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We consider the narrow escape problem in two-dimensional Riemannian manifolds
(with a metric g) with corners and cusps, in an annulus, and on a sphere. Specifically,
we calculate the mean time it takes a Brownian particle diffusing in a domain � to

reach an absorbing window when the ratio ε = |∂�a |g
|∂�|g between the absorbing window

and the otherwise reflecting boundary is small. If the boundary is smooth, as in the
cases of the annulus and the sphere, the leading term in the expansion is the same as
that given in part I of the present series of papers, however, when it is not smooth, the
leading order term is different. If the absorbing window is located at a corner of angle α,

then Eτ = |�|g
αD [log 1

ε
+ O(1)], if near a cusp, then Eτ grows algebraically, rather than

logarithmically. Thus, in the domain bounded between two tangent circles, the expected
lifetime is Eτ = |�|

(d−1−1)D
( 1
ε

+ O(1)), where d < 1 is the ratio of the radii. For the

smooth boundary case, we calculate the next term of the expansion for the annulus and
the sphere. It can also be evaluated for domains that can be mapped conformally onto
an annulus. This term is needed in real life applications, such as trafficking of receptors

on neuronal spines, because log 1
ε

is not necessarily large, even when ε = |∂�a |g
|∂�|g is

small. In these two problems there are additional parameters that can be small, such
as the ratio δ of the radii of the annulus. The contributions of these parameters to the
expansion of the mean escape time are also logarithmic. In the case of the annulus the

mean escape time is Eτ = |�|g
π D [log 1

ε
+ 1

2 log 1
δ

+ O(1)].

KEY WORDS: Brownian motion on Riemannian manifolds; Exit problem; Singular
perturbations.

1 Department of Mathematics, Yale University, 10 Hillhouse Ave. PO Box 208283, New Haven, CT
06520-8283, USA; e-mail: amit.singer@yale.edu

2 Department of Mathematics, Tel-Aviv University, Tel-Aviv 69978, Israel, e-mail: schuss@post.
tau.ac.il

3 Department of Mathematics, Weizmann Institute of Science, Rehovot 76100 Israel, e-mail: holcman@
wisdom.weizmann.ac.il

491

0022-4715/06/0200-0491/0 C© 2006 Springer Science+Business Media, Inc.



492 Singer et al

1. INTRODUCTION

In many applications it is necessary to find the mean first passage time (MFPT)
of a Brownian particle to a small absorbing window in the otherwise reflecting
boundary of a given bounded domain. This is the case, for example, in the perme-
ation of ions through protein channels of cell membranes,(1) and in the trafficking
of AMPA receptors on nerve cell membranes.(2,3) While the first example is three
dimensional the second is two dimensional, which leads to very different results.
In this paper we consider the two dimensional case.

In the first two parts (4,5) of this series of papers, we derived an asymptotic
expansion of the mean time a Brownian particle takes to reach a small absorbing
window ∂�a in the otherwise reflecting boundary ∂� of a given domain � in
two and three dimensions. In particular, we found that if � is a two-dimensional
Riemannian surface with smooth boundary, the leading term in the asymptotic
expansion for ε = |∂�a |g

|∂�|g � 1 is

Eτ = |�|g
π D

[
log

1

ε
+ O(1)

]
. (1.1)

We show here that if the boundary contains corners or cusps, the leading order
term in the expansion is not the same as that in the case of smooth boundaries.
When the absorbing arc is located at a corner of angle α, the MFPT is

Eτ = |�|g
Dα

[
log

1

ε
+ O(1)

]
. (1.2)

For example, the MFPT from a rectangle with sides a and b to an absorbing
window of size ε at the corner (α = π/2, see Fig. 1), is

Eτ = 2|�|
Dπ

[
log

a

ε
+ log

2

π
+ π

6

b

a
+ 2β2 + O

( ε

a
, β4

)]
,

where |�| = ab and β = e−πb/a . The calculation of the second order term turns
out to be similar to that in the annulus case. The pre-logarithmic factor |�|g

Dα
is

the result of the different singularity of the Neumann function at the corner. It
can be obtained by either the method of images, or by the conformal mapping
z �→ zπ/α that flattens the corner. In the vicinity of a cusp α → 0, therefore
the asymptotic expansion (1.2) is invalid. We find that near a cusp the MFPT
grows algebraically fast as 1

ελ , where λ is the order of the cusp. Note that the
MFPT grows faster to infinity as the boundary is more singular. The change
of behavior from a logarithmic growth to an algebraic one expresses the fact
that entering a cusp is a rare Brownian event. For example, the MFPT from the
domain bounded between two tangent circles to a small arc at the common point
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Fig. 1. Rectangle of sizes a and b with a small absorbing segment of size ε at the corner.

