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Using a variational formulation, we derive the Kirkwood superposition approximation for systems
at equilibrium in the thermodynamic limit. We define the entropy of the triplet correlation function
and show that the Kirkwood closure brings the entropy to its maximal value. This approach leads
to a different interpretation for the Kirkwood closure relation, usually explained by probabilistic
considerations of dependence and independence of particles. The Kirkwood closure is generalized
to finite volume systems at equilibrium by computing the pair correlation function in finite domains.
Closure relations for high order correlation functions are also found using a variational approach. In
particular, maximizing the entropy of quadruplets leads to the high order closureg1234

5g123g124g134g234/@g12g13g14g23g24g34# used in the Born-Green-Yvon 2 equations which are a pair
of integral equations for the triplet and pair correlation functions. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1776552#

I. INTRODUCTION

The pair correlation function is one of the cornerstones
in the theory of simple liquids.1–6 Many thermodynamic
properties of the fluid can be derived from the pair function.
There are two main approaches to finding the pair function.
The first approach is based on the Ornstein-Zernike integral
equation and a closure relation for the direct and indirect
correlation functions. Many closure relations fall into this
category, such as the Percus-Yevick approximation~PY!, the
hypernetted chain approximation~HNC!, and the mean
spherical approximation~MSA!. The second approach relies
on the Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY!
hierarchy, which relates thenth correlation function with the
(n11)th correlation function, and assumes a closure relation
that connects them. The Kirkwood superposition, which ap-
proximates the triplet correlation function by the product of
the three pair correlation functions (n52)

g3~x1 ,x2 ,x3!5g2~x1 ,x2!g2~x1 ,x3!g2~x2 ,x3!

@see also Eq.~42!#, was the first suggested closure of this
kind.7,8 Approximating the quadruplet correlation function
by the triplet correlation function (n53) using the Fisher-
Kopeliovich closure9 equation ~43! turned out to yield a
much better approximation for the pair correlation function
than the Kirkwood superposition approximation~SA!, as
noted by Reeet al.10,11 However, truncating the BBGKY hi-
erarchy at a higher level (n>4) is computationally imprac-
tical at the moment.

Both approaches and the underlying closure relations
have their own advantages and disadvantages. Their success
is often evaluated in comparison with either molecular dy-
namics~MD! or Monte Carlo~MC! simulations. All closures
succeed in the limit of~very! low density. However, when
the density is increased they eventually fail, sooner or later.
Choosing the ‘‘best’’ closure relation is an art in itself. Ob-

viously, each choice of closure relation results in a different
approximate solution for the pair function. The BBGKY
equation~with or without the SA! has a great advantage over
any other approach. For hard spheres it predicts a point
wheredp/dr 50, and hence it predicts solidification. Nei-
ther the PY or HNC theories can do this and so one expects
the BBGKY approach to be superior at high densities, which
is particularly important in applications to protein and chan-
nel biology.12

Rice et al.13,14 improved the Kirkwood SA for systems
of hard spheres and Lennard-Jones 6-12 potential. Meeron15

and Salpeter16 proposed a formal expression for the triplet
correlation function in the form

g3~x1 ,x2 ,x3!5g2~x1 ,x2!g2~x1 ,x3!g2~x2 ,x3!

3exp@t~x1 ,x2 ,x3 ,r!#, ~1!

wheret(x1 ,x2 ,x3 ,r)[(n51
` rndn13(x1 ,x2 ,x3). The coeffi-

cientsdn13(x1 ,x2 ,x3) consist of simple 123-irreducible dia-
grams. Rowlinson17 evaluated analytically the termd4 for a
system of hard spheres. Rice13,14 evaluated the termd5 nu-
merically and showed that the Pade´ approximation t
' rd4 /(12rd5) gives a better fit to the computer simula-
tion of the hard-sphere system than the Kirkwood SA. How-
ever, Ree proved that this improvement to the Kirkwood SA
is inferior to the high order closure relation of Refs. 10 and
11, because the latter takes into account all the diagrams of
Refs. 13 and 14 and more. Huet al.18 showed that the inte-
gral closure relations~PY, HNC, and MSA! can be obtained
from the Kirkwood SA using another approximation.

