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The problem of image restoration in cryo-EM entails correcting for the effects of the Contrast Transfer
Function (CTF) and noise. Popular methods for image restoration include ‘phase flipping’, which corrects
only for the Fourier phases but not amplitudes, and Wiener filtering, which requires the spectral signal to
noise ratio. We propose a new image restoration method which we call ‘Covariance Wiener Filtering’
(CWF). In CWF, the covariance matrix of the projection images is used within the classical Wiener filter-
ing framework for solving the image restoration deconvolution problem. Our estimation procedure for
the covariance matrix is new and successfully corrects for the CTF. We demonstrate the efficacy of
CWF by applying it to restore both simulated and experimental cryo-EM images. Results with experimen-
tal datasets demonstrate that CWF provides a good way to evaluate the particle images and to see what
the dataset contains even without 2D classification and averaging.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Single particle reconstruction (SPR) using cryo-electron micro-
scopy (cryo-EM) is a rapidly advancing technique for determining
the structure of biological macromolecules at near-atomic resolu-
tion directly in their native state, without any need for crystalliza-
tion (Bai et al., 2015; Milne et al., 2013; Nogales, 2016; Sigworth;
Kühlbrandt, 2014). In SPR, 3D reconstructions are estimated by
combining multiple noisy 2D tomographic projections of macro-
molecules in different unknown orientations.

The acquired data consists of multiple micrographs from which
particle images are extracted in the first step of the computational
pipeline. Next, the images are grouped together by similarity in the
2D classification and averaging step (Zhao and Singer, 2014; Park
and Chirikjian, 2014). Class averages can be used to inspect the
underlying particles, and to estimate viewing angles and form a
low resolution ab initio 3D model. Subsequently, this 3D model
is refined to high resolution, and 3D classification might be per-
formed as well.

In this paper we propose an image restoration method that pro-
vides a way for visualizing the particle images without performing
any 2D classification. While noise reduction is achieved in 2D clas-
sification by averaging together different particle images, our
method operates on each image separately, and performs Contrast
Transfer Function (CTF) correction and denoising in a single step.
Existing image restoration techniques (for denoising and CTF
correction) can be broadly categorized into two kinds of
approaches (Penczek, 2010). The first is an approach known as
‘phase flipping’, which involves flipping the sign of the Fourier
coefficients at frequencies for which the CTF is negative. Conse-
quently, phase flipping restores the correct phases of the Fourier
coefficients, but ignores the effect of the CTF on the amplitudes.
Phase flipping preserves the noise statistics and is easy to imple-
ment, leading to its widespread usage in several cryo-EM software
packages. However, it is suboptimal because it does not restore the
correct Fourier amplitudes of the images. The second commonly
used approach is Wiener filter based restoration, to which we refer
here as traditional Wiener filtering (TWF). Wiener filtering takes
into account both the phases and amplitudes of the Fourier coeffi-
cients, unlike phase flipping. However, calculation of the Wiener
filter coefficients requires prior estimation of the spectral signal
to noise ratio (SSNR) of the signal, which by itself is a challenging
problem. It is therefore customary to either treat the SSNR as a pre-
computed constant as in the software package SPIDER (Frank et al.,
1996), or to apply Wiener filtering only at later stages of the 3D
reconstruction pipeline when the noise level is sufficiently low,
such as in EMAN2 (Tang et al., 2007). It is also possible to use a
combination of the two approaches, by first phase flipping the
2D images, and later correct only for the amplitudes in the 3D
reconstruction step, as in IMAGIC (van Heel et al., 1996; van Heel
et al., 2000). Despite its simplicity, there are several drawbacks
to TWF. First, it cannot restore information at the zero crossings
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of the CTF. Second, it requires estimation of the SSNR. Third, it is
restrictive to the Fourier basis which is a fixed basis not adaptive
to the image dataset.

We refer to our proposed method as Covariance Wiener Filter-
ing (CWF). CWF consists of first estimating the CTF-corrected
covariance matrix of the underlying clean 2D projection images,
followed by application of the Wiener filter to denoise the images.
Unlike phase flipping, CWF takes into account both the phases and
magnitudes of the images. Moreover, unlike TWF that always oper-
ates in the data-independent Fourier domain, CWF is performed in
the data-dependent basis of principal components (i.e., eigenim-
ages). Crucially, CWF can be applied at preliminary stages of data
processing on raw 2D particle images. The resulting denoised
images can be used for an early inspection of the dataset, to iden-
tify the associated symmetry, and to eliminate ‘bad’ particle
images prior to 2D classification and 3D reconstruction. Addition-
ally, the estimation of the 2D covariance matrix is itself of interest,
for example, in Kam’s approach for 3D reconstruction (Kam, 1980;
Bhamre et al., 2015).

