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Computing Steerable Principal Components of a
Large Set of Images and Their Rotations

Colin Ponce and Amit Singer

Abstract—We present here an efficient algorithm to compute the
Principal Component Analysis (PCA) of a large image set con-
sisting of images and, for each image, the set of its uniform rotations
in the plane. We do this by pointing out the block circulant struc-
ture of the covariance matrix and utilizing that structure to com-
pute its eigenvectors. We also demonstrate the advantages of this
algorithm over similar ones with numerical experiments. Although
it is useful in many settings, we illustrate the specific application of
the algorithm to the problem of cryo-electron microscopy.

Index Terms—EDICS Category: TEC-PRC image and video
processing techniques.

I. INTRODUCTION

I N image processing and computer vision applications, often
one is not interested in the raw pixels of images used as

input, but wishes to transform the input images into a represen-
tation that is meaningful to the application at hand. This usually
comes with the added advantage of requiring less space to repre-
sent each image, effectively resulting in compression. Because
less data are required to store each image, algorithms can often
operate on images in this new representation more quickly.

One common transformation is to project each image onto
a linear subspace of the image space. This is typically done
using Principal Component Analysis (PCA), also known as the
Karhunen–Loéve expansion. The PCA of a set of images pro-
duces the optimal linear approximation of these images in the
sense that it minimizes the sum of squared reconstruction errors.
As an added benefit, PCA often serves to reduce noise in a set
of images.

PCA is typically computed as the singular value decomposi-
tion (SVD) of the data matrix of image vectors or as the eigen-
vector decomposition of the covariance matrix .
One then ranks eigenvectors according to their eigenvalues and
projects each image onto the linear subspace spanned by the top

eigenvectors. One can then represent each image with only
values, instead of the original number of pixel values.

There are a number of applications in which each of an
image’s planar rotations are interesting as well as the original
images. It is usually unreasonable due to both time and space
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constraints to replicate each image many times at different
rotations and to compute the resulting covariance matrix for
eigenvector decomposition. To cope with this, Teague, [19] and
then Khotanzad and Lu [10], developed a means of creating
rotation-invariant image approximations based on Zernike
polynomials. While Zernike polynomials are not adaptive to
the data, PCA produces an optimal data adaptive basis (in the
least squares sense). This idea was first utilized in the 1990s,
when, in optics, Hilai and Rubinstein [8] developed a method
of computing an invariant Karhunen–Loéve expansion, which
they compared with the Zernike polynomials expansion. Inde-
pendently, a similar method to produce an approximate set of
steerable kernels was developed by Perona [14] in the context
of computer vision and machine learning. Later, Uenohara and
Kanade [20] produced, and Park [12] corrected, an algorithm to
efficiently compute the PCA of an image and its set of uniform
rotations. Jogan et al. [9] then developed an algorithm to com-
pute the PCA of a set of images and their uniform rotations.

The natural way to represent images when rotating them is
to sample them on a polar grid consisting of radial lines
at evenly spaced angles and samples along each radial
line. The primary advantage of [9] is that the running time
of the algorithm increases nearly linearly with both the size
of the image ( below) and the number of rotations (
below). The disadvantage, however, is that the running time
experiences cubic growth with respect to the number of images

in the set. The result is an algorithm with a running time
of , which is impractical for
large sets of images.

We present here an alternate algorithm that grows cubically
with the size of the image, but only linearly with respect to the
number of rotations and the number of images. Due to this run-
ning time, our algorithm is appropriate for computing the PCA
of a large set of images with a running time of

.
Although this algorithm is generally useful in many appli-

cations, we discuss its application to cryo-electron microscopy
(cryo-EM) [3]. In cryo-EM, many copies of a molecule are em-
bedded in a sheet of ice so thin that images of the molecule of
interest are disjoint when viewing the sheet flat. The sheet is then
imaged with an electron microscope, destroying the molecules
in the process. The result is a set of projection images of the mol-
ecule taken at unknown random orientations with extremely low
signal-to-noise ratio (SNR). The cryo-EM problem, then, is to
reconstruct the 3-D structure of the molecule using thousands
of these images as input.

