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Maximum entropy formulation of the Kirkwood superposition approximation
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Using a variational formulation, we derive the Kirkwood superposition approximation for systems
at equilibrium in the thermodynamic limit. We define the entropy of the triplet correlation function
and show that the Kirkwood closure brings the entropy to its maximal value. This approach leads
to a different interpretation for the Kirkwood closure relation, usually explained by probabilistic
considerations of dependence and independence of particles. The Kirkwood closure is generalized
to finite volume systems at equilibrium by computing the pair correlation function in finite domains.
Closure relations for high order correlation functions are also found using a variational approach. In
particular, maximizing the entropy of quadruplets leads to the high order clogyrg

= 9128912491349 234/[ 912913914023024934] USed in the Born-Green-Yvon 2 equations which are a pair

of integral equations for the triplet and pair correlation functions2@4 American Institute of
Physics. [DOI: 10.1063/1.1776552

I. INTRODUCTION viously, each choice of closure relation results in a different
) ) o approximate solution for the pair function. The BBGKY

_ The pair correlgtlon fu_nct_lon_és one of the Comersu_)nesequation(with or without the SA has a great advantage over

in the theory of simple “qu'dé'_ Many thermodynamic 5y other approach. For hard spheres it predicts a point

properties of the fluid can be derived from the pair f“”Ct'O”'wheredp/dp =0, and hence it predicts solidification. Nei-

There are two main approaches to finding the pair functiony,o the PY or HNC theories can do this and so one expects

The first approach is based on the Ornstein-Zernike integra},o gggky approach to be superior at high densities, which

equation and a closure relation for the direct and indirecig harticularly important in applications to protein and chan-
correlation functions. Many closure relations fall into this o biology?

category, such as the Percus-Yevick approximatiy), the Rice et al’*improved the Kirkwood SA for systems

hypernetted chain approximatiotHNC), and the mean o harq spheres and Lennard-Jones 6-12 potential. M&eron
spherical approximatioMSA). The second approach relies 54 sajpetdf proposed a formal expression for the triplet
on the Bogoliubov-Born-Green-Kirkwood-Yvo(BBGKY) correlation function in the form

hierarchy, which relates theth correlation function with the

(n+1)th correlation function, and assumes a closure relation  g5(x;,X5,X3) = g2(X1,X2)92(X1,X3)g2(X5,X3)

that connects them. The Kirkwood superposition, which ap-

proximates the triplet correlation function by the product of XexpL7(Xy,X2,X3,p) ], @

the three pair correlation functiona € 2) where 7(Xg X, Xg,p) =S5 1p"8n+ 5(X1,%0,%3). The coeffi-

93(X1,X2,X3) = Go(X1,X2) 9o X1, X3) G X, X3) cients&n+3(x1,x2i’%<3) consist of simple 123-irreducible dia-
i . grams. Rowlinsorl evaluated analytically the terdy for a
[see also Eq(42)], was the first suggested closure of this system of hard spheres. RI&é* evaluated the ternds nu-

kind.”® Approximating the quadruplet correlation function merically and showed that the Padgpproximation 7
by thg tr?plet correlation fu_nctionr(=3) using the F_isher- ~ pd4/(1—péds) gives a better fit to the computer simula-
Kopeliovich closuré equation (43) tuned out to yield @ (o of the hard-sphere system than the Kirkwood SA. How-

much better approximation for the pair correlation functiong,er Ree proved that this improvement to the Kirkwood SA
than the Kirkwood superposition approximatiéBA), as s inferior to the high order closure relation of Refs. 10 and

10,11 H H
noted by Reet al. ™" However, truncating the BBGKY hi- 11 pecause the latter takes into account all the diagrams of
erarchy at a higher leven&4) is computationally imprac-  gets 13 and 14 and more. Hat alX® showed that the inte-
tical at the moment. gral closure relationsPY, HNC, and MSA can be obtained

Both approaches and the underlying closure relationg.om the Kirkwood SA using another approximation.
have their own advantages and disadvantages. Their success |, this paper we derive the Kirkwood SA from a varia-

is of_ten evaluated in comparison yvith e_ither molecular dy-onal (Euler-Lagrangk formulation. We define an entropy
namics(MD) or Monte Carlo(MC) simulations. All closures  ¢,nctional for the triplet correlation function, and show that

succeed in the limit ofvery) low density. However, when i 5144y ces the Kirkwood closure in the thermodynamic limit
the density is increased they eventually fail, sooner or latefys humber of particles and volume taken to infinity, while

Choosing the “best” closure relation is an art in itself. Ob- keeping the number density constant, il,, V—o, N/V

