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One of the main objectives in the analysis of a high dimensional large data set is to learn
its geometric and topological structure. Even though the data itself is parameterized as a
point cloud in a high dimensional ambient space R

p , the correlation between parameters
often suggests the “manifold assumption” that the data points are distributed on (or near)
a low dimensional Riemannian manifold Md embedded in R

p , with d � p. We introduce
an algorithm that determines the orientability of the intrinsic manifold given a sufficiently
large number of sampled data points. If the manifold is orientable, then our algorithm
also provides an alternative procedure for computing the eigenfunctions of the Laplacian
that are important in the diffusion map framework for reducing the dimensionality of the
data. If the manifold is non-orientable, then we provide a modified diffusion mapping of
its orientable double covering.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of massive data sets is an active area of research with applications in many diverse fields. Compared with
traditional data analysis, we now analyze larger data sets with more parameters; in many cases, the data is also noisy.
Dealing with high dimensional, large, and possibly noisy data sets is the main focus of this area. Among many approaches,
dimensionality reduction plays a central role. Its related researches and applications can be seen in areas such as statis-
tics, machine learning, sampling theory, image processing, computer vision and more. Based on the observation that many
parameters are correlated to each other, from the right scale of observation, a popular assumption is that the collected
data is sampled from a low dimensional manifold embedded in the high dimensional ambient Euclidean space. Under this
assumption, many algorithms have been proposed to analyze the data. Some examples are local linear embedding [14],
Laplacian eigenmaps [2], Hessian eigenmaps [8], ISOMAP [17], and diffusion maps [6]. These non-linear methods are often
found to be superior to traditional linear dimensionality reduction methods, such as principal component analysis (PCA) and
classical multidimensional scaling (MDS), since they are able to capture the global non-linear structure while preserving the
local linear structures. Besides dimensionality reduction, data analysts are often faced with problems such as classification,
clustering and statistical inference. Clearly, the characteristics of the manifold are useful to solve such problems. A pop-
ular approach to extract the spectral geometry of the manifold is by constructing the Laplace operator and examining its
eigenfunctions and eigenvalues [6]. The usefulness of this approach is validated by a series of theoretical works [12,3,9,6,16].

In this paper we consider the following question: Given n data points x1, x2, . . . , xn sampled from a low dimensional
manifold Md but viewed as points in a high dimensional ambient space R

p , is it possible to determine whether or not
the manifold is orientable? For example, can we decide that the Möbius band is non-orientable from just observing a finite
number of sampled points? We introduce an algorithm that successfully determines if the manifold is orientable given a
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large enough number n of sampling points. Our algorithm is shown to be robust to noise in the sense that the data points
are allowed to be located slightly off the manifold. If the manifold is determined to be orientable, then a byproduct of
the algorithm are eigenvectors that can be used for dimensionality reduction, in an analogous way to the diffusion map
framework. The algorithm, referred to as Orientable Diffusion Map (ODM), is summarized in Algorithm 1. If the manifold is
determined to be non-orientable, then we show how to obtain a modified diffusion map embedding of its orientable double
covering using the odd eigenfunctions of the Laplacian over the double cover.

2. The ODM algorithm

In this section we give a full description of ODM. There are three main ingredients to our algorithm: local PCA, alignment
and synchronization.

Algorithm 1 Orientable Diffusion Map (ODM)
Require: Data points x1, x2, . . . , xn ∈ R

p .
1: Apply local PCA for each xi and its N � n nearest neighbors to find a p × d matrix O i whose columns form an orthonormal basis to a subspace that

approximates the tangent space Txi M.
2: For nearby points xi and x j define O ij = argminO∈O (d) ‖O − O T

i O j‖F given by O ij = U V T via the SVD O T
i O j = UΣ V T .

3: Define an n × n matrix Z whose entries are zi j = det O ij for nearby points, and zi j = 0 otherwise.
4: Define Z = D−1 Z , where D is diagonal with Dii = ∑n

j=1 |zi j |.
5: Compute the top eigenvector v Z

1 of Z .
6: Examine the histogram of v Z

1 to decide the orientability of the manifold.
7: If the manifold is orientable, estimate the reflections as ẑi = sign v Z

1 (i).
8: Compute the other eigenvectors v2, v3, . . . , vk of Z corresponding to the largest eigenvalues and embed the data points in R

k−1 using

xi �→ ẑi
(
λt

2 v Z
2 (i), λt

3 v Z
3 (i), . . . , λt

k v Z
k (i)

)
, with t > 0.

2.1. Local PCA

The first ingredient of the ODM algorithm is local PCA. For every data point xi we search for its N nearest neighbors
xi1 , xi2 , . . . , xiN , where N � n. This set of neighbors is denoted Nxi . The nearest neighbors of xi are located near the tangent
space Txi M to the manifold at xi , where deviations are possible due to curvature and noise. The result of PCA is an
orthonormal basis to a d-dimensional subspace of R

p which approximates the basis of Txi M, provided that N � d + 1. The
basis found by PCA is represented as a p × d matrix O i whose columns are orthonormal, i.e., O T

i O i = Id×d .
One problem that we may face in practice is lack of knowledge of the intrinsic dimension d. Estimating the dimension-

ality of the manifold from sampled points is an active area of research nowadays, and a multiscale version of the local
PCA algorithm is presented and analyzed in [11]. We remark that such methods for dimensionality estimation can be eas-
ily incorporated in the first step of our ODM algorithm. Thus, we may allow N to vary from one data point to another.
In this paper, however, we use the classical approach to local PCA, since it simplifies the presentation. We remark that
there is no novelty in our usage of local PCA, and our detailed exposition of this step is merely for the sake of making
this paper as self contained as possible. Readers who are familiar with PCA may quickly move on to the next subsec-
tion.