Because the images are so noisy, preprocessing must be done
to remove noise from the images. The first step is usually to
compute the PCA of the image set [1], [21], a step which both
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reduces noise and compresses the image representation. This is
where our algorithm comes in, because in cryo-EM every pro-
jection image is equally likely to appear in all possible in-plane
rotations. After PCA, class averaging is usually performed to
estimate which images are taken from similar viewing angles
and to average them together in order to reduce the noise [3],
[17], [22]. A popular method for obtaining class averages re-
quires the computation of rotationally invariant distances be-
tween all pairs of images [13]. The principal com-
ponents we compute in this paper provide a way to accelerate
this large-scale computation. This particular application will be
discussed in a separate publication [18].

Other applications for computing the PCA of a large set of
images with their uniform rotations include those discussed in
[9]. A set of full-rotation panoramic images were taken by a
robot at various points around a room. Those panoramic images
and their uniform rotations were then processed using PCA. A
new image taken at an unknown location in the room was then
template matched against the set of images already taken to de-
termine the location in the room from which the new image was
taken. Because these images are likely to be somewhat noisy, it
is important to perform PCA on them to be able to effectively
template match against the training set.

The remainder of this paper is organized as follows. In
Section II, we derive the principles behind the algorithms. In
Section III, we describe an efficient implementation of our
algorithm and discuss its space and computational complexity.
In Section IV, we present a method for applying this algorithm
to images sampled in rectangular arrays. In Section V, we
present numerical experiments comparing our algorithm to
other existing algorithms. Finally, in Section VI, we present an
example of its use in cryo-EM.

II. DERIVATION

Consider a set of images represented in polar coordinates.
Each image is conveniently stored as an matrix, where
the number of columns is the number of radial lines and the
number of rows is the number of samples along each radial
line. Note that and must be the same for all images. Then,
each column represents a radial line beginning in the center of
the image, and each row represents a circle at a given distance
from the center. The first circle is at distance 0 from the center,
and so the center value is repeated times as the first row of
the matrix.

We can create a rotation of an image simply by rotating the
order of the columns. Moving the leftmost column to the right-
most and cyclically shifting all other columns of the matrix, for
example, represents a rotation of . In this way, we can
generate all rotations of each image. Thus, let matrix rep-
resent the th rotation of image , , .
Note that we may assume the average pixel value in each image
is 0, otherwise we subtract the mean pixel value from all pixels.

Let be a vector created by row-major stacking of the en-
tries of image , that is, , ,

. Then construct the data matrix
by stacking all side by side to create

(1)

and set the covariance matrix . Note that is of
size . The principal components that we wish to
compute are the eigenvectors of . This can be computed di-
rectly through the eigenvector decomposition of , or through
the SVD of . We will now detail an alternative and more effi-
cient approach for computing these eigenvectors exploiting the
block circulant structure of .

Consider , the covariance matrix given by just image and
its rotations, as follows:

(2)

Note that

(3)

Now, let be an block of corresponding to the
outer product of row of in
with row of .

We will now show that is of the form

...
. . .

... (4)

where each is an circulant matrix.
Because image and its rotations comprise a full rotation of

row and a full rotation of row , we have

(5)

where each row of is considered a circular vector, so that
all indexes are taken modulo . However, due to the circular
property of the vector, for any integer , we have

(6)

This means that is a circulant matrix. However, this anal-
ysis applies to any rows and . Therefore, consists of

tiles of circulant matrices, as in (4).
Now, the sum of circulant matrices is also a circulant matrix.

Define as

(7)
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Thus, is an circulant matrix. Then is of the
form

...
. . .

... (8)

A known fact is that the eigenvectors of
any circulant matrix are the columns of the discrete
Fourier transform matrix [5], given by

(9)

where . The first coordinate of any is 1, so the
eigenvalues of a circulant matrix , for
which , are given by

(10)

where is the first row in matrix , and is its discrete
Fourier transform. These eigenvalues are, in general, complex.

It follows that, for the matrix , there are eigenvalues
associated with each of its circulant tiles. We denote these
eigenvalues satisfying . Note that

(11)

Now construct a vector of length by concate-
nating multiples of the vector times, that is,

... (12)

These vectors will be our eigenvectors for . The exact
values of , as well as the index set for ,
will be determined below.