=p. The triplet entropy functional is different from the
3Electronic mail: amits@post.tau.ac.il physical entropy of the fulN-particle system. Maximizing
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the triplet entropy functional, given the constraint that thetical mechanics of fluids. This means a relationship between
pair correlation function is the marginal of the triplet corre- p,(Xy,X5) andps(X;,X»,X3) can be expressed in the form of
lation function, yields the SA. the constraints

This maximum entropy formulation leads to a different
closure for a finite volume system which we write as an
integral equation. In the thermodynamic limit, the solution of
this integral equation reduces to the Kirkwood SA. We de-
scribe an iterative procedure for solving the BBGKY equa-
tion with this generzlized entropy closu?e. ) Pa(Ps)= Jng(xl,xz,xg)dxz P2(X1.%g) =0, ®

Using this entropy closure instead of the Kirkwood SA
produces different pair correlation functions. The entropy
closure can be used to calculate the pair function in confined
geometries. Specifically, we can deduce the resulting pair
function near the domain wallboundariel and compare it An approximate closure relation can be found by solving the
to MC or MD simulations, and to the results of the original OPtimization problem of maximizing the triplet entropy func-

h1(p3)= prS(Xl 1X2,X3) X1 — Pa(X2,X3) =0,

b3(p3)= fﬂps(xl 1X2,X3)dX3— Pa(Xq,Xz) =0.

Kirkwood closure. tional
The present attempt to find the pair correlation function
using a variational formulation is not new. RichardStised H(p3)=— f P3(X1,X2,X3)
QxOx0

a maximum entropyminimum Helmholtz free energyargu-
ment to obtain an equation for the pair correlation function.
That variational approach consists in maximizing the entropy
while assuming an approximate relatiéclosure between under the constrainte3). Note thatH(p3) differs from the
the pair and triplet function, and resulted in an integral equaphysical entropy of the fulN-particle system

tion which differs from the Born-Green-YvofBGY) equa-

tion. On the other hand, the variational approach applied in H=H(pn)

X Inp3(Xq,Xz,X3)dX;dX,0X3, 4

this paper assumes that the BGY equation is exact, and maxi-

mizes the triplet entropy under the constraint that the pair I—J Pn(X1, Xz, Xn)

correlation function is the marginal of the triplet function. o

This approach leads to a closure for the BGY equation. The XIn pn(Xg,Xa, « .- Xn)dXdXpe - -dXy,

resulting closure coincides with the Kirkwood SA for the ) o

radial  function. Mathematically, the approach of Wherepy(xy,X;,...Xy) is the Boltzmann distribution. The
Richardsof® consists in solving a variational problem with- motivation for maximizing the triplet entropy in finding a
out imposing constraints, while the current proposed variaclosure relation is that the Boltzmann distribution brings the

tional formulation includes constraints and is thereforePhysical entropy to @ maximum. Thus, maximizififps)
solved by the method of Lagrange multipliers. instead ofH introduces errors and is expected to be an ap-

The definition of then-particle entropy (=n=<N) is proximation to the closure problem. This issue will be further
similar to the definition of the triplet entropy functional. The discussed in Sec. IV. The notation triplet entropy ¥ofps)
N-particle entropy coincides with the physical entropy andof Ed. (4) is in agreement with the definition of the Shannon
its maximization yields the Boltzmann distribution, as ex-entropy of three random variables in information the@ge,
pected. High order closure relations are obtained by maxi€-9- Ref. 20
mizing then-particle entropy. In particular, maximizing the This variational problem can be solved by the method of
quadruplets entropy leads to the Fisher-Kopeliovich cldsurelagrange multipliers. Thus, we define Lagrange multipliers
and the corresponding BGY2 equatin! that has been M1(X2:Xs), Aa(X1,X3), A3(X1,%2) and the functional
shown to give a very good fit to experimental data. F

(P3.A1,A2,N3)

=H+N 11+ Moot N33
II. MAXIMUM ENTROPY

- _ X1,X2,X3)IN P3(Xq1,X5,X3)dX,dX,dX
We consider a finite domaifh C RS. Suppose,(Xq,X) Jﬂxﬂxﬂps( 1% 26N Palxa Xz ) ety

is a known symmetric probability distribution functigpdf)

+N1(X2 ,Xg)( jﬂp3(xl 1X2,X3) dX1 = P2(Xp ,Xg))
f P2(Xq,Xp)dXdX,=1,
ax0

+No(Xg,X )( (Xq,X2,X3)dXo— Pa(Xq ,X ))
P2(X1,X2) =Pa(X2,Xy1), ) 271,73 j0p3 1,X2,X3)UXy = Pa(X1,X3

P2(X1,%2) =0, +A3(Xq =X2)( f0p3(xl X2,X3)dX3— P2(Xy ,Xz)) -
wherep,(Xy,X,) represents the joint pdf of finding two par-
ticles at locationx; andx,, as usually defined in the statis- The Euler-Lagrange equation is
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—In p3(X3,X2,X3) — L+ N1 (X2,X3) + N p(Xq,X3)