The paper is organized as follows: Sections 2.1 and 2.2 detail the
estimation of the covariance matrix for two different noise models,
first for the simpler model of white noise, and second for the more
realistic model of colored noise. In Section 2.3 we discuss the steer-
ability property of the covariance matrix (Zhao et al., 2016). The
associated deconvolution problem is solved to obtain denoised
images using the estimated covariance matrix in Section 2.4.
Finally in Section 3, we demonstrate CWF in a number of numerical
experiments, with both simulated and experimental datasets. We
obtain encouraging results for experimental datasets, in particular,
those acquired with the modern direct electron detectors. Image
features are clearly observed after CWF denoising. For repro-
ducibility, the MATLAB code for CWF and its dependencies are
available in the open source cryo-EM toolbox ASPIRE at www.
spr.math.princeton.edu. The script cwf_script.m, calls the main
function cwf.m.
2. Methods

The first step of CWF is estimation of the covariance matrix of
the underlying clean images, to which we refer as the population
covariance. The second step of CWF is solving a deconvolution
problem to recover the underlying clean images using the esti-
mated covariance. In the rest of this section, we describe these
steps in detail.

2.1. The model

The image formation model in cryo-EM under the linear, weak
phase approximation (Frank, 1996) is given by

yi ¼ ai � xi þ �i; i ¼ 1;2; . . . ; n; ð1Þ
where n is the number of images, � denotes the convolution opera-
tion, yi is the noisy, CTF filtered ith image in real space, xi is the
underlying clean projection image in real space, ai is the point
spread function of the microscope that convolves with the clean
image in real space, and �i is additive Gaussian noise that corrupts
the image, for each i. Taking the Fourier transform of Eq. (1) gives

Yi ¼ AiXi þ ni; i ¼ 1;2; . . . ; n; ð2Þ
where Yi; Xi and ni are now in Fourier space. Ai is a diagonal oper-
ator, whose diagonal consists of the Fourier transform of the point
spread function, and is also commonly known as the CTF. The CTF
modulates the phases and the amplitudes of the Fourier coefficients
of the image, and contains numerous zero crossings that correspond
to frequencies at which no information is obtained. Any image
restoration technique that aims to completely correct for the CTF
must therefore correctly restore both the phases and the ampli-
tudes. The zero crossings make CTF correction challenging since it
cannot be trivially inverted. In experiments, different groups of
images are acquired at different defocus values, in the hope that
information that is lost from one group could be recovered from
another group that has different zero crossings. In the experimental
datasets used in this paper, the number of images per defocus group
typically ranges from 50 to 1000.

In our statistical model, the Fourier transformed clean images
X1; . . . ;Xn (viewed, for mathematical convenience, as vectors in
Cp, where p is the number of pixels) are assumed to be indepen-
dent, identically distributed (i.i.d.) samples from a distribution
with mean E½X� ¼ l and covariance E½ðX� lÞðX� lÞT � ¼ R. Since
the clean images are two-dimensional projections of the three-
dimensional molecule in different orientations, the distribution
of X in our model is determined by the three-dimensional struc-
ture, the distribution of orientations, the varying contrast due to
changes in ice thickness, and structural variability, all of course
unknown at this stage. The covariance matrix R therefore repre-
sents the overall image variability due to these determinants.
While these model assumptions do not necessarily hold in reality
(Sorzano et al., 2007; Sorzano et al., 2015), they simplify the anal-
ysis and, as will be shown later lead to excellent denoising. Quoting
George Box, ‘‘All models are wrong but some are useful” (Box,
1976).