Consider the result of the matrix-vector multiplication
. Along each tile-row of , each circulant

submatrix is multiplied by an eigenvector . Thus

... (13)

So, requiring to be an eigenvector of satisfying
is equivalent to

for (14)

However, this in turn is equivalent to the eigenvector decom-
position problem for the matrix

...
. . .

... (15)

This means that the vector is an eigenvector of with
eigenvalue if the vector is an
eigenvector of the matrix , satisfying .

Next, we show that the matrix is Hermitian. To that end,
note that the covariance matrix is by definition symmetric, so
column of the submatrix is equal to row of
submatrix . Now, set . Then, by viewing the rows
of the tile as circular vectors, the circulant property of the
tiles implies that

for (16)

The eigenvalues of , then, are

(17)

which, by the change of variables , becomes

(18)

where refers to the complex conjugate of . Note that
this property is true only because is real for all .

Thus, is a Hermitian matrix. As a result, all of ’s eigen-
values are real. Furthermore, these eigenvalues are the so

and the are complex-valued.
Thus, for some fixed , has linearly independent

eigenvectors that in turn give linearly independent eigen-
vectors of , through (12). Furthermore, the vectors

are linearly independent. From this, it
follows that the constructed eigenvectors are linearly
independent.

Now, consider an eigenvector
as an eigenimage, that is, consider the eigenimage

as an matrix

... (19)
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This is of the same form as the original images, in which each
row is a circle and each column is a radial line, with the first row
being the center of the image. The coefficients are complex,
so we may write for .
Therefore, is of the form

(20)

for
The real and imaginary parts of are eigenimages, given

by

(21)

(22)

for .
Thus, each eigenimage produces two eigenimages

and . It may appear as though this gives us eigenim-
ages, which is too many. However, consider (11) for

:

(23)

Therefore, , Thus

(24)

However, because is Hermitian, is real, so .
Therefore, the eigenvalues of are the same as those for ,
and the eigenvectors of are the complex conjugates of the
eigenvectors of . Note also that if or

, which are also the values of such that has
real eigenvectors. Therefore, each eigenvector from or

contributes one real eigenimage, while eigenvectors
from every other value of each contribute two. Thus, linear
combinations of the eigenvectors of the first ma-
trices results in eigenimages.

Note also that, when is odd, eigenvectors for each
contribute one real eigenimage, while eigenvectors for every
other each contribute two. Thus, counting eigenimages for

produces eigenimages, as
required.

III. IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY

The first step in this algorithm is to compute the covariance
matrix of each image and its rotations. However, it is not
necessary to compute the actual covariance matrix. Instead, we

need only compute the eigenvalues of each circulant tile
of the covariance matrix. From (10) and (11), it follows

that the eigenvalues are equal to the discrete Fourier transform
of the top row of a tile .

Note that, by (5), we have

(25)

where . Now, the convolution theorem for
cross correlations states that, for two sequences and , if
indicates the cross correlation of and , then

(26)

Therefore, the eigenvalues can be computed efficiently as

(27)

This can be computed efficiently with the dast Fourier trans-
form (FFT). In addition, because the covariance matrix is
symmetric, . We can in this way compute
different matrices and sum

(28)

so that is as defined in (15).
Note that, in some implementations, such as in MATLAB,

complex eigenvectors of unit norm are always returned. As a
result, real eigenvectors, which occur when or ,
will have twice the norm of the other eigenvectors. One must
therefore normalize these eigenvectors by dividing them by .

Computation of the Fourier transforms can be performed
in time . Because we do this for every ,
computation of the necessary Fourier transforms takes total
time . In addition, it uses space .
Computation of a matrix has computational complexity

, but, because we compute of them, the overall time
of . In addition, the space complexity of this step
is . Each of these steps must be repeated for each
image , and then the matrices must
be summed together for each image. Thus, the computational
complexity up to this point is and
the space complexity is .

