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Diffusion Interpretation of Nonlocal Neighborhood Filters for Signal Denoising∗
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Abstract. Nonlocal neighborhood filters are modern and powerful techniques for image and signal denoising.
In this paper, we give a probabilistic interpretation and analysis of the method viewed as a random
walk on the patch space. We show that the method is intimately connected to the characteristics
of diffusion processes, their escape times over potential barriers, and their spectral decomposition.
In particular, the eigenstructure of the diffusion operator leads to novel insights on the performance
and limitations of the denoising method, as well as a proposal for an improved filtering algorithm.
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1. Introduction. Denoising of signals and images is a fundamental task in signal process-
ing. Early approaches, such as Gaussian (Gabor) filters and anisotropic diffusion [22], denoise
the value of a signal y(x1) at a point x1 based only on the observed values y(x2) at neighboring
points x2 spatially close to x1. To overcome the obvious shortcomings of this locality property,
many authors proposed various global and multiscale denoising approaches. Among others,
we mention minimization of global energy functionals such as the total-variation functional
[23] and Fourier and wavelet denoising methods [12]. The recent paper [10] provides a review
of many such methods.

Although quite sophisticated, these methods typically do not take into account an im-
portant feature of many signals and images, that of repetitive behavior, e.g., the fact that
small patterns of the original noise-free signal may appear a large number of times at different
spatial locations. For one-dimensional (1-D) signals this property holds for every periodic or
nearly periodic function (such as repetitive neuronal spikes, heart beats, etc.) and for many
telegraph type processes. Similarly, identical patches typically appear at many different and
possibly spatially distant locations in two-dimensional (2-D) images. The fact that the same
noise-free pattern appears multiple instances can obviously be utilized for improved denoising.
Rather than averaging the value of a noisy signal at a point x based only on its few neighbor
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DIFFUSION INTERPRETATION OF NONLOCAL FILTERS 119

values, one can identify other locations in the signal where a similar pattern appears and
average all of these instances. This observation naturally leads to the development of various
nonlocal (NL) denoising methods [30, 8, 10, 18, 14, 28, 7, 27, 2, 3]. An understanding of these
methods is the focus of this paper.

The concept of NL averaging, via an NL neighborhood filter was introduced by Yaroslavsky
[30]. For a continuous signal y(x), the neighborhood filter is defined as

(1.1) NFhy(x1) =
1

D(x1)

∫
K

(
y(x1) − y(x2)

h

)
y(x2)dx2,

where K(z) is any smoothly decaying integrable kernel, such as the Gaussian, K(z) = e−z2/2,
and D(x1) =

∫
K(y(x1)−y(x2)

h )dx2 is a normalization factor. Note that one application of
the neighborhood filter (1.1) averages the value of y(x1) according to points x2 with similar
y-values. These can be located far from the original point x1.

Various authors [30, 26, 29, 4, 5] combined NL neighborhood filters with spatially local
kernels, leading to methods which denoise the signal at x1 by taking averages of values y(x2)
for which both y(x2) is close to y(x1) and x2 is close to x1. The latter is also known as bilateral
filtering. Recently, this idea was further extended to an NL-means neighborhood filter, where
the similarity between locations x1 and x2 is measured not by their single y-values but rather
by some local means [8, 10, 18, 27, 28, 2, 3]. For example, [10] proposed the following operator:

(1.2) NLhy(x1) =
1

D(x1)

∫
K

(
Ga ∗ [y(x1 + .) − y(x2 + .)]2

h

)
y(x2)dx2,

where Ga ∗ [y(x1 + .) − y(x2 + .)]2 is the convolution of the squared difference of the shifted
signals y(x1 + .) − y(x2 + .) with a Gaussian kernel,

(1.3) Ga ∗ [y(x1 + .) − y(x2 + .)]2 =
∫
Ga(t) [y(x1 + t) − y(x2 + t)]2 dt.

In other words, the value y(x2) is used to denoise y(x1) if the local pattern near y(x2) is similar
to the local pattern near y(x1). In [2, 3] these equations were derived via minimization of a joint
entropy principle with D(x1) interpreted as a nonparametric density estimate. Alternative
derivations were given in [17, 14, 7] using variational principles. The diffusion character of
neighborhood filters as a local algorithm was analyzed in [9, 4].

Even though the algorithm is extremely simple, essentially described by (1.2) and (1.3), it
is surprisingly superior to other methods, as demonstrated in [10, 7, 14, 3] through extensive
experimentation. In the context of images, NL neighborhood filter methods are able to handle
texture, edges, and high frequency signals all at once. When applied to images, these methods
are able to separate the majority of the signal from the noise with the resulting residuals
typically looking like pure noise and showing almost no texture or other structure [10, 8].

The purpose of this paper is to provide a probabilistic interpretation to these NL methods.
For simplicity, we present our analysis for 1-D signals, although it can be easily extended
to the case of 2-D images. The key observation in our analysis is that whereas standard
Gabor-type filtering methods can be viewed as a diffusion on the x-axis, single-pixel based
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neighborhood filters perform a diffusion on the y-axis. Similarly, the NL-means algorithm
that averages patches can be viewed as a random walk in the patch space [27]. This simple
observation sheds light on many of the properties of these algorithms. Our main result is a
probabilistic explanation of the behavior of both the neighborhood filter and the NL-means
algorithm, including their rate of convergence, their blurring properties, and the advantages
(but also limitations) of taking patches of values rather than a single value for computing
a similarity metric between pixels. Furthermore, the relation between the averaging process
and the eigenstructure of the related diffusion operator leads to a proposition of an improved
filtering algorithm.