+)\3(X1,X2):O (5)
or equivalently
P3(X1,X2,X3) = ¥1(X2,X3) ¥2(X1,X3) ¥3(X1,X2) (6)

where
,yl(xz ,X3) — e)\l(xz ,X3)71/3,

’}’2(X1 ,X3) — e)\z(xl ,X3)—1/3’

Y3(Xq,Xp) =300 X2 7113,

Clearly, ;=0 (i=1,2,3), and therefor@;=0. Moreover,
v1= o= 7Y3 becausep, is symmetric. Settingy=y,=1v,
= y3 we find that

P3(X1,X2,X3) = ¥(X1,X2) Y(X2,X3) ¥(X1,X3) - (7)

The constraint thap, is the marginal op; gives an equation
for 1y,

P2(X1,Xz) = y(X1,Xz) jﬂ Y(X1,X3) ¥Y(X2,X3) dX3. (8)

The symmetry ofp, [Eq. (2)] implies that ofy,

(X1, X2) = ¥(X2,Xq1).

If Eq. (8) has a unique solution, them, determinessy.
However, the pdp, is unknown. We know thap, satisfies
the BBGKY equation,

0="feudX1) P2(X1,X2) +F(Xz,X1) P2(X1,X2)
—kgTVy Pa(X1,X2) +(N—2)

Xfﬂf(xsyxl)m(xl.xz,Xs)dxa,

wheref(x,,x;) is the force exerted on a particle locateckat
by another particle located a&p; andf.,(X;) is an external
force field acting on a particle locatedxgt. Substituting the
maximum entropy closur€’) into the BBGKY equatior(9),
together with the integral equatidB), produces a system of
integral equations fop, and y,

0="feudX1) P2(X1,X2) +F(Xz,X1) P2(X1,X2)
—kgTVy Pa(X1,X2) +(N—2)

Xfﬂf(xs:Xl)Y(Xl:X2)7(X2,X3))’(X1,X3)dx3a

P2(X1,X2) = ¥(X1,X2) fﬂ Y(X1,X3) ¥(X2,X3) dX3. 9

To determine the pair correlation functigry, we need to
solve the systen).

IIl. TWO EXAMPLES

The system(9) can be solved or simplified in the case
that the particles interact only with the external field and in

the thermodynamic limit.

Kirkwood superposition approximation 3659

A. Noninteracting particles in an external field

Noninteracting particles in an external field are de-
scribed byf=0 and the systen®) is reduced to

0=fex(X1)P2(X1,X2) —KgTVy Pa(X1,X2), (10)

P2(X1,X2) = ¥(X1,X2) L} Y(X1,X3) ¥(X2,X3)dX3. (11

Equation(10) can be integrated to yield

Pa(Xq,Xp) =€ Velx)/keTh(x,), (12)

wherefg(x1)=— Vxluex(xl), andh(x,) is an arbitrary func-

tion (the integration constantThe symmetry conditiori2)
gives

pz()(l,xz):C_]-e_[Uex(xl)'*'UeX(XZ)]/kBT7 (13)

where C=[ [ e~ Ye®'k8Tdx]? is a normalization constant.
As expected, we find that;,x, are independent random
variables,p,(X1,%X5) = p1(X1) p1(X2). In this case, the solu-
tion to Eq.(11) is given by

Y(X1,%2) = VP2(X1,X2) = VP1(X) VP1(X2). (14

Indeed,

Y(X1,X2) fQV(XlaX3)7(X2aX3)dX3

= \/pl(xl)pl(xz) fﬂ \/Pl(xl) P1(X3) \/pl(xz)pl(xs)dxs

=P1(X1)P1(X2) fﬂpl(x3)dx3= P2(X1,X2).

B. The thermodynamic limit

The thermodynamic limit is described by the following
limiting process in which the domain is gradually enlarged to
be all spacef)— R3, keeping the ratio between the number
of particles,N, and the volume of the domaik,=|(}|, con-
stant. The ratidN/V=p is the number density. In this limit-
ing process, all the pdfs tend to zero, because the volume of
the domain tends to infinity, and the pdfs are normalized with
respect to that volume. It is therefore more convenient to
work with number densities, such aswhich are normalized
with respect to a fixed volume, e.g., 1 €nand do not vanish
in the limiting process.

First, we consider a bounded domdC R3. The pre-
vious example of noninteracting particles suggests the defi-
nition

Y(X1,X2)
VP1(X1)P1(X2) ,

which transforms Eq(11) into

O(X1,Xq) = (15

Pa(X1.X2)
m—ﬂxlixz) fgpl(xs)5(X1,X3)5(X2'X3)d><3-
(16)

We rewrite Eq.(16) as
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D(ZQ)(Xl,Xz) ciple is also applicable to systems out of equilibriéin;
O (DR therefore, Kirkwood’s SA can be generalized to systems out
P17 (X1)P1 ' (X2)

of equilibrium. In the following section we give further mo-
tivation for its use.