Our denoising scheme requires l and R. Since these quantities
are not readily given, we estimate them from the noisy images
themselves as follows. For simplicity, we first assume that the
noise in our model is additive white Gaussian noise such that
ni � Nð0;r2Ip�pÞ in Eq. (2) are i.i.d. The white noise assumption is
later replaced by that of the more realistic colored noise. First,
notice from Eq. 2 it follows that

E½Yi� ¼ AiE½Xi�; i ¼ 1;2; . . . ;n: ð3Þ
So,

E ðYi � E½Yi�ÞðYi � E½Yi�ÞT
h i

¼ E AiðXi � lÞðXi � lÞTAT
i

h i
þ r2I

¼ AiRA
T
i þ r2I: ð4Þ

Eq. (4) relates the second order statistics of the noisy images
with the population covariance R of the clean images, based on
which we can estimate R.

Next, we construct estimators for the mean l and population
covariance R using Eqs. (3) and (4). The mean l of the dataset
can be estimated as the solution to a least squares problem

l̂ ¼ arg min
l

Xn
i¼1

kðYi � AilÞk22 þ kklk22; ð5Þ

where k P 0 is a regularization parameter. The solution to 5 is
explicitly

l̂ ¼
Xn
i¼1

AT
i Ai þ kI

 !�1 Xn
i¼1

AT
i Yi

 !
: ð6Þ

The population covariance R can be estimated as

R̂ ¼ arg min
R

Xn
i¼1

kðYi � E½Yi�ÞðYi � E½Yi�ÞT � ðAiRA
T
i þ r2IÞk2F

¼ arg min
R

Xn
i¼1

kAiRA
T
i þ r2I � Cik2F ; ð7Þ

where Ci ¼ ðYi � AilÞðYi � AilÞT and k � kF is the Frobenius matrix

norm. The estimators l̂ and R̂ can be shown to be consistent in
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the large sample limit n ! 1, similar to the result in Appendix B of
Katsevich et al. (2015).

To ensure that the estimated covariance is positive semidefinite
(PSD), we project it onto the space of PSD matrices by computing
its spectral decomposition and retaining only the non negative
eigenvalues (and their corresponding eigenvectors). To solve Eq.
(7), we differentiate the objective function with respect to R and
set the derivative to zero. This yields

Xn
i¼1

AT
i AiR̂A

T
i Ai ¼

Xn
i¼1

AT
i CiAi �

Xn
i¼1

r2AT
i Ai: ð8Þ

Eq. (8) defines a system of linear equations for the elements of

the matrix R̂. However, direct inversion of this linear system is
slow and computationally impractical for large image sizes. Notice
that Eq. (8) can be written as

LðR̂Þ ¼ B; ð9Þ

where L : Rp�p ! Rp�p is the linear operator acting on R̂ defined by
the left hand side of Eq. (8), and B is the right hand side. Since apply-
ing L only involves matrix multiplications, it can be computed fast,
and the conjugate gradient method is employed to efficiently com-

pute R̂ instead of direct inversion, similar to how it is used in Andén
et al. (2015).

Notice that LðR̂Þ is a PSD matrix whenever R̂ is PSD (as a sum of
PSD matrices), while B may not necessarily be PSD due to finite
sample fluctuations (i.e., n is finite). It is therefore natural to pro-
ject B onto the cone of PSD matrices. This amounts to computing
the spectral decomposition of B and setting all negative eigenval-
ues to 0, which is an instance of eigenvalue thresholding.

We now describe an alternate eigenvalue thresholding proce-
dure, better suited to cases in which the number of images n is
not exceedingly large. To that end, we first analyze the matrix B
when Xi ¼ 0 for all i, i.e., the input images are white noise images
containing no signal. Let

M ¼
Xn
i¼1

AT
i CiAi ¼

Xn
i¼1

AT
i YiY

T
i Ai: ð10Þ

Then, E½M� ¼ r2Pn
i¼1A

T
i Ai and B ¼ M � E½M�. Let S ¼ ðE½M�Þ1=2, i.e.

S is PSD and E½M� ¼ S2. Then multiplying both sides of Eq. (9) with
S�1 we get

S�1LðR̂ÞS�1 ¼ S�1ðM � E½M�ÞS�1 ¼ S�1MS�1 � I: ð11Þ

S�1MS�1 can be viewed as a sample covariance matrix of n vectors in
Rp whose population covariance is the identity matrix. When p is
fixed and n goes to infinity, all eigenvalues of S�1MS�1 converge to
1. In practice, however, n and p are often comparable. In the limit
p; n ! 1 and p=n ! c with 0 < c < 1, the limiting spectral density
of the eigenvalues converges to the Marčenko Pastur (MP) distribu-
tion (Marčenko and Pastur, 1967), given by