The paper is organized as follows. In section 2 we present neighborhood filters that are
based on single-pixel values and their probabilistic interpretation as diffusion processes on
the y-values of the signal. The denoising performed by this algorithm on constant functions
contaminated with white noise and the resulting rate of convergence are considered in section
3. We show that the rate of convergence is intimately connected to a diffusion in a potential
well whose parameters depend on the noise variance and on the width of the kernel. An
analysis of the algorithm on more complicated stepwise functions is described in section 4. In
denoising such functions, the key quantity that comes into play is the mean exit time of a
diffusion process in a multiwell potential, from one y-value well to another. The advantages
and limitations of taking patches rather than single y-values are considered in section 5.
In section 6 we consider the neighborhood filter denoising method as a low pass filter and
present possible improvements and modifications to the basic scheme that are supported by
experimental results. Finally, section 7 is a summary.

2. Diffusion in the y-space. To denoise a signal, the NL-means algorithm typically com-
pares local patches of the signal (or image) values. We start by analyzing the neighborhood
filter which compares the smallest possible neighborhood size, i.e., a single pixel. In later
sections we will carry over the analysis to the more realistic case of larger neighborhoods
containing several pixels.

Consider a continuous signal y(x) sampled at N points xi (i = 1, . . . , N). We wish to
denoise the sequence y(xi), i = 1, . . . , N . One iteration of the neighborhood filter averages
nearby y-values to obtain a denoised version of the signal yd given by

(2.1) yd(xi) =
1

D(xi)

N∑
j=1

Kε(y(xi), y(xj)) y(xj),

where Kε is a positive definite kernel, e.g., the Gaussian

Kε(y(xi), y(xj)) = exp
{−(y(xi) − y(xj))2/2ε

}
,

D(xi) =
∑N

j=1Kε(y(xi), y(xj)) is a normalization factor, and
√
ε is the width of the kernel.

The kernel Kε measures the similarity of its input. It is close to one whenever y(x1) ≈ y(x2)
and is close to zero when |y(x1)−y(x2)| �

√
ε. Thus, points with y-values less than

√
ε apart

are averaged via (2.1), leading to a suppression of noise. Note that points x1, x2 with similar
y-values are not necessarily spatially nearby. This can happen in several cases: the function
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DIFFUSION INTERPRETATION OF NONLOCAL FILTERS 121

may be discontinuous so nearby points have different y-values or two distant points may have
the same y-value.

The denoising iteration (2.1) can also be written as

(2.2) y1(xi) =
1

D0(xi)

N∑
j=1

Kε(y0(xi), y0(xj)) y0(xj),

where y0 = y and D0(xi) =
∑N

j=1Kε(y0(xi), y0(xj)). In many cases a single denoising step is
not sufficient and a few iterations are needed. There are three ways of iterating (2.2). The
first is to define the denoised signal yn at stage n as

(2.3) yn(xi) =
1

D0(xi)

N∑
j=1

Kε(y0(xi), y0(xj)) yn−1(xj).

In this scheme, the kernel matrix and the normalization factors remain fixed during the itera-
tion process and depend only on the initial signal y0. The second way is to update the kernel
matrix and normalization based on the most recent denoised signal leading to

(2.4) yn(xi) =
1

Dn−1(xi)

N∑
j=1

Kε(yn−1(xi), yn−1(xj)) yn−1(xj),

where Dn−1(xi) =
∑N

j=1Kε(yn−1(xi), yn−1(xj)). The third way [7, eq. (11)] is to update only
the kernel and its normalization while keeping the signal fixed:

(2.5) yn(xi) =
1

Dn−1(xi)

N∑
j=1

Kε(yn−1(xi), yn−1(xj)) y0(xj).

All methods have been considered and compared in the literature [7], and each has its own
advantages and disadvantages. Iterative algorithms of both types (2.3) and (2.4) have been
studied in [11] as part of the mean shift algorithm for clustering and mode seeking, rather
than for denoising. In the context of the mean shift algorithm, updating the kernel matrix
with each iteration (2.4) is referred to as the blurring process. In this paper we focus on
the nonblurring (or stationary) procedure (2.3) with a fixed kernel matrix and analyze the
properties of the resulting denoising algorithm. Later on, we comment on the relation between
the nonstationary blurring process (2.4) and the stationary process (2.3) for the special case
of Gaussian white noise.

The denoising iteration (2.1) can be written as the matrix-vector multiplication

(2.6) yd = D−1Wy,

where W is an N by N matrix given by

(2.7) Wij = Kε(y(xi), y(xj)),
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D is a diagonal matrix with

Dii =
N∑

j=1

Wij,

and y = (y(x1), . . . , y(xN )) is the signal. Introducing the averaging operator

(2.8) A = D−1W,

the denoising iteration (2.6) is equivalent to

(2.9) yd = Ay.

The matrix A is a row-stochastic matrix, corresponding to a random walk on the values
y(xj). We emphasize that the random walk is determined only by the y-values, while the
x-values have no role. The probability of jumping from y(xi) to y(xj) depends only on the
difference y(xi) − y(xj). The matrix A is the transition probability matrix of the Markovian
process Yk:

(2.10) Aij = Pr{Yk+1 = y(xj) |Yk = y(xi)}.

The values y(xj) can be viewed as nodes of a weighted graph, where Aij are the probabilities
of jumping from node i to node j.