(see Fig. 3) is

Eτ = |�|
(d−1 − 1)D

(
1

ε
+ O(1)

)
,

where d < 1 is the ratio of the radii. This result is obtained by mapping the cusped
domain conformally onto the upper half plane. The singularity of the Neumann
function is transformed as well. The leading order term of the asymptotics can be
found for any domain that can be mapped conformally to the upper half plane.

In three dimensions the class of isolated singularities of the boundary is
much richer than in the plane. The results of Ref. 4 cannot be generalized in
a straightforward way to windows located near a singular point or arc of the
boundary. We postpone the investigation of the MFPT to windows at isolated
singular points in three dimensions to a future paper.

While the second term in the asymptotic expansion of the MFPT in three
dimensions is much smaller then the first one, it is not necessarily so in two
dimensions, because of the slow growth of the logarithmic function. It is necessary,
therefore, to find the second term in the expansion in the two-dimensional case.
This term was found for the case of a planar circular disk in Ref. 5, and can therefore
be found for all simply connected domains in the plane that can be mapped
conformally onto the disk. Similarly, it can be found for simply connected domains
on two-dimensional Riemannian manifolds that can be mapped conformally on the
planar disk. For example, the sphere with a circular cap cut off can be projected
stereographically onto the disk, and so the second term for the narrow escape
problem for such domains can be found.

Next, we consider narrow escape from an annulus, whose boundary is reflect-
ing, except for a small absorbing arc on the inner circle. Specifically, the annulus
is the domain R1 < r < R2, with all reflecting boundaries except for a small ab-
sorbing window located at the inner circle (see Fig. 4). The inversion w = 1/z
transforms this case into that of the absorbing boundary on the outer circle. Setting
β = R1

R2
< 1, the MFPT, averaged with respect to a uniform initial distribution,
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can be written as

Eτ = (R2
2 − R2

1)

D

[
log

1

ε
+ log 2 + 2β2

]

+ 1

D

[
1

2

R2
2

1 − β2
log

1

β
− 1

4
R2

2 + O(ε, β4)R2
2

]
. (1.3)

The ε contribution belongs to a singular perturbation problem with a boundary
layer solution and an almost constant outer solution with singular fluxes near
the edges of the window, whereas the β contribution is just the singularity of
Green’s function at the origin—a problem with a regular flux. Note that Eq. (1.3)
contains two terms of the asymptotic expansion of Eτ . This result is generalized
to a sphere with two antipodal circular caps removed. We find that for β � 1
the maximum exit time is attained near the south pole, as expected. This result
can be generalized to manifolds that can be mapped conformally onto the given
domain. The calculation of the second term involves the solution of the mixed
Dirichlet-Neumann problem for harmonic functions in �. While in the three
dimensional case this is a classical problem in mechanics, diffusion, elasticity
theory, hydrodynamics, and electrostatics (6−8), the two dimensional problem did
not draw as much attention in the literature.

We also calculate the second term in the asymptotic expansion for the 2-
sphere x2 + y2 + z2 = R2. The calculation is made possible by the stereographic
projection that maps the Riemann sphere onto a circular disk, a problem that was
solved in Ref. 5. The boundary in this case is a spherical cap of central angle δ

at the north pole, where ε is the ratio between the absorbing arc and the entire
boundary circle. We find that the MFPT, averaged with respect to an initial uniform
distribution, is given by

Eτ = |�|g
2π D

[
log

1

δ
+ 2 log

1

ε
+ 3 log 2 − 1

2
+ O(ε, δ2 log δ, δ2 log ε)

]
, (1.4)

where |�|g = 4π R2 is the surface area of the sphere. Note that there are two small
parameters that control the behavior of the MFPT in this problem. The small ε

contributes as Eq. (1.1) predicts, whereas the small δ parameter contributes only
a half of the logarithm.