In this paper we derive the Kirkwood SA from a varia-
tional ~Euler-Lagrange! formulation. We define an entropy
functional for the triplet correlation function, and show that
it produces the Kirkwood closure in the thermodynamic limit
of number of particles and volume taken to infinity, while
keeping the number density constant, i.e.,N, V→`, N/V
5r. The triplet entropy functional is different from the
physical entropy of the fullN-particle system. Maximizinga!Electronic mail: amits@post.tau.ac.il
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the triplet entropy functional, given the constraint that the
pair correlation function is the marginal of the triplet corre-
lation function, yields the SA.

This maximum entropy formulation leads to a different
closure for a finite volume system which we write as an
integral equation. In the thermodynamic limit, the solution of
this integral equation reduces to the Kirkwood SA. We de-
scribe an iterative procedure for solving the BBGKY equa-
tion with this generalized entropy closure.

Using this entropy closure instead of the Kirkwood SA
produces different pair correlation functions. The entropy
closure can be used to calculate the pair function in confined
geometries. Specifically, we can deduce the resulting pair
function near the domain walls~boundaries!, and compare it
to MC or MD simulations, and to the results of the original
Kirkwood closure.

The present attempt to find the pair correlation function
using a variational formulation is not new. Richardson19 used
a maximum entropy~minimum Helmholtz free energy! argu-
ment to obtain an equation for the pair correlation function.
That variational approach consists in maximizing the entropy
while assuming an approximate relation~closure! between
the pair and triplet function, and resulted in an integral equa-
tion which differs from the Born-Green-Yvon~BGY! equa-
tion. On the other hand, the variational approach applied in
this paper assumes that the BGY equation is exact, and maxi-
mizes the triplet entropy under the constraint that the pair
correlation function is the marginal of the triplet function.
This approach leads to a closure for the BGY equation. The
resulting closure coincides with the Kirkwood SA for the
radial function. Mathematically, the approach of
Richardson19 consists in solving a variational problem with-
out imposing constraints, while the current proposed varia-
tional formulation includes constraints and is therefore
solved by the method of Lagrange multipliers.

The definition of then-particle entropy (3<n<N) is
similar to the definition of the triplet entropy functional. The
N-particle entropy coincides with the physical entropy and
its maximization yields the Boltzmann distribution, as ex-
pected. High order closure relations are obtained by maxi-
mizing then-particle entropy. In particular, maximizing the
quadruplets entropy leads to the Fisher-Kopeliovich closure9

and the corresponding BGY2 equation,10,11 that has been
shown to give a very good fit to experimental data.

II. MAXIMUM ENTROPY

We consider a finite domainV,R3. Supposep2(x1 ,x2)
is a known symmetric probability distribution function~pdf!

E
V3V

p2~x1 ,x2!dx1dx251,

p2~x1 ,x2!5p2~x2 ,x1!, ~2!

p2~x1 ,x2!>0,

wherep2(x1 ,x2) represents the joint pdf of finding two par-
ticles at locationsx1 andx2 , as usually defined in the statis-

tical mechanics of fluids. This means a relationship between
p2(x1 ,x2) andp3(x1 ,x2 ,x3) can be expressed in the form of
the constraints

f1~p3!5E
V

p3~x1 ,x2 ,x3!dx12p2~x2 ,x3!50,

f2~p3!5E
V

p3~x1 ,x2 ,x3!dx22p2~x1 ,x3!50, ~3!

f3~p3!5E
V

p3~x1 ,x2 ,x3!dx32p2~x1 ,x2!50.

An approximate closure relation can be found by solving the
optimization problem of maximizing the triplet entropy func-
tional

H~p3!52E
V3V3V

p3~x1 ,x2 ,x3!

3 ln p3~x1 ,x2 ,x3!dx1dx2dx3 , ~4!

under the constraints~3!. Note thatH(p3) differs from the
physical entropy of the fullN-particle system

H[H~pN!

52E
V

pN~x1 ,x2 ,...,xN!

3 ln pN~x1,x2, . . . ,xN!dx1dx2¯dxN ,

where pN(x1 ,x2 ,...,xN) is the Boltzmann distribution. The
motivation for maximizing the triplet entropy in finding a
closure relation is that the Boltzmann distribution brings the
physical entropy to a maximum. Thus, maximizingH(p3)
instead ofH introduces errors and is expected to be an ap-
proximation to the closure problem. This issue will be further
discussed in Sec. IV. The notation triplet entropy forH(p3)
of Eq. ~4! is in agreement with the definition of the Shannon
entropy of three random variables in information theory~see,
e.g., Ref. 20!.

