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Attenuation of the Electric Potential and Field in
Disordered Systems
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We study the electric potential and field produced by disordered distributions
of charge to see why clumps of charge do not produce large potentials or
fields. The question is answered by evaluating the probability distribution of the
electric potential and field in a totally disordered system that is overall elec-
troneutral. An infinite system of point charges is called totally disordered if
the locations of the points and the values of the charges are random. It is
called electroneutral if the mean charge is zero. In one dimension, we show that
the electric field is always small, of the order of the field of a single charge,
and the spatial variations in potential are what can be produced by a single
charge. In two and three dimensions, the electric field in similarly disordered
electroneutral systems is usually small, with small variations. Interestingly, in
two and three dimensional systems, the electric potential is usually very large,
even though the electric field is not: large amounts of energy are needed to
put together a typical disordered configuration of charges in two and three
dimensions, but not in one dimension. If the system is locally electroneutral—
as well as globally electroneutral—the potential is usually small in all dimen-
sions. The properties considered here arise from the superposition of electric
fields of quasi-static distributions of charge, as in non-metallic solids or ionic
solutions. These properties are found in distributions of charge far from equi-
librium.
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1. INTRODUCTION

There is no danger of electric shock when handling a powder of salt or
when dipping a finger in a salt solution, although these systems have huge
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numbers of positive and negative charges. It seems intuitively obvious that
the alternating arrangement of charge in crystalline Na+Cl− should pro-
duce electric fields that add almost to zero; it also seems obvious that
Na+ and Cl− ions will move in solution to minimize their equilibrium
free energy and produce small electrical potentials. But what about ran-
dom arrangements of charge that occur in a random quasi-static arrange-
ment of charge such as a snapshot of the location of ions in a solution?
Tiny imbalances in charge distribution produce large potentials, so why
does not a random distribution of charge produce large potentials, par-
ticularly if the distribution is not at thermodynamic equilibrium? Indeed,
some arrangements of charge produce arbitrarily large potentials, but as
we shall see, these distributions occur rarely enough that the mean and
variance of stochastic distributions are usually finite and small. More spe-
cifically, we determine the conditions under which stochastic distributions
of fixed charge produce small fields.

The quasi-static arrangements of charge can represent the fixed charge
in amorphous non-metallic solids or snapshots of charge arrangement of
ions in solution, due to their random (Brownian) motion. Our analysis
does not apply to quantum systems,(1) and in particular it fails if elec-
trons move in delocalized orbitals, as in metals. Note that the random
arrangements of charge considered here do not necessarily minimize free
energy.

We consider the field and potential in overall electroneutral random
configurations of infinitely many point charges. An infinite system of
point charges is called totally disordered if the locations of the points
and the charges are random, and it is called overall electroneutral if the
mean charge is zero. The configurations of charge may be static or
quasi-static, that is, time dependent, but varying sufficiently slowly to avoid
electromagnetic phenomena: the electric potential is described by Coulomb’s
law alone. In one dimensional systems of this type, the potential is usually
finite—even though the system usually contains an infinite number of pos-
itive and negative charges. Even if the system is disordered and spatially
random, charges of the same sign do not clump together often enough to
produce large fields or potentials, in one dimensional systems.

Our approach is stochastic. We ask how disordered can a random
electroneutral system be, yet still have a small field or potential. We find
the answer by evaluating the probability distribution of the electric poten-
tial and field of a disordered system of charges. We find that the electric
field in a totally disordered one dimensional system is small whether the
system is locally electroneutral or not. The potential behaves differently; it
can be arbitrarily large in a one dimensional system, but it is usually small
in electroneutral systems.
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In two or three dimensional disordered systems, the electric field is
not necessarily small. We show that in such systems that are also electro-
neutral the field is usually small. The potential, however, is usually large,
even if the system is electroneutral. Both potential and field are small,
if the system is locally—as well as globally—electroneutral (see definition
below) in one, two and three dimensions.