MPðxÞ ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðcþ � xÞðx� c�Þ
p

cx
1½c� ;cþ�; c� ¼ ð1� ffiffiffi

c
p Þ2; ð12Þ

for c 6 1. It is therefore expected that S�1MS�1 would have eigenval-
ues (considerably) larger than 1, even in the pure white noise case.
These large eigenvalues should not be mistakingly attributed to sig-
nal. In the case of images containing signal (plus noise), eigenvalues
corresponding to the signal can only be detected if they reside out-
side of the support of the MP distribution. We use the method of
Kritchman and Nadler (2008) to determine the number of eigenval-
ues corresponding to the signal. We then apply the operator norm
eigenvalue shrinkage procedure (see Donoho et al.) to those eigen-
values, while setting all other eigenvalues to 0. We then use the

conjugate gradient method1 to solve Eq. (11) for R̂, with the right
hand side replaced with its shrinkage version. We observed in
numerical simulations (see Fig. 3) that this procedure typically out-
performs other shrinkage methods in terms of the accuracy of the
estimated covariance matrix.

2.2. Covariance estimation with colored noise

So far, we assumed additive white Gaussian noise in the image
formation process. In reality, the noise in experimental images is
colored. That is, in the image formation model in Eq. (2), ni is addi-
tive colored Gaussian noise. We preprocess the images in order to
‘‘whiten” the noise. The noise power spectrum can be estimated,
for example, using the pixels in the corners of the noisy projection
images. To do this, we first estimate using correlograms the 2D
autocorrelation of the corner pixels of the images which contain
mostly noise and no signal. These corner pixels are used to esti-
mate the 1D autocorrelation, which is then extended to populate
the 2D isotropic autocorrelation. We then calculate the Fourier
transform of the 2D autocorrelation, which is the 2D power spec-
trum of noise. The noisy projection images in Fourier space are
multiplied element-wise by the inverse of the estimated power
spectral density, also called the whitening filter, so that the noise
in the resulting images is approximately white. Let W be the
‘‘whitening” filter, such that

WYi ¼ WAiXi þWni; i ¼ 1;2; . . . ;n; ð13Þ

and Wni � Nð0;r2IÞ.
Eq. (13) is reminiscent of Eq. (2). It is tempting to define a new

‘‘effective” CTF as WAi and estimate R following the same proce-
dure as in the case of white noise. However, the linear system akin
to Eq. (8) for this case is ill-conditioned due to the product of W
with the CTF, and it takes a large number of iterations for conjugate
gradient to converge to the desired solution. Instead, we seek an
approach in which the linear system to solve is well conditioned
as that in the case of white noise. Since the CTF’s Ai; i ¼ 1;2; . . .n
and the whitening filter W are diagonal operators in the Fourier
basis, they commute, and Eq. (13) becomes

WYi ¼ AiWXi þWni; i ¼ 1;2; . . . ;n: ð14Þ
We therefore absorb W into Xi, and estimate the matrix

RW ¼ WRWT (the population covariance of WX) using the same
procedure as before. The population covariance R is then estimated
as

R̂ ¼ W�1R̂WðWTÞ�1
: ð15Þ
2.3. Fourier–Bessel steerable PCA

The population covariance matrix Rmust be invariant under in-
plane rotation of the projection images, therefore it is block diago-
nal in any steerable basis in which the basis elements are outer
products of radial functions and angular Fourier modes. Following
(Zhao et al., 2016), we choose to represent the images in a Fourier–

Bessel basis and it suffices to estimate each diagonal block RðkÞ, cor-
responding to the angular frequency k, separately. The Fourier–
Bessel basis (Zhao et al., 2016) consists of pk basis functions (that
satisfy the sampling criterion) for each angular frequency k, where
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pk decreases with increasing k. The matrix RðkÞ is thus of size
pk � pk.