Note that the computation of for each image is
completely independent of each other image. Thus, these
computations can be performed in parallel to further improve
performance. Such a parallel implementation requires space

.
At this point, we need to perform eigenvector decomposition

on each to determine the eigenvectors of . The computa-
tional complexity of this step is and the space com-
plexity is . Thus, the computational complexity of
the entire algorithm is

(29)
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF DIFFERENT PCA

ALGORITHMS

and the total space complexity is

(30)

The algorithm is summarized in Algorithm 1, and a comparison
of the computational complexity of this algorithm with others is
shown in Table I.1

Algorithm 1: PCA of a Set of Images and Their Rotations

Require: image matrices of size
in polar form.

1: Set

2: for do

3: Compute the Fourier transforms for
.

4: for do

5: Compute the eigenvalues of using (27).

6: end for

7: Update for as in (28).

8: end for

9: for do

10: Compute the eigenvector decomposition of matrix
to generate eigenvectors and eigenvalues

for .

11: for do

12: Construct eigenvector as in (12), using
eigenvector of .

13: end for

14: end for

15: for do

16: Rearrange as an image matrix as in (19) and
compute its real and imaginary parts and .

17: If or , normalize eigenimages if
necessary by dividing by .

18: end for

19: return and as in (21) and (22).

1A MATLAB implementation of this algorithm can be found at http://www.cs.
cornell.edu/ cponce/SteerablePCA/

IV. APPLICATION TO RECTANGULAR IMAGES

Although this algorithm is based on a polar representation of
images, it can be implemented efficiently on images represented
in the standard Cartesian manner efficiently and without loss of
precision using the 2-D polar Fourier transform and the Radon
transform.

The 2-D Radon transform of a function along a line
through the origin is given by the projection of along

the direction [11]. The Radon transform is defined on the
space of lines in , so we may write

(31)

The Fourier projection-slice theorem states that the 1-D
Fourier transform of the projection of an image along is
equal to the slice of the 2-D Fourier transform of the image
taken along [11]. To see this, let be any point on the
plane, and let

(32)

Also, take . Note that , since .
Then

(33)

The Fourier projection-slice theorem provides an accurate way
for computing the Radon transform by sampling the image’s
2-D Fourier transform on a polar grid and then taking inverse
1-D Fourier transforms along lines through the origin. Because
the 2-D Fourier transform is discrete, performing the normal
2-D FFT and interpolating it to a polar grid leads to approx-
imation errors. Instead, we use a nonequally spaced FFT de-
scribed in [2] and [6]. This step has a computational complexity
of , where is
the number of pixels on the side of a square true image, is
the number of pixels in a radial line in polar form, is the
number of radial lines, is an oversampling factor used in the
nonequally spaced FFT, and is the required precision.2

The Fourier transform is a unitary transformation by Par-
seval’s theorem. Therefore, the principal components of the
normal 2-D FFT’ed images are simply the 2-D FFT of the
principal component images. The 2-D polar Fourier transform,

2We would like to thank Yoel Shkolnisky for sharing with us his code for
the 2-D polar Fourier transform. In his code, � � � and � is single precision
accuracy.
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however, is not a unitary transformation, because the frequen-
cies are nonequally spaced: they are sampled on concentric
circles of equally spaced radii, such that every circle has a
constant number of samples instead of being proportional
to its circumference, or equivalently, to its radius. In order to
make it into a unitary transformation, we have to multiply the
2-D Fourier transform of image by

. In other words, all images are filtered with the radially
symmetric “wedge” filter or, equivalently, are convolved
with the inverse 2-D Fourier transform of this filter.

After multiplying the images’ 2-D polar Fourier transforms
by , we take the 1-D inverse Fourier transform of every line
that passes through the origin. From the Fourier projection-slice
theorem, these 1-D inverse Fourier transforms are equal to the
line projections of the convolved images, that is, the collection
of 1-D inverse Fourier transforms of a given “ -filtered”
image, is the 2-D Radon transform of the filtered image.

These 2-D Radon transformed filtered images are real valued
and are given in polar form that can be organized into matrices
as described at the beginning of Section II. We can then utilize
the algorithm described above to compute the principal compo-
nents of such images. Moreover, since the transformation from
the original images to the Radon transformed filtered images is
unitary, we are guaranteed that the computed principal compo-
nents are simply the Radon transform of the filtered principal
components images.