This variational problem can be solved by the method of
Lagrange multipliers. Thus, we define Lagrange multipliers
l1(x2 ,x3), l2(x1 ,x3), l3(x1 ,x2) and the functional

F~p3 ,l1 ,l2 ,l3!

5H1l1f11l2f21l3f3

52E
V3V3V

p3~x1 ,x2 ,x3!ln p3~x1 ,x2 ,x3!dx1dx2dx3

1l1~x2 ,x3!S E
V

p3~x1 ,x2 ,x3!dx12p2~x2 ,x3! D
1l2~x1 ,x3!S E

V
p3~x1 ,x2 ,x3!dx22p2~x1 ,x3! D

1l3~x1 ,x2!S E
V

p3~x1 ,x2 ,x3!dx32p2~x1 ,x2! D .

The Euler-Lagrange equation is
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2 ln p3~x1,x2,x3!211l1~x2,x3!1l2~x1,x3!

1l3~x1,x2!50 ~5!

or equivalently

p3~x1 ,x2 ,x3!5g1~x2 ,x3!g2~x1 ,x3!g3~x1 ,x2!, ~6!

where

g1~x2 ,x3!5el1(x2 ,x3)21/3,

g2~x1 ,x3!5el2(x1 ,x3)21/3,

g3~x1 ,x2!5el3(x1 ,x2)21/3.

Clearly, g i>0 (i 51,2,3), and thereforep3>0. Moreover,
g15g25g3 becausep2 is symmetric. Settingg5g15g2

5g3 we find that

p3~x1 ,x2 ,x3!5g~x1 ,x2!g~x2 ,x3!g~x1 ,x3!. ~7!

The constraint thatp2 is the marginal ofp3 gives an equation
for g,

p2~x1 ,x2!5g~x1 ,x2!E
V

g~x1 ,x3!g~x2 ,x3!dx3 . ~8!

The symmetry ofp2 @Eq. ~2!# implies that ofg,

g~x1 ,x2!5g~x2 ,x1!.

If Eq. ~8! has a unique solution, thenp2 determinesg.
However, the pdfp2 is unknown. We know thatp2 satisfies
the BBGKY equation,

05fex~x1!p2~x1 ,x2!1f~x2 ,x1!p2~x1 ,x2!

2kBT“x1
p2~x1 ,x2!1~N22!

3E
V

f~x3 ,x1!p3~x1 ,x2 ,x3!dx3 ,

wheref(x2 ,x1) is the force exerted on a particle located atx1

by another particle located atx2 ; and fex(x1) is an external
force field acting on a particle located atx1 . Substituting the
maximum entropy closure~7! into the BBGKY equation~9!,
together with the integral equation~8!, produces a system of
integral equations forp2 andg,

05fex~x1!p2~x1 ,x2!1f~x2 ,x1!p2~x1 ,x2!

2kBT“x1
p2~x1 ,x2!1~N22!

3E
V

f~x3 ,x1!g~x1 ,x2!g~x2 ,x3!g~x1 ,x3!dx3 ,

p2~x1 ,x2!5g~x1 ,x2!E
V

g~x1 ,x3!g~x2 ,x3!dx3 . ~9!

To determine the pair correlation functionp2 , we need to
solve the system~9!.

III. TWO EXAMPLES

The system~9! can be solved or simplified in the case
that the particles interact only with the external field and in
the thermodynamic limit.

A. Noninteracting particles in an external field

Noninteracting particles in an external field are de-
scribed byf[0 and the system~9! is reduced to

05fex~x1!p2~x1 ,x2!2kBT“x1
p2~x1 ,x2!, ~10!

p2~x1 ,x2!5g~x1 ,x2!E
V

g~x1 ,x3!g~x2 ,x3!dx3 . ~11!

Equation~10! can be integrated to yield

p2~x1 ,x2!5e2Uex(x1)/kBTh~x2!, ~12!

wherefex(x1)52“x1
Uex(x1), andh(x2) is an arbitrary func-

tion ~the integration constant!. The symmetry condition~2!
gives

p2~x1 ,x2!5C21e2[Uex(x1)1Uex(x2)]/kBT, ~13!

whereC5@*Ve2Uex(x)/kBTdx#2 is a normalization constant.
As expected, we find thatx1 ,x2 are independent random
variables,p2(x1 ,x2)5p1(x1)p1(x2). In this case, the solu-
tion to Eq.~11! is given by

g~x1 ,x2!5Ap2~x1 ,x2!5Ap1~x1!Ap1~x2!. ~14!

