

 
dð1� dÞ

3
2

2 2� dð Þ

!
� 1

2
log

�
1

"ð1� "Þ

�

	
ðbÞ

log nþQðlog log nÞ �Dð1=2jj"Þ;

(15)

where ðaÞ is due to 1� " � 1, and ðbÞ holds because d ¼
1=log n and since Dð1=2jj"Þ¼ �log 2� logð"ð1� "ÞÞ=2. If
1 < d � nt, then

log
d 1� dð Þn

2ðdþ 1� dÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� d

d

r ffiffiffiffiffiffiffiffiffiffiffi
"

1� "

r !

¼ log nd�
3
2

� �
þ log

 
dð1� dÞ

3
2

2 1þ 1�d
d

� �
!

þ 1

2
log

�
"

1� "

�

	
ðaÞ

1� 3t

2

�
log n�Dð1=2jj"Þ þQðlog log nÞ;

(16)

where ðaÞ holds since d � nt , because d ¼ 1=logðnÞ,
since 1� " � 1, and because Dð1=2jj"Þ ¼ �log 2 �
logð"ð1� "ÞÞ=2. For d � nt , we thus obtain from (15) (if
d � 1) or (16) (if d > 1) that (14) cannot hold unless (6)
holds. tu

4.2 Sufficient Conditions for Successful Recovery

We next present sufficient conditions for exact recovery. We
first focus on graphs from the Erdo��s-R�enyi model. Then, we
consider arbitrary graphs and present a condition that is
sufficient for every graph and depends only on the graph’s
Cheeger constant.

For a random base-graph G ¼ ðV;EÞ from the Erdo��s-

R�enyi model, we require the vertex-variables xV to be
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recoverable from the edge-variables Y E except with some
probability that vanishes as the number of vertices
increases.

Theorem 4.2. Suppose the base-graph is drawn from the Erdo��s-
R�enyi model ER n; pð Þ with p > 2log n=n, and let d denote its
expected average degree, i.e., d ¼ ðn� 1Þp. Then the condition

d

log n
	 1

1�
ffiffiffiffiffiffiffiffiffi
2log n

d

q� �
Dð1=2jj"Þ

þ o
1

Dð1=2jj"Þ

� �
(17)

is sufficient to guarantee exact recovery with high probability.
If � ! 1=2, the condition is

d

log n
	 2

1� 2�ð Þ2
þ o

1

1� 2"ð Þ2

 !
: (18)

Proof. Let xV be the vertex-variables, and denote by
dH 
; 
ð Þ the Hamming distance. ML decoding recovers

the vertex-variables xV from the measurements Y E ¼
BGx

V� ZE if every binary n-tuple ~xV =2 xV ; xV � 1V
� �

satisfies

dH Y E; BG~x
V

� �
> dH Y E; BGx

V
� �

: (19)

Since dH xV ; ~xV � 1V
� �

¼ n� dH xV ; ~xV
� �

and BG~x
V ¼

BG ~xV � 1V
� �

, assume w.l.o.g. dH xV ; ~xV
� �

� n=2b c. For

xV 2 0; 1f gn let DxV � 0; 1f gm contain all vectors

yE 2 0; 1f gm for which ML decoding recovers xV or

xV � 1V , i.e., yE 2 DxV iff (19) holds for all binary n-tuples

~xV satisfying 1 � dH xV ; ~xV
� �

� n=2b c. Since the mapping

xV 7!BGx
V is linear, we find DxV ¼ D0V �BGx

V and

Prob Y E =2 DxV

	 

¼ Prob ZE =2 D0V

	 

: (20)

We thus assume w.l.o.g. xV ¼ 0V . Let ~xV be a binary

n-tuple that satisfies 1 � dHð0V ; ~xV Þ � n=2b c, and sup-
pose the ML decoder has to decide between the two

hypotheses 0V and ~xV . Clearly, it decodes ~xV only

if dHðZE;BG~x
V Þ � dHðZE;BG0

V Þ. If we let T ¼ fi :
½BG~x

V �i ¼ 1g be the set of edges ei such that xi1�
xi2 6¼ ~xi1 � ~xi2 , then this implies that the ML decoder

decides for ~xV only if at least half of the edge-variables
Yif gi2T are corrupted, i.e.,X

i2T
Zi 	 jT j=2: (21)

The Chernoff-H€offding theorem implies

Prob
X
i2T

Zi � "ð Þ 	 jT j 1=2� "ð Þ
" #

� e�D 1=2jj"ð ÞjT j: (22)