The probabilistic interpretation of a single denoising step now becomes clear:

(2.11)
(Ay)(xi) =

N∑
j=1

Aijy(xj) =
N∑

j=1

Pr{Yk+1 = y(xj) |Yk = y(xi)} y(xj)

= E[Yk+1 |Yk = y(xi)].

In other words, applying the matrix A to the signal y gives a vector whose ith entry is
the expected value of the random walker starting at the ith node y(xi) after a single step.
Similarly, performing k successive denoising iterations corresponds to the expected value after
k steps.

The matrix A is conjugate to the positive definite matrix S = D−1/2WD−1/2 via

(2.12) A = D−1/2SD1/2.

This implies that A has a complete set of right eigenvectors {ψj}N−1
j=0 and positive eigenvalues

1 = λ0 ≥ λ1 ≥ · · · ≥ λN−1 > 0.

The largest eigenvalue is λ0 = 1, corresponding to the trivial all-ones right eigenvector (A1 =
1). We expand the signal vector y in the eigenbasis

(2.13) y(xi) =
N−1∑
j=0

bjψj(xi),
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where bj = 〈φj ,y〉 and {φj}N−1
j=0 are the left eigenvectors of A.

Applying the matrix A to y results in

(2.14) (Ay)(xi) =
N−1∑
j=0

λjbjψj(xi).

In practice, signals are denoised by repeated application of the denoising operator A. Again,
we emphasize that the denoising iterations are to be understood in the stationary “nonblur-
ring” sense of (2.3). Applying the operator k times gives

(2.15) (Aky)(xi) =
N−1∑
j=0

λk
j bjψj(xi),

which effectively discards the high modes with small eigenvalues.
In the limit of an infinite number of denoising iterations, the resulting denoised signal

is a constant function with value b0 which is the coefficient of the first eigenvector 1. This
is also the weighted average of the original observed values y(xj) with respect to the steady
state distribution φ0. Thus, in order to denoise the signal, we need to apply a finite number
of iterations, large enough to attenuate the noise, but not so large as to blur the signal. As
mentioned in the introduction, neighborhood filters and NL-means can be viewed as gradient
descent algorithms that denoise the signal by minimizing its entropy [3], which increases when
noise is added to it. Although the process of minimizing the entropy affects both the clean
signal and the added noise component, it was noted in [3] that the first few iterations of the
NL-means algorithm reduce the noise while leaving the clean signal part almost unchanged.
This behavior of the NL-means algorithm is the key to its success. In the next section we
discuss this issue in detail.

3. Level sets, Gaussian noise, and the Hermite polynomials. We start from the simplest
possible example of neighborhood filter denoising applied to a signal y(x) consisting of a
constant function v(x) = v0 corrupted by additive Gaussian white noise n(x):

(3.1) y(x) = v0 + n(x).

In this case, the matrix W depends only on the Gaussian noise

(3.2) Wij = exp{−(n(xi) − n(xj))2/2ε}.
In the limit of a large number of samples N → ∞ and kernel width ε → 0 the averaging
operator converges to the backward Fokker–Planck operator L (see [25, 20, 21, 6, 16] for more
details):

(3.3)
N∑

j=1

Aijf(y(xj)) = f(y(xi)) +
ε

2
Lf(y(xi)) +O(ε2)

for any smooth function f defined on the data points y(xj). When using single pixels the
resulting Fokker–Planck operator is a second order differential operator given by

(3.4) Lf(y) = f ′′(y) − U ′(y)f ′(y),
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where U(y) = −2 log p(y) is the potential derived from p(y), which is the density of the
y-values. In our case p(y) = 1√

2πσ2
exp{−(y − v0)2/2σ2}, where σ2 is the variance of the

white noise. Up to an additive constant, this results in a parabolic potential well given by
U(y) = (y − v0)2/σ2.

It can also be shown that the eigenvectors of A are discrete approximations of the eigen-
functions of the continuous Fokker–Planck operator. For the parabolic potential, the eigen-
functions ψj(y) satisfy the second order differential equation

(3.5) ψ′′
j (y) − 2(y − v0)

σ2
ψ′

j(y) = −μjψj(y),

where μj are the corresponding eigenvalues. The eigenfunctions are the well-known Hermite
polynomials ψj(y) = Hj((y − v0)/σ) with μj = 2j/σ2 [1]. The first few Hermite polynomials
are H0(y) = 1, H1(y) = y, and H2(y) = y2 − 1.

We are now ready to understand the effect of applying the denoising operator A on the
signal y. For the moment, we assume that N � 1 and ε is sufficiently small so that the
continuous approximation of the discrete operator A holds. Then, in light of (2.13) and
the special form of the eigenfunctions, the expansion of y contains only the first two terms,
namely, H0 and H1:

(3.6) y = v0ψ0 + b1ψ1 = v01 + (y − v01).

It follows from (2.14) that the y-values obtained after k denoising iterations are given by

(3.7) Aky = v01 + λk
1(y − v01),

where

(3.8) λ1 ≈ exp{−μ1ε/2} ≈ 1 − ε/σ2

is the asymptotic noise reduction rate. That is, each iteration of the denoising operator shrinks
the noisy values of y towards their mean v0 at a constant rate λ1. In particular, the noise
remains Gaussian and white, only its standard deviation is decreased by the factor λ1 < 1.
A consequence of this constant shrinkage behavior is that in the Gaussian white noise case,
constructing at each iteration a new kernel matrix (2.4) is equivalent to changing the kernel
parameter ε in every iteration of the stationary procedure (2.3). Thus, constructing a new
matrix at every iteration corresponds to changing the parameter ε of the previous iteration
to ε/λ2

1 in the current iteration.
Even when ε is not small, similar results hold in the case of a Gaussian white noise.