The analysis of Brownian motion near corners and cusps assumes point
particles. However, if the Brownian particle has a finite volume, the effective
contact boundary between the particle and the boundary of the domain has neither
corners nor cusps. This fact, though, does not change the asymptotic expansion
of the MFPT as long as the radius of the particle is much smaller than the size of
the window. This is due to the change in the singularity of the Neumann function
from logarithmic to algebraic along the boundary near the singular point. If the
size of the particle is smaller than the transition region from one singularity of
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the Neumann function to the other, the MFPT will be the same as that of a point
particle.

As a possible application of the present results, we mention the calculation of
the diffusion coefficient from the statistics of the lifetime of a receptor in a corral
on the surface of a neuronal spine.(3)

2. DOMAINS WITH CORNERS

Consider a Brownian motion in a rectangle � = (0, a) × (0, b) of area
ab. The boundary is reflecting except the small absorbing segment ∂�a =
[a − ε, a] × {b} (see Fig. 1). The MFPT v(x, y) satisfies the boundary value
problem


v = −1, (x, y) ∈ �,

v = 0, (x, y) ∈ ∂�a, (2.1)

∂v

∂n
= 0, (x, y) ∈ ∂� − ∂�a .

The function f = b2−y2

2 satisfies


 f = −1, (x, y) ∈ �,

f = 0, (x, y) ∈ ∂�a,

∂ f

∂n
= 0, (x, y) ∈ {0} × [0, b] ∪ {a} × [0, b] ∪ [0, a] × {0}, (2.2)

∂ f

∂n
= −b, (x, y) ∈ [0, a − ε] × {b},

therefore, the function u = v − f satisfies


u = 0, (x, y) ∈ �,

u = 0, (x, y) ∈ ∂�a,

∂u

∂n
= 0, (x, y) ∈ {0} × [0, b] ∪ {a} × [0, b] ∪ [0, a] × {0}, (2.3)

∂u

∂n
= b, (x, y) ∈ [0, a − ε] × {b}.

A solution for u in the form of separation of variables is

u(x, y) = a0

2
+

∞∑
n=1

an cosh
πny

a
cos

πnx

a
, (2.4)
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where the coefficients an are to be determined by the boundary conditions at y = b

u(x, b) = a0

2
+

∞∑
n=1

an cosh
πnb

a
cos

πnx

a
= 0, x ∈ (a − ε, a),

(2.5)

∂u

∂y
(x, b) = π

a

∞∑
n=1

nan sinh
πnb

a
cos

πnx

a
= b, x ∈ (0, a − ε).

Setting cn = an sinh πnb
a , we have

c0

2
+

∞∑
n=1

cn

1 + Hn
cos nθ = 0, π − δ < θ < π,

(2.6)
∞∑

n=1

ncn cos nθ = ab

π
, 0 < θ < π − δ,

where δ = πε
a and Hn = tanh(πnb

a ) − 1, n ≥ 1. Note that Hn = O(β2n) for β =
exp{−πb

a } < 1. The rectangle problem and annulus problem (Eq. (4.10)) are almost
mathematically equivalent, and Eq. (4.27) gives the value of c0

c0 = 2ab

π

[
2 log

1

δ
+ 2 log 2 + 4β2 + O(δ, β4)

]
(2.7)

= 4ab

π

[
log

a

ε
+ log

2

π
+ 2β2 + O

( ε

a
, β4

)]
.

The error term due to O(β4) is generally small. For example, in a square a = b and
β = e−π so that β4 ≈ 3 × 10−6. The MFPT averaged with respect to a uniform
initial distribution is

Eτ = c0

2
+ b2

3
= 2ab

π

[
log

a

ε
+ log

2

π
+ π

6

b

a
+ 2β2 + O

( ε

a
, β4

)]
. (2.8)

The leading order term of the MFPT is

2|�|
π

log
a

ε
, (2.9)

which is twice as large than (4.29). The general result (1.1) was proved for a
domain with smooth boundary (at least C1). However, in the rectangle example,
the small hole is located at the corner. The additional factor 2 is the result of the
different singularity of the Neumann function at the corner, which is 4 times larger
than that of the Green function. At the corner there are 3 image charges—the
number of images that one sees when standing near two perpendicular mirror
plates. In general, for a small hole located at a corner of an opening angle α (see
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Fig. 2. A small opening near a corner of angle α.