In our approach, we try to estimate the intrinsic dimension from the singular values of the mean-shifted local data
matrix

Xi = [ xi1 − μ xi2 − μ . . . xiN − μ ]

of size p × N , where μ = 1
N

∑N
j=1 xi j . We denote the singular values of Xi by σi,1 � σi,2 � · · · � σi,N . If the neighboring

points in Nxi are located exactly on Txi M, then rank Xi = d, and there are only d non-vanishing singular values (i.e.,
σi,d+1 = · · · = σi,N = 0). In such a case, the dimension can be estimated as the number of non-zero singular values. In
practice, however, due to the curvature effect, there may be more than d non-zero singular values. A common practice is to
estimate the dimension as the number of singular values that account for high enough percentage of the variability of the
data. That is, one sets a threshold γ between 0 and 1 (usually closer to 1 than to 0), and estimates the dimension as the
smallest integer di for which∑di

j=1 σ 2
i, j∑N

j=1 σ 2
i, j

> γ .

For example, setting γ = 0.9 means that di singular values account for at least 90% variability of the data, while di − 1
singular values account for less than 90%. We refer to the smallest integer di as the estimated local dimension of M at xi .
One possible way to estimate the dimension of the manifold would be to use the mean of the estimated local dimensions
d1, . . . ,dn , that is, d̂ = 1 ∑n

i=1 di (and then round it to the closest integer). The mean estimator minimizes the sum of
n
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squared errors
∑n

i=1(di − d̂)2. We estimate the intrinsic dimension of the manifold by the median value of all the di ’s, that

is, we define the estimator d̂ for the intrinsic dimension d as

d̂ = median{d1,d2, . . . ,dn}.
The median has the property that it minimizes the sum of absolute errors

∑n
i=1 |di − d̂| (originally due to Laplace). As a

result, estimating the intrinsic dimension by the median is more robust to outliers compared to the mean estimator. In all
proceeding steps of the algorithm we use the median estimator d̂, but in order to facilitate the notation we write d instead
of d̂.

Suppose that the SVD of Xi is given by

Xi = UiΣi V T
i .

The columns of the p × N matrix Ui are orthonormal and are known as the left singular vectors

Ui = [ ui1 ui2 . . . uiN ] .

We define the matrix O i by the first d left singular vectors (corresponding to the largest singular values):

O i = [ ui1 ui2 . . . uid ] . (1)

Note that the columns of O i form a numerical approximation to an orthonormal basis of the tangent plane Txi M.

2.2. Alignment

The second ingredient of the ODM algorithm is alignment. Suppose xi and x j are two nearby points, satisfying1 x j ∈ Nxi

and xi ∈ Nx j . Since N � n, the curvature effect is small, and the tangent spaces Txi M and Tx j M are also close.2 As a result,
the matrix O T

i O j is not necessarily orthogonal, and we define O ij as its closest orthogonal matrix, i.e.,

O ij = argmin
O∈O (d)

∥∥O − O T
i O j

∥∥
F , (2)

where ‖ · ‖F is the Hilbert–Schmidt norm (also known as the Frobenius norm). The minimization problem (2) has a simple
solution via the singular value decomposition (SVD) of O T

i O j [1]. Specifically, if

O T
i O j = UΣ V T (3)

is the SVD of O T
i O j , then

O ij = U V T (4)

solves (2). The optimal orthogonal transformation O ij can be either a rotation (i.e., an element of S O (d)), or a composition
of a rotation and a reflection. Fig. 1 is an illustration of this procedure.

The determinant of O ij classifies the two possible cases:

det O ij =
{

1 optimal transformation does not include a reflection,
−1 optimal transformation includes a reflection.

(5)

We refer to the process of finding the optimal orthogonal transformation between bases as alignment. Note that not all
bases are aligned; only the bases of nearby points are aligned. We set G = (V , E) to be the undirected graph with n vertices
corresponding to the data points, where an edge between i and j exists iff their corresponding bases are aligned by the
algorithm. We further encode the information about the reflections in a symmetric n × n matrix Z whose elements are
given by

Zij =
{

det O ij (i, j) ∈ E,

0 (i, j) /∈ E.
(6)

That is, Zij = 1 if no reflection is needed, Zij = −1 if a reflection is needed, and Zij = 0 if the points are not nearby.

1 Other notions of proximity are also possible. For example, xi and x j are nearby if they have at least c common points, that is, if |Nxi ∩ Nx j | � c, where
c � 1 is a parameter.

2 This means that their Grassmannian distance defined via the operator norm ‖O i O T
i − O j O T

j ‖ is small.