When ε is not small, the discrete matrix A can be approximated in the limit N � 1 by an
integral operator instead of the differential Fokker–Planck operator. It turns out that the kth
eigenfunction of the integral operator is a polynomial of degree k. In particular, the second
eigenfunction is linear as is the second Hermite polynomial; see [21, section 5.1], where it is
also shown that a uniform approximation for the noise reduction rate that holds for all values
of ε is given by

(3.9) λ1 ≈ σ2

σ2 + ε
.
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Clearly, the approximations (3.9) and (3.8) agree in the limit of small ε.
The noise reduction rate λ1 depends on the kernel parameter ε and on the variance of

the noise σ2, but is independent of the number of samples N . A similar result regarding the
variance reduction of the noisy pixels in the Gaussian white noise case was obtained in [8,
Theorem 5.3] using different probabilistic considerations.

The diffusion interpretation of the neighborhood filter is illustrated in Figures 1(a)–1(g).
Figure 1(a) shows a white noise signal consisting of N = 2000 independently identically
distributed samples from a standard Gaussian distribution ((3.1) with v0 = 0 and σ = 1).
The matrix W is formed using (3.2) and is normalized according to (2.8) to give the denoising
operator A. Figure 1(b) shows the denoised signal Ay. The only significant difference between
Figures 1(a) and 1(b) is the vertical scaling: the denoised signal takes on smaller values. This
effect is clearly observed in Figure 1(c) that shows the denoised signal after 10 iterations.
Figure 1(e) is a scatter plot of (Ay)(xi) against y(xi), from which it is evident that (Ay)(xi)
is proportional to y(xi). Using a least squares linear fit, we find that (Ay)(x) ≈ 0.826y(x).
We computed the first few eigenvectors and eigenvalues of A. In particular, a scatter plot of
ψ1(xi) against y(xi) is given in Figure 1(f). The linear dependence of ψ1(xi) in y(xi) is clear,
in agreement with (3.6) (H1, the first order Hermite polynomial, is linear). The corresponding
computed eigenvalue λ1 = 0.824 explains the slope in Figure 1(e). Moreover, the computed
eigenvalue agrees with the approximation (3.9) λ1 ≈ σ2

σ2+ε
= 1

1.2 = 0.833. We estimated the
density of the 2000 y-values using kernel smoothing with 20 nearest neighbors. The empirical
density p(y), which approximates a standard Gaussian, is shown in Figure 1(d). The derived
empirical potential U(y) = −2 log p(y) is given in Figure 1(g). This potential explains why
neighborhood filter denoising of the discrete white noise signal can be approximated by a
continuum diffusion in a parabolic potential well.

Our analysis applies to models of noise other than the Gaussian. For noise with probability
density p(x) there corresponds a potential U = −2 log p. The asymptotic rate of convergence
now depends on the smallest nontrivial eigenvalue of the Fokker–Planck operator (3.4) (with
Neumann boundary conditions if p is compactly supported). For example, if the noise is
uniformly distributed in the interval [−a, a], then the eigenfunctions are ψj(y) = cos(jπy/a)
(j = 0, 1, 2, . . .) and μj = π2j2

a2 . In this case the effect of the neighborhood filter will not be a
constant shrinkage of all noise values, because y is no longer an eigenfunction of A.

4. Step functions, edges, and the double well escape problem. We now consider the
neighborhood filter applied to the signal y(x) = v(x)+n(x), where v(x) is a piecewise constant
step function which obtains one of two values v(x) = v0 or v(x) = v1 (v0 < v1). Such functions
are, for example, the output of a random telegraph process with only two states which jumps
from one state to the other at random times, and therefore appear in many signal processing
and communication applications.

In the absence of noise, the density of y-values of this function is the sum of two δ-functions.
The additive noise leads to a density p(y) which is a weighted sum of two Gaussians

(4.1) p(y) =
w1√
2πσ2

exp{−(y − v0)2/2σ2} +
w2√
2πσ2

exp{−(y − v1)2/2σ2},

where w1 and w2 are the frequencies of occurrence of the two states, satisfying w1 + w2 = 1.
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(a) Original signal y: white noise
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Figure 1. The NL-filter applied to white noise. Parameters: N = 2000, σ = 1, ε = 0.2.

Assuming that σ � v1 − v0, the corresponding potential U(y) = −2 log(p) has the form of a
double well potential.

An example of a piecewise (random) function y(x) corrupted by noise, together with
the corresponding density and potential of y-values, is shown in Figures 2(a), 2(b), 2(c),
respectively. The eigenvector ψ1 is plotted in Figure 2(d) and is seen to be approximately a
step function with a sharp transition at y = 0. Thus, the NL-filter takes negative y-values to
(approximately) −1 and positive y-values to (approximately) 1 as wanted.