Moreover, the cardinality of the set T is nothing else
but the cut of the set of vertices vi for which xi and ~xi

are distinct in the sense that xi ¼ 0 and ~xi ¼ 1, i.e., for

S ¼ vj : ~xj ¼ 1
� �

it holds that jT j ¼ cut Sð Þ. Take d > 0,

and let E be the event that cut Sð Þ > 1� dð Þp j Sj
n� jSjð Þ holds for all subsets S of V . Since the graph

is from the Erdo��s-R�enyi model ER n; pð Þ, we find for
every n; h > 0

Prob Ec½ �
¼ Prob 9S � V : cut Sð Þ � 1� dð ÞjSj n� jSjð Þp½ �

�
Xn2b c

k¼1

X
S:jSj¼k

Prob cut Sð Þ � 1� dð Þk n� kð Þp½ �

�
ðaÞXnnb c

k¼1

n

k

� �
e� dþ 1�dð Þlog 1�dð Þð Þk n�kð Þp

þ
Xn2b c

k¼ nnb cþ1

n

k

� �
e� dþ 1�dð Þlog 1�dð Þð Þk n�kð Þp

�
ðbÞXnnb c

k¼1

e�k dþ 1�dð Þlog 1�dð Þð Þ 1�k
nð Þnp�log nð Þ

þ
Xn2b c

k¼ nnb cþ1

e�n dþ 1�dð Þlog 1�dð Þð Þkn 1�k
nð Þnp�H k

nð Þ�hð Þ

�
ðcÞ e� dþ 1�dð Þlog 1�dð Þð Þ 1�nð Þd�lognð Þ

1� e� dþ 1�dð Þlog 1�dð Þð Þ 1�nð Þd�lognð Þ

þ e�n n 1�nð Þ dþ 1�dð Þlog 1�dð Þð Þd�log 2�h�log n
n

� �
;

(23)

where ðaÞ is due to the multiplicative Chernoff bound,

ðbÞ holds since for n large n
k

� �
is upper-bounded by nk

as well as en H k=nð Þþhð Þ, where Hðk=nÞ ¼ k=n logðn=kÞ þ
ð1� k=nÞlogðn=ðn� kÞÞ, and ðcÞ is true because d ¼
n� 1ð Þp, binary entropy satisfies Hðk=nÞ � log 2, and
a 1� að Þ is concave on 0; 1½ �. Moreover, the union
bound implies for every n; h > 0 and sufficiently large n

Prob Y E =2 DxV Ej
	 

�
X
~xV

Prob
X
i2T

Zi 	 jT j=2
�����E

" #

�
Xnnb c

k¼1

n

k

� �
e�D 1=2jj"ð Þ 1�dð Þk n�kð Þp

þ
Xn2b c

k¼ nnb cþ1

n

k

� �
e�D 1=2jj"ð Þ 1�dð Þk n�kð Þp

�
Xnnb c

k¼1

e�k D 1=2jj"ð Þ 1�dð Þ 1�k
nð Þnp�log nð Þ

þ
Xn2b c

k¼ nnb cþ1

e�n D 1=2jj"ð Þ 1�dð Þkn 1�k
nð Þnp�H k

nð Þ�hð Þ

� e� 1�dð Þ 1�nð ÞD 1=2jj"ð Þd�log nð Þ

1� e� 1�dð Þ 1�nð ÞD 1=2jj"ð Þd�log nð Þ

þ e�n 1�dð Þn 1�nð ÞD 1=2jj"ð Þd�log 2�h�log n
n

� �
:

(24)

The law of total probability implies that

Prob Y E =2 DxV

	 

� Prob ZE =2 D0V Ej

	 

þ Prob Ec½ �: (25)

From (20) and (24)-(25) we conclude that ML decoding
succeeds if log 2þ hð Þ=n < log n and
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d >
1

dþ 1� dð Þlog 1� dð Þð Þ 1� nð Þ log n (26)

d >
1

D 1=2 "jjð Þ 1� dð Þ 1� nð Þ log n: (27)

If we choose h ¼ 1 and n ¼ o 1ð Þ so that 1=n ¼ o log nð Þ,
then we find that the following conditions are sufficient

d >
1

dþ 1� dð Þlog 1� dð Þð Þ log nþ o log nð Þð Þ (28)

d >
1

D 1=2 "jjð Þ 1� dð Þ log nþ o log nð Þð Þ: (29)

Since d2=2 � dþ 1� dð Þlog 1� dð Þ for d 2 0; 1ð Þ, the above
two constraints are satisfied if (17) holds. tu