We consider several types of random arrays of charges: (a) A lat-
tice with random distances between two nearest charges; (b) A lattice
(of random or periodic structure) with a random distribution of posi-
tive and negative charges (charge ±1). Charges in the lattice need not
alternate between positive and negative, nor need they be periodically
distributed; (c) A lattice (of random or periodic structure) with random
charge strengths. Not all charges are ±1, but they are chosen from a set
q1, q2, . . . , qn with probabilities p1, p2, . . . , pn, respectively, such that

n∑

i=1

qipi =0. (1)

Equation (1) is our definition of electroneutrality in an infinite system.
We use renewal theory,(2) perturbation theory,(3) and saddle point

approximation(4) to calculate the electric potential of one dimensional sys-
tems of charges and show that it is usually small. That is to say, the
probability is small that the potential takes on large values. Thus, ran-
domly distributed particles produce small potentials even in disordered
systems in one dimension, if the system is electroneutral. The analysis of
one dimensional systems requires the calculation of the probability den-
sity function (pdf) of weighted independent identically distributed (i.i.d.)
sums of random variables. This pdf looks like the normal distribution
near its center, but the tail distribution has the double exponential decay
of the log-Weibull distribution.(5) We conclude that the electric potential
of totally disordered electroneutral one dimensional systems is necessarily
small, comparable to that of a single charge.

Later in the paper, we define local electroneutrality precisely and show
that two and three dimensional systems with local electroneutrality usu-
ally have small potentials, because the potential of a locally neutral system
of charges decays like the potential of a point dipole, as 1/r2. We show
that the potential of typical totally disordered arrays of charges in two and
three dimensions is infinite even if the system is electroneutral.

Historically, little attention seems to have been paid to quasi-static
random arrangements of charge, although much attention has been paid
to the equilibrium arrangements of mobile charge. In systems of mobile
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charges, such as liquids and ionic solutions, the decay of the electric
potential may even be exponential, after the mobile charges assume their
equilibrium distribution. The early theory of Debye–Hückel(6) shows a
nearly exponential decay (with distance from a given particle) of the aver-
age electric potential at equilibrium, originally found by solving the line-
arized Poisson–Boltzmann equation. In classical physics, perfect screening
of multipoles (of all orders) occurs in both homogeneous and inhomoge-
neous systems at equilibrium in the thermodynamic limit, when boundary
conditions at infinity are chosen to have no effect(7) and there is no flux
of any species. This type of screening in electrolytic solutions is produced
by the equilibrium configuration of the mobile charges,(8,9) which typi-
cally takes 100 ps to establish (compared to the 10−16 time scale of most
atomic motions).(10) Many other systems are screened by mobile charges
after they assume their equilibrium configuration of lowest free energy,(11)

such as ionic solutions, metals and semiconductors.
The spatial decay of potential in ionic solutions determines many of

the properties of ionic solutions and is a striking example of screening or
shielding. “Sum rules” of statistical mechanics(8,9) describe these proper-
ties. These rules depend on the system assuming an equilibrium distribu-
tion, which can only happen if the charges are mobile.

We consider finite and infinite systems of charges which may or may not be
mobile and which are not necessarily at equilibrium. We show that the potential
of a finite disordered locally electroneutral system is attenuated to the potential
of a single typical charge, whether the potential is evaluated inside or outside a
finite system or in an infinite system. We note that the behavior of the electric
potential and field outside the line or plane of the lattice can be analyzed in a
straightforward manner by the methods developed below.

2. A ONE-DIMENSIONAL IONIC LATTICE

Consider a semi-infinite array of alternating electric charges ±q with
a distance d between neighboring charges. The electric potential � at a
point P , located at a distance R from and to the left of the first charge
(see Fig. 1) is given by

� = q

4πε0

(
1
R

− 1
R +d

+ 1
R +2d

− 1
R +3d

+· · ·
)

= q

4πε0R

(
1− 1

1+a
+ 1

1+2a
− 1

1+3a
+· · ·

)

= q

4πε0R

∞∑

n=0

(−1)n

1+na
, (2)
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Fig. 1. A semi infinite lattice of alternating charges with a distance d between neighboring
charges. The point P is located at a distance R from and to the left of the first charge.

where a =d/R is a dimensionless parameter. The series (2) is conditionally
convergent, so it can be summed to any value by changing the order of
summation.(13) The order of summation reflects the order of construction
of the system; different orders may lead to different potential energies of
the system. However, the infinite series that determines the electric field

E = q

4πε0R
2

∞∑

n=0

(−1)n

(1+na)2

is absolutely convergent, so the field does not depend on the order of sum-
mation of its defining series. Thus, all potentials differ from each other
by a constant, which presumably reflects the different ways the charge dis-
tribution could be constructed, while having the same electric field. From
here on, we consider the ordering in Eq. (2).