A. Singer, H.-t. Wu / Appl. Comput. Harmon. Anal. 31 (2011) 44–58 47
Fig. 1. The orthonormal bases of the tangent planes Txi M and Txi M determined by local PCA are marked on top of the manifold by double arrows. The
lower part demonstrates the projection of the data points onto the subspaces spanned by the orthonormal bases (the tangent planes). The coloring of the
axes (blue and red) correspond to the coloring of the basis vectors. In this case, O ij is a composition of a rotation and a reflection. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

2.3. Synchronization

The third ingredient of the ODM algorithm is synchronization. If the manifold is orientable, then we can assign an
orientation to each tangent space in a continuous way. For each xi , the basis found by local PCA can either agree or disagree
with that orientation. We may therefore assign a variable zi ∈ {+1,−1} that designates if the PCA basis at xi agrees with
the orientation (zi = 1) or not (zi = −1). Clearly, for nearby points xi and x j whose bases are aligned, we must have that

zi z
−1
j = zi j, (i, j) ∈ E. (7)

That is, if no reflection was needed in the alignment stage (i.e., zi j = 1), then either both PCA bases at xi and x j agree
with the orientation (zi = z j = 1) or both disagree with the orientation (zi = z j = −1). Similarly, if a reflection was needed
(zi j = −1), then it must be the case that zi = −z j . In practice, however, we are not given an orientation for the manifold,
so the values of the zi ’s are unknown. Instead, only the values of the zi j ’s are known to us after the alignment stage. Thus,
we may try solving the system (7) to find the zi ’s. A solution exists iff the manifold is orientable. The solution is unique up
to a global sign change, i.e., if (z1, z2, . . . , zn) is a solution, then (−z1,−z2, . . . ,−zn) is also a solution. If all equations in (7)
are accurate and the graph G is connected, then finding a solution can be obtained in a straightforward manner by simply
traversing a spanning tree of the graph from the root to the leafs.

In practice, however, due to curvature effects and noise, some of the equations in (7) may be incorrect and we would
like to find a solution that satisfies as many equations as possible. This maximum satisfiability problem is also known as the
synchronization problem over the group Z2 [15], and in [15,7] we proposed spectral algorithms to approximate its solution.
In [15] we used the top eigenvector (corresponding to the largest eigenvalue) of Z to find the solution, while in [7] we
normalized the matrix Z and used the top eigenvector of that normalized matrix. Here we use the algorithm in [7], since
we find the normalization to give much improved results.

Specifically, we normalize the matrix Z by dividing the elements of each row by the number of non-zero elements in
that given row, that is,

Z = D−1 Z , (8)

where D is a n × n diagonal matrix with Dii = ∑n
j=1 |zi j|. In other words, Dii = deg(i), where deg(i) is the degree of vertex

i in the graph G . We refer to Z as the reflection matrix. Note that although Z is not necessarily symmetric, it is similar to
the symmetric matrix D−1/2 Z D−1/2 through

Z = D−1/2(D−1/2 Z D−1/2)D1/2.

Therefore, the matrix Z has n real eigenvalues λZ
1 > λZ

2 � · · · � λZ
n and n orthonormal eigenvectors v Z

1 , . . . , v Z
n , satisfying

Z v Z
i = λZ

i v Z
i .

We compute the top eigenvector v Z
1 ∈ R

n of Z , which satisfies

Z v Z = λZ v Z , (9)
1 1 1
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and use it to obtain estimators ẑ1, . . . , ẑn for the unknown variables z1, . . . , zn , in the following way:

ẑi = sign
(

v Z
1 (i)

) = v Z
1 (i)

|v Z
1 (i)| , i = 1,2, . . . ,n. (10)

The estimation by the top eigenvector is up to a global sign, since if v Z
1 is the top eigenvector of Z then so is −v Z

1 .
To see why (10) is a good estimator, we first analyze it under the assumption that the matrix Z contains no errors on

the relative reflections. Denoting by Υ the n ×n diagonal matrix with ±1 on its diagonal representing the correct reflections
zi , i.e. Υii = zi , we can write the matrix Z as

Z = Υ AΥ −1, (11)

where A is the adjacency matrix of the graph G whose elements are given by

aij =
{

1 (i, j) ∈ E,

0 (i, j) /∈ E,
(12)

because in the error-free case zi j = zi z
−1
j for (i, j) ∈ E . The reflection matrix Z can now be written as

Z = Υ
(

D−1 A
)
Υ −1. (13)

Hence, Z and D−1 A share the same eigenvalues. Since the normalized discrete graph Laplacian L of the graph G is defined
as

L = I − D−1 A, (14)

it follows that in the error-free case, the eigenvalues of I − Z are the same as the eigenvalues of L. These eigenvalues are
all non-negative, since L is similar to the positive semidefinite matrix I − D−1/2 AD−1/2, whose non-negativity follows from
the identity

vT (
I − D−1/2 AD−1/2)v =

∑
(i, j)∈E

(
v(i)√
deg(i)

− v( j)√
deg( j)

)2

� 0,

for any v ∈ R
n . In other words,

1 − λZ
i = λL

i � 0, i = 1,2, . . . ,n, (15)

where the eigenvalues of L are ordered in increasing order, i.e., λL
1 � λL

2 � · · · � λL
n , and the corresponding eigenvectors

v L
i satisfy Lv L

i = λL
i v L

i . Furthermore, the sets of eigenvectors are related by

v Z
i = Υ v L

i . (16)

If the graph G is connected, then the eigenvalue λL
1 = 0 is simple and its corresponding eigenvector v L

1 is the all-ones
vector 1 = (1,1, . . . ,1)T . Therefore,

v Z
1 = Υ 1, (17)

and, in particular,

v Z
1 (i) = zi, i = 1,2, . . . ,n. (18)

This implies that in the error-free case, (10) perfectly recovers the reflections. In other words, the eigenvector v Z
1 contains

the orientation information of each tangent space. According to this orientation information, we can synchronize the orien-
tations of all tangent spaces by flipping the orientation of the basis O i whenever v Z

1 (i) < 0. In conclusion, the above steps
synchronize all the tangent spaces to agree on their orientations.