An important property of the CTF’s Ai and the whitening filterW
is that they are radially isotropic.2 Therefore, the CTF’s and the
whitening filter are also block diagonal in the Fourier Bessel basis.
Eq. (8) (and its analog in the case of colored noise) is hence solved

separately for each k to estimate RðkÞ.
2.4. Wiener filtering

The estimated covariance is further used to solve the associated
deconvolution problem in Eq. (2) using Wiener filtering. The result
is a denoised, CTF corrected image for each noisy, CTF affected
measurement Yi for i ¼ 1;2; . . .n. We estimate Xi in the white noise
model using the Wiener filtering procedure as

X̂i ¼ ðI � HiAiÞl̂þ HiYi; ð16Þ

where Hi ¼ R̂AT
i ðAiR̂A

T
i þ r2IÞ�1

is the linear Wiener filter (MacKay,
2004). In the case of colored noise,

X̂i ¼ ðI � HiWAiÞl̂þ HiYi; ð17Þ

with Hi ¼ R̂AT
i W

TðWAiR̂A
T
i W

T þ r2IÞ�1
. Since the estimated covari-

ance is block-diagonal in the Fourier Bessel basis, the Wiener filter-
ing procedure is applied to the Fourier Bessel coefficients of the
noisy images Yi for each angular frequency k separately. The
denoised Fourier Bessel expansion coefficients are used to recon-
struct denoised images in Fourier space that are inverse Fourier
transformed to acquire images in real space on a Cartesian grid.
2.5. Computational complexity

In practice, instead of each image being affected by a distinct
CTF, all images within a given defocus group have the same CTF.
So, given D defocus groups with di images in group i, one can equiv-

alently minimize the objective function
PD

i¼1dikðAiRA
T
i þ r2IÞ�Pdi

j¼1
1
di
ðYij � E½Yij �ÞðYij � E½Yij �ÞTk2F in Eq. (7) (here Ai denotes the

CTF of the i’th defocus group, and ij index images in that group).
As a result, the sums in Eq. (8) range from 1 to D instead of from
1 to n, thereby reducing the computational cost of some operations.
For images of size L� L, estimating the mean using Eq. (6) takes
OðnL2Þ (since Ai is diagonal in the Fourier basis for each i). Comput-
ing the Fourier Bessel expansion coefficients takes OðnL3Þ, as
detailed in Zhao et al. (2016). When solving the linear system in

Eq. (8) to estimate each RðkÞ separately, the matrices in Eq. (8) are
of size pk � pk. It is shown in Zhao et al. (2016) thatP

kpk ¼ OðL2Þ; Pkp
2
k ¼ OðL3Þ, and Pkp

3
k ¼ OðL4Þ. While solving Eq.

(9) using conjugate gradient for a given angular frequency, comput-

ing the action of the linear operation L on RðkÞ takes OðDp3
kÞ per iter-

ation, while computing B takes OðDp3
k þ np2

kÞ. Thus, each iteration of

conjugate gradient takes OðDPkp
3
kÞ, that is, OðDL4Þ and there is also

a one time computation of OðnL3Þ. Wiener filtering the Fourier Bes-
sel coefficients of an image for a given angular frequency k takes
Oðp2

kÞ. So the overall complexity forWiener filtering the coefficients

of all images is OðnL3Þ. In summary, the overall complexity for CWF
is OðTDL4 þ nL3Þ, where T is the number of conjugate gradient
iterations.
2 In the case of astigmatism, where the CTF deviates slightly from radial isotropy,
this is a good approximation to obtain low resolution denoised images.
3. Results

In this section, we apply our algorithm to synthetic and exper-
imental datasets to obtain denoised images. All algorithms are
implemented in the UNIX environment, on a machine with 60
cores, running at 2.3 GHz, with total RAM of 1.5 TB. We perform
numerical experiments with (i) a synthetic dataset with additive
white and colored Gaussian noise and (ii) four experimental data-
sets, two of which were acquired with older detectors, and the
other two with state-of-the-art direct electron detectors. For all
the experimental datasets, the corresponding estimated CTF
parameters were provided with the dataset. For all simulations,
we use centered projection images. The algorithm does not require
centered images. However, having non-centered images would
result in an additional ’blurring’ effect in the denoised images.
3.1. Simulated noisy dataset with white noise

For the first experiment with simulated data, we construct a
synthetic dataset by modeling the image formation process in
cryo-EM. The synthetic dataset is prepared from the 3D structure
of the Plasmodium falciparum 80S ribosome bound to E-tRNA,
available on the Electron Microscopy Data Bank (EMDB) as
EMDB-6454. We first generate clean 2D projection images starting
from a 3D volume, at directions sampled uniformly over the
sphere, and then corrupt the generated clean projection images
with different CTF’s and additive white Gaussian noise. The projec-
tion images are divided into 10 defocus groups, with the defocus
value ranging from 1 lm to 4 lm. The B-factor of the decay envel-

ope was chosen as 10 Å
2
, the amplitude contrast as 7%, the voltage

as 300 kV, and the spherical aberration as 2 mm. To ensure that the
denoising quality of CWF is robust to the mean estimation of the
dataset, the regularization parameter k in the least squares mean
estimation in Eq. (6) was fixed at 1 for all the experiments
described here.