Indeed,

g~x1 ,x2!E
V

g~x1 ,x3!g~x2 ,x3!dx3

5Ap1~x1!p1~x2!E
V
Ap1~x1!p1~x3!Ap1~x2!p1~x3!dx3

5p1~x1!p1~x2!E
V

p1~x3!dx35p2~x1 ,x2!.

B. The thermodynamic limit

The thermodynamic limit is described by the following
limiting process in which the domain is gradually enlarged to
be all space,V→R3, keeping the ratio between the number
of particles,N, and the volume of the domain,V5uVu, con-
stant. The ratioN/V5r is the number density. In this limit-
ing process, all the pdfs tend to zero, because the volume of
the domain tends to infinity, and the pdfs are normalized with
respect to that volume. It is therefore more convenient to
work with number densities, such asr, which are normalized
with respect to a fixed volume, e.g., 1 cm3, and do not vanish
in the limiting process.

First, we consider a bounded domainV,R3. The pre-
vious example of noninteracting particles suggests the defi-
nition

d~x1 ,x1!5
g~x1 ,x2!

Ap1~x1!p1~x2!
, ~15!

which transforms Eq.~11! into

p2~x1 ,x2!

p1~x1!p1~x2!
5d~x1 ,x2!E

V
p1~x3!d~x1 ,x3!d~x2 ,x3!dx3 .

~16!

We rewrite Eq.~16! as
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p2
(V)~x1 ,x2!

p1
(V)~x1!p1

(V)~x2!

5d (V)~x1 ,x2!E
V

p1
(V)~x3!d (V)~x1 ,x3!d (V)~x2 ,x3!dx3 ,

~17!

where p2
(V)(x1 ,x2)5p2(x1 ,x2), d (V)(x1 ,x2)5d(x1 ,x2),

p1
(V)(x1)5p1(x1), to emphasize their dependency on the

specific domainV. We set

g2~x1 ,x2!5 lim
V→R3

p2
(V)~x1 ,x2!

p1
(V)~x1!p1

(V)~x2!
. ~18!

For example, if the two particles become independent when
they are separated,

p2
(V)~x1 ,x2!5p1

(V)~x1!p1
(V)~x2!@11o~1!#

for ux12x2u@1, ~19!

then limux2u→`g2(x1 ,x2)51.
Next, we show that under the assumption~19!

lim
V→R3

d (V)~x1 ,x2!5g2~x1 ,x2!.

Indeed,

E
V

p1~x3!
p2~x1 ,x3!

p1~x1!p1~x3!

p2~x2 ,x3!

p1~x2!p1~x3!
dx3

5E
V

p1~x3!@11o~1!#dx3511o~1!. ~20!

Taking the limit V→R3, the o(1) term vanishes, and Eq.
~17! gives

d~x1 ,x2!5g2~x1 ,x2!, ~21!

as asserted.
We interpret Eq.~21! as the Kirkwood SA. Equations~7!

and ~15! imply that the triplet pdf satisfies

p3
(V)~x1 ,x2 ,x3!

p1
(V)~x1!p1

(V)~x2!p1
(V)~x3!

5d (V)~x1 ,x2!d (V)~x1 ,x3!d (V)~x2 ,x3!. ~22!

Taking the limitV→R3 and using Eq.~21!, we obtain

g3~x1 ,x2 ,x3!5 lim
V→R3

p3
(V)~x1 ,x2 ,x3!

p1
(V)~x1!p1

(V)~x2!p1
(V)~x3!

5g2~x1 ,x2!g2~x1 ,x3!g2~x2 ,x3!, ~23!

which is the Kirkwood closure relation for the triplet corre-
lation function. Usually, the motivation for using the Kirk-
wood SA is a probabilistic consideration of dependency and
independency of particles7 ~see also Sec. V!. Here we find
another interpretation for the Kirkwood closure.