Setting R=d (a =1) we find the potential at a vacant lattice point (to
avoid infinite potentials) due to charges located at both directions of the
infinite lattice is

2�(R =d)=2
q

4πε0d

∞∑

n=1

(−1)n−1

n
= q

4πε0d
·2 log 2.

The constant 2 log 2 is known as the Madelung constant of a one-dimen-
sional lattice.(12)

Next we find the asymptotic behavior of the potential � away from
the semi-infinite lattice, that is for R � d, or equivalently a � 1. The fol-
lowing analysis is independent of the order of summation of the series (2).
Clearly, the infinite sum in Eq. (2) converges, because it is an alternat-
ing sum with a decaying general term. We expand the potential for a �1
(away from the lattice) in the asymptotic form

�= q

4πε0

1
R

(
V0 +aV1 +a2V2 +· · ·

)
. (3)
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The effect of the first charge can be separated from all the others,

�= q

4πε0

1
R

− q

4πε0

1
R +d

(
V0 + ãV1 + ã2V2 +· · ·

)
, (4)

where

ã = d

R +d
= a

1+a
.

Comparing Eqs. (3) and (4) we obtain

V0 +aV1 +a2V2 +· · ·=1− 1
1+a

[
V0 + a

1+a
V1 +

(
a

1+a

)2

V2 +· · ·
]

.

The coefficients V0, V1, . . . are found by equating the coefficients of like
powers of a. In particular, we find that V0 = 1/2, V1 = 1/4, V2 = 0, so the
potential has the asymptotic form

�= q

4πε0

1
R

[
1
2

+ 1
4

a +O
(
a3
)]

. (5)

All coefficients Vn can easily be computed in a similar fashion. This result
also determines the rate at which the potential far away reaches its limit-

ing value,
1
2

q

4πε0R
. The divergent series for x = 1 has the value V0 = 1

2 if

interpreted as a limit using the Abel sum(13)

1−1+1−1+1−1+· · ·= lim
x→1−

∞∑

n=0

(−1)nxn = lim
x→1−

1
1+x

= 1
2
.

We note that the asymptotic expansion (5) can also be found directly from
the differential equation that the sum

y(x)=
∞∑

n=0

(−1)n

1+na
xn

satisfies(14)

axy′ +y = 1
1+x

, (6)
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with initial condition y(0)=1. The asymptotic form of y(x) can easily be
found by standard methods.(3) In particular,

lim
x→1−

y(x)=
∞∑

n=0

(−1)n

1+na
.

The physical interpretation of the asymptotic expansion (5) is that the
electric potential away from an infinite lattice of charged particles is about
the same as if half a single charge were located at the origin. The spatial
arrangement of the lattice attenuates the effect of its charge. The potential
near the lattice is determined by a few of the nearest charges and the con-
tribution of the remaining charges reduces to that of a half charge placed
at a distance R � d. Obviously, as R → 0 the potential becomes infinite,
approaching the potential produced by just the nearest charge.

3. ONE-DIMENSIONAL RANDOM IONIC LATTICE

We turn now to solids in which the charges are distributed randomly
in several different ways. First, consider a semi-infinite lattice of electric
charges, in which the sign of each charge is determined randomly by a flip
of a fair coin. That is, the charges that are located at the lattice points
Xn (n = 0,1,2, . . . ) are independent Bernoulli random variables that take
the values ±1 with probability 1/2. The electric potential of this random
lattice is given by

�= q

4πε0R

∞∑

n=0

Xn

1+na
. (7)

Some discussion of the nature of convergence of the series (7) is needed at
this point. The convergence of the sum of variances means that the par-
tial sums converge in L2 with respect to the probability measure, so the
sum (7) exists as a random variable �∈L2, whose variance is the sum of
the variances. Now, the Cauchy-Schwarz inequality implies that �∈L1, so
〈�〉=0. Note that (7) also converges with probability 1.(15)

We use fair coin tossing to maintain the condition of global electro-
neutrality, though arbitrary long runs of positive or negative charges occur
in this distribution. Thus some realizations of the sequence Xn have runs
(‘clumps’) of substantial net charge and potential. The standard deviation
of the net charge in a region gives some feel for the size of the clumps.
The standard deviation in the net charge of a region containing N charges
is q

√
N . For large values of N , substantial regions are not charge neutral.
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The condition of local charge neutrality (defined later) is violated for many
of the realizations of charge in this distribution.