=8 (xy,%,) fﬂ i (x3) 8V (X1, X3) 8D(%, X3) X3,
(17

where p(zm(xl,xz)=p2(xl,x2), 8N (X1, %) = (X1, %),
p{?(x;)=pi(x;), to emphasize their dependency on the
specific domair(). We set

IV. MINIMUM HELMHOLTZ FREE ENERGY
Elementary textbooks in statistical mechanics mention
that the Boltzmann distribution,

. p(zm(xl,xz)
92(Xg,%) = lim

. 18
PP () 18

1
pN(Xlr---aXN): Z_Ne—U(xl ..... xN)/kBT, (24)

For example, if the two particles become independent whehyrings the Helmholtz free energy,

they are separated,
Q) Q) ) F(p)=U(p)—kgTH(p)
P37 (X1, X2) =P1 (X1)P1 " (X)[1+0(1)]

for |x;—x,/>1, (19 :JQNU(Xl""’XN)p(Xl----,XN)er"dXN
then Iimleﬂxgz(xl 1X2) =1
Next, we show that under the assumptid®) +kBTfQNp(x1,___,xN)|n P(Xy,... Xn)dXq *-dXy
lim M (xy,%0) =0x(Xq,Xp). 25
Q—R3
to its minimum under the normalization constraint
Indeed,

J’ (%) P2(X1,X3)  Pa(X2,X3) dx fNp(xl,...,xN)dxl---de=1. (26)
Qpl 3 P1(X1)P1(X3) P1(X2)P1(X3) 3 °

For a pairwise additive potential together with an external
=fﬂpl(xs)[1+o(1)]dx3=1+o(1). (20  field force
N
Taking the limit Q—R2, the o(1) term vanishes, and Eq. U(Xl’---vXN):1<i<Ej<N U(x; ,Xj)+j§_:1 Ue(Xj), (27
(17) gives S N

O(X1,X2) =02(X1,X2), (21)

as asserted.
We interpret Eq(21) as the Kirkwood SA. Equation§)
and (15) imply that the triplet pdf satisfies

the potential energy teritd (p) of the Helmholtz free energy
(25) takes the simple form

N
U(p)=j N( E U(Xi,Xj)+2 Ued(X))
QN 1<i<j=sN j=1

p(3m(X1,X2,X3) Xp(Xl,...,XN)dxl”'dXN
pi" (x1)pi™ )L (%a) N(N—1)
= 5% %) 8D (X1 X3) 8D (X, ,Xs). 22) ZTfQZU(Xl1X2)p2(X1aX2)XmdX2

Taking the limitQ— R® and using Eq(21), we obtain
+ NJ’QUex(Xl)pl(Xl)dxlv

03(Xy,X2,%3) = lim PV (%1% Xs)
e e PO P ) P ) where

=02(X1,%2)92(X1,X3)92(X2,X3), (23

which is the Kirkwood closure relation for the triplet corre-

lation function. Usually, the motivation for using the Kirk-

wood SA is a probabilistic consideration of dependency and ~ P1(X1)= prZ(leXZ)dXZ

independency of particlégsee also Sec. V Here we find

another interpretation for the Kirkwood closure. are the marginal densities. If the polf(x,,X,) is assumed to
The Kirkwood closure is théonly) closure relation that be known, as in Sec. Il, then the energy term of the Helm-

brings the entropy of triplets of particles to its maximum holtz free energyJ(p) is also known. Therefore, minimizing

value. The principle of maximum entropy is a well known the Helmholtz free energy, under the assumption that the pdf

principle in statistical mechanics, in testing statisticalp,(X;,X,) is known, is equivalent to maximizing the entropy,

hypothese$??and beyond®?*The maximum entropy prin- sinceU(p) is constant during the minimizing process.

pz(lexz):f Nisz(Xla---yXN)dxl'"dXNa
Q
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O GD Multiplying by 1= p,(X;,X3)/p1(X1) p1(X3) we obtain

 Pa(X1,X2) P2(X2,X3) Pa(Xy,X3)
Pa(X1. Xz Xs) = P1(X1)P1(X2) P1(X3) ' 32

(@) (b) which is the Kirkwood SA. We see that the Kirkwood clo-

sure is a good approximation when at least two particles are
GXD sufficiently far apart and independent. However, it fails when
all three particles are close to each other.
Next, we find then-level Kirkwood closure relation for
© (@ the (n+1)-particle pdf in terms of the-particle pdf using