Fig. 2), the MFPT is to leading order

Eτ = |�|
Dα

(
log

1

ε
+ O(1)

)
. (2.10)

This result is a consequence of the method of images for integer values of π
α

. For
non-integer π

α
we use the complex mapping z �→ zπ/α that flattens the corner. The

upper half plane Neumann function 1
π

log z is mapped to 1
α

log z and the analysis
of Refs. [2, 4] gives (2.10).

To see that the area factor |�| remains unchanged under the conformal
mapping f : (x, y) �→ (u(x, y), v(x, y)), we note that this factor is a consequence
of the compatibility condition, that relates the area to the integral∫

�


(x,y)w dx dy = −|�|
D

,

where w(x, y) = E[τ | x(0) = x, y(0) = y] satisfies 
(x,y)w = −1/D. The
Laplacian transforms according to


(x,y)w = (
u2

x + u2
y

)

(u,v)w,

by the Cauchy-Riemann equations and the Jacobian of the transformation is J =
u2

x + u2
y . Therefore,∫

�


(x,y)w dx dy =
∫

f (�)

(u,v)w du dv.

This means that the compatibility condition of Ref. 4 remains unchanged and gives
the area of the original domain.

3. DOMAINS WITH CUSPS

Here we find the leading order term of the MFPT for small holes located
near a cusp of the boundary. A cusp is a singular point of the boundary. As α = 0
at the cusp, one expects to find a different asymptotic expansion than (2.10). As
an example, consider the Brownian motion inside the domain bounded between
the circles (x − 1/2)2 + y2 = 1/4 and (x − 1/4)2 + y2 = 1/16 (see Fig. 3). The
conformal mapping z �→ exp{π i(1/z − 1)} maps this domain onto the upper half
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Fig. 3. The point (0, 0) is a cusp point of the dotted domain bounded between the two circles. The
small absorbing arc of length ε is located at the cusp point.

plane. Therefore, the MFPT is to leading order

Eτ = |�|
D

(
1

ε
+ O(1)

)
. (3.1)

This result can also be obtained by mapping the cusped domain to the unit circle.
The absorbing boundary is then transformed to an exponentially small arc of length
exp{−π/ε} + O(exp{−2π/ε}), and Eq. (3.1) is recovered. If the ratio between the
two radii is d < 1, then the conformal map that maps the domain between the two
circles to the upper half plane is exp{ π i

d−1−1 (1/z − 1)} (for d = 1/2 we arrive at
the previous example), so the MFPT is to leading order

Eτ = |�|
(d−1 − 1)D

(
1

ε
+ O(1)

)
. (3.2)

The MFPT tends algebraically fast to infinity, much faster than the O(log 1
ε
)

behavior near smooth or corner boundaries. The MFPT for a cusp is much larger
because it is more difficult for the Brownian motion to enter the cusp than to
enter a corner. The MFPT (3.2) can be written in terms of d instead of the area.
Substituting |�| = π R2(1 − d2), we find

Eτ = π R2d(1 + d)

D

(
1

ε
+ O(1)

)
, (3.3)

where R is the radius of the outer circle. Note that although the area of � is a
monotonically decreasing function of d, the MFPT is a monotonically increasing
function of d and tends to a finite limit as d → 1.
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Fig. 4. An annulus R1 < r < R2. The particle is absorbed at an arc of length 2εR1 (dashed line) at
the inner circle. The solid lines indicate reflecting boundaries.

Similarly, one can consider different types of cusps and find that the leading
order term for the MFPT is proportional to 1/ελ, where λ is a parameter that
describes the order of the cusp, and can be obtained by the same technique of
conformal mapping.

4. THE ANNULUS

We consider a Brownian particle that is confined in the annulus R1 < r < R2.
The particle can exit the annulus through a narrow opening of the inner circle (see
Fig. 4). The MFPT v(x) satisfies


v = −1, for R1 < r < R2,

∂v

∂r
= 0, for r = R2, (4.1)

∂v

∂r
= 0, for r = R1, |θ − π | > ε,

v = 0, for r = R1, |θ − π | < ε.