Fig. 1 shows the results of denoising raw, CTF-affected noisy
images with CWF and TWF at various levels of the SNR. We have
used the EMAN2 (Tang et al., 2007) implementation of TWF (note
that we perform phase flipping followed by TWF only on the raw
images in EMAN2, and not on averages). The SNR used here is
defined relative to the CTF affected images that constitute the clean
signal, and is calculated as an average value for the entire dataset.
Using 20 cores, calculating the Fourier Bessel coefficients took 79 s
while covariance estimation and Wiener filtering together took 6 s
in the experiment with SNR=1/60.

It is seen that TWF works very well at high SNR (P 1), but dete-
riorates at lower SNR’s as expected. Note that the denoising results
of TWF depend strongly on the defocus value. The location of the
zeros in the CTF is such that images corresponding to high defocus
values preserve low frequency information, while images corre-
sponding to low defocus values retain more high frequency infor-
mation. With CWF, there is no such strong dependence on the
defocus value, since the covariance matrix is estimated using infor-
mation from all defocus groups.

Fig. 2a shows the relative MSE of denoised images as a function
of the SNR of the dataset. The MSE (norm of the difference between
the denoised image and the original, clean image) shown here cor-
responds to the same range of SNR’s (from 1=60 to 1) as in Fig. 1.
Fig. 2b shows the relative MSE of the denoised images as a function
of the number of images used to estimate the covariance in the
experiment. The covariance estimation improves as the number
of images in the dataset increases, and so the denoising is also
expected to improve, as seen from Fig. 2b.

The importance of the eigenvalue shrinkage procedure is eluci-
dated in Fig. 3. Here, we compare the error in the estimated covari-



Fig. 1. Synthetic white noise: A comparison of the denoising results of traditional Wiener filtering (TWF) and CWF for the synthetic dataset prepared from EMDB-6454, the P.
falciparum 80S ribosome bound to E-tRNA. The dataset consists of 10,000 images of size 105 � 105, which are divided into 10 defocus groups, with the defocus value ranging
from 1 lm to 4 lm. The two rows in each subfigure correspond to two clean images belonging to different defocus groups; the first one belongs to the group with the smallest
defocus value of 1 lm, while the second image belongs to the group with the largest defocus value of 4 lm.

Fig. 2. (a) Relative MSE versus the SNR, for a fixed number of images: The relative MSE of the denoised images as a function of the SNR, for synthetic data generated using
EMDB-6454. The MSE reported here is averaged over all images. n denotes the number of images used in the experiment. (b) Relative MSE versus the number of images, for a
fixed SNR: The relative MSE of the denoised images as a function of the number of images, for synthetic data generated using EMDB-6454. The MSE reported here is averaged
over all images.
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ance with and without eigenvalue shrinkage, for varying number of
images used in the experiment. The relative MSE of the estimated

covariance R̂ is defined as

MSErel ¼ kR� R̂k2F
kRk2F

: ð18Þ
3.2. Simulated noisy dataset with colored noise

The noise that corrupts images in cryo-EM is not perfectly
white, but often colored. To simulate this, we perform experiments
with synthetic data generated from EMDB-6454 as described in
3.1, this time adding colored Gaussian noise with the noise
response f ðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

ð1þk2Þ
p (k is the radial frequency) to each clean,

CTF-affected projection image. Fig. 4 shows the denoised images
for this case.