If the manifold is not orientable, then it is impossible to synchronize the orientation of the tangent spaces and the top
eigenvector cannot be interpreted as before. We return to this interpretation later in the paper. For the moment, we just
remark that the eigenvalues of A and Z (and similarly of L and Z ) contain information about the number of orientation
preserving and orientation reversing closed loops. To that end, consider first At(i, j), which is the number of paths of length
t over the graph G that start at node i and end at node j. In particular, At(i, i) is the number of closed loops that start and
end at node i. Therefore,

Tr
(

At) =
n∑

i=1

At(i, i) =
n∑

i=1

(
λA

i

)t

is the number of closed loops of length t . Similarly,

Tr
(

Zt) =
n∑

Zt(i, i) =
n∑(

λZ
i

)t
i=1 i=1
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is the number of orientation preserving closed loops minus the number of orientation reversing closed loops of length t .
If the manifold is orientable then all closed loops are orientation preserving and the two traces are the same, but if the
manifold is non-orientable then there are orientation reversing closed loops and therefore the eigenvalues of A and Z must
differ.

If the manifold is determined to be orientable, then we can use the computed eigenvectors of Z for dimensionality
reduction in the following manner. Specifically, we use point-wise multiplication of the eigenvectors of Z by the estimated
reflections to produce new vectors ṽ1, . . . , ṽn that are given by

ṽ j(i) = ẑi v Z
j (i), i, j = 1, . . . ,n. (19)

The relation (16) between the eigenvectors of Z and L, and the particular form of the top eigenvector v Z
1 given in (17)

imply that the vectors ṽ1, . . . , ṽn are eigenvectors of L with ṽ j = v L
j . The eigenvectors of L are used in the diffusion

map framework to embed the data points onto a lower dimensional Euclidean space, where distances between points
approximate the diffusion distance [6]. Similarly, we can embed the data points using the following rule:

xi �→ ẑi
(
λt

2 v Z
2 (i), λt

3 v Z
3 (i), . . . , λt

k v Z
k (i)

) ∈ R
k−1, (20)

where t � 0 is a parameter.
If the data points are sampled from the uniform distribution over the manifold, then the eigenvectors of the discrete

graph Laplacian L approximate the eigenfunctions of the Laplace–Beltrami operator [4], and it follows that the vectors
ṽ i that are used in our ODM embedding (20) also converge to the eigenfunctions of the Laplace–Beltrami operator. If the
sampling process is from a different distribution, then the ṽ i ’s approximate the eigenfunctions of the Fokker–Planck operator.
By adapting the normalization rule suggested in [6] to our matrix Z , we can get an approximation of the eigenfunctions of
the Laplace–Beltrami operator also for non-uniform distributions.

We remark that nothing prevents us from running the ODM algorithm in cases for which the sampling process from the
manifold is noisy. We demonstrate the robustness of our algorithm through several numerical experiments in Section 4.

3. Orientable double covering

Every non-orientable manifold has an orientable double cover. Can we reconstruct the double covering from data points
sampled only from the non-orientable manifold? In this section we give an affirmative answer to this question, by con-
structing a modified diffusion map embedding of the orientable double cover using only points that are sampled from the
non-orientable manifold.

For simplicity of exposition, we start by making a simplifying assumption that we shall later relax. The assumption is
that the orientable double cover has a symmetric isometric embedding in Euclidean space. That is, we assume that if M is
the non-orientable manifold, and M̃ is its orientable double cover, then M̃ has a symmetric isometric embedding in R

q , for
some q � 1. Symmetric embedding means that for all x ∈ M̃ ⊂ R

q , also −x ∈ M̃. This assumption is motivated by examples:
the orientable double cover of the Möbius band is the cylinder, the orientable double cover of RP 2 is S2 and the orientable
double cover of the Klein bottle is T 2. The cylinder, S2 and T 2 all have symmetric isometric embeddings in R

3 (q = 3). We
believe that this assumption holds true in general, but its proof is beyond the scope of this paper.3 Our assumption means
that we have a Z2 action on M̃ given by x �→ −x. We note that this Z2 action is isometric and recall that if the group
Z2 is properly discontinuously acting on M̃, then M̃/Z2 is non-orientable if and only if M̃ has an orientation that is not
preserved by the Z2 action.

By our assumption, the orientable double covering M̃ can be isometrically embedded into R
q for some q so that Z2x =

−x for all x ∈ M̃ and M̃/Z2 = M. Denote the projection map as π : {x,−x} ⊂ M̃ �→ [x] ∈ M. Under this assumption, each
pair of antipodal points in M̃ can be viewed as a single point in M. In other words, for any point [x] ∈ M, we can view it
as two antipodal points x,−x ∈ M̃ whose antipodal relationship is ignored.

We can now offer an interpretation of the matrix Z whose entries are given in (6). Recall that we have n data points
in R

p that are sampled from M. We denote these points by [x1], . . . , [xn]. Associate to each [xi] ∈ M a point xi ∈ M̃ ⊂ R
q

such that π(xi) = [xi] and such that the entries of Z satisfy the following conditions: zi j = 1 if x j is in the ε-neighborhood
of xi ; zi j = −1 if x j is the ε-neighborhood of Z2xi = −xi ; and zi j = 0 if the distance between x j and xi and the distance
between x j and −xi are both larger than ε . That is,

zi j =
⎧⎨
⎩

1 if ‖xi − x j‖Rq < ε,

−1 if ‖xi + x j‖Rq < ε,

0 otherwise.