The Kirkwood closure is the~only! closure relation that
brings the entropy of triplets of particles to its maximum
value. The principle of maximum entropy is a well known
principle in statistical mechanics, in testing statistical
hypotheses,21,22and beyond.23,24The maximum entropy prin-

ciple is also applicable to systems out of equilibrium;25

therefore, Kirkwood’s SA can be generalized to systems out
of equilibrium. In the following section we give further mo-
tivation for its use.

IV. MINIMUM HELMHOLTZ FREE ENERGY

Elementary textbooks in statistical mechanics mention
that the Boltzmann distribution,

pN~x1 ,...,xN!5
1

ZN
e2U(x1 ,...,xN)/kBT, ~24!

brings the Helmholtz free energy,

F~p!5U~p!2kBTH~p!

5E
VN

U~x1 ,...,xN!p~x1 ,...,xN!dx1¯dxN

1kBTE
VN

p~x1 ,...,xN!ln p~x1 ,...,xN!dx1¯dxN ,

~25!

to its minimum under the normalization constraint

E
VN

p~x1 ,...,xN!dx1¯dxN51. ~26!

For a pairwise additive potential together with an external
field force

U~x1 ,...,xN!5 (
1< i , j <N

U~xi ,xj !1(
j 51

N

Uex~xj !, ~27!

the potential energy termU(p) of the Helmholtz free energy
~25! takes the simple form

U~p!5E
VN

S (
1< i , j <N

U~xi ,xj !1(
j 51

N

Uex~xj !D
3p~x1 ,...,xN!dx1¯dxN

5
N~N21!

2 E
V2

U~x1 ,x2!p2~x1 ,x2!dx1dx2

1NE
V

Uex~x1!p1~x1!dx1 ,

where

p2~x1 ,x2!5E
VN22

pN~x1 ,...,xN!dx1¯dxN ,

p1~x1!5E
V

p2~x1 ,x2!dx2

are the marginal densities. If the pdfp2(x1 ,x2) is assumed to
be known, as in Sec. II, then the energy term of the Helm-
holtz free energyU(p) is also known. Therefore, minimizing
the Helmholtz free energy, under the assumption that the pdf
p2(x1 ,x2) is known, is equivalent to maximizing the entropy,
sinceU(p) is constant during the minimizing process.

3660 J. Chem. Phys., Vol. 121, No. 8, 22 August 2004 A. Singer

Downloaded 10 Aug 2004 to 169.237.38.255. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



V. PROBABILISTIC INTERPRETATION
OF THE KIRKWOOD CLOSURE

The Kirkwood SA~23! was the first closure relation to
be suggested7 and tested8 in the theory of simple liquids.
This fact might be explained by its simplicity and its intui-
tive origin. In this section we give a probabilistic interpreta-
tion of the Kirkwood SA, and find its generalization for clo-
sure relations of higher orders of the BBGKY hierarchy. The
problem at leveln (n>2) is to find an approximation for the
(n11)-particle pdf in terms of then-particle pdf. For ex-
ample, the Kirkwood SA~23! closes the hierarchy at level
n52. High order closures are much more accurate, fitting
better the experimental and simulated~MC or MD! data.10,11

However, the computational complexity increases drastically
with n, making the truncation at leveln>4 impractical at
the moment.

First, consider the casen52. We assume that particles
become independent as they are separated~19!, although we
are certainly aware that long range forces such as the electric
field can produce strong correlations over all of even a very
large domain, as already noted by Kirkwood in his original
paper.7 In order to make the exact equality~19! into an ap-
proximation, we assume that there exists a distanced.0
such that

p2~x1 ,x2!5p1~x1!p1~x2! ~28!

for ux12x2u.d. Three interchangeable particles can be in
four different configurations with respect to the distanced,
depending on the number of intersections~see Fig. 1!. In all
configurations but configuration (d), where all three par-
ticles intersect, there are at least two particles that do not
intersect. Since the particles are interchangeable we may as-
sume thatux12x3u.d. Applying Bayes’ law we have

p3~x1 ,x2 ,x3!5p3~x3ux1 ,x2!p2~x1 ,x2!. ~29!

By the independence assumption~28! we have

p3~x3ux1 ,x2!5p2~x3ux2!. ~30!

Therefore,

p3~x1 ,x2 ,x3!5p2~x3ux2!p2~x1 ,x2!

5
p2~x2 ,x3!

p1~x2!
p2~x1 ,x2!. ~31!