After computing all of the polar Radon principal components
we desire, we must convert them back to rectangular coordi-
nates. We cannot simply invert the Radon transform because the
pixels of each eigenimage are not uniformly sampled, making
the problem ill-formed. However, for the inversion we can uti-
lize the special form of the Radon eigenimages and
from (21) and (22), given by

(34)

(35)

To compute the inverse Radon transform of such functions
we utilize the projection-slice theorem. In principle, this is done
by first computing the Fourier transform of each radial line, di-
viding by and then taking the 2-D inverse Fourier trans-
form of that polar Fourier image to produce the true eigenimage.

Let us first compute the 2-D polar Fourier transform by taking
1-D discrete Fourier transform along each radial line of the func-
tion in (34). Equation (34) is only defined for , but we must
compute the discrete Fourier transform (DFT) along an entire
line through the origin. We must therefore expand this defini-
tion to allow for any real . Let

if
if

(36)

for some fixed . Note that we should really denote this func-
tion , but since is fixed throughout this section, we drop
it for convenience of notation. Then

if
if

(37)

Define similarly for . Note that and are
even functions if is even, and odd functions if is odd. The
DFT can then be defined as

(38)

where . Note that

(39)

because is real. Furthermore, with the change of vari-
ables , we find that, if is even, then

(40)

and, if is odd, then

(41)

Therefore, if is even, then is real and even, and, if
is odd, then is pure imaginary and odd.

Then, the 2-D Fourier transform of the true image can be
defined as (a proof of this formula can be found in Appendix A)

(42)

and

(43)

As shown above, these functions are either real or pure imagi-
nary, depending on .

Next we will take the 2-D inverse Fourier transform of
(where and is the filter) to obtain

true eigenimages and . Define as the order Hankel
transform of

(44)

and define as the order Hankel transform of :

(45)

where is the Bessel function.
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TABLE II
COMPARISON OF RUNNING TIMES UNDER INCREASING NUMBER OF IMAGES � ,

IN SECONDS. � � ��� and � � ��

Then, the true real eigenimages can be described (in polar
form) with the two equations (a proof of this formula can be
found in Appendix B)

(46)

(47)

where

(48)

so that when is even, and when is odd.
In practice, and are computed using standard numerical
procedures [4], [7], [15] and from the polar form (46)–(47), it
is a straightforward manner to obtain the images’ values on the
Cartesian grid.3

V. NUMERICAL EXPERIMENTS

We performed numerical experiments to test the speed and
accuracy of our algorithm against similar algorithms. We per-
formed this test on a UNIX environment with four processors,
each of which was a Dual Core AMD Opteron Processor 275
running at 2.2 GHz. These experiments were performed in
MATLAB with randomly generated pixel data in each image.
We did this because the actual output of the algorithms are not
important in measuring runtime, and runtime is not affected by
the content of the images. The images are assumed to be on a
polar grid as described at the beginning of Section II.

We compared our algorithm against three other algorithms:
1) the algorithm described in [9], which we will refer to as JZL;

3MATLAB code to convert polar Radon eigenimages into rectangular eigen-
images can be found at http://www.cs.cornell.edu/~cponce/SteerablePCA/

TABLE III
COMPARISON OF RUNNING TIMES UNDER INCREASING NUMBER OF PIXELS

PER RADIAL LINE � , IN SECONDS. � � ��� AND � � ��

TABLE IV
COMPARISON OF RUNNING TIMES UNDER INCREASING NUMBER OF ROTATIONS

� , IN SECONDS. � � ��� AND � � ���

2) SVD of the data matrix; and 3) computation of the covariance
matrix and then eigenvector decomposition of . Note that
our algorithm as well as JZL compute the PCA of each image
and its planar rotations, while SVD and eigenvector decompo-
sition do not take rotations into account and are therefore not as
accurate.