Note that a particular set of Xn can produce an infinite potential,
despite our general conclusions. If, for example, Xn =1 for all n, the elec-

tric potential becomes infinite (see Eq. (7)), because
∞∑

n=0

1
1+na

=∞. None-

theless, the L2 convergence of (7) implies that the probability that (7) is
infinite is 0. In other words, even though the potential is infinite for a par-
ticular set of Xn, the potential is finite with probability 1. This is a strik-
ing example of the attenuation of the electric field, even without mobile
charge. The attenuation of the potential produced by some ‘clumpy’ con-
figurations of charges occurs even though there is no correlation in posi-
tion, and there is no motion whatsoever.

The electric field, given by

E =− q

4πε0R
2

∞∑

n=0

Xn

(1+na)2
,

remains finite for all realizations of Xn, because the sum

S = q

4πε0R
2

∞∑

n=0

1
(1+na)2

converges.
The electric field is bounded (above and below) by S and so there is

zero probability that the function is outside the interval (−S,S). The pdf
of the electric field is compactly supported, even when all charges are pos-
itive (or negative). The electric field—unlike the potential—is attenuated
even if the net charge of the system is not zero, taken as a whole. The

standard deviation of the field is
q

4πε0R
2

{ ∞∑

n=0

1
(1+na)4

}1/2

, which is of

the order of the field of a single charge at a distance R.

3.1. Moments

The expected value of � is 〈�〉=0, as mentioned above. The variance
of � is given by

Var (�)=
(

q

4πε0R

)2 ∞∑

n=0

1
(1+na)2

. (8)
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A vacant lattice point in an infinite (not semi-infinite) lattice corresponds to
R = d for both the charges to the right and to the left. It follows that the
variance of the potential there is twice that given in (8) with a =1, that is,

Var (�)=2
(

q

4πε0d

)2 ∞∑

n=1

1
n2

=2
(

q

4πε0d

)2
π2

6
, (9)

so that the standard deviation is

σ� = q

4πε0d

π√
3
. (10)

As expected, the constant π/
√

3 is larger than the Madelung constant
2 log 2 of the periodic lattice, because the potential of the disordered sys-
tem is larger than that of the ordered one.

Away from the semi infinite lattice, i.e., for a�1, we can approximate
the variance (8) by the Euler–Maclaurin formula, which replaces the sum
by an integral,

Var (�) =
(

q

4πε0R

)2(∫ ∞

0

1
(1+ax)2

dx + 1
2

+O(a)

)

=
(

q

4πε0R

)2(1
a

+ 1
2

+O(a)

)
, (11)

so the standard deviation is

σφ

∣∣
R

= q

4πε0
√

dR
(1+O(a)) . (12)

The decay law of 1/
√

R is more gradual than the decay law 1/R of a
single charge.

3.2. The Electrical Potential as a Weighted i.i.d. Sum

The potential (7) is a weighted sum of the form
∑

anXn, where Xn

are i.i.d. random variables. The distribution of potential is generally not
normal. For example, consider the weighted sum

∑∞
n=1 2−nXn, where Xn

are the same Bernoulli random variables. This weighted sum represents the
uniform distribution in the interval [−1,1]. It is, in fact equivalent to the
binary representation of real numbers in the interval. Not only does this
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distribution not look like the Gaussian distribution for small deviations, it
does not look at all Gaussian for large deviations. In fact, this distribu-
tion has compact support. It is zero outside a finite interval, without the
tails of the better endowed Gaussian. Other unusual limit distributions can
be easily obtained from sums of the form (7). For example, the weighted
sum

∑∞
n=1 3−nXn is equivalent to the uniform distribution on the Can-

tor “middle thirds” set(16) in [−1,1], whose Lebesgue measure (length) is
0.