FIG. 1. Four configurations of three particlég) no intersections(b) one probabilistic considerations.
intersection(c) two intersections(d) three intersections. Proposition The n-level Kirkwood closure relation is given

by
V. PROBABILISTIC INTERPRETATION (X1,X X,)
OF THE KIRKWOOD CLOSURE Pn{X1: X2, Xn
n—-1
The Kirkwood SA(23). was the first closgre relzlitio.n to _ H DX Xiree s X )(71)"—1—k_ (33)
be suggestddand testefiin the theory of simple liquids. K=1 1=ip<iy<:-<iy=n 12 k

This fact might be explained by its simplicity and its intui-
tive origin. In this section we give a probabilistic interpreta- proof. We have already seen that the approximation holds for
tion of the Kirkwood SA, and find its generalization for clo- n=2,3. Assuming, by induction, that at least two particles
sure relations of higher orders of the BBGKY hierarchy. Thegre sufﬁcienﬂy far apart and independent’ we can assume
problem at leveh (n=2) is to find an approximation for the without loss of generality that particles 1 andre far apart,
(n+1)-particle pdf in terms of the-particle pdf. For ex- and independentx;—x,|>d. Using Bayes’ law, we find
ample, the Kirkwood SA23) closes the hierarchy at level that
n=2. High order closures are much more accurate, fitting
better the experimental and simulat@®dC or MD) datal®!
. . . . pn(X1!X21"'!Xn)
However, the computational complexity increases drastically
with n, making the truncation at level=4 impractical at =Pn-1(X1,X2, -« Xn— 1) Pn(Xn| X1, X2 4 o Xn—1)-
the moment.

First, consider the case=2. We assume that particles Because particles 1 amdare sufficiently far apart it follows
become independent as they are separdt8d although we  that
are certainly aware that long range forces such as the electric
field can pr(_)duce strong correlations over all Qf BVEN AVEIY (% IX: Xo,... Xn—1) = Pro1(Xn|Xo,Xa1+. Xn_1)
large domain, as already noted by Kirkwood in his original

paper’ In order to make the exact equalit¥9) into an ap- ~ Pn-1(X2,X3, ... Xn)
proﬁr?hatiton, we assume that there exists a distashcd C Pno2(X2, Xz, Xn_1)
such tha

P2(X1,X3) = P1(X1) P1(X2) (289  Hence,

for |[x,—X,|>d. Three interchangeable particles can be in

four different configurations with respect to the distange Pn(X1, Xz, Xn)

depending on the number of intersectidese Fig. 1 In all Pr—1(X1, X2, Xn—1)Pn_1(X2,X3,- .. Xp)
configurations but configurationd], where all three par- = P 2(Xp Xar e X 1)

ticles intersect, there are at least two particles that do not B
intersect. Since the particles are interchangeable we may
sume thafx; —x;|>d. Applying Bayes’ law we have

(34

aﬁ_follows from the induction assumption that for eveyy
=2,3,..,n—1, with particles 1 anch far apart, we have

Pa(X1,%2,X3) = Pa(Xa|Xq ,X2) P2(X1,%2) - (29
By the independence assumptit8) we have 1=pPn_1(Xg,e oo Xj—1:Xj4100-4%n)
P3(Xa]X1,X2) = Pa(Xg|X,). (30 n? -1k
X Pr(Xi X e ) :
Therefore, K=1 1<iy<ip < <ig=n, i|#]j v K
P3(X1,X2,X3) = Pa(X3|X2) P2(X1,X2) (35
= pZ(X—Z’X3)p2(X1 X,). (31) Multiplying Egs. (34) and(35) (for all j=2,3,..,n—1) ends
P1(X2) ’ the proof. [ |
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Corollary. Forn=4 Kirkwood’s formula becomes

A. Singer

Pa(X1,X2,X3,Xq) =

In the caseQ) =R3, we define

X ): lim pn(X11X21"'1Xn)
o Q_R3 H?zlpl(xj) '
Dividing Eq. (33) by IT]_;p4(x;) gives
Pn(X1,X2, ... Xn)

H?:lpl(xj)

(37

On(X1,X0, ...

n—1
=11
k=1

_q\n—1-k
Pk(Xil,Xizy---,Xik))( b

—
szlpl(xij)

1<ig<ip<---<ig=n

(38)
where we used the combinatorial identity
n—-1 -1
> (E_1)<—1)”-1—k=1. (39)
k=1

Examples are as follows:

(@ n=3 (Kirkwood SA)
93(X1,%2,X3) = G2(X1,X2)g2(X1,X3)G2(X2, X3)

(b) n=4 (Fisher-Kopeliovicf)

P3(X1,X2,X3) P3(X1,X2,Xa) P3(X1,X3,Xa) P3(X2,X3,Xa) P1(X1) P1(X2) P1(X3) P1(Xa)
P2(X1,X2) P2(X1,X3) P2(X1,Xa) P2(X2,X3) P2( X2, X4) P2(X3,X4) '