3.3. Experimental dataset – TRPV1

We apply CWF to an experimental dataset of the TRPV1 ion
channel, taken using a K2 direct electron detector. It is available
on the public database Electron Microscope Pilot Image Archive
(EMPIAR) as EMPIAR-10005, and the 3D reconstruction is available
on EMDB as EMDB-5778, courtesy of Liao et al. (Liao et al., 2013).
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Fig. 3. Relative MSE of the estimated covariance versus the number of images: The
relative MSE of the estimated covariance R̂, with and without using eigenvalue
shrinkage, as a function of number of images, for synthetic data generated using
EMDB-6454.
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The dataset consists of 35,645 motion corrected, picked particle
images of size 256� 256 pixels with a pixel size of 1:2156 Å. Using
20 cores, calculating the Fourier Bessel coefficients took 312 s
while covariance estimation and Wiener filtering together took
574 s. The result is shown in Fig. 5. CWF retains 384 eigenvalues
of R.
3.4. Experimental dataset – 80S ribosome

We apply CWF to an experimental dataset of the Plasmodium
falciparum 80S ribosome bound to the anti-protozoan drug eme-
Fig. 4. Synthetic colored noise: Denoising results of CWF for the synthetic dataset with
ribosome bound to E-tRNA, as detailed in the caption of Fig. 1.
tine, taken using a FEI FALCON II 4 k � 4 k direct electron detector.
The rawmicrographs and picked particles are available on the pub-
lic database EMPIAR as EMPIAR-10028, and the 3D reconstruction
is available on EMDB as EMDB-2660, courtesy of Wong et al.
(2014). The dataset we used was provided by Dr. Sjors Scheres,
and consists of 105,247 motion corrected, picked particle images
of size 360� 360 with a pixel size of 1:34 Å. Using 20 cores, calcu-
lating the Fourier Bessel coefficients took 731 s while covariance
estimation and Wiener filtering together took 385 s. The result is
shown in Fig. 6. CWF retains 962 eigenvalues of R.

3.5. Experimental dataset – IP3R1

We apply CWF to an experimental dataset of the Inositol 1, 4, 5-
triphosphate receptor 1 (IP3R1) provided by Dr. Irina Serysheva,
obtained using the older Gatan 4 k � 4 k CCD camera (Ludtke
et al., 2011). The 3D reconstruction obtained from this dataset is
available on EMDB as EMDB-5278. The dataset consists of 37,382
images of size 256 � 256 pixels with a pixel size of 1:81 Å. Using
20 cores, calculating the Fourier Bessel coefficients took 429 s
while covariance estimation and Wiener filtering together took
589 s. The result is shown in Fig. 7. CWF retains 290 eigenvalues
of R.

3.6. Experimental dataset – 70S ribosome

We apply CWF to an experimental dataset of the 70S ribosome
provided by Dr. Joachim Frank’s group (Agirrezabala et al., 2012).
This heterogeneous dataset consists of 216,517 images of size
250� 250 pixels with a pixel size of 1:5 Å, obtained using the older
TVIPS TEMCAM-F415 (4 k � 4 k) CCD detector. The 3D reconstruc-
tion obtained from this dataset is available on EMDB as EMDB-
5360. Using 20 cores, calculating the Fourier Bessel coefficients
took 1174 s while covariance estimation and Wiener filtering
together took 113 s. The result is shown in Fig. 8. CWF retains
219 eigenvalues of R.
additive colored Gaussian noise, prepared from EMDB-6454, the P. falciparum 80S



Fig. 5. Denoising an experimental dataset of TRPV1 (Liao et al., 2013): Here we show, for three images in the dataset, the raw image, the closest true projection image
generated from the 3D reconstruction of the molecule (EMDB 5778), the denoised image obtained using TWF, and the denoised image obtained using CWF. In this
experiment, 35,645 images of size 256 � 256 belonging to 935 defocus groups were used. The amplitude contrast is 10%, the spherical aberration is 2 mm, and the voltage is
300 kV.

Fig. 6. Denoising an experimental dataset of the 80S ribosome (Wong et al., 2014): Here we show, for three images in the dataset, the raw image, the closest true projection
image generated from the 3D reconstruction of the molecule (EMDB 2660), the denoised image obtained using TWF, and the denoised image obtained using CWF. In this
experiment, the first 30000 images out of the 105,247 images in the dataset were used for covariance estimation. The images are of size 360 � 360 and belong to 290 defocus
groups. The amplitude contrast is 10%, the spherical aberration is 2 mm, and the voltage is 300 kV.
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Fig. 7. Denoising an experimental dataset of IP3R1 (Ludtke et al., 2011): Here we show, for three images in the dataset, the raw image, the closest true projection image
generated from the 3D reconstruction of the molecule (EMDB 5278), the denoised image obtained using TWF, and the denoised image obtained using CWF. In this
experiment, 37,382 images of size 256� 256 belonging to 851 defocus groups were used. The amplitude contrast is 15%, the spherical aberration is 2 mm, and the voltage is
200 kV.