In the proof of Theorem 4.2, we used the fact that, for a
graph from the Erdo��s-R�enyi model ER n; pð Þ, the cut of each
subset S � V is with high probability approximately as
large as its expectation, i.e., for d > 0 it holds with high
probability that

cut Sð Þ > 1� dð Þp jSj n� jSjð Þ; 8S � V: (30)

For every set S � V , define

vol Sð Þ ¼
X
v2S

deg vð Þ: (31)

Note that E vol Sð Þ½ � ¼ p jSj n� 1ð Þ and E cut Sð Þ½ � ¼
p jSj n� jSjð Þ. Moreover, the multiplicative Chernoff bound
implies that vol Sð Þ � 1þ dð Þp jSj n� 1ð Þ holds with high
probability. Hence, instead of (30) we could require that for
some m 2 0; 1ð Þ and for every S � V with jSj � n� jSj

cut Sð Þ
vol Sð Þ > 1� mð Þn� jSj

n� 1
: (32)

Recalling that the Cheeger constant hG of a graph is

hG ¼ min
S� n½ �

cut Sð Þ
min vol Sð Þ; vol Scð Þf g ; (33)

it is clear that (32) holds for every subset S � V if

hG > 1� mð Þ 1
2
:

This motivates our next result, which is a recovery guaran-
tee in terms of the Cheeger constant:

Theorem 4.3. If the base-graph G ¼ V;Eð Þ has Cheeger constant
hG and the minimum degree satisfies

minjdegðvjÞ
log n

>
1

hGDð1=2jj"Þ ; (34)

then exact recovery with high probability is possible. In partic-
ular, if the base-graph G ¼ V;Eð Þ is d-regular, then a suffi-
cient condition for exact recovery is

d

log n
>

1

hGDð1=2jj"Þ : (35)

If � ! 1=2, then (35) is equivalent to

d

log n
>

2

hG 1� 2"ð Þ2
þ o

1

hG 1� 2"ð Þ2

 !
: (36)

Proof. Denote c ¼ minjdeg vj
� �

=log n. Because of (20)-(22),
the union bound, and since jT j ¼ cut Sð Þ 	 hG vol Sð Þ 	
c hG jSjlog nð Þ holds for every subset S � V with
jSj � n=2, we find that

Prob Y E =2 DxV

	 

¼ Prob ZE =2 D0V

	 

� 1

2

X
~xV =2 0V ;1Vf g

Prob dH ZE;BGx
V

� �
� dH ZE;BG0

V
� �	 


�
Xn2b c

k¼1

n
k

� �
e�kc hGD 1=2jj"ð Þlogn

�
Xn2b c

k¼1

e�k c hGD 1=2jj"ð Þlogn�lognð Þ

� e� c hGD 1=2jj"ð Þlogn�lognð Þ

1� e� c hGD 1=2jj"ð Þlogn�lognð Þ :

(37)

Hence, if (34) holds, then ML decoding recovers the cor-
rect vertex-variables xV . tu

Interestingly, if the base-graph is drawn from the Erdo��s-
R�enyi model ER n; pð Þ, then the sufficient conditions of The-
orem 4.2 and Theorem 4.3 exhibit the same scaling behavior:

Remark 4.4. If the base-graph is drawn from the Erdo��s-
R�enyi model ER n; pð Þ, then it has a non-vanishing spec-
tral gap for p > C log n=n (see [28]). Moreover, for every

d 2 0; 1ð Þ and p > 2 log n= d2n
� �

Prob 9S : vol Sð Þ � 1� dð Þp jSj n� 1ð Þ½ � ! 0 n ! 1ð Þ:

Observe that if vol Sð Þ > 1� dð Þp jSj n� 1ð Þ for every

S � V , thenminjdeg vj
� �

	 1� dð Þ n� 1ð Þp.

It is natural to give recovery guarantees in terms of the
Cheeger constant: A graph with a small minimum cut con-
sists of two rather disconnected components so that the
probability of decoding one component without additive
offset and the other component with constant additive offset
1 is non-negligible. As we argue next, deriving a necessary
condition that bounds the Cheeger constant away from zero
is, however, impossible. Indeed, suppose the base-graph
consists of two equally sized components, which are con-
nected by log n edges. Moreover, assume the two graphs
that are obtained by disconnecting the two components
have Cheeger constant hG and minimum degree c log n,
where c is some positive constant for which the sufficient
condition (35) of Theorem 4.3 holds. Then, Theorem 4.3
implies that each component can be recovered correctly (up
to an inevitable additive offset). Moreover, with high proba-
bility less than half of the log n edges that connect the two
components are corrupted by noise. Hence, ML decoding
indeed recovers the correct vertex-variables up to a constant
additive binary offset. But the Cheeger constant of the graph
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satisfies hg � 2= cnð Þ and thus converges to zero as n

approaches infinity. This leaves the interesting open ques-
tion of investigating a characteristic of the graph that cap-
tures how easy it is to solve (on it) the type of inverse
problems considered here.