(36)

Note that thek=1 terms in the product of Eq38) cancel
out, so the product may begin froks 2,

pn(X1!X21"'!Xn)
Hjn:lpl(xj)
_q\yn—1-k
nl:[l Pi(Xi Xy -2 Xi,) v
= Tk A v .
k=2 1<iy<ip<--<iy=n H]-:lpl(xij)

(40)

Taking the limit Q—R® we obtain then-level Kirkwood
closure relation,

< Xp)

Ok(X X0 i) (4
k=2 1<iy<ip<---<iy=n 12 k

(42

93(X1,X2,X3)93(X1,X2,Xa) O3(X1,X3,X4)3(X2,X3,X4)

g4(X11X21X31X4):

VI. HIGH LEVEL ENTROPY CLOSURE

In this section we use the maximum entropy principle to
derive then-level closure relation, and compare the resulting

closure relation with the-level probabilistic Kirkwood clo-
sure of Sec. V. The problem at level(n=2) is to find an
approximation for the ri{+1)-particle pdf in terms of the
n-particle pdf. For example, the Kirkwood S2&3) closes the

hierarchy at leveh=2. We use the principle of maximum
entropy to obtain the closure relation. As in the derivations o

Sec. Il, we assume that tmeparticle pdfp,(X1,X,,....X,) iS
known, and we search for then{1)-particle pdf
Pns1(X1,X2,... X1 1) that maximizes the entropy

H=-— fﬂnﬂpnﬂ(xl,xzv---vXn+1)

XINPp+ (X, X2, Xn 1) AXgAXor X g,

with the n+1 constraints that th@,, are the marginals of
Pn+1,

92(X1,X2)92(X1,X3)92(X1,X4)92(X2,X3) G2(X2,X4) 92(X3,Xg) |

(43

Pr(X1,X0,. . X)) = fﬂpnﬂ(xl,...,xj veeeXne 1) dXj

ji=1,2,..n+1.

Sincep, is the marginal ofp, (n=2), it follows thatp, is

also known. Therefore, for a pairwise additive potential,

maximizing the Helmholtz free energy of the<{ 1)-particle
system is equivalent to minimizing the entropy of the (

f+ 1)-particle system. Introducing the Lagrange multipliers

Nj(Xg, oo Xj— 1, X 4100+ %n41), J=1,2,..,n+1, the Euler-
Lagrange equation gives
n+1
—INpyi1—1+ 2, A;=0. (44)
i=1
Since then particles are interchangeable,
n+1
pn+1(X1,---,Xn+1):jH1 YX1h e X1 X100 Xnt 1)
(45)

Integration with respect t&,, ; yields
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n
ot ) = 0w e) | TT 70X o). (46)
Solving the nonlinear integral equatiof6) for y and substituting in Eq45) gives then-level closure relation of tha-level

BBGKY hierarchy equation fop,,

n

0=fexdX1)Pn(X1, Xz, .- Xn) + ]:22 f(X} 1 X1)Pn(X1: X2, .. Xn) —KgT Vi Pn(X1, X, ... Xp) +(N—n)

Xfnf(xn+1!xl)pn+l(xllx21---!Xn+l)dxn+1- (47)

A. The thermodynamic limit

We have seen in Sec. Ill that the maximum entropy principle yields the KirkwoodchS#2{ in the thermodynamic limit.
In this section we show that in the thermodynamic limit, the maximum entropy principle results in the probabilistic Kirkwood
closure(33) for all levelsn=2.

First, we consider a bounded domd&¥C R3. We set

P (X1 Xz -+ Xn)

h{D(x1,%;,... Xp) = I (48)
3 ) ¥ _ Q _\n—1-Kk
HE:%H1<i1<i2<-~<ik<np(k )(Xil,xizy---,xik)( 1
and
(1)
Y (X1, Xp,- - Xn)
5(0)(X1,X2,...,Xn): n—1—-k . (49)
T2 i i yeenoiy=nPE (X X g )1 (RN
Dividing Eq. (46) by I1{_ {111 i ...<i, =aP{ (X, Xi,0. i) D" we obtain
n
D0 0 )= D0 X ) [ O X e T 001 K20 (50
where
n-2
Q _a\n—1-Kn_ 1,
F(XlaXZv---aXnaXn+1):l1_[11 i<i1;[ . p(k )(Xil,xiz,...,xik)( b (k1)
=1 1siy<ip<-<Iys
n—1
_q\n—1—k/,_
<11 I1 LV (X X XX )T TR, (51)

k=1 1<iy<ip<---<ig_q1=n

For minléjénlxnﬂ—xj|>1, the (0+1)-th particle becomes independent of particles.1,2), and we have