3 We elude to a possible proof by noting that Nash embedding theorem, that guarantees that every Riemannian manifold can be isometrically embedded
in Euclidean space, is based on modified Newton iterations. Thus, a possible roadmap for the proof would be to show that Whitney embedding theorem
gives a symmetric embedding as an initialization, and then to show that the iterations in Nash theorem preserve symmetry.
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Next, we build a 2n × 2n matrix Z̃ as follows:

Z̃ :=
[

Z −Z
−Z Z

]
=

(
1 −1

−1 1

)
⊗ Z , (21)

where ⊗ is the Kronecker product. The matrix Z̃ corresponds to 2n points over M̃, while originally we had only n such
points. We identify the additional points, denoted xn+1, . . . , x2n as xn+i = −xi for i = 1, . . . ,n. With this identification, it is
easily verified that the entries of Z̃ = (z̃i j)

2n
i, j=1 are also given by

z̃i j =
⎧⎨
⎩

1 if ‖xi − x j‖Rq < ε,

−1 if ‖xi + x j‖Rq < ε,

0 otherwise.

In a sense, the −Z in the (1,2) and (2,1) entries of Z̃ in (21) provides the lost information between π−1([xi]) and
π−1([x j]). We also define the matrices Z̃ and L̃ as

Z̃ =
[

Z −Z
−Z Z

]
=

(
1 −1

−1 1

)
⊗ Z =

(
1 −1

−1 1

)
⊗ D−1 Z , (22)

and

L̃ =
[

L −L
−L L

]
=

(
1 −1

−1 1

)
⊗ L =

(
1 −1

−1 1

)
⊗ (

I − D−1 Z
)
. (23)

It is clear that the matrix Z̃ is a discretization4 of the integral operator K̃ε : L2(M̃) → L2(M̃), given by

(K̃ε f )(x) =
∫

M̃

K̃ε(x, y) f (y)dy, (24)

where the kernel function K̃ε is given by

K̃ε(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
vol(Bε (x)∩M̃)

if ‖x − y‖Rq < ε,

− 1
vol(Bε (x)∩M̃)

if ‖x + y‖Rq < ε,

0 otherwise.

(25)

Bε(x) is a ball of radius ε in R
q centered at x, and the volume is measured using the metric of M̃ induced from R

q . Clearly,
the integral operator K̃ε commutes with the Z2 action:

K̃εZ2 f = Z2 K̃ε f , (26)

where (Z2 f )(x) = f (−x). Moreover, the kernel of K̃ε includes all “even” functions. That is, if f satisfies f (x) = f (−x) for
all x ∈ M̃, then K̃ε f = 0. It follows that the eigenfunctions of K̃ε with non-vanishing eigenvalues must be “odd” functions
that satisfy f (x) = − f (−x).

Recall that the graph Laplacian L converges to the Laplace–Beltrami operator in the limit n → ∞ and ε → 0 if the data
points are sampled from the uniform distribution over the manifold. That is,

lim
ε→0

lim
n→∞

1

ε
L f (x) = m2	M f (x), (27)

where m2 is a constant related to the second moment of the kernel function. Adapting this result to our case implies that
we have the following convergence result for the matrix L̃:

lim
ε→0

lim
n→∞

1

ε
(L̃ f )(x) = m̃2

[
(	M̃ f )(x) − (	M̃ f )(−x)

]
, (28)

where m̃2 is a constant. In other words, in the limit we recover the following operator:

	M̃ − Z2	M̃. (29)

The Laplacian 	M̃ also commutes with the Z2 action, so by similar considerations, the kernel of 	M̃ − Z2	M̃ contains
all even functions, and the eigenfunctions with non-zero eigenvalues are odd functions.

4 That is, Z̃ converges to K̃ε in the limit n → ∞.
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Suppose φ1, φ2, . . . , φ2n and λ1 � λ2 � · · · � λ2n � 0 are the eigenvectors and eigenvalues of L̃. From the above discussion
we have that λn+1 = · · · = λ2n = 0 and φ1, . . . , φn are odd vectors satisfying φl(i) = −φl(n + i) (1 � l � n). We define the
map Φ̃t for t > 0 as

Φ̃t : xi �→ (
λt

1φ1(i), λt
2φ2(i), . . . , λt

nφn(i)
)
, for i = 1,2, . . . ,2n. (30)

We refer to Φ̃t as a modified diffusion map. Note that Φ̃t uses only the odd eigenfunctions of the Laplacian over M̃,
whereas the classical diffusion map uses all eigenfunctions, both odd and even.

Our construction shows that from the information contained in the matrix Z , which is built solely from the non-
orientable manifold M, we obtain the odd eigenfunctions of the Laplacian over the double cover M̃. The odd eigenfunctions
are extremely useful for embedding the double cover. For example, the double cover of RP 2 is S2 whose odd eigenfunctions
are the odd degree spherical harmonics. In particular, the degree-1 spherical harmonics are the coordinate functions x, y
and z (in R

3), so truncating the modified diffusion map Φ̃t to R
3 results in an embedding of S2 in R

3. Similarly, the first
3 eigenvectors of L̃ (or equivalently, Z̃ ) built up from the Klein bottle and the Möbius band allow us to get a torus and a
cylinder, respectively. These reconstruction results are shown in Section 4.