5 COMPUTATIONALLY EFFICIENT RECOVERY—THE

SDP

In this section we analyze a tractable method to recover xV

from the noisy measurements Y E , which is based on SDP.
Ideally, one would like to find the maximum likelihood esti-
mator x� ¼ argminxi2f0;1g

P
ði;jÞ2E 1

xi 6¼yði;jÞ�xj

� �. By defining

the f�1g-valued variables gi ¼ ð�1Þxi and the coefficients
rij ¼ ð�1Þyði;jÞ , the ML problem is reformulated as

min
gi2f�1g

X
ði;jÞ2E

ðgi � rijgjÞ2: (38)

This problem is known to be NP-hard in general (in fact, it is
easy to see that it can encode Max-Cut). In what follows, we
will describe and analyze a tractable algorithm, which was
first proposed in [17] to approximate the solution of (38).
We will state conditions under which the algorithm is able
to recover the vertex-variables xV . The idea is to consider a
natural semidefinite relaxation. Other properties of this SDP
have been studied in [29], [30].

Let W be the n� n matrix with Wði; jÞ ¼ rij if ði; jÞ 2 E
and Wði; jÞ ¼ 0 otherwise. Problem (38) has the same solu-

tions asmaxgi2f�1gTr WggT
	 


;which in turn is equivalent to

max Tr WX½ �
s:t: X 2 Rn�n; Xii ¼ 1 8i; X 
 0; RankðXÞ ¼ 1:

(39)

(Given the optimal rank 1 solution X of (39), gi ¼ ð�1Þxi is
the only non-trivial eigenvector of X.) As the rank con-
straint is non-convex, we consider the following convex
relaxation

max Tr WX½ � s:t: Xii ¼ 1; X 
 0: (40)

Note that (40) is an SDP and can be solved, up to arbitrary
precision, in polynomial time [31]. Note that a solution of
(40) need not be rank 1 and thus need not be a solution of
(39). However, we will show that under certain conditions
(40) recovers the same optimal solution as (39). In this case,

gi ¼ ð�1Þxi is the only non-trivial eigenvector of X and xV

can be recovered via the tractable program (40).
Notation. Recall that G is the underlying graph on n

nodes, and let H be the subgraph representing the incorrect
edges (corresponding to Zði;jÞ ¼ 1). Let AG, AH , DG, DH , LG,

and LH be, respectively, the adjacency, degree, and Lapla-
cian matrices of the graphs G andH.

As in [17], we assume w.l.o.g.9 that xV � 0 so that g � 1.
Then,W ¼ AG � 2AH , and (40) can be rewritten as

max Tr ðAG � 2AHÞX½ � s:t: Xii ¼ 1; X 
 0: (41)

Our objective is to understand when X ¼ ggT ¼ 11T is
the unique optimal solution to (41). The dual of the SDP is

minTrðQÞ s:t: Q diagonal; Q� AG � 2AHð Þ 
 0: (42)

Duality guarantees that the objective value of (41) cannot
exceed that of (42). Thus, if there exists Q, feasible solution

of (42), such that TrðQÞ ¼ Tr AG � 2AHð Þ11T
	 


, then

X ¼ 11T is an optimal solution of (41). Moreover, Q and 11T

have to satisfy complementary slackness: Trð11T ðQ �
AG � 2AHð ÞÞÞ ¼ 0. Given these constraints, one can ask that
the equality holds for each row partial sum and construct
the natural candidate Q ¼ DG � 2DH . Indeed, it is easy to

see that TrðDG � 2DHÞ ¼ Tr AG � 2AHð Þ11T
	 


. Hence, if

LG � 2LH ¼ DG � 2DH � AG � 2AHð Þ 
 0; (43)

i.e., the dual variable is positive-semidefinite (PSD), then

11T must be an optimal solution of (41). Additionally, if
LG � 2LH is not only PSD but also its second smallest
eigenvalue is non-zero, since the complementarity condi-
tions guarantee that any optimal solution X0 needs to sat-
isfy Tr X0ðLG � 2LHÞð Þ ¼ 0, it is not difficult to show that

any optimal solution needs to be a multiple of 11T . As
one can easily see from the constraints of the SDP that no

other multiple of 11T is a feasible solution, 11T must be
the unique optimal solution. Since the success of (41)
does not depend on the value gi ¼ ð�1Þxi of the ground
truth, we have thus shown

Lemma 5.1. If

LG � 2LH 
 0 and �2ðLG � 2LHÞ > 0; (44)

then ggT , where gi ¼ ð�1Þxi corresponds to the ground truth,
is the unique solution to (40).