LV X XXt 1) = P (X )PP (XX X[ 1+0(1)],

for all k=1,2,..,n and all sets of indices<i,<i,<---<i,_1=n. Therefore, to leading order in (m_igjgnlxnﬂ—xj|)‘1

n—-2
F(X0 Xz X Xn 1) = [ I %, x )Y
K=1 1<iy<i < --<ig=n 12 k
n—-1
XH H p(k(*l)l(xl 1Xi 1---1Xi )(7l)n717k(n7k)
k=1 1<iq<i, < <ig_i=n 12 k=1
n—-1
OL T e
k=1 1<i;<ip,<--<ig_qy=<n
n—-1
_a\n—1-K/p_
=11 11 ST

k=1 1<iy<ip<---<ig_q1=n

n-1, —1-=K/n_ (N
=[PP (s 1) B DTG = D (x|, (52
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where we have used the combinatorial identity
n—-1 n
> (—1>“—1—k<n—k>(k_1)=1. (53
k=1
We conclude that

hﬁm(xl Xo b e Xn)

= 8D(X1,Xa, ... Xn) fﬂp&m(xm)mo(l)]

n
o
XHl SV (X X1 X4 10w Xns 1) DX g -
=

Therefore,
lim 6 (xy,%p,... %) = lim h{®(x;,%,,...
Q-R3 Q-R3

Substituting Eq(49) in Eq. (45), using the relation$48) and
(54), and the definition(37), we find that

Xn). (54)

A. Singer

1
P 1(Xg,eee Xno1) = Z_jne_U(Xl ----- XN)/kBTdXN . (58

N

which is both the exact and “approximate” result.

The probabilistic Kirkwood approximatiof33) gives,
however, a different result. If it were to be exact, then the
resulting (N— 1)-particle pdf would have been given by Eq.
(58). Therefore, all lower level pdf'p, (n=<N-1) would
be (multiple) integrals of the Boltzmann distribution. There-
fore, by the closuré33), py should be a product of integrals
of the Boltzmann distribution, which is a contradiction to the
known form of the Boltzmann distributio(24).

Although the maximum entropy closure is exact at the
highest ordem=N-—1, it is not exact at lower orders. The
observation that the maximum entropy closure is exact at the
highest level, while the probabilistic Kirkwood closure is
not, may indicate that the maximum entropy closure may fit
the experimental data better than the probabilistic Kirkwood
closure does in confined systems, even when used at lower

levels (h=2,3).

gn+1(X1 IR vXn+l)

n
=11
k=2

We observe that for systems in the entire space, the probabi- Systems in bounded domains are particularly important
listic Kirkwood closure(41) agrees with the maximum en- because only bounded domains can include the spatially non-
tropy closure(55) for all ordersn. uniform boundary conditions needed to describe devices,
with spatially distinct inputs, outputs, angsometimes
power supplies. A large fraction of electrochemistry involves
Although the probabilistic Kirkwood closure and the sych devices as batteries or concentration cells. A large frac-
maximum entropy closure agree in the case of systems in thgon of molecular biology involves such devices as transport
entire space, they differ in the case of confined systems withroteins that move ions across otherwise impermeable
a finite number of particleBl. It appears that the maximum membrane®2’
entropy closuré45) is exact in a confined system when ap-  |n the general case, whefeC R® is a bounded domain,
plied at the highest level=N—1, whereas the probabilistic there is no known analytic solution to the systé@). We

Kirkwood closure(33) is not exact. In other words, the maxi- propose to solve this system by the following iterative
mum entropy closure relation yields the Boltzmann distribu-scheme:

tion (24). What appeared at first to be an approximation turns

. iti (0) i=
out to be the exact result. Indeed, setting (1) Initial guessy™(x, ,x;). Seti=0.
(2) Solve the nonhomogeneous
y(xl!XZI'--!XN—l)

p(zi)(xl,xz)
:(i)lmex _ 1 U X)) kBTVxlp(zi)(lexz)_f(Xz,Xl)p(zi)(xlaxz)_fei(xl)p(zi)(xl,xz)
Zy N—21<i=n-1 !
N-1
/kBTJ, (56)

1
+ m j§=:1 UEX(XJ')

oy (=K
G(Xi ) Xipr- i) - (59 | CONFINED SYSTEMS

1<ig<ip,< - <ig=n+1

B. Closure at the highest level n=N-—1

linear equation for

=(N-2) Jﬂf(xs X1) YD (g, %) Y (%o, X3)

X Y0(xq,X3) A

we see that clearly, (3) Solve the nonlinear system faf'*1)

p(zi)(xlaxz): ‘}’(Hl)(xl,xz)

(57)
which is the Boltzmann distribution. The Boltzmann distri-

bution obviously satisfies the BBGKY equatiofi7). There-
fore, we have found a solution to BBGKY equation which

satisfies the closure relatio5). This solution coinCides The analysis of the preceding section indicates that a good
with the Boltzmann distribution, and so we conclude that it isjyjtja| guess might be

the exact solution. For theN(—1)-particle pdfpy_; we
YOX1,%2) = VP1(X1) P1(X2) (X1 ,X2), (60)

have
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whereg,(X;,X5,) is the solution to the BBGKY equation with
the Kirkwood SA in the entire spad&. This solution can be

found rather easily using the inherited symmetries of the

problem. For example, it is well known that fif,=0, then
02(X1,X2) =ga(|X;—X,|), and the problem fog, becomes
one dimensional.