We now return to the underlying assumption that the manifold M̃ has a symmetric isometric embedding in R
q for some

q � 1. While the assumption was useful to visualize the construction, we note that it is actually not necessary for the above
derivation and interpretation. Indeed, the non-orientable manifold M has an abstract orientable double cover M̃ with Z2
acting on it such that M̃/Z2 = M. While the assumption allowed us to make a concrete specification of the Z2 action (i.e.,
Z2x = −x), this specification is not necessary in the abstract setup. The careful reader may check each and every step of
the derivation and verify that they follow through also in the abstract sense. In particular, the matrix Z̃ can be interpreted
just as before, with xn+i = Z2xi ∈ M̃ for Z2 being the abstract action. Moreover, the Laplacian over M̃ still commutes with
Z2 and the matrix L̃ converges to the operator given in (29). Thus, the modified diffusion mapping Φ̃t given in (30) is an
embedding of the abstract double cover. In the continuous setup, the eigenfunctions {φn}∞n=1 of the operator 	M̃ − Z2	M̃
embed the abstract double cover M̃ in the Hilbert space �2 through the mapping

x �→ (
λt

1φ1(x), λt
2φ2(x), . . . , λt

nφn(x), . . .
)
, for x ∈ M̃, (31)

where

(	M̃ − Z2	M̃)φn = λnφn, n = 1,2, . . . .

Finally, we show a useful “trick” to generate a point cloud over a non-orientable manifold without knowing any of the
parametrizations that embed it in Euclidean space. For example, suppose we want to generate a point cloud over the Klein
bottle, but we forgot its parametrization in R

4 (the parametrization is given later in (32)). There is still a rather simple way
to proceed that only requires the knowledge of the orientable double cover. That is, given a non-orientable manifold M
from which we want to sample points in a Euclidean space, all we need to know is its orientable double cover M̃ and its
symmetric embedding in Euclidean space.5 So, although we forgot the parametrization of the Klein bottle in R

4, we assume
that we still remember that its double cover is T 2 and the parametrization of T 2 in R

3. From the symmetric embedding
of T 2 in R

3, we now describe how to get a diffusion map embedding of the Klein bottle in Euclidean space. In general, from
the symmetric embedding of M̃ we describe how to get the diffusion map embedding of M.

We start by sampling n points uniformly from M̃ ∈ R
q . Next, we double the number of points by setting xn+i = −xi for

i = 1, . . . ,n. We then build a 2n × 2n matrix Ã = (ãi j)
2n
i, j=1 given by

ãi j =
⎧⎨
⎩

1 if ‖xi − x j‖Rq < ε,

1 if ‖xi + x j‖Rq < ε,

0 otherwise.

We see that the matrix Ã does not distinguish between x and Z2x, which leads to the previous identification {x,Z2x} =
[x] ∈ M. After normalizing the matrix as before, it can be easily verified that it converges to an integral operator that has
all the odd functions in its kernel and its non-zero eigenvalues correspond to even eigenfunctions. Moreover, in the limit of
n → ∞ and ε → 0 we get convergence to the following operator:

	M̃ + Z2	M̃.

This means that the computed eigenvectors approximate the even eigenfunctions of the Laplacian over M̃. That is, we
compute eigenfunctions that satisfy φl(x) = φl(Z2x) (for l = 1, . . . ,n). As a result, these eigenfunctions are only functions
of [x] and are the eigenfunctions of 	M . Thus, the mapping

[xi] �→ (
λt

1φ1(xi), . . . , λ
t
nφn(xi)

)
, for i = 1, . . . ,n,

is the diffusion mapping of M.

5 Here we actually need the assumption that the orientable double cover has a symmetric isometric embedding in Euclidean space.
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Fig. 2. Histogram of the values of the top eigenvector v Z
1 . Left: clean S2; Right: S2 contaminated by 5 dB noise. Note that the eigenvector is normalized so

its values concentrate around ± 1√
n

instead of ±1.

We remark that this construction can help us to build up more examples of non-orientable manifolds. For example, we
can start from S2d ⊂ R

2d+1 and build up the diffusion map embedding of the non-orientable real projective space RP (2d)

without knowing the parametrization of RP (2d).

4. Numerical examples

In this section we provide several numerical experiments demonstrating the application of ODM on simulative data. In
our experiments, we measure the level of noise by the signal to noise ratio (SNR), which is defined in the following way.
Suppose s1, s2, . . . , sn ∈ R

p is a set of “clean” data points that are located exactly on the manifold. This set of points is
considered as the signal, and we define its sample variance as

Var(Signal) = 1

np

n∑
i=1

‖si − μ‖2
Rp ,

where μ = 1
n

∑n
i=1 si is the sample mean. The set of noisy data points x1, x2, . . . , xn are located off the manifold and are

generated using the following process:

xi = si + σξi, for i = 1, . . . ,n,

where σ > 0 is a fixed parameter, and ξ ∼ N (0, I p×p) are independently identically distributed (i.i.d.) standard multivariate
normally distributed isotropic random variables. The SNR is measured in dB and is defined as

SNR [dB] = 10 log10
Var(Signal)

σ 2
.

Our first example is the unit sphere S2. This example demonstrates how to synchronize the orientation when the man-
ifold is orientable. We sample n = 5000 points from S2 uniformly without noise and run ODM with N = 100 nearest
neighbors, and estimate the intrinsic dimension in the local PCA step using γ = 0.8. Then we sample another 5000 points
from S2 with SNR = 5 dB and run ODM with the same parameters. In both cases, the intrinsic dimension is estimated cor-
rectly as d̂ = 2. The histograms of the top eigenvector v Z

1 of both cases are shown in Fig. 2. The results show the robustness
of ODM in orientation synchronization.

Next we show how the ODM algorithm helps us to determine if a given manifold is orientable or not. We sample 5000
points from the Klein bottle embedded in R

4 and RP (2) embedded in R
4 without noise, respectively. Then run the ODM

algorithm for these two data sets with N = 200 and γ = 0.8. The histograms of the top eigenvectors are shown in Fig. 3. It
shows that when the underlying manifold is non-orientable, the values of the first eigenvector of the ODM do not cluster
around two distinguished positive and negative values.