Note that the sum

∞∑

n=0

Xn

(1+na)1+ε

has compact support for every ε >0, because the series

∞∑

n=0

1
(1+na)1+ε

converges for every ε > 0. In our case ε = 0, so that the limit distribution
does not necessarily have compact support. Nonetheless, we expect that
the probability distribution function of the potential will have tails that
decay steeply, even steeper than those of the normal distribution.

3.3. Large and Small Potentials. The Saddle Point Approximation

The existence of the first moment of the sum (7) depends on its tail
distribution, which we calculate below by the saddle point method.(4) That
is, we calculate the chance of finding a pinch of (non-crystalline) salt with
a very large potential. For a potential � defined in Eq. (7), we denote the

pdf of
(

q

4πε0R

)−1

� by f (x). The Fourier transform f̂ (k) of this pdf is

given by the infinite product

f̂ (k)=
∞∏

n=0

cos
(

k

1+na

)
, (13)

which is an entire function in the complex plane, because the general term
is 1+O(n−2). The inverse Fourier transform recovers the pdf

f (x)= 1
2π

∫ ∞

−∞
f̂ (k)eikx dk, (14)
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which we want to evaluate asymptotically for large x. Setting

g(k, x)=
∞∑

n=0

log cos
(

k

1+na

)
+ ikx, (15)

we write

f (x)= 1
2π

∫ ∞

−∞
exp{g(k, x)}dk. (16)

The saddle point is the point k for which
d

dk
g(k, x) = 0. Differentiating

Eq. (15) with respect to k, we find that

d

dk
g(k, x)=−

∞∑

n=0

tan
(

k

1+na

)

1+na
+ ix. (17)

We look for a root of the derivative on the imaginary axis, and substitute
k = is. The vanishing derivative condition of the saddle point method is
then

x =
∞∑

n=0

tan h
(

s

1+na

)

1+na
. (18)

The infinite sum on the right hand side represents a monotone increasing
function of s in the interval 0 <s <∞, so Eq. (18) has exactly one solu-
tion for every x. Near the saddle point k = is, we approximate g(k) by its
Taylor expansion up to the order

g(k)≈g(is)+ 1
2

d2

dk2
g(is)(k − is)2, (19)

to find the leading order term of the full asymptotic expansion (deriva-
tives of higher order of the Taylor expansion can be used to find all terms
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Fig. 2. The integration contour passes through the saddle point k = is in the complex plane.

of the asymptotic expansion.(17)) We use the Cauchy integral formula to
calculate our Fourier integral (16) on the line parallel to the real k axis
through k = is (see Fig. 2)

f (x) ≈ 1
2π

eg(is)

∫ ∞

−∞
exp

{
1
2
g′′(is)(k − is)2

}
dk

= 1
2π

eg(is)

∫ ∞

−∞
exp

{
g′′(is)

z2

2

}
dz= eg(is)

√−2πg′′(is)
. (20)

Equation (18) has no analytic solution, so we construct asymptotic
approximations for large and small values of s separately.

3.4. Tail Asymptotics

Throughout this subsection we assume that a is small and s is
large and we find the tail asymptotics of the pdf away from the system
(for a �1). For s �1 the Euler-Maclaurin sum formula gives
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x =
∫ ∞

0

tan h
(

s

1+ax

)

1+ax
dx + 1

2
tan hs +O(a). (21)

Substituting z= s

1+ax
, we obtain

x = 1
a

∫ s

0

tan h z

z
dz+ 1

2
tan h(s)+O(a). (22)

Writing

∫ s

0

tan h z

z
dz =

∫ 1

0

tan h z

z
dz+

∫ s

1

tan h z−1
z

dz+
∫ s

1

dz

z

= log s +
∫ 1

0

tan h z

z
dz+

∫ ∞

1

tan h z−1
z

dz+O(e−2s),

we obtain (22) in the form

ax = log s +C + a

2
+O(a2, e−2s), (23)

where the constant C is given by

C =
∫ 1

0

tan h z

z
dz+

∫ ∞

1

tan h z−1
z

dz. (24)

Exponentiation of Eq. (23) gives the location of the saddle point asymp-
totically for small a and large s as

s = eax−C−a/2+O(a2,e−2s ). (25)

The saddle point approximation (20) requires the evaluation of g and its
second derivative at k = is. The Euler–Maclaurin sum formula gives

g(is) =
∞∑

n=0

log cos h
(

s

1+na

)
− sx

= s

a

∫ s

0

log cos h z

z2
dz+ 1

2
log cos hs − sx +O(as)



1410 Singer et al.

= s

a

(∫ 1

0

log cos h z

z2
dz+

∫ s

1

dz

z
+
∫ ∞

1

log cos h z− z

z2
dz+O

(
1
s

))

+ s

2
− log 2

2
− sx +O(as).