In Table II, one can see a comparison of the running times of
various algorithms. In this experiment, images of size
and were used. For image counts of at least 64 and
less than 12 288, our algorithm is fastest, at which point eigen-
vector decomposition becomes faster. However, the goal of this
paper is to work with large numbers of images, so our algo-
rithm is not designed to compete for very small . In addition,
eigenvector decomposition does not take planar rotations into
account. Thus, eigenvector decomposition only computes the
principal components of images, whereas our algorithm actu-
ally computes the principal components of images. In ad-
dition, the calculation of the covariance matrix was made faster
because MATLAB makes use of parallel processors to compute
matrix products.

In Table III, one can see a comparison of the running times of
various algorithms as and are held constant
and is increased. Even though the running time of our al-
gorithm shows cubic growth here, it is still far faster than either
JZL or eigenvector decomposition. SVD performs more quickly
than our algorithm here; however, it is not considering image ro-
tations. Note that the large jump in running time for eigenvector
decomposition with is due to the fact that, for large
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TABLE V
COMPARISON OF GRASSMANNIAN DISTANCES BETWEEN SVD EIGENSUBSPACES AND OTHER METHODS. (A) IMAGES OF ARTIFICIALLY GENERATED PROJECTIONS

OF THE E. COLI 50-s RIBOSOMAL SUBUNIT. (B) IMAGES OF WHITE NOISE

, the covariance matrix became too large to
store in memory, causing the virtual memory to come into use,
causing large delays.

In Table IV, one can see a comparison of the running times of
various algorithms as and are held constant,
and is increased. Again, our algorithm is significantly faster
than any of the others.

We now consider the numerical accuracy of our algorithm.
We compare the resulting eigenvectors of SVD against those
of our algorithm and eigenvector decomposition of the covari-
ance matrix. However, these eigenvectors often occur in pairs,
and any two orthonormal eigenvectors that span the correct
eigensubspace are valid eigenvectors. Therefore, we cannot
simply compute the distance between eigenvectors of different
methods, because the paired eigenvectors produced may be
different.

To measure the accuracy of the algorithms, then, we compute
the Grassmannian distance between two eigensubspaces: if a
subspace is spanned by orthonormal vectors , then
the projection matrix onto that subspace is defined by

. The Grassmannian distance between two subspaces
and is defined as the largest eigenvalue magnitude of the

matrix .
In our first experiment, we artificially generated 50 projection

images of the E. Coli 50-s ribosomal subunit, as described in the
next section, and convert them into “ -filtered” radon images
as described in Section IV with and . We
then perform PCA on these Radon images and each of their 36
rotations using the four different algorithms. We then pair off
principal components with identical eigenvalues, and compute
the Grassmannian distance between each set of principal com-
ponents and those computed by SVD.

In our second experiment, we do the same thing but using im-
ages consisting entirely of Gaussian noise with mean 0 and vari-
ance 1. The results of both experiments can be seen in Table V.

Finally, in our third experiment, we compare the true eigenim-
ages that are produced by our algorithm using the procedure de-
scribed in Section IV with those produced by performing SVD
on a full set of images and rotations. To do this, we produce
artificially generated 75 projection images of the E. Coli 50-s
ribosomal subunit and produced 36 uniform rotations of each
one.4 We then performed SVD on this set of 2700 images and
compared the results with running our algorithm on the original
set of 75 images. The results can be seen in Fig. 1. Eigenimages

4We would like to thank Y. Shkolnisky for providing us with his code for
rotating images. It produces a rotated image by upsampling using FFT, then ro-
tating using bilinear interpolation, and finally downsampling again to the orig-
inal pixels.

Fig. 1. Number above each column represents which eigenimages is shown in
that column. (a) Eigenimages produced by running SVD on the original set of 75
images. (b) Eigenimages produced by running SVD on the set of 2700 rotated
images. (c) Eigenimages produced by our algorithm.

2 and 3 are rotated differently in our algorithm than in SVD.
This is because the two eigenimages have the same eigenvalue,
and different rotations correspond to different eigenvectors in
the 2-D subspace spanned by the eigenvectors. Eigenimage 4 is
also rotated differently, which is again due to paired eigenvalues;
the fifth eigenimage is not shown.