We proceed to considering the application of ODM for dimensionality reduction, looking at data points sampled from
the bell-shaped, closed, non-intersected curve, which is parameterized by C(θ) = (x(θ), y(θ)), θ ∈ [0,2π ], where

x(θ) = cos(θ),

y(θ) =
{

sin(θ) for θ ∈ [0,π/4] ∪ [3π/4,5π/4] ∪ [7π/4,2π ],
−(2θ−π)2 −(π/2)2
sin(θ)(1 − e + e ) otherwise.



A. Singer, H.-t. Wu / Appl. Comput. Harmon. Anal. 31 (2011) 44–58 53
Fig. 3. Histogram of the values of the top eigenvector v Z
1 . Left: Klein bottle; Right: RP 2.

Fig. 4. The bell shaped curve: the green points are the nearest neighbors of the blue point. The SNR is 30 dB. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

The curve is depicted in Figs. 4 and 5. Note that the isthmus of C(θ) (near θ = π
2 and θ = 3π

2 ) imposes a difficultly whenever
the noise is too large or the sampling rate is too low. This difficulty is due to the identity of the nearest neighbors, as
illustrated in Fig. 4. It reflects the fact that the nearest neighbors are neighbors in the extrinsic sense (when the distance
is measured by the Euclidean distance), but not in the intrinsic sense (when the distance is measured by the geodesic
distance). To cope with this difficulty, we first cluster the nearest neighbors in order to find the “true” neighbors in the
geodesic distance sense, prior to applying PCA. For clustering the points in Nxi we apply the spectral clustering algorithm
[13], and for PCA we consider only the points that belong to the cluster of xi .

We applied ODM to 5000 points from C(θ) without noise, with parameters N = 200 and γ = 0.8, and then embed the
data points into R

2 using the second and third eigenvectors and (20). We repeat the same steps for noisy data sets with
SNR = 30 dB and SNR = 24 dB. Fig. 5 shows the original data set, the diffusion map (DM) embedding, and the ODM em-
bedding. In the DM algorithm, we used the Gaussian kernel exp{−‖xi − x j‖2/σ } with σ = 0.5. As expected, the embedding
results of ODM and DM are comparable.

Our next example is the Swiss roll, a manifold often used by machine learners as a testbed for dimensionality reduction
methods. The Swiss roll model is the following manifold S embedded in R

3:

x(t, s) = 3π(1 + 2t)

8
cos

3π(1 + 2t)

2
,

y(t, s) = s,

z(t, s) = 3π(1 + 2t)

8
sin

3π(1 + 2t)

2
,

for (t, s) ∈ [0,1] × [0,21]. The Swiss roll model exhibits the same difficulty we encountered before with the bell-shape
curve, namely, that the geodesically distant points might be close in the Euclidean sense (see Fig. 6). Moreover, unlike
the manifolds considered before, the Swiss roll has a boundary. To cope with these problems, we again apply the spectral
clustering algorithm [13] prior to the local PCA step of the ODM algorithm.

We sampled n = 7000 points from the Swiss roll without noise, run ODM with parameters N = 40 and γ = 0.8, and then
embedded the data points into R

2 by the second and third eigenvectors using (20). We repeated the same steps for data
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Fig. 5. From left to right: the input data set consisting of n = 5000 points, embedding by diffusion map, and embedding by ODM. Both the data set and the
embeddings are colored by the parameter θ . The rows from top to bottom correspond to clean data, SNR = 30 dB and SNR = 24 dB.

Fig. 6. The Swiss roll: the yellow points are the original data, while the green points are nearest neighbors of the blue point. The points are sampled from
the Swiss roll without any noise. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

sets with SNR values 50 dB, 30 dB and 25 dB. Fig. 7 shows the original data, the embedding by DM, and the embedding by
ODM. In the DM algorithm, we used the Gaussian kernel with σ = 5.

In conclusion, we see that besides determining the orientability of the manifold, ODM can also be used as a dimension-
ality reduction method.

In the last part of this section we demonstrate results about recovering the orientable double covering of a non-orientable
manifold as discussed in Section 3. First we demonstrate the orientable double covering of RP (2), Klein bottle and Möbius
band in Fig. 8. For RP (2), we use the following embedding inside R

4:

(x, y, z) �→ (
xy, xz, y2 − z2,2yz

)
,
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Fig. 7. From left to right: the input data, the embedding by diffusion map, and the embedding by ODM. The data sets and the embeddings are colored by
the parameter t . From top to bottom: clean data set, SNR = 30 dB and SNR = 25 dB.

Fig. 8. Left: the orientable double covering of RP (2), which is S2; Middle: the orientable double covering of the Klein bottle, which is T 2; Right: the
orientable double covering of the Möbius strip, which is a cylinder.

where (x, y, z) ∈ S2 ⊂ R
3. We sample 8000 points uniformly from S2 and map the sampling points to RP (2) by the em-

bedding, which gives us a non-uniform sampling data set. Then we evaluate eigenvectors of the 16 000 × 16 000 sparse
matrix Z̃ constructed from the data set with N = 40 and get the approximation of the coordinates of the orientable double
covering which allows us to get the orientable double covering (Fig. 8, left panel).

For the Klein bottle, we apply the following embedding inside R
4:⎧⎪⎨

⎪⎩
x = (2 cos v + 1) cos u,

y = (2 cos v + 1) sin u,

z = 2 sin v cos(u/2),

w = 2 sin v sin(u/2),

(32)

where (u, v) ∈ [0,2π ] × [0,2π ]. We sample 8000 points uniformly from [0,2π ] × [0,2π ] and map the sampling points to
the Klein bottle by the embedding, which gives us a non-uniform sampling data set over the Klein bottle. Then we run the
same procedure as in RP (2) with N = 40 and get the result (Fig. 8, middle panel).
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Fig. 9. Left: the Möbius band embedded in R
3 with b = 1; Right: the algorithm failed to recover the cylinder.