In the limit N → ∞, ε → 0, the discrete random walk associated with the row-stochastic
matrix A converges to a continuous-time diffusion process. Equation (2.11) relates the ex-
pected value of the discrete random walk with the denoising operator A, while (3.3) shows that
this operator is approximated by the backward Fokker–Planck operator which is the generator
of the continuous-time limit process. A single denoising iteration corresponds to a time step
Δt = ε of the continuous process. The denoising scheme thus depends on the characteristics of
a diffusion process in a double well potential, a subject which has been extensively studied in
the literature [24, 13, 19]. We now briefly describe the main features of this diffusion process
that are of interest to us. Consider a diffusion process that starts at a value y = v0 + ξ in the
left well. Of course, the purpose of the neighborhood filter is to denoise the signal, that is, to
approximate all values in the left well by v0 and all values in the right well by v1.

The diffusion process has a few characteristic times. The first is τR, the relaxation, or
equilibration time, inside the left (or right) well, conditioned on the process not exiting this
well. To properly denoise all values in a given well to their mean, it is therefore necessary
to apply approximately kR = τR/ε denoising steps, because the time step of each iteration is
Δt = ε as discussed above. The characteristic relaxation time inside the well centered at the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIFFUSION INTERPRETATION OF NONLOCAL FILTERS 127

0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

y

(a) Step function corrupted by
white noise

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

y

p(
y)

(b) Density p(y)

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

y

U
(y

)

(c) Double well potential U(y)

−3 −2 −1 0 1 2 3
−0.05

0

0.05

y

ψ
1

(d) ψ1 against y

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

A
5 y

(e) After 5 iterations of the neigh-
borhood filter

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

x

A
25

y

(f) After 25 iterations of the neigh-
borhood filter

Figure 2. The neighborhood filter applied to a step function corrupted by white noise. The step function is
given by v(x) = v0 = −1 for 0 < x < 1 and v(x) = v1 = 1 for 1 < x < 2. Parameters: N = 2000, σ = 0.4,
ε = 0.1.

y-value v0 depends to first order only on the curvature at the bottom of the well and is given
by

(4.2) τR(v0) =
1

U ′′(v0)
.

For the density p given by (4.1), this gives τR = σ2, and hence the resulting number of
iterations is kR = τR

ε ≈ 1
1−λ1

, where λ1 is given by (3.8). At this number of denoising
iterations we obtain that the noise has been shrunk by λkR

1 ≈ exp{ log λ1

1−λ1
} ≈ e−1, for λ1 close

to 1.
The second characteristic time τexit is the mean first passage time (MFPT) to exit this

well by crossing the barrier separating the wells. For a double well potential, the MFTP from
v0 to v1 is approximately given by Kramers’ law

(4.3) τexit(v0 → v1) =
2π√|U ′′(v0)U ′′(vm)|e

U(vm)−U(v0),

where vm is the location of the peak of the potential U , between the two wells v0 < vm < v1.
Similarly, after an order of kexit = τexit/ε denoising iterations, the resulting y-values become
averages of v0 and v1, leading to a blurring of the resulting signal.
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High quality denoising by the neighborhood filter is possible only if the two different level
sets are well separated. This is translated into the mathematical condition τR � τexit or,
equivalently, kexit � kR. This analysis also provides a guideline as to the number of denoising
steps needed to achieve satisfactory results. The number of steps k should be larger than kR

but significantly smaller than kexit, as otherwise the resulting values are weighted averages
of the two level sets. This is in full agreement with our intuition and numerical results: too
few iterations do not sufficiently smooth out the noise, whereas too many iterations have the
undesired property of averaging distinct level sets.

An inherent limitation of using a single-pixel neighborhood filter occurs in the presence of
significant noise. Consider, for example, a step function

(4.4) v(x) =
{ −1, 0 < x < 1,

1, 1 < x < 2.

Regardless of the spatial location of x between 0 and 1, noisy y-values above 0 will be assigned
to the right well and thus averaged to 1, whereas y-values below 0 will be assigned to the left
well and averaged to −1. This causes misidentifications and incorrect denoising. For example,
five iterations of the neighborhood filter to the noisy signal shown in Figure 2(a) result in the
signal shown in Figure 2(e). Although most of the noise was filtered out, misidentifications are
evident. Also, the level sets after 25 iterations (Figure 2(f)) are y ≈ ±0.8 instead of y = ±1,
due to the global averaging effect (the potential barrier in Figure 2(c) is not too high).

The probability of misidentifying a single observation is

(4.5)
Pr{y(xi) > 0 | v(xi) = −1} =

1√
2πσ2

∫ ∞

0
exp{−(y + 1)2/2σ2} dy

=
1
2

erfc
(

1√
2σ

)
.

In our example of σ = 0.4 we expect 0.6% of the samples to be misidentified (or 6 out of 1000
in accordance with Figure 2(f)).

There are at least two different methods for overcoming misidentifications due to large
noise. The first is spatial adaptations as discussed in [3, 5], while the second is increasing the
patch size. In the next section we show how using patches of size two or larger significantly
reduces the misidentification probability.

5. From pixels to patches: Diffusion in higher dimensions and clustering. As seen in the
previous section, denoising based on the similarity between single y-values may be insufficient,
leading to misidentifications and blurring effects. Therefore, in practical applications a more
advanced version based on the NL-filter is used. Instead of averaging points with similar
y-values, points are averaged only if their entire local y-value patch is similar; see [10, 18, 28].
For simplicity, we analyze patches of size two,

y2(xj) = (y(xj), y(xj+1)).

The weights are only a function of the Euclidean distance between patches, for example,

(5.1) Wij = exp{−‖y2(xi) − y2(xj)‖2/2ε}.
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Figure 3. The NL-filter with two-pixel patches applied to a step function corrupted by white noise, on the
same data as in Figure 2(a). Parameters: N = 2000, σ = 0.4, ε = 0.1.