Multiplying by 15p2(x1 ,x3)/p1(x1)p1(x3) we obtain

p3~x1 ,x2 ,x3!5
p2~x1 ,x2!p2~x2 ,x3!p2~x1 ,x3!

p1~x1!p1~x2!p1~x3!
, ~32!

which is the Kirkwood SA. We see that the Kirkwood clo-
sure is a good approximation when at least two particles are
sufficiently far apart and independent. However, it fails when
all three particles are close to each other.

Next, we find then-level Kirkwood closure relation for
the (n11)-particle pdf in terms of then-particle pdf using
probabilistic considerations.

Proposition. The n-level Kirkwood closure relation is given
by

pn~x1 ,x2 ,...,xn!

5 )
k51

n21

)
1< i 1, i 2,¯, i k<n

pk~xi 1
,xi 2

,...,xi k
!(21)n212k

. ~33!

Proof. We have already seen that the approximation holds for
n52,3. Assuming, by induction, that at least two particles
are sufficiently far apart and independent, we can assume
without loss of generality that particles 1 andn are far apart,
and independent,ux12xnu.d. Using Bayes’ law, we find
that

pn~x1 ,x2 ,...,xn!

5pn21~x1 ,x2 ,...,xn21!pn~xnux1 ,x2 ,...,xn21!.

Because particles 1 andn are sufficiently far apart it follows
that

pn~xnux1 ,x2 ,...,xn21!5pn21~xnux2 ,x3 ,...,xn21!

5
pn21~x2 ,x3 ,...,xn!

pn22~x2 ,x3 ,...,xn21!
.

Hence,

pn~x1 ,x2 ,...,xn!

5
pn21~x1 ,x2 ,...,xn21!pn21~x2 ,x3 ,...,xn!

pn22~x2 ,x3 ,...,xn21!
. ~34!

It follows from the induction assumption that for everyj
52,3,...,n21, with particles 1 andn far apart, we have

15pn21~x1 ,...,xj 21 ,xj 11 ,...,xn!

3 )
k51

n22

)
1< i 1, i 2,¯, i k<n, i lÞ j

pk~xi 1
,xi 2

,...,xi k
!(21)n212k

.

~35!

Multiplying Eqs.~34! and~35! ~for all j 52,3,...,n21) ends
the proof. j

FIG. 1. Four configurations of three particles:~a! no intersections,~b! one
intersection,~c! two intersections,~d! three intersections.
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Corollary. For n54 Kirkwood’s formula becomes

p4~x1 ,x2 ,x3 ,x4!5
p3~x1 ,x2 ,x3!p3~x1 ,x2 ,x4!p3~x1 ,x3 ,x4!p3~x2 ,x3 ,x4!p1~x1!p1~x2!p1~x3!p1~x4!

p2~x1 ,x2!p2~x1 ,x3!p2~x1 ,x4!p2~x2 ,x3!p2~x2 ,x4!p2~x3 ,x4!
. ~36!

In the caseV5R3, we define

gn~x1 ,x2 ,...,xn!5 lim
V→R3

pn~x1 ,x2 ,...,xn!

) j 51
n p1~xj !

. ~37!

Dividing Eq. ~33! by ) j 51
n p1(xj ) gives

pn~x1 ,x2 ,...,xn!

) j 51
n p1~xj !

5 )
k51

n21

)
1< i 1, i 2,¯, i k<n

S pk~xi 1
,xi 2

,...,xi k
!

) j 51
k p1~xi j

! D (21)n212k

,

~38!

where we used the combinatorial identity

(
k51

n21 S n21
k21D ~21!n212k51. ~39!

Note that thek51 terms in the product of Eq.~38! cancel
out, so the product may begin fromk52,

pn~x1 ,x2 ,...,xn!

) j 51
n p1~xj !

5 )
k52

n21

)
1< i 1, i 2,¯, i k<n

S pk~xi 1
,xi 2

,...,xi k
!

) j 51
k p1~xi j

! D (21)n212k

.

~40!

Taking the limit V→R3 we obtain then-level Kirkwood
closure relation,

gn~x1 ,x2 ,...,xn!

5 )
k52

n21

)
1< i 1, i 2,¯, i k<n

gk~xi 1
,xi 2

,...,xi k
!(21)n212k

. ~41!