VI. CRYO-EM

Cryo-EM is a technique used to image and determine the
three dimensional structure of molecules. Many copies of some
molecule of interest are frozen in a sheet of ice that is sufficiently
thin so that, when viewing the sheet from its normal direction,
the molecules do not typically overlap. This sheet is then im-
aged using a transmission electron microscope. The result is a
set of noisy projection images of the molecule of interest, taken
at random orientations of the molecule. This process usually de-
stroys the molecules of interest, preventing one from turning the
sheet of ice to image a second time at a known orientation. The
goal is to then to take a large set of such images, often 10 000 or
more, and from that set deduce the three dimensional structure
of the molecule.

Several sample projection images are shown in Fig. 2(a).
These images were artificially generated by taking projections
from random orientations of the E. Coli 50-s ribosomal subunit,
which has a known structure. Gaussian noise was then added
to create an SNR of .
such images of size 129 129 were generated, and then trans-
formed into radon images of size and .
Note that, in a real application of cryo-EM, images often have
much lower SNRs, and many more images are used.
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Fig. 2. (a) Artificially generated projections of the E. Coli 50-s ribosomal
subunit, with Gaussian noise added to create an SNR of 1/5. (b) The first ten
“ ���-filtered” radon eigenimages. (c) The first 20 true eigenimages. Below
each true eigenimage is its eigenvalue � and frequency �, respectively.

We then applied to this set of images the algorithm described
in Sections II–IV. The first 10 “ -filtered” radon eigenim-
ages are shown in Fig. 2(b). Note that eigenimages 2 and 3 are
an example of paired eigenimages. Paired eigenimages have the
same eigenvalue, and occur as eigenvectors in paired Hermitian
matrices and , as in (21) and (22). Note that eigenim-
ages 1 and 6 have a frequencies of , which results in only
a real eigenimage and so is not paired with another.

Fig. 2(c) shows the conversion of the Radon eigenimages in
Fig. 2(b) to true eigenimages. This was done with the proce-
dure described in Section IV. Eigenimages 2 and 3 are paired
with frequency , and eigenimages 4 and 5 are paired
with frequency . They are described by (46) and (47).
Eigenimage 1 is described by (46) only. These images can be
compared in their general shape to the eigenimages shown in
[19, p. 117], where the SVD was used to compute the eigen-
images for all possible rotations of KLH projection images. We
remark that the true eigenimages are shown just for illustrative
purposes: as will be shown in [18], the principal components of
the 2-D -multiplied polar Fourier transformed images are

sufficient to accelerate the computation of the rotationally in-
variant distances [13], but the true eigenimages are not required.

APPENDIX A
PROOF OF 2-D FOURIER TRANSFORM FORMULA

Here, we prove formulas (42) and (43). To that end, consider
the operation in (38):

(49)

Note that
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(50)

and similarly

(51)

Therefore, it follows that (49) becomes

(52)

Therefore, define the 2-D Fourier transform of the true image as

(53)

A similar manipulation shows that

(54)

As shown above, these functions are either real or pure imagi-
nary, depending on .

APPENDIX B
PROOF OF THE RADON INVERSION FORMULA

Here, we show that the true eigenimages and are
given by (46) and (47). To do this, we take the 2-D inverse
Fourier transform of . First, let

. Then

(55)

With the change of variables and
, we obtain

(56)

Now, with the change of variables , we have

(57)
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and, with the change of variables , we have

(58)

where is the Bessel function. Thus, becomes

(59)

where is the order Hankel transform of ,
and is the order Hankel transform of .

Now note that

(60)

As a result,

(61)

If is even, then , so

(62)

This is a real-valued function because and are real
when is even.

If is odd, then , so

(63)

While this appears imaginary, it is also real because and
, and therefore and , are imaginary when is odd.

A similar manipulation shows that, when is even, then

(64)

and, when is odd, then

(65)

Again, both (64) and (65) are real. However, note that (62) is a
complex scalar multiple of (65). Scalar multiples of real values
are unimportant, so we may combine these two into the single
formula

(66)

where

(67)

so that when is even, and when is odd.
Similarly, (63) is a complex scalar multiple of(64), so we may
combine these two into the single formula

(68)
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