The averaging operator A is defined as in the single-pixel case, A = D−1W. We demonstrate
the advantages of using two-pixel patches over the single-pixel method. Keeping the diffusion
interpretation in mind, using patches of size two corresponds to a 2-D diffusion process on
the set of values y2(xi) = (y(xi), y(xi+1)). That is, as N → ∞, for ε sufficiently small, the
eigenvectors of A can be approximated by those of a 2-D Fokker–Planck operator, analogous
to the 1-D operator of (3.4).

Consider, for example, the step function defined in (4.4). In the absence of noise the planar
density of patches of size two p(y2) is a sum of two δ-functions concentrated at (−1,−1) and
(1, 1). Similar to the 1-D case, corrupting the signal by noise changes p(y2) into a mixture of
2-D Gaussians with identical covariance matrices equal to σ2I (where I is the 2 by 2 identity
matrix):

(5.2) p(y2) =
1

4πσ2
exp

{−‖y2 + (1, 1)‖2

2σ2

}
+

1
4πσ2

exp
{−‖y2 − (1, 1)‖2

2σ2

}
.

Extracting two-pixel patches from the noisy signal in Figure 2(a) results in two Gaussian
clouds in the plane that are shown in Figure 3(a), where points are colored by their estimated
empirical density. A surface plot of the analytical density (see (5.2)) is given in Figure 3(b).

There are two differences between the 1-D neighborhood filter and its 2-D NL-means
version. First, observe that the distance between the Gaussian centers (−1,−1) and (1, 1)
is 2

√
2, which is a factor of

√
2 larger than the distance of the 1-D Gaussians centered at
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Table 1
The first few eigenvalues of A constructed from single pixels in the step function case. Parameters: N =

2000, σ = 0.4, ε = 0.1.

i 0 1 2 3 4 5

λ
(1)
i 1.0 0.993 0.631 0.598 0.412 0.344

Table 2
The first few eigenvalues of A constructed from two-pixel patches in the step function case. Parameters:

N = 2000, σ = 0.4, ε = 0.1.

i 0 1 2 3 4 5 6 7 8 9

λ
(2)
i 1.0 0.9999 0.629 0.628 0.621 0.608 0.419 0.410 0.394 0.381

±1. This dramatically reduces the misidentification probability, because for a patch to be
misclassified, the independent noises of both coordinates need to be significantly large. This
misidentification probability for a patch of size 2 is (compare with (4.5))

(5.3) Pr{y(xi) + y(xi+1) > 0 | v(xi) = −1, v(xi+1) = −1} =
1
2

erfc
(

1
σ

)
,

because the classification of a patch (y(xi), y(xi+1)) is determined by whether it is above
or below the diagonal y(xi) + y(xi+1) = 0 (see Figure 3(c)). For σ = 0.4 we expect only
0.02% of the samples to be misidentified (or 0.2 out of 1000 on average). In this case the
misidentification rate is 30 times smaller than that of the single-pixel neighborhood filter.

The second difference has to do with the exit and relaxation times of the 2-D diffusion
process. The relaxation time does not change significantly, because it depends only alge-
braically on the Hessian of the potential at the bottom of the well. In contrast, the exit time
depends exponentially on the barrier height, which increases by a factor of 2 compared to the
1-D potential barrier (the factor of 2 is explained by the fact that the distance between the
Gaussian centers is larger by a factor of

√
2 and that the potential is quadratic). Therefore,

the 2-D exit time is much larger than its 1-D counterpart. This means that many more NL
averaging iterations may be performed without blurring different level sets.

These two differences are best illustrated by comparing five or 25 iterations of an NL-
filter of two-pixel patches (Figures 3(e) and 3(f)) and five or 25 iterations of an NL-filter
with a single pixel (Figures 2(e) and 2(f)) for the same level of noise σ = 0.4. Not only
have the misidentifications completely disappeared, but also after 25 iterations, the level sets
still remain at y = ±1 for the two-pixel NL-filter, whereas 25 iterations with the single-pixel
NL-filter blur the level sets to y = ±0.8.

In Tables 1 and 2 we present the empirical eigenvalues λ(1)
i and λ

(2)
i of the denoising

matrices A corresponding to a single-pixel and to two-pixel neighborhood, respectively. First,
1 − λ

(2)
1 � 1 − λ

(1)
1 since the exit time from one well to the other is significantly larger

in the two-pixel case. Next, we observe a twofold numerical multiplicity of the eigenvalues
λ

(1)
2 ≈ λ

(1)
3 (0.631 and 0.598) corresponding to the noise reduction rate of (3.9), λ = σ2

σ2+ε
=

0.6154 in the two wells. In the two-pixel case, the numerical multiplicity becomes fourfold:
λ

(2)
2 ≈ λ

(2)
3 ≈ λ

(2)
4 ≈ λ

(2)
5 (0.629, 0.628, 0.621, 0.608). The reason is that for each 2-D well



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIFFUSION INTERPRETATION OF NONLOCAL FILTERS 131

there correspond two equal eigenvalues due to separation of variables in the Fokker–Planck
operator [21]. This analysis also shows that the noise reduction rate is the same whether one
takes a single-pixel or a two-pixel patch. This is also seen in Figure 3(d), where the error after
one denoising iteration yd−v is shown for the single-pixel vs. the two-pixel neighborhood filter.
Note that for correctly identified points, the error is the same, as the red curve is the line
y = x. Therefore, the number of iterations needed for convergence to the denoised values is
roughly the same for both type of patches. The key advantage of enlarging the patch size is an
increase of the distance between cluster centers, which translates into fewer misidentifications
and reduction of the blurring.