Kirkwood superposition approximation 3665

The steps in the algorithm are iterated until convergence is
achieved.

We have yet to test our generalized Kirkwood closure in
practice. The resulting pair correlation function should be
compared with MD or MC simulations of particles in a con-
fined region. The observation of Sec. VI B and the generality

Step 2 requires the solution of a linear partial differentialof the maximum entropy principleninimum Helmholtz free
equation in a bounded region. This equation can be written iknergy may indicate that it will outperform the regular Kirk-

a gradient form as

Vxl[ e[U(Xl X))+ Ue%(xl)]/kBsz(Xl lXZ)]

— N-2 alU(x1.%9) +Ueyx)/kgT
kgT

Xfﬂvxlu(xlaXB)pB(xl1X2ax3)dx3'

The identityVXlx Vxlu(xl) =0, for allu, imposes a solvabil-
ity condition for y. Indeed, taking the curl of the last equa-
tion, together with the closur€) results in

0=V, x elU(xq X2) +Uex(xp) 1/ kT

Xfﬂvxlu(xl,X3)'}’(Xl,Xz)’}’(xl,X3)’)’(X2,X3)dX3

wood SA in bounded domains. The difference between the
results of the two closure methods should be seen near the
boundary walls of the domain.

VIII. MIXTURES

The maximum entropy principle can also be used to find
closure relations of mixtures, both in confined domains and
in the entire space. Suppose a mixtureSef2 species, with
N, (a=1,2,..,S) particles of each species. LeN
=3%_.N, be the total number of particles of all species.
There areS? two-particle pdfs,

P3P(x1, %), a,Be{l,2,...S},

that exhibit the symmetrp5?(x;,%;) = p5*(%2,%;). In this
section we briefly discuss how to find the closure relation in
the mixture problem.

In the maximum entropy approach, one is searching for
S® three-particle pdf92??(x;,%y,X3), @,B,y€{1,2,...S},

In step 3 we solve a nonlinear integral equation. Weypat bring the entropy

suggest solving the nonlinear E@®) by a Newton-Raphson
iterative scheme. Le#™(x,,X,) be thenth iteration. Define
the operatol’™:0%— 0?2 as follows:

rWu(x,z)= J . YW (x,y)u(zy)dy. (62)

Let the operatoB: 02— Q2 be the symmetrization operator,

Sux,y)=u(y,x). (62)
The Newton-Raphson iteration scheme suggests
YO =9+ A(x1,%p), (63)

whereA(Xx4,X,) satisfies the linear integral equation
P2(X1,X2) — p(zn)(xl X2)

0 I
:mA(X11X2)+7 (X1, %) "™ A(Xq,X5)

+ YW (xq,%2) ST MA (X, %,),

where

DS (X4 %) = 7 (x4 %) fﬂy“)(xl,xa (g %) .

(64)
We may write the iteration equivalently as
p(n) -1
YN+ D= (M) 4 ;% + M 4 y(n)sp(n))
X (po—psY). (65)

S

- X

a,B,y=0

NN N,
N N N

X L}pé"ﬁy(xl,xz,xg)ln pé””(X1.X2,X3)dX1ddexs

(66)
to maximum, with the $* marginal constraints
P3P (X1, %) = fﬂpé‘ﬁy(xl,x2,X3)dX3,
pgy(xlyxs):fﬂpgﬁy(xlaxbxa)dxz, (67)

pgy(xz,X3)=fgpé"m(xl,xbxa)dxl-

This variational problem is solved using the Euler-Lagrange
formulation similar to the derivation done in Sec. Il.

In the case of a system in the entire space, the methods
of Secs. Il B and VI A show that the mixture entropy closure
coincides with the probabilistic Kirkwood closure. Both sec-
tions suggest that the triplets correlation functions are related
to the pair correlation function through

ggﬁy(xl,Xz,Xs)=QSB(Xl,Xz)ggy(xl,xa)ggy(xz,xs)
(68)
for a,B,ye{1,2,..,S}. Closures of higher orders can be ob-
tained in a similar manner.
In confined systems, the Euler-Lagrange formulation
leads to integral equations of the for8). Note that since
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