5.1 Erdo��s-R�enyi Model

We now assume that the underlying graph is drawn from
the Erdo��s-R�enyi model ERðn; pÞ and use condition (44) to
give guarantees for exact recovery.

For each pair of vertices i < j, let Lij be an n� n symmet-
ric matrix with Lijði; iÞ ¼ 1, Lijðj; jÞ ¼ 1, Lijði; jÞ ¼
Lijðj; iÞ ¼ �1, and Lijðk; lÞ ¼ 0 for all other pairs ðk; lÞ.
Observe that Lij 
 0, and LG ¼

P
i<j:ði;jÞ2E Lij: Let aij be the

random variable that takes the value 0 if edge ði; jÞ is not in
G, the value 1 if it is in G but not in H, and the value �1 if it
is inH. Hence aij are i.i.d. with distribution

aij ¼
0 with probability 1� p
1 with probability p 1� "ð Þ
�1 with probability p":

8<
:

In the new notation,

LG � 2LH ¼
X
i<j

aijLij:

We define the centered random variables Aij ¼ pð1� 2"Þ �ð
aijÞLij: For A ¼

P
i<j Aij, we can write

LG � 2LH ¼ pð1� 2"ÞðnI � 11T Þ �A:
9. It is not difficult to see that the recovery success of either (39) or

(40) only depends on which edges are correct and which are incorrect,
and not on the values of xV (or g).

ABBE ET AL.: DECODING BINARY NODE LABELS FROM CENSORED EDGE MEASUREMENTS: PHASE TRANSITION AND EFFICIENT... 17



Since Lij always contains the vector 1 in the null-space, (44)
is equivalent to �maxðAÞ < pð1� 2"Þn:

We are now interested in understanding for which val-
ues of p, ", and n there is some d > 0 such that

Prob �maxðAÞ 	 pð1� 2"Þn½ � � n�d:

To this end, we use the Matrix Bernstein inequality
(Theorem 1.4 in [32]), which implies

Prob �maxðAÞ 	 t½ � � n exp � t2=2

s2 þRt=3

� �
;

where s2 ¼
��P

i<j EA
2
ij

��, with k 
 k denoting the spectral

norm, and R 	 �max Aij

� �
. Note that

s2 ¼
X
i<j

EA2
ij

�����
����� ¼

X
i<j

Eðpð1� 2"Þ � aijÞ22Lij

�����
�����

¼ 2Eðpð1� 2"Þ � aijÞ2
X
i<j

Lij

�����
�����

¼ 2nEðpð1� 2"Þ � aijÞ2;

which gives s2 ¼ 2np 1� pð1� 2"Þ2
h i

. Also, �maxðAijÞ �
2pð1� 2"Þ þ 2: Setting t ¼ pð1� 2�Þn gives

Prob �maxðAÞ 	 pð1� 2"Þn½ �

� n exp � 1

4

ð1� 2"Þ2

1� 2
3 pð1� 2"Þ2 þ 1

3 ð1� 2"Þ
pn

 !
;

which together with (44) concludes the proof of the follow-
ing Theorem:

Theorem 5.2. Let d be the expected average degree d ¼ ðn� 1Þp.
If

d

log n
	 ð1þ dÞ 4

ð1� 2"Þ2
þ 4

3ð1� 2"Þ

 !
; (45)

then the SDP achieves exact recovery with probability at least

1� n�d. When � ! 1
2, condition (45) is equivalent to

d

log n
	 4

ð1þ dÞ
ð1� 2"Þ2

þ o
1

ð1� 2"Þ2

 !
: (46)

Note that, when � ! 1
2, condition (46) differs from (18), the

sufficient condition for exact recovery with the maximum
likelihood estimator, by a multiplicative factor of 2. This
gap is further discussed in Section 6.

5.2 Deterministic Regular Graph

We now treat the case in which the underlying graph is a
deterministic d-regular graph G ¼ ðV;EÞ and use condition
(44) to give guarantees for exact recovery.