Using Eqs (23) and (24), we find

g(is)=C1
s

a
− log 2

2
+O

(
a,

1
a
, as

)
, (26)

where

C1 =
∫ 1

0

log cos h z

z2
dz+

∫ ∞

1

log cos h z− z

z2
dz

−
∫ 1

0

tan h z

z
dz−

∫ ∞

1

tan h z−1
z

dz, (27)

and integration by parts shows that C1 =−1. It follows that

g(is)=− s

a
− log 2

2
+O

(
a,

1
a
, as

)
. (28)

The second derivative of g is evaluated in a similar fashion

d2

dk2
g(k)

∣∣∣∣
k=is

= −
∞∑

n=0

1− tan h2
(

s

1+na

)

(1+na)2

= − 1
as

∫ s

0

(
1− tan h2z

)
dz− 1

2

(
1− tan h2s

)
+O(ase−2s)

= − tan hs

as
+O(ase−2s , e−2s)

= − 1
as

+O(as,1,
1
as

)e−2s . (29)

Substitution of (28), (29), and (25) into the saddle point approximation
(20) gives

f (x) ≈
√

a

2
√

π
e

1
2 (ax−C−a/2)e− 1

a
eax−C−a/2

, (30)
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where the constant C = 0.8187801402 · · · is given by Eq. (24). Therefore,
the small a and large s approximation to the tail of the pdf of � is
given by

f�(x)∼ 4πε0R

q

√
a

2
√

π
exp

{
1
2

(
4πε0d

q
x −C −a/2

)
(31)

−1
a

exp
{

4πε0d

q
x −C −a/2

}}
, x →∞.

It follows from Eq. (31) that the pdf decays to zero as a double exponen-
tial as x → ∞, which implies that all moments exist. This decay is simi-
lar to the extreme value or the log-Weibull (Gumbel) distributions.(5) The
compact support of the distributions of convergent series is replaced here
with a steep decay. Note also that the decay becomes steeper further away
from the system, as expected, because the pre-exponential factor of the
inner exponent is 1/a =R/d.

For small x the pdf can be approximated by a zero mean Gaussian
with variance Var (�), which for small a is

f�(x)∼ 4πε0

q

√
Rd

2π
exp

{
−Rd

2

(
4πε0x

q

)2
}

, x →0. (32)

Near its center, the distribution looks like a Gaussian with a standard
deviation that decays like 1/

√
R, in agreement with Eq. (12). We conclude

that the pdf looks normal near its center, but, far away from there, it
decays to zero much more steeply, rather like a cutoff. This conclusion is
the answer to the question posed in subsection 3.2 about the normality of
weighted sums of i.i.d. random variables. The non-Gaussian tails of the
distribution are characteristic of large deviations.(4)

4. RANDOM DISTANCES

Consider a one-dimensional system of alternating charges without the
restriction of equal distance between successive charges. In particular, we
assume a renewal model, in which the distances between two neighboring
charges are non-negative i.i.d random variables with pdf f (l) and finite
expectation value

d =
∫ ∞

0
lf (l) dl <∞.
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The potential of this random system is also a random variable.
We show below that away from the system the mean value of the

potential V̄ has the asymptotic form

V̄ = q

4πε0R

(
1
2

+O(a)

)
, (33)

where a=d/R. Equation (33) defines the attenuation produced by the con-
figuration of charges. The mean potential of the system is produced by (in
effect) half a charge. We note that the value 1/2 is exactly the same for
both random and non-random systems of alternating charges (Eq. (5)). We
first note that