When the signal has many interlacing white-black-white-black pixel values (e.g., like a
texture in an image or high frequency telegraph signal), we should consider not only the com-
pletely white (1, 1) patches and completely black (−1,−1) patches, but also mixed white-black
(1,−1) and black-white (−1, 1) patches. The mixed configurations produce two additional
clusters (centered at (1,−1) and (−1, 1)), and the probability of confusing these configu-
rations with a totally white (or a totally black) patch is equal to that of the single-pixel
neighborhood filter. In this case, of course, it is beneficial to apply NL-means denoising with
a larger patch size.

One may conclude that it is favorable to use arbitrarily large patches. In practice, however,
the signal is sampled only at a finite number of points; therefore, increasing the patch size
eventually leads to a poor estimate of the high dimensional density. In other words, the number
of sample points required for the diffusion approximation to hold depends exponentially on the
intrinsic dimensionality of the patch space. The fact that in practice the method is successfully
applied on natural images with relatively large patch sizes (of size 7 × 7 or 9 × 9) attests to
the intrinsic low dimensionality of the patch space of natural images.

6. 2A − A2 filters. The analysis of the previous sections emphasized the view of the
operator A as a diffusion operator in the continuum case, or a Markov matrix in the dis-
crete one. In this section we revisit the eigenvector expansion of A, whereby according to
(2.14) denoising is achieved by expanding the signal in these eigenvectors and suppressing the
contribution of the eigenvectors with small eigenvalues.

Consider, for example, a random telegraph signal corrupted by noise, where the noise-free
signal randomly jumps between l distinct levels of y-values (the case l = 2 was considered in
section 4). The resulting potential of y-values contains l wells. Consequently, the l largest
eigenvalues of A are all close to 1, and their corresponding eigenvectors are piecewise constant
inside each of these wells with sharp transitions between them [19]. The remaining eigenvalues
and their corresponding eigenvectors capture the relaxation times in each of the individual
wells. The noise-free signal can thus be approximately expressed as a linear combination of
ψ0,ψ1, . . . ,ψl−1 that correspond to the l features of the signal.

In this setting, we would like the denoising operator to suppress the contribution of the
noise, as captured in the remaining eigenvectors ψl,ψl+1, . . . . However, iterative application
of the denoising operator also suppresses the coefficients of the first l eigenvectors, since each
application of A multiplies each ψj by a factor λj , which is strictly smaller than 1 for j > 0.
In other words, not only are the modes corresponding to the noise suppressed, but also the
true features of the signal are suppressed, though at a smaller rate. As demonstrated in the
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Figure 4. Low pass filter responses: λ, 2λ− λ2, and β
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(shown with β = 0.5).

previous sections, this leads to undesirable blurring of the distinct y-levels. An interesting
question then is whether it is possible to construct an improved denoising operator from the
original operator A.

Consider, for example, the operator A2 = 2A − A2, suggested to us by Ronald Coifman.
This operator has the same eigenvectors as A, but its eigenvalues are 2λj − λ2

j = 1 − (1 −
λj)2. On the interval [0, 1] this gives an inverted parabola starting at zero at λ = 0 with a
maximal value of 1 at λ = 1 (see Figure 4). Therefore, the new operator A2 has much smaller
suppression of the large eigenvalues of A, while still significantly suppressing its eigenvalues
that are far away from λ = 1. As such, it is possible to apply the denoising operator A2

many more iterations without blurring the distinct y-levels. We illustrate this property in
Figures 5(a)–5(c), where from left to right we show a noisy signal with l = 2 distinct values,
25 iterations of the operator A, and 25 iterations of A2, respectively. Note that A2 is able to
perform denoising with far less blurring as compared to A.

In general, from k denoising iterations of A, one can generate any polynomial Pk(A) of
degree k. In particular, this polynomial can be chosen to approximate the desired suppression
of eigenvalues, such as a low pass filter at some cutoff value. For example, the following
recursive scheme was considered by [28]: Pk(A) = (1 + β)−1(Pk−1(A) + βI), which converges
to limk→∞ Pk(λ) = β

1+β−λ .
Finally, we remark that the operator A2 has an interesting probabilistic interpretation in

itself. Our analysis shows that the operator A is approximately equal to I + L, where L is
the backward Fokker–Planck diffusion operator. Therefore,

A2 = 2A− A2 = I − (I − A)2 ≈ (I − L)(I + L).

This means that denoising using A2 amounts to running forward the heat equation for time ε
(the denoising step—averaging out the noise), followed by running it backward for the same
time (sharpening). This method takes a noisy signal, smoothes it by the y-axis diffusion
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Figure 5. Comparing a single-pixel filter A with 2A − A2. Parameters: N = 2000, σ = 0.4, ε = 0.1.

equation, and then tries to recover the original signal by running the diffusion backward in
time. We remark that diffusion backward in time has also appeared in other contexts in signal
denoising [15].