We need a measure of connectivity for G. Let
AG ¼ dIn�n � LG be the adjacency matrix of G, let �2 be the

second largest eigenvalue of 1
d AG, and let �n be the smallest

eigenvalue of 1
d AG. Since G has no self-loop we have �n < 0,

which means

�2 ¼
1

d
max
x?1

xTAGx

xTx

� �
and j�nj ¼

1

d
max
x?1

� xTAGx

xTx

� �
: (47)

This immediately gives �0
minðLGÞ ¼ dð1� �2Þ and

�maxðLGÞ � dð1þ j�njÞ, where �0
minð
Þ does not take into

account the subspace generated by 1.
As in the previous section, for each edge e incident in the

pair of vertices i < j, let Le be the matrix that is 1 in the
entries ði; iÞ and ðj; jÞ, �1 in the entries ði; jÞ and ðj; iÞ, and 0
elsewhere. Observe that Lij 
 0 and LG ¼

P
e2E Le:

Given e 2 E, let ae be the random variable that takes the
value 1 if edge e is not in H and the value �1 if it is in H.
Hence ae are i.i.d. and take the values 1;�1with probability

ae ¼
1 with probability 1� "ð Þ
�1 with probability ":

�

In the new notation, LG � 2LH ¼
P

e2E aeLe:
Recall that we want to understand when there exists

d > 0 for which

Prob LG � 2LH 
 0½ � 	 1� n�d: (48)

As before, let us consider the centered variables Ae ¼
1� 2"� aeð ÞLe and A ¼

P
e2E Ae. We have

LG � 2LH ¼ ð1� 2"Þ
X
e2E

Le �A ¼ ð1� 2"ÞLG �A:

This means that �maxðAÞ � ð1� 2"Þ�minðLGÞ is a sufficient
condition for LG � 2LH 
 0. Since �minðLGÞ 	 dð1� �2Þ,

�maxðAÞ � dð1� 2"Þð1� �2Þ

is also sufficient.
Just as in the Section above, we use the Matrix Bernstein

inequality (Theorem 1.4 in [32]), which implies Prob �max½
ðAÞ 	 t� � n expð� t2=2

s2 þRt=3
Þ; where s2 ¼

P
e2E EA2

e

�� ��, with

k 
 k denoting the spectral norm, and R 	 �max Aeð Þ. This
means that

s2 ¼ Eð1� 2"� aeÞ2
X
e2E

L2
e

�����
�����

¼ ð4"ð1� "ÞÞ2�maxðLGÞ � 8"ð1� "Þdð1þ j�njÞ;

and we can take R ¼ 4ð1� "Þ: Plugging everything together,

Prob �maxðAÞ 	 t½ �

� n exp � t2=2

8"ð1� "Þdð1þ j�njÞ þ 4ð1� "Þt=3

� �
:

Setting t ¼ dð1� 2"Þð1� �2Þ gives,

Prob �maxðAÞ 	 dð1� 2"Þð1� �2Þ½ �

� n exp �d
ð1� 2"Þ2ð1� �2Þ2

16"ð1� "Þð1þ j�njÞ þ 8
3 ð1� "Þð1� 2"Þð1� �2Þ

 !
:
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This means that it suffices to have

n exp �d
ð1� 2"Þ2ð1� �2Þ2

16"ð1� "Þð1þ j�njÞ þ 8
3 ð1� "Þð1� 2"Þð1� �2Þ

 !

� n�d;

which is equivalent to

d	 16
"ð1� "Þ
ð1� 2"Þ2

þ 8

3

ð1� "Þð1� �2Þ
ð1� 2"Þð1þ j�njÞ

" #
1þ j�nj
ð1� �2Þ2

ð1þ dÞ log n:

Since "ð1� "Þ ¼ 1
4 �

ð1� 2"Þ2
4 and 1� " ¼ 1

2 þ 1
2 ð1� 2"Þ, we

can rewrite the expression above as

d=ð1þ dÞ 	 1

ð1� 2"Þ2
� 1þ 1

3
1þ 1

1� 2"

� �
1� �2

1þ j�nj

" #

4
1þ j�nj
ð1� �2Þ2

log n;

which concludes the proof of the main result of this section.