Pr{V (R)=V }=
∫ ∞

0
f (l)Pr

{
V (R + l)=V ∗ −V

}
dl, (34)

where V ∗ = q

4πε0R
. To find the mean value, we multiply (34) by V and

integrate (note that 0�V �V ∗), and then change the order of integration

V̄ (R) =
∫ V ∗

0
V dV

∫ ∞

0
f (l)Pr

{
V (R + l)=V ∗ −V

}
dl

=
∫ ∞

0
f (l) dl

∫ V ∗

0
V Pr

{
V (R + l)=V ∗ −V

}
dV

= V ∗ −
∫ ∞

0
f (l) dl

∫ V ∗

0
V Pr{V (R + l)=V }dV

= V ∗ −
∫ ∞

0
f (l)V̄ (R + l) dl. (35)

We look for an asymptotic expansion of the form

V̄ (R)= q

4πε0R

(
V̄0 +aV̄1 +a2V̄2 +· · ·

)
. (36)

Substituting this asymptotic expansion into (35) gives V̄0 = 1/2 for the
O(1) term, because

1−a �
∫ ∞

0
f (l)

R

R + l
dl �1. (37)

The first inequality is due to the inequality
1

1+x
� 1 −x. Hence (33) fol-

lows.
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5. DIMENSIONS HIGHER THAN ONE

5.1. The Condition of Global Electroneutrality

In dimensions higher than one, global electroneutrality is enough to
dramatically attenuate the electric field, but it is not enough to produce a
small potential, as shown below.

Consider the electric potential at a vacant site of random charges
located at the points of a 2D square lattice

�=
∑

(n,m)=(0,0)

Xnm√
n2 +m2

. (38)

The variance of � is

Var (�)=
∑

(n,m)=(0,0)

1
n2 +m2

=∞. (39)

The infinite value of the variance means that arbitrarily large potentials
can occur with high probability. That is, the electric potential is not atten-
uated. The divergence of the variance of the potential of three-dimen-
sional systems is even steeper. Therefore, attenuation of the potential of
totally disordered systems can occur in two or three-dimensional systems
only if some correlation is introduced into the distribution of the loca-
tions of the charges. If, for example, the signs of all charges alternate,
as in a real Na+Cl− crystal, the distribution of potential will be dra-
matically different, and greatly attenuated, compared to a two or three-
dimensional system in which many charges of one sign are clumped
together.

The condition of global electroneutrality is enough to ensure the dra-
matic attenuation of the electric field. Indeed, consider a three-dimensional
cubic lattice of random charges. The z-component of the electric field at a
vacant lattice point is

Ez =
∑

(n,m,l)=(0,0,0)

Xnml cos

(
n√

n2 +m2 + l2

)

n2 +m2 + l2
. (40)
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The variance of Ez is finite,

Var (Ez)=
∑

(n,m,l)=(0,0,0)

cos2

(
n√

n2 +m2 + l2

)

(n2 +m2 + l2)2
<∞,

because convergence is determined by the integral

2π

∫ π

0
cos2 θ sin θ dθ

∫ ∞

d

1
r4

r2 dr <∞.

The large potential means that much work has to be done to create
the given spatial configuration of the charges, however, the resulting field
remains usually small.

5.2. The Condition of Local Electroneutrality

Here we show that the condition of local electroneutrality implies the
attenuation of the potential in two and three dimensions. For example,
the potential of a two or three-dimensional lattice of extended dipoles is
finite with probability 1, if the orientation of dipoles is distributed inde-
pendently, identically, and uniformly on the unit sphere (see Fig. 3).

Paraphrasing (in ref. 18, p. 136), we say that a (net) charge distribu-
tion ρ(x) has local charge neutrality if the (net) charge inside a sphere of
radius R falls with increasing R faster than any power, that is, for any x

lim
R→∞

Rn

∫

|x−y|<R

ρ(y) dy =0 for all n>0. (41)

On a lattice, the number of charges that are assigned to each lattice point
can be larger than in our example of dipoles (Fig. 3), thus forming mul-
tipoles. The Debye–Hückel distribution also satisfies the local charge neu-
trality condition.