The function w = R2
1−r2

4 is a solution of the Dirichlet problem for Eq.(4.1) in
the exterior domain of the inner circle r > R1. More specifically, it satisfies the
boundary value problem


w = −1, for R1 < r < R2,

∂w

∂r
= −1

2
R1, for r = R1,

∂w

∂r
= −1

2
R2, for r = R2, (4.2)

w = 0, for r = R1.
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The function u = v − w satisfies


u = 0, for R1 < r < R2,

∂u

∂r
= 1

2
R2, for r = R2, (4.3)

∂u

∂r
= 1

2
R1, for r = R1, |θ − π | > ε,

u = 0, for r = R1, |θ − π | < ε.

Separation of variables produces the solution

u(r, θ ) = a0

2
+

∞∑
n=1

[
an

(
r

R2

)n

+ bn

(
R2

r

)n]
cos nθ + α log

(
r

R1

)
, (4.4)

where an, bn and α are to be determined by the boundary conditions. Differenti-
ating with respect to r yields

∂u

∂r
=

∞∑
n=1

n

[
an

R2

(
r

R2

)n−1

− bn R2

r2

(
R2

r

)n−1
]

cos nθ + α

r
. (4.5)

Setting r = R2 gives

1

2
R2 = 1

R2

[ ∞∑
n=1

n (an − bn) cos nθ + α

]
, (4.6)

therefore, an = bn and α = 1
2 R2

2, and we have

u(r, θ ) = a0

2
+

∞∑
n=1

an

[(
r

R2

)n

+
(

R2

r

)n]
cos nθ + 1

2
R2

2 log

(
r

R1

)
. (4.7)

The boundary conditions at r = R1 become the dual series equations

a0

2
+

∞∑
n=1

an

[(
R2

R1

)n

+
(

R1

R2

)n]
cos nθ = 0, for |θ − π | < ε,

∞∑
n=1

nan

[(
R2

R1

)n+1

−
(

R1

R2

)n−1
]

cos nθ = R2

2R1

(
R2

2 − R2
1

)
,

for |θ − π | > ε.

Setting

cn = R1

R2

[(
R2

R1

)n+1

−
(

R1

R2

)n−1
]

an, for n ≥ 1, (4.8)
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and c0 = a0 converts the dual series equations to

c0

2
+

∞∑
n=1

cn

1 + Hn
cos nθ = 0, for π − ε < θ < π, (4.9)

∞∑
n=1

ncn cos nθ = 1

2

(
R2

2 − R2
1

)
, for 0 < θ < π − ε, (4.10)

where Hn = − 2β2n

1+β2n for n ≥ 1, and H0 = 0, with β = R1
R2

< 1. Note that Hn =
O(β2n) which tends to zero exponentially fast (much faster than the n−1 decay
required for the Collins method (13,14), see also Ref. 4).

The case Hn ≡ 0 was solved in Ref. 5. We now try to find the correction of
that result due to the non vanishing Hn . As in Ref. 5 the equation

c0

2
+

∞∑
n=1

cn

1 + Hn
cos nθ =

cos
θ

2

∫ π−ε

θ

h1(t) dt√
cos θ − cos t

for 0 < θ < π − ε

defines the function h1(θ ) uniquely for 0 < θ < π − ε, the coefficients are given
by

cn = 1 + Hn√
2

∫ π−ε

0
h1(t) [Pn(cos t) + Pn−1(cos t)] dt, (4.11)

and

c0 =
√

2
∫ π−ε

0
h1(t) dt. (4.12)

Integrating equation (4.10) gives
∞∑

n=1

cn sin nθ = 1

2

(
R2

2 − R2
1

)
θ, for 0 < θ < π − ε. (4.13)

Substituting Eq. (4.13) in Eq. (4.11), changing the order of summation and inte-
gration, while using [Ref. 6, Eq. (2.6.31)],

1√
2

∞∑
n=1

[Pn(cos t) + Pn−1(cos t)] sin nθ = cos 1
2θ H (θ − t)√

cos t − cos θ
, (4.14)

we obtain for 0 < θ < π − ε,∫ θ

0

h1(t)√
cos t − cos θ

dt +
∫ π−ε

0
Kβ(θ, t)h1(t) dt =

(
R2

2 − R2
1

)
θ

2 cos
θ

2

, (4.15)
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where the kernel Kβ is

Kβ(θ, t) = 1
√

2 cos
θ

2

∞∑
n=1

Hn (Pn(cos t) + Pn−1(cos t)) sin nθ

= −2
√

2(1 + cos t) sin
θ

2
β2 + O(β4). (4.16)