The analysis of the filter A2 = 2A − A2 is demonstrated in Figures 6–9. The figures are
generated as follows. From each of the images in Figures 6(a) and 8(a), we take a subimage
of size 128× 128 and normalize it to have zero mean and unit standard deviation. We denote
the 128× 128 subimages by I(1) and I(2), respectively. We then add to the images zero-mean
additive Gaussian white noise to achieve a prescribed signal-to-noise ratio (SNR). The SNR
is defined as the ratio between the standard deviation of the clean image and the standard
deviation of the noise. We use an SNR of 4 for Figure 6(a) and an SNR of 3.5 for Figure
8(a). The resulting noisy images are shown in Figures 6(b) and 8(b) and are denoted Ĩ(1) and
Ĩ(2), respectively. From each noisy image Ĩ(i) we construct an operator A(i). To that end, we
attach to each pixel j in the image a feature vector Pj , given by its 7 × 7 patch around that
pixel, which we treat as a 49-dimensional vector. We then find for each feature vector Pj its
150 nearest neighbors, denoted Nj, and construct the graph W (i), represented as an N2 ×N2

sparse matrix, N = 128, by

W
(i)
jk = e−‖P (j)−P (k)‖2/ε2

, j = 1, . . . , N, k ∈ Nj,

with ε = 10σ (see [10]), where σ is the standard deviation of the noise. We furthermore
discard all entries in W (i) that are smaller than 10−8. The number of nearest neighbors and
the value of σ are chosen empirically such that the resulting graph is connected but still sparse
enough to allow for efficient processing. Finally, we obtain A(i) by normalizing W (i) to be
row-stochastic as in (2.8).

We reshape each Ĩ(i) in Figures 6(b) and 8(b) as a vector of length N2 and apply on it its
corresponding operators A(i) and A(i)

2 = 2A(i) − (A(i)
)2

. We then reshape the resulting vector
back into an N × N image and denote the result of the application of A(i) and A

(i)
2 by I

(i)
A

and I(i)
A2

, respectively. The outcome is shown in Figures 6(c) and 6(d) for the Barbara image,
and in Figures 8(c) and 8(d) for the Lena image.

The residual errors for the Barbara image, given by the norms of the difference between
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(a) Original (b) Noisy

(c) Denoised using the operator A (d) Denoised using the operator 2A− A2

Figure 6. Demonstration of the operator A2 = 2A− A2 for the Barbara image.

the original image and its denoised versions, are

‖I(1) − I
(1)
A ‖ = 0.192111,

‖I(1) − I
(1)
A2

‖ = 0.149881,
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(a) Residual when using A (b) Residual when using 2A− A2

(c) Lost features when using A (d) Lost features when using 2A− A2

Figure 7. Demonstration of the operator A2 = 2A− A2 for the Barbara image (continued).

and for the Lena image

‖I(2) − I
(2)
A ‖ = 0.235994,

‖I(2) − I
(2)
A2

‖ = 0.198785.

That is, the residual errors of the operators A(i)
2 are smaller. Note, however, that these

numbers do not reveal the true effect of the operators, as demonstrated in Figures 7 and 9.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

136 AMIT SINGER, YOEL SHKOLNISKY, AND BOAZ NADLER

(a) Original (b) Noisy

(c) Denoised using the operator A (d) Denoised using the operator 2A− A2

Figure 8. Demonstration of the operator A2 = 2A− A2 for the Lena image.

In Figures 7(a) and 7(b) we show the difference Ĩ(1) − I
(1)
A and Ĩ(1) − I

(1)
A2

, respectively,
that is, the difference between the noisy image in Figure 6(b) and its denoised versions from
Figures 6(c) and 6(d), respectively. For an ideal denoising scheme, this difference should look
like noise. It is apparent that the residual for the operator A(1)

2 in Figure 7(b) exhibits fewer
features than the residual for the operator A(1) in Figure 7(a). Figures 9(a) and 9(b) show
this difference as well as a similar behavior for the Lena image.

In Figures 7(c) and 7(d) we show I(1) − I
(1)
A and I(1) − I

(1)
A2

, respectively, that is, the
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(a) Residual when using A (b) Residual when using 2A− A2

(c) Lost features when using A (d) Lost features when using 2A− A2

Figure 9. Demonstration of the operator A2 = 2A− A2 for the Lena image (continued).

difference between the original Barbara image and the outcomes of the operators A and A2.
This provides a qualitative measure for the sharpening effect described above (and thus for
the “feature loss” incurred by each operator). In Figures 9(c) and 9(d) we show the same
difference for the Lena image. It is apparent that the residual when using the operator A
pronounces more features than the residual of the operator A2, supporting the analysis given
above.
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7. Summary. This paper is devoted to the analysis of NL neighborhood filters, by inter-
preting the explicit formula for neighborhood filters as the transition operator associated to
a random walk in the space of patches. The study of the spectrum of this matrix allows us to
infer some properties of NL neighborhood filters, particularly when they are iterated (which
corresponds to longer times in the random walk). We rely on earlier results that show that
the transition matrix approximates the backward Fokker–Planck diffusion operator, and that
the matrix eigenvectors approximate the operator eigenfunctions.

The benefits of this interpretation become evident in sections 4 and 5, where we study a
step function denoised with patch sizes of one pixel and two pixels. In both cases, the filter
can be interpreted as a random process in a double well potential. This interpretation enables
the prediction and understanding of the behavior of the filter in these settings. Relevant
parameters are studied, such as the number of iterations needed for convergence. The blurring
effect corresponding to a high number of iterations is explained, as well as the benefits of
increasing the size of the patch from one to two samples. Finally, in section 6 we propose
a new operator, with a slower decay of the eigenvalues, thus attenuating the blurring effect.
Although the analysis is restricted to somewhat simple cases, the interpretation proposed in
this paper provides insight into the understanding of NL-filters.
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