Theorem 5.3. Let G be a d-regular graph, and let �2 and �n be
defined as in (47). As long as

d

log n
	 4

1þ j�nj
ð1� �2Þ2

ð1þ dÞ

� 1

ð1� 2"Þ2
þ 1

3

1� �2

ð1� 2"Þð1þ j�njÞ
þ 1

3

1� �2

ð1þ j�njÞ
� 1

" #
;

(49)

the SDP achieves exact recovery with probability at least

1� nd.
Moreover, if " ! 1

2, this can be rewritten as

d

log n
	 4

1þ j�nj
ð1� �2Þ2

ð1þ dÞ 1

ð1� 2"Þ2
þ o

1

ð1� 2"Þ2

 !" #
:

If, furthermore, �2 ¼ oð1Þ and j�nj ¼ oð1Þ the condition
reads

d

log n
	 4ð1þ dÞ 1

ð1� 2"Þ2
þ o

1

ð1� 2"Þ2

 !
: (50)

Remark 5.4. The case where maxf�2; j�njg ¼ oð1Þ is of par-
ticular interest as this is satisfied for random d-regular

graphs as, for every d > 0, maxf�2; j�njg � 2
ffiffiffiffiffiffi
d�1

p
þd

d with

high probability [33], [34]. Also, if G is a d-regular

Ramanujan expander, thenmaxf�2; j�njg � 2
ffiffiffiffiffiffi
d�1

p

d .

Theorem 5.3 and Theorem 4.3 can be compared using
Cheeger’s inequality.

Theorem 5.5 (Cheeger’s inequality [35], [36]). Let G be a
d-regular graph and let hG be its Cheeger constant (see (33))
and �2 as defined in (47), then

1� �2

2
� hG �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� �2ð Þ

p
: (51)

Using (51) it is easy to see that (when " ! 1
2) the IT suffi-

cient condition (36) in Theorem 4.3 is implied by

d

log n
>

4

ð1� �2Þ 1� 2"ð Þ2
þ o

1

ð1� �2Þ 1� 2"ð Þ2

 !
:

5.3 An Alternative Method Based on 2-Length Path
Voting

In this section we analyse a simple method to recover the
vertex-variables based on 2-length path voting. This method
was proposed to the authors by Andrea Montanari, we
thank Andrea for allowing us to analyse the method in this
paper.

We will consider the Erdo��s-R�enyi model. Let G be
drawn from the Erdo��s-R�enyi distribution with parameters
n and p and " be the probability of an edge being incor-
rect. The recovery algorithm consists of: first one picks a
center node, sets it to 1, and then sets the value of every
other node by looking at all paths of length 2 between
this node and the center node and by taking majority-vot-
ing among those.

In order to analyse the method, let us assume that the
center node has been picked. For each of the other nodes,
there are n� 2 possible 2-length paths (corresponding to
each one of the other n� 2 vertices). For each of these verti-
ces let us define the random variable Yk to be 0 if there is no
path, �1 if the path gives the wrong answer and 1 if it gives
the correct one. This means that the random variables Yk are
i.i.d. and distributed as

Yk ¼
0 with probability 1� p2

�1 with probability p22" 1� "ð Þ ¼ p2 2"� 2"2½ �
1 with probability p2 1� 2"þ 2"2½ �:

8<
:

The voting scheme succeeds for that one node as long asPn�2
k¼1 Yk > 0.
Since we want to union-bound over n� 1 vertices, and

we want recovery to hold with probability at least n�d, we
want to understand for which p and "we have

Prob
Xn�2

k¼1

Yk � 0

" #
� 1

n1þd
� 1

ðn� 1Þnd
:

Let us define the centered variable

Xk ¼ Yk � EYk ¼ Yk � p2ð1� 2"Þ2:

This means we are interested in understanding when

Prob
Xn�2

k¼1

Xk � �ðn� 2Þp2ð1� 2"Þ2
" #

� 1

n1þd
;

whereXk ¼ Yk � p2ð1� 2"Þ2 is centered with distribution

Xk ¼
�p2ð1� 2"Þ2 with prob: 1� p2

�1� p2ð1� 2"Þ2 with prob: p2 2"� 2"2½ �
1� p2ð1� 2"Þ2 with prob: p2 1� 2"þ 2"2½ �:

8<
:
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Also jXkj � 1þ p2ð1� 2"Þ2 and

EX2
k ¼ ð1� p2Þ p2ð1� 2"Þ2

� �2
þ p2 2"� 2"2

	 

1þ p2ð1� 2"Þ2
� �2

þ p2 1� 2"þ 2"2
	 


1� p2ð1� 2"Þ2
� �2

� p2:

Bernstein’s inequality thus gives

Prob
Xn�2

k¼1

Xk � �t

" #
� exp � t2=2

ðn� 2ÞEX2
k þ 1

3�jXkjt

 !