Fig. 8. Denoising an experimental dataset of 70S (Agirrezabala et al., 2012): Here we show, for three images in the dataset, the raw image, the closest true projection image
generated from the 3D reconstruction of the molecule (EMDB 5360), the denoised image obtained using TWF, and the denoised image obtained using CWF. In this
experiment, the first 99,979 images out of the 216,517 images in the dataset were used for covariance estimation. The images are of size 250 � 250 and belong to 38 defocus
groups. The amplitude contrast is 10%, the spherical aberration is 2.26 mm, and the voltage is 300 kV.
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Fig. 9. (a) Raw images: A sample of synthetic data generated using EMDB-6454 with additive colored Gaussian noise at SNR = 1/20. 10% of the projection images are replaced
by pure noise. The contrast parameter a ranges from 0.75 to 1.5. The outliers are shown in the last column. Inset in a yellow box is the contrast of each image. (b) Denoised
images: The denoised images using CWF. Notice the low contrast outliers in the last column. (c) Estimated mean image. (d) Top 6 eigenimages: Inset in a yellow box is the
corresponding eigenvalue.
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3.7. Outlier detection

In the cryo-EM pipeline, a significant amount of time is spent on
discarding outliers by visual inspection after the particle picking
step. CWF provides an automatic way to classify picked particles
into ‘‘good” particles and outliers. The classifier uses the contrast
of a denoised image to determine if it is an outlier.

The specimen particles can be at various depths in the ice layer
at the time of imaging, so the acquired projection images can have
different contrasts. The contrast can be modeled as an additional
scalar parameter a for each acquired noisy projection image as in
Eq. (19), typically as a uniformly distributed random variable
spread about its mean at 1.

Yi ¼ aiAiXi þ ni; i ¼ 1;2; . . . ; n: ð19Þ
We absorb the contrast a into X and estimate aiXi in this case,

using the same procedure as before. We perform an experiment
with synthetic data generated using EMDB-6454 with additive col-
ored Gaussian noise at SNR = 1/20, and a 2 ½0:75;1:5�. 10% of the
projection images are replaced by ‘‘outliers”, that is, pure noise
images containing no signal. Fig. 9c shows the estimated mean
image l, and Fig. 9d shows the top 6 principal components of

the estimated covariance R̂, also known as eigenimages. Fig. 9a
and b show a sample of raw and denoised images respectively.
High contrast images enjoy a higher SNR and are thus of interest
for subsequent steps of the pipeline. On the other hand, outlier
images, which typically have low contrast after denoising, can be
automatically detected by a linear classifier after CWF and dis-
carded from the dataset. In the experiment shown in Fig. 9a and
b, a classifier with a threshold of 0.95 for the contrast discards
95% of the outliers, while 3% of the inliers are also discarded in
the process.

One can also use a different classifier based on features like the
relative energy of the image before and after denoising, etc.
However, outliers that look like particles, for example, images
belonging to a different class of a heterogeneous dataset which
act as ‘‘contaminants”, are difficult to detect using this method.

4. Conclusion

In this paper we presented a new approach for image restora-
tion of cryo-EM images, CWF, whose main algorithmic components
are covariance estimation and deconvolution using Wiener filter-
ing. CWF performs both CTF correction, by correcting the Fourier
phases and amplitudes of the images, as well as denoising, by elim-
inating the noise thereby improving the SNR of the resulting
images. In particular, since CWF applies Wiener filtering in the
data-dependent basis of principal components (‘‘eigenimages”),
while TWF applies Wiener filtering in the data-independent Four-
ier basis, we see in numerical experiments that CWF performs bet-
ter than TWF, and considerably better at high noise levels. We
demonstrated the ability of CWF to restore images for several
experimental datasets, acquired with both CCD detectors and the
state-of-the-art direct electron detectors.

Due to the high noise level typical in cryo-EM images, 2D clas-
sification is performed before estimating a 3D ab initio model.
Class averages enjoy a higher SNR and are used to estimate viewing
angles and obtain an initial model. For future work, it remains to be
seen whether the resulting denoised images from CWF can be
directly used to estimate viewing angles, without performing clas-
sification and averaging. Another possible future direction is inte-
gration of CWF into existing 2D class averaging procedures in
order to improve their performance.
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