The infinite sum in Eq.(4.16) is approximated by its first term, while using the first
two Legendre polynomials P0(x) = 1, P1(x) = x . Using Abel’s inversion formula
applied to Eq. (4.15), we find that

h1(t) −
∫ π−ε

0
K̃β(t, s)h1(s) ds = R2

2 − R2
1

π

d

dt

∫ t

0

u sin
u

2√
cos u − cos t

du, (4.17)

where the kernel K̃β is

K̃β(t, s) = − 1

π

d

dt

∫ t

0

Kβ(u, s) sin u√
cos u − cos t

du (4.18)

= β2 2
√

2(1 + cos s)

π

d

dt

∫ t

0

sin
u

2
sin u

√
cos u − cos t

du + O(β4).

The substitution

s =
√

cos u − cos t

2
(4.19)

gives

∫ t

0

sin
u

2
sin u

√
cos u − cos t

du = π√
2

sin2 t

2
, (4.20)

therefore,

K̃β(t, s) = 2β2 cos2 s

2
sin t + O(β4). (4.21)

Equation (4.17) is a Fredholm integral equation of the second kind for h1, of
the form

(I − K̃β)h = z, (4.22)

where

z(t) = R2
2 − R2

1

π

d

dt

∫ t

0

u sin
u

2√
cos u − cos t

du.
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Therefore, we h can be expanded as

h = z + K̃β z + K̃ 2
βz + ., (4.23)

which converges in L2. Since c0 = √
2〈h, 1〉 (Eq.(4.12)), we find an asymptotic

expansion of the form

c0 =
√

2
[〈z, 1〉 + 〈K̃β z, 1〉 + · · ·] . (4.24)

The leading order term of this expansion was calculated in Ref. 5. We now estimate
the error term 〈K̃βz, 1〉, which is also the O(β2) correction. Integrating by parts
and changing the order of integration yields

K̃βz(t) = 2β2 R2
2 − R2

1

π
sin t

∫ π

0
cos2 s

2
ds

d

ds

∫ s

0

u sin
u

2√
cos u − cos s

du

= β2 R2
2 − R2

1

π
sin t

∫ π

0
sin s ds

∫ s

0

u sin
u

2
du

√
cos u − cos s

(4.25)

=
√

2β2(R2
2 − R2

1) sin t.

Therefore,

〈K̃β z, 1〉 =
√

2β2
(
R2

2 − R2
1

) ∫ π

0
sin t dt = 2

√
2β2

(
R2

2 − R2
1

)
. (4.26)

We conclude that

c0 = (
R2

2 − R2
1

) [
2 log

1

ε
+ 2 log 2 + 4β2 + O(ε, β4)

]
. (4.27)

The MFPT averaged with respect to a uniform initial distribution is

Eτ = c0

2
+ 1

2

R4
2

R2
2 − R2

1

log
R2

R1
− 1

4
R2

2

= (
R2

2 − R2
1

) [
log

1

ε
+ log 2 + 2β2

]
(4.28)

+1

2

R2
2

1 − β2
log

1

β
− 1

4
R2

2 + O(ε, β4)R2
2 .

Note that there are two different logarithmic contributions to the MFPT. The
“narrow escape” small parameter ε contributes

|�|g
π

log
1

ε
, (4.29)
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as expected from the general theory (Eq. (1.1)), whereas the parameter β con-
tributes

|�|g
2π

log
1

β
. (4.30)

These asymptotics differ by a factor 2, because they account for different singular
behaviors. The asymptotic expansion (4.29) comes out from a singular perturbation
problem with singular flux near the edges, boundary layer and an outer solution,
whereas the asymptotics (4.30) is an immediate result of the singularity of the
Neumann function, with a regular flux.

The maximum exit time is attained at the antipode point of the center of the
hole at the outer circle. Indeed, Eq. (4.7) indicates that the maximum is attained
for θ = 0. To determine its location along the cord R1 < r < R2, we note that
Hn → 0 as β → 0. Therefore, in this limit, eqs. (4.9)-(4.10) are equivalent to the
circular disk problem. The logarithmic term of Eq. (4.7) is monotonic increasing
with r , and is O(log 1

β
) for r = R2. Therefore, for β � 1 the maximum is attained

at the outer circle r = R2, which is also the farthest point from the hole. Note that
(4.28) is valid, with the obvious modifications, for any domain that is conformally
equivalent to the annulus.