� exp � t2=2

ðn� 2Þp2 þ 1
3 ð1þ p2ð1� 2"Þ2Þt

 !
:

Replacing t by ðn� 2Þp2ð1� 2"Þ2 one gets

Prob
Xn�2

k¼1

Xk � �ðn� 2Þp2ð1� 2"Þ2
" #

� exp � ðn� 2Þp2ð1� 2"Þ4=2
1þ 1

3 ð1þ p2ð1� 2"Þ2Þð1� 2"Þ2

 !
:

This condition can be rewritten as,

ðn� 2Þp2ð1� 2"Þ4=2
1þ 1

3 ð1þ p2ð1� 2"Þ2Þð1� 2"Þ2
	 ð1þ dÞlog n:

In particular, when " ! 1
2, the sufficient condition can be

written as

d2

log n
	 2ð1þ dÞ 1

ð1� 2"Þ4
þ o

1

ð1� 2"Þ4

 ! !
n;

where d ¼ pn is the expected average degree. Finally, we

rewrite it in terms of d
log n:

d

log n
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ dÞ

p 1

ð1� 2"Þ2
þ o

1

ð1� 2"Þ2

 ! ! ffiffiffiffiffiffiffiffiffiffiffi
n

log n

r
: (52)

Note that condition (52) is asymptotically worse than the
one obtained for the SDP-based approach (Theorem 5.2).
In particular, it forces the average degree to be at least
of order

ffiffiffi
n

p
.

6 DIRECTIONS AND OPEN PROBLEMS

There are various extensions to consider for the above mod-
els, including the generalization to q-ary instead of binary
variables and the extension to problems with hyperedges
instead of edges as in [9]. Non-binary variables would be
particularly interesting for the synchronization problem in
higher dimension, where the orthogonal matrices are quan-
tized to a higher order. There are several extensions that are
interesting for applications in community detection. First, it
would be important to investigate non-symmetric noise
models, i.e., noise models that are non-additive. First steps

towards this were recently taken in [37]. Then, it would be
interesting to study partial (as opposed to exact) recovery
for sparse graphs with constant degrees, or to incorporate
constraints on the size of the communities. In particular, it
would be interesting to analyze the behavior of the SDP
approach in the partial recovery regime, as it would poten-
tially require a rounding step. One can also extend the fam-
ily of base-graph ensembles. A particularly interesting
future direction is to investigate characteristics of determin-
istic graphs that can provide IT lower-bounds for recovery.
As we have seen, the lack of spectral gap alone is insuffi-
cient for that purpose.

Finally, it would be interesting to better understand the
gap between the IT rates and the ones we showed for our
SDP-based algorithm. With this in mind, we ran a simple
simulation where, given p and �, we generated random
instances of the problem for different values of n and
checked whether the dual certificate proposed was feasible.
The results, reported in Fig. 1, suggest that this does not
happen all the way down to the IT threshold suggesting
that the gap might be a shortcoming of the method and not
an artefact of the analysis. However, it is possible that a
sharper analysis can yield better guarantees for the SDP-
based algorithm. In particular, our analysis hinges on an all-
purpose matrix Bernstein inequality that may be suboptimal
in this case, and a specialized study of the particular ran-
dom matrix in question may yield better results. We defer
such a study for future investigations. Although the fact
that the dual certificate is not feasible does not necessarily
imply that the SDP is not achieving exact recovery, checking

Fig. 1. Results of a simple simulation where, given the edge probabil-
ity parameter p and noise level parameter �, we generated random
instances of the problem for different values of the number of verti-
ces n and checked whether the dual certificate proposed, LG � 2LH ,
is PSD. The plot shows (on the y-axis), for different values of n (on
the x-axis), the ratio of trials that have a PSD dual certificate. The
two vertical lines correspond to the thresholds of the IT and the SDP
guarantees. The plot on the top is constructed with p ¼ 0:75,
" ¼ 0:35, and the experiment is run 500 times for each value of n.
The plot on the bottom is constructed with p ¼ 0:85, " ¼ 0:4, and the
experiment is run 100 times for each value of n.
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the dual certificate is considerably cheaper from a computa-
tional point of view, and other experiments, not reported,
showed that the two tests are essentially equivalent in prac-
tice. This poses the natural question of whether there exists
a polynomial-time algorithm that is able to match the rates
achieved by the ML estimator. The existence of a gap
between the performance of the ML estimator and the best
polynomial-time algorithm would be extremely interesting.
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