The potential of a single lattice point can then be written as an
expansion in spherical harmonics, if the charges of each multipole are con-
tained in a single lattice box. It can be also expanded, if the charge density
of each multipole decays sufficiently fast, as(18)

�0,0,0(x)= 1
4πε0

∞∑

l=0

l∑

m=−l

1
2l +1

qlm

Ylm(θ, φ)

rl+1
, (42)
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Fig. 3. Two-dimensional lattice of dipoles of randomly chosen orientations produce
attenuation due to the condition of local electroneutrality.

where qlm are the multipole moments. In particular, the zeroth order mul-
tipole moment is

q00 = 1√
4π

∫
ρ(y) dy =0, (43)

by the condition of local electroneutrality (41): the far potential due to
a single lattice point decays as 1/r2 (or steeper). The coefficients qlm

assigned to each lattice point are randomized as in the previous sections
so their mean value vanishes, meaning that there is no preferred orienta-
tion in space. (Compare the example of dipoles which do not have a pre-
ferred orientation.) The mean value of the potential of the entire lattice is
then 〈�〉=0. The variance is given by

Var(�)=
∑

ijk

Var(�ijk), (44)

where �ijk is the potential of the charge at lattice point (i, j, k). The
potential decays as 1/r2 (or steeper); therefore the variance decays as
1/r4 = 1/(i2 + j2 + k2)2 (or steeper). The convergence of the infinite sum
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(44) is determined by the convergence of the integral

∫

r>d

1
r4

dV =4π

∫ ∞

d

1
r2

dr = 4π

d
<∞. (45)

Thus, the variance of the potential is finite and we have shown that local
electroneutrality produces a dramatic attenuation of potential. As above,
the potential away from a charge is usually of the order of the potential
of a single charge.

5.3. The Liquid State

Screening in the liquid state involves at least three phenomena. (1)
The movement of charge to a distribution of minimal free energy. (2) The
properties of a static charge distribution with minimal free energy. (3) The
properties of any charge distribution.

If the charge correlation function ρ(x) minimizes free energy, and
is at equilibrium, as in ionic solutions, the far field potential is strongly
screened. However, the relaxation into such a state takes time, typically
picosecond to nanosecond in an ionic solution under biological conditions
(see measurements reported in ref. 10, and theory summarized in ref. 19).
As long as local charge neutrality exists during the relaxation period, the
potential changes from attenuated (as described above) to exponentially
screened, as equilibrium is reached. In fact, the spread of potential in ionic
solutions has the curious property that it is much less shielded at short
times than at long times; potentials on the (sub) femtosecond time scale
of atomic dynamics spread macroscopic distances while potentials on long
time scales spread only atomic distances. Specifically, potentials on a time
scale greater than nano or microseconds spread a few Debye lengths, only
a nanometer or so under biological conditions, although potentials on a
femtosecond time scale can spread arbitrarily far depending on the config-
uration of dielectrics at boundaries that govern the violations of local elec-
troneutrality. To make this verbal analysis of fast phenomena rigorous, the
potentials and fields should be computed from Maxwell’s equations, not
Coulomb’s law.

Non-equilibrium fluctuations may violate local charge neutrality, there-
fore field fluctuations can be large. For example, in systems which are
not locally electroneutral, potential can spread a long way, as in the tele-
graph,(20) Kelvin’s transatlantic cable, or the axons of nerve cells.(21) In
such systems, d.c. potential spreads arbitrarily far—kilometers in tele-
graphs; thousands of kilometers in the transatlantic cable; centimeters in
a squid nerve filled with salt water—even if an abundance of ions (≈1023)
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are present. Local electroneutrality is violated in such systems (at the insu-
lating boundary which separates the inside and outside of the cable, e.g.,
the cell membrane) and that violation allows large far field potentials.

6. SUMMARY AND DISCUSSION

Global electroneutrality ensures the dramatic attenuation of the elec-
tric potential and field of a one-dimensional system of charges. Even if
local electroneutrality is violated, and the local net charge is not zero, the
potential remains finite in these one-dimensional systems, even in a ran-
dom lattice that includes arbitrarily long strings of equal charges. We have
shown that the distribution of the weighted sum of i.i.d. random variables
that define the one-dimensional electric potential is almost normal near
its center, but has very steep double exponentially decaying tails. The dis-
tances between neighboring charges can also be random, without chang-
ing the attenuation effect. In higher dimensions, global electroneutrality is
sufficient to dramatically attenuate the electric field, but not the potential.
However, local electroneutrality ensures a small potential in two and three
dimensions, so the electric potential and field is short range in one, two,
and three dimensions, if the systems are locally electroneutral.
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