5. THE 2-SPHERE

5.1. Small Absorbing Cap

Consider a Brownian motion on the surface of a 2-sphere of radius R (15),
described by the spherical coordinates (θ, φ)

x = R sin θ cos φ, y = R sin θ sin φ, z = R cos θ.

The particle is absorbed when it reaches a small spherical cap. We center the cap at
the north pole, θ = 0. Furthermore, the FPT to hit the spherical cap is independent
of the initial angle φ, due to rotational symmetry. Let v(θ ) be the MFPT to hit the
spherical cap. Then v satisfies


Mv = −1, (5.1)

where 
M is the Laplace-Beltrami operator (15) of the 2-sphere. This Laplace-
Beltrami operator 
M replaces the regular plane Laplacian, because the diffusion
occurs on a manifold [Ref. 15, and references therein]. For a function v independent
of the angle φ the Laplace-Beltrami operator is


Mv = R−2(v′′ + cot θ v′). (5.2)

The MFPT also satisfies the boundary conditions

v′(π ) = 0, v(δ) = 0, (5.3)
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where δ is the opening angle of the spherical cap. The solution of the boundary
value problem (5.2), (5.3) is given by

v(θ ) = 2R2 log
sin(θ/2)

sin(δ/2)
. (5.4)

Not surprisingly, the maximum of the MFPT is attained at the point θ = π with
the value

vmax = v(π ) = −2R2 log sin
δ

2
= 2R2

(
log

1

δ
+ log 2 + O(δ2)

)
. (5.5)

The MFPT, averaged with respect to a uniform initial distribution, is

Eτ = 1

2 cos2
δ

2

∫ π

δ

v(θ ) sin θ dθ

= −2R2

(
log sin(δ/2)

cos2(δ/2)
+ 1

2

)

= 2R2

(
log

1

δ
+ log 2 − 1

2
+ O(δ2 log δ)

)
. (5.6)

Both the average MFPT and the maximum MFPT are

τ = |�|g
2π

(
log

1

δ
+ O(1)

)
, (5.7)

where |�|g = 4π R2 is the area of the 2-sphere. This asymptotic expansion is the
same as for the planar problem of an absorbing circle in a disk. The result is two
times smaller than the result (1.1) that holds when the absorbing boundary is a
small window of a reflecting boundary. The factor two difference is explained by
the different local aspect angle at which the particle “sees" �a , i.e. by the aspect
angle explored by the trajectories. The two problems also differ in that the “narrow
escape" solution is almost constant and has a boundary layer near the window,
with singular fluxes near the edges, whereas in the problem of puncture hole inside
a domain the flux is regular and there is no boundary layer (the solution is simply
obtained by solving the ODE).

5.2. Mapping of the Riemann Sphere

We present a different approach for calculating the MFPT for the Brownian
particle diffusing on a sphere. We may assume that the radius of the sphere is 1/2,
and use the stereographic projection that maps the sphere into the plane (16). The
point Q = (ξ, η, ζ ) on the sphere (often called the Riemann sphere)

ξ 2 + η2 + (ζ − 1/2)2 = (1/2)2
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is projected to a plane point P = (x, y, 0) by the mapping

x = ξ

1 − ζ
, y = η

1 − ζ
, r2 = x2 + y2 = ζ

1 − ζ
, (5.8)

and conversely

ξ = x

1 + r2
, η = y

1 + r2
, ζ = r2

1 + r2
. (5.9)

The stereographic projection is conformal and therefore transforms harmonic
functions on the sphere harmonic functions in the plane, and vice versa. However,
the stereographic projection is not an isometry. The Laplace-Beltrami operator

M on the sphere is mapped onto the operator (1 + r2)2
 in the plane (
 is
the Cartesian Laplacian). The decapitated sphere is mapped onto the interior of a
circle of radius

rδ = cot
δ

2
. (5.10)

Therefore, the problem for the MFPT on the sphere is transformed into the planar
Poisson radial problem


V = − 1

(1 + r2)2
, for r < rδ, (5.11)

subject to the absorbing boundary condition

V (r = rδ) = 0, (5.12)

where

V (r ) = v(θ ).