Fig. 10. Bar plot of the eigenvalues of the graph Laplacian of the abstract RP (2) constructed from gluing antipodal points of S2. The multiplicities 1,5,9, . . .

correspond to the even degree spherical harmonics.

For the Möbius band, we use the following parametrization:{ x = (a + bv cos(0.5u)) cos(u),

y = (a + bv cos(0.5u)) sin(u),

z = bv sin(0.5u),

where a = 3, b = 5 and (u, v) ∈ [−1,1] × [0,2π ]. As above, we sample 8000 points uniformly from [−1,1] × [0,2π ] and
map the sampling points to the Möbius band by the parametrization, which gives us a non-uniform sampling data set. Then
we run the same procedure with N = 20 and get the result (Fig. 8, right panel). It is worth mentioning that when b is small,
e.g., b = 1, we fail to recover the cylinder, as can be seen in Fig. 9. This difficulty comes from the lack of information in the
width of the band when b is too small.

Last, we demonstrate how to get a non-orientable manifold by constructing the Ã matrix as discussed in Section 3. We
start from showing the spectrum of RP (2) constructed by gluing the antipodal points of S2 together. We build up Ã by
taking N = 50 from 16 000 data points sampled from S2 embedded in R

3:{ x = sin(θ) cos(φ),

y = sin(θ) sin(φ),

z = cos(θ),

which is the approximation of the Laplace–Beltrami operator over S2/Z2 ∼= RP (2). The spectrum of the operator is shown
in Fig. 10.

Then we demonstrate the reconstruction of the orientable double covering of an abstract non-orientable manifold, by
which we mean an abstract non-orientable manifold not yet embedded inside any Euclidean space. We start from sampling
16 000 points from a cylinder C embedded in R

3, which is parameterized by:{ x = 2 cos θ,

y = 2 sin θ,

z = a,

where (θ,a) ∈ [0,2π ] × [−2,2], and run the following steps. First we fix N = 50, and build up Ã, the approximation of the
Laplace–Beltrami operator over C/Z2 by gluing the antipodal points together. Note that C/Z2 is an abstract Möbius band
up to now. Second, we embed C/Z2 by applying diffusion map, where we take the second to fifth eigenvectors of Ã, that
is, we embed C/Z2 into R

4. Finally we run ODM with N = 50 over the embedded C/Z2 to reconstruct the double covering.
The result, shown in Fig. 11, shows that we recover back a cylinder. Similarly, we run the same process with the same
parameters N = 50 and the second to fifth eigenvectors of Ã to embed T 2/Z2 and S2/Z2 into R

4, and then run ODM with
N = 50, which results in the reconstruction of the orientable double covering of an abstract Klein bottle and RP (2). The
results are shown in Figs. 12 and 13. Using different number of eigenvectors for embedding, for example, from the second
to sixth or from the second to seventh eigenvectors give us similar results.



A. Singer, H.-t. Wu / Appl. Comput. Harmon. Anal. 31 (2011) 44–58 57
Fig. 11. Left: the cylinder embedded in R
3; Right: the recovered cylinder.

Fig. 12. Left: the torus embedded in R
3; Right: the recovered torus.

Fig. 13. Left: S2 embedded in R
3; Right: the recovered S2.

Note that in the above three examples shown in Figs. 11, 12 and 13, the recovered objects look different from the original
one. This distortion mainly comes from the following step: the embedding by diffusion map chosen in the demonstration is
not isometric but just an approximation of an isometric embedding.

5. Summary and discussion

We introduced an algorithm for determining the orientability of a manifold from scattered data. If the manifold is
orientable then the algorithm synchronizes the orientations and can further be used for dimensionality reduction in a
similar fashion to the diffusion map framework.

The algorithm consists of three steps: local PCA, alignment and synchronization. In the synchronization step we construct
a matrix Z , which for an orientable manifold is shown to be similar to the normalized Laplacian L. For non-orientable
manifolds this similarity does not hold anymore and we show how to obtain an embedding of the orientable double covering

using the eigenvectors of the Kronecker product Z̃ =
(

1 −1
−1 1

)
⊗ Z . In particular, we show that the eigenvectors of Z̃

approximate the odd eigenfunctions of the Laplacian over the double covering. We also show how to use this observation
in order to embed an abstract non-orientable manifold in Euclidean space given its orientable double covering.

We comment that the reflection matrix Z can also be built by taking a kernel function into consideration, like the
weighted graph Laplacians discussed in [6]. For example, we may replace the definition (6) of Z by

Zij =
{

e− ‖xi−x j‖2

σ det O ij (i, j) ∈ E,

0 (i, j) /∈ E,
(33)

and

Z = D−1 Z , (34)

where D is a n ×n diagonal matrix with Dii = ∑n
j=1 |zi j|. All the results in this paper also apply to this kernelized reflection

matrix.
One possible application of our framework is the geometrical and topological study of high contrast local patches that

are extracted from natural images [10]. Computational topology methods were used in [5] to conclude that this data set has
the topology of the Klein bottle. This result may perhaps be confirmed using the methods presented here.
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Finally, we remark that while the reflection matrix only uses the information in det O ij , it seems natural also to take
into account all the information in O ij . This modification will be the subject of a separate publication.
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