Examples are as follows:

~a! n53 ~Kirkwood SA!

g3~x1 ,x2 ,x3!5g2~x1 ,x2!g2~x1 ,x3!g2~x2 ,x3!. ~42!

~b! n54 ~Fisher-Kopeliovich9!

g4~x1 ,x2 ,x3 ,x4!5
g3~x1 ,x2 ,x3!g3~x1 ,x2 ,x4!g3~x1 ,x3 ,x4!g3~x2 ,x3 ,x4!

g2~x1 ,x2!g2~x1 ,x3!g2~x1 ,x4!g2~x2 ,x3!g2~x2 ,x4!g2~x3 ,x4!
. ~43!

VI. HIGH LEVEL ENTROPY CLOSURE

In this section we use the maximum entropy principle to
derive then-level closure relation, and compare the resulting
closure relation with then-level probabilistic Kirkwood clo-
sure of Sec. V. The problem at leveln (n>2) is to find an
approximation for the (n11)-particle pdf in terms of the
n-particle pdf. For example, the Kirkwood SA~23! closes the
hierarchy at leveln52. We use the principle of maximum
entropy to obtain the closure relation. As in the derivations of
Sec. II, we assume that then-particle pdfpn(x1 ,x2 ,...,xn) is
known, and we search for the (n11)-particle pdf
pn11(x1 ,x2 ,...,xn11) that maximizes the entropy

H52E
Vn11

pn11~x1 ,x2 ,...,xn11!

3 ln pn11~x1 ,x2 ,...,xn11!dx1dx2¯dxn11 ,

with the n11 constraints that thepn are the marginals of
pn11 ,

pn~x1 ,x2 ,...,xn!5E
V

pn11~x1 ,...,xj ,...,xn11!dxj ,

j 51,2,...,n11.

Sincep2 is the marginal ofpn (n>2), it follows thatp2 is
also known. Therefore, for a pairwise additive potential,
maximizing the Helmholtz free energy of the (n11)-particle
system is equivalent to minimizing the entropy of the (n
11)-particle system. Introducing the Lagrange multipliers
l j (x1 ,...,xj 21 ,xj 11 ,...,xn11), j 51,2,...,n11, the Euler-
Lagrange equation gives

2 ln pn11211 (
j 51

n11

l j50. ~44!

Since then particles are interchangeable,

pn11~x1 ,...,xn11!5 )
j 51

n11

g~x1 ,...,xj 21 ,xj 11 ,...,xn11!.

~45!

Integration with respect toxn11 yields
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pn~x1 ,...,xn!5g~x1 ,...,xn!E
V
)
j 51

n

g~x1 ,...,xj 21 ,xj 11 ,...,xn11!dxn11 . ~46!

Solving the nonlinear integral equation~46! for g and substituting in Eq.~45! gives then-level closure relation of then-level
BBGKY hierarchy equation forpn ,

05fex~x1!pn~x1 ,x2 ,...,xn!1(
j 52

n

f~xj ,x1!pn~x1 ,x2 ,...,xn!2kBT“x1
pn~x1 ,x2 ,...,xn!1~N2n!

3E
V

f~xn11 ,x1!pn11~x1 ,x2 ,...,xn11!dxn11 . ~47!

A. The thermodynamic limit

We have seen in Sec. III that the maximum entropy principle yields the Kirkwood SA (n52) in the thermodynamic limit.
In this section we show that in the thermodynamic limit, the maximum entropy principle results in the probabilistic Kirkwood
closure~33! for all levelsn>2.

First, we consider a bounded domainV,R3. We set

hn
(V)~x1 ,x2 ,...,xn!5

pn
(V)~x1 ,x2 ,...,xn!

)k51
n21)1< i 1, i 2,¯, i k<npk

(V)~xi 1
,xi 2

,...,xi k
!(21)n212k ~48!

and

d (V)~x1 ,x2 ,...,xn!5
g (V)~x1 ,x2 ,...,xn!

)k51
n21)1< i 1, i 2,¯, i k<npk

(V)~xi 1
,xi 2

,...,xi k
!(21)n212k ~n2k!/~n2k11!

. ~49!