The solution of this problem is

V (r ) = 1

4
log

(
1 + r2

δ

1 + r2

)
. (5.13)

Transforming back to the coordinates on the sphere, we get

v(θ ) = 1

2
log

sin(θ/2)

sin(δ/2)
. (5.14)

As the actual radius of the sphere is R rather than 1/2, multiplying Eq. (5.14) by
(2R)2, we find that (5.14) is exactly (5.4).

5.3. Small Cap with an Absorbing Arc

Consider again a Brownian particle diffusing on a decapitated 2-sphere of
radius 1/2. The boundary of the spherical cap is reflecting but for a small window
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Fig. 5. A sphere of radius R without a spherical cap at the north pole of central angle δ. The particle
can exit through an arc seen at angle 2ε.

that is absorbing (see Fig. 5). We calculate the mean time to absorption. Using
the stereographic projection of the preceding subsection, we obtain the mixed
boundary value problem


v = − 1

(1 + r2)2
, for r < rδ, 0 ≤ φ < 2π,

v(r, φ)

∣∣∣∣
r=rδ

= 0, for |φ − π | < ε, (5.15)

∂v(r, φ)

∂r

∣∣∣∣
r=rδ

= 0, for |φ − π | > ε.

The function

w(r ) = 1

4
log

(
1 + r2

δ

1 + r2

)

is the solution of the all absorbing boundary problem Eq.(5.13), so the function
u = v − w satisfies the mixed boundary value problem


u = 0, r < rδ, for 0 ≤ φ < 2π,

u(r, φ)

∣∣∣∣
r=rδ

= 0, for |φ − π | < ε, (5.16)

∂u(r, φ)

∂r

∣∣∣∣
r=rδ

= rδ

2(1 + r2
δ )

, for |φ − π | > ε.
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Scaling r̃ = r/rδ , we find this mixed boundary value problem to be that of a planar

disk (5), with the only difference that the constant 1/2 is now replaced by r2
δ

2(1+r2
δ )

.

Therefore, the solution is given by

a0 = − 2r2
δ

1 + r2
δ

[
log

ε

2
+ O(ε)

]
. (5.17)

Transforming back to the spherical coordinate system, the MFPT is

v(θ, φ) = 1

2
log

sin θ/2

sin δ/2 (5.18)

− cos2 δ

2

[
log

ε

2
+ O(ε)

]
+

∞∑
n=1

an

[
cot (θ/2)

cot (δ/2)

]n

cos nφ.

The MFPT, averaged over uniformly distributed initial conditions on the decapi-
tated sphere, is

Eτ = −1

2

(
log sin(δ/2)

cos2(δ/2)
+ 1

2

)
+ cos2 δ

2

[
log

2

ε
+ O(ε)

]
. (5.19)

Scaling the radius R of the sphere into (5.19), we find that for small ε and δ the
averaged MFPT is

Eτ = 2R2

[
log

1

δ
+ 2 log

1

ε
+ 3 log 2 − 1

2
+ O(ε, δ2 log δ, δ2 log ε)

]
. (5.20)

There are two different contributions to the MFPT. The ratio ε between the absorb-
ing arc and the entire boundary brings in a logarithmic contribution to the MFPT,
which is to leading order

|�|g
π

log
1

ε
.

However, the central angle δ gives an additional logarithmic contribution, of the
form

|�|g
2π

log
1

δ
.

The factor 2 difference in the asymptotic expansions is the same as encountered
in the planar annulus problem.

The MFPT for a particle initiated at the south pole θ = π is

v(π ) = −2R2 log sin
δ

2
− 4R2 cos2 δ

2

[
log

ε

2
+ O(ε)

]

= 2R2

[
log

1

δ
+ 2 log

1

ε
+ 3 log 2 + O(ε, δ2 log δ, δ2 log ε)

]
. (5.21)
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We also find the location (θ, φ) for which the MFPT is maximal. The stationarity
condition ∂v

∂φ
= 0 implies that φ = 0, as expected (the opposite φ-direction to

the center of the window). The infinite sum in Eq. (5.18) is O(1). Therefore, for
δ � 1, the MFPT is maximal near the south pole θ = π . However, for δ = O(1),
the location of the maximal MFPT is more complex.

Finally, we remark that the stereographic projection also leads to the
determination of the MFPT for diffusion on a 2-sphere with a small hole as
discussed above, and an all reflecting spherical cap at the south pole. In this case,
the image for the stereographic projection is the annulus, a problem solved in
Section 4
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