Dividing Eq. ~46! by )k51
n21)1< i 1, i 2,¯, i k<npk

(V)(xi 1
,xi 2

,...,xi k
)(21)n212k

we obtain

hn
(V)~x1 ,x2 ,...,xn!5d (V)~x1 ,x2 ,...,xn!E

V
F~x1 ,x2 ,...,xn ,xn11!)

j 51

n

d (V)~x1 ,...,xj 21 ,xj 11 ,...,xn11!dxn11 , ~50!

where

F~x1 ,x2 ,...,xn ,xn11!5 )
k51

n22

)
1< i 1, i 2,¯, i k<n

pk
(V)~xi 1

,xi 2
,...,xi k

!(21)n212k(n2k21)

3 )
k51

n21

)
1< i 1, i 2,¯, i k21<n

pk
(V)~xi 1

,xi 2
,...,xi k21

,xn11!(21)n212k(n2k). ~51!

For min1<j<nuxn112xj u@1, the (n11)-th particle becomes independent of particles 1,2,...,n, and we have

pk
(V)~xi 1

,xi 2
,...,xi k21

,xn11!5p1
(V)~xn11!pk21

(V) ~xi 1
,xi 2

,...,xi k21
!@11o~1!#,

for all k51,2,...,n and all sets of indices 1< i 1, i 2,¯, i k21<n. Therefore, to leading order in (min1<j<nuxn112xj u)21

F~x1 ,x2 ,...,xn ,xn11!5 )
k51

n22

)
1< i 1, i 2,¯, i k<n

pk
(V)~xi 1

,xi 2
,...,xi k

!(21)n212k(n2k21)

3 )
k51

n21

)
1< i 1, i 2,¯, i k21<n

pk21
(V) ~xi 1

,xi 2
,...,xi k21

!(21)n212k(n2k)

3 )
k51

n21

)
1< i 1, i 2,¯, i k21<n

p1
(V)~xn11!(21)n212k(n2k)

5 )
k51

n21

)
1< i 1, i 2,¯, i k21<n

p1
(V)~xn11!(21)n212k(n2k)

5@p1
(V)~xn11!#$(k51

n21(21)n212k(n2k)(k21
n )%5p1

(V)~xn11!, ~52!
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where we have used the combinatorial identity

(
k51

n21

~21!n212k~n2k!S n
k21D51. ~53!

We conclude that

hn
(V)~x1 ,x2 ,...,xn!

5d (V)~x1 ,x2 ,...,xn!E
V

p1
(V)~xn11!@11o~1!#

3)
j 51

n

d (V)~x1 ,...,xj 21 ,xj 11 ,...,xn11!dxn11 .

Therefore,

lim
V→R3

d (V)~x1 ,x2 ,...,xn!5 lim
V→R3

hn
(V)~x1 ,x2 ,...,xn!. ~54!

Substituting Eq.~49! in Eq. ~45!, using the relations~48! and
~54!, and the definition~37!, we find that

gn11~x1 ,...,xn11!

5)
k52

n

)
1< i 1, i 2,¯, i k<n11

gk~xi 1
,xi 2

,...,xi k
!(21)n2k

. ~55!

We observe that for systems in the entire space, the probabi-
listic Kirkwood closure~41! agrees with the maximum en-
tropy closure~55! for all ordersn.

B. Closure at the highest level nÄNÀ1

Although the probabilistic Kirkwood closure and the
maximum entropy closure agree in the case of systems in the
entire space, they differ in the case of confined systems with
a finite number of particlesN. It appears that the maximum
entropy closure~45! is exact in a confined system when ap-
plied at the highest leveln5N21, whereas the probabilistic
Kirkwood closure~33! is not exact. In other words, the maxi-
mum entropy closure relation yields the Boltzmann distribu-
tion ~24!. What appeared at first to be an approximation turns
out to be the exact result. Indeed, setting

g~x1 ,x2 ,...,xN21!

5S 1

ZN
D 1/N

expH 2F 1

N22 (
1< i , j <N21

U~xi ,xj !

1
1

N21 (
j 51

N21

Uex~xj !G Y kBTJ , ~56!

we see that clearly,

)
j 51

N

g~x1 ,...,xj 21 ,xj ,...,xN!5
1

ZN
e2U(x1 ,...,xN)/kBT,

~57!

which is the Boltzmann distribution. The Boltzmann distri-
bution obviously satisfies the BBGKY equation~47!. There-
fore, we have found a solution to BBGKY equation which
satisfies the closure relation~45!. This solution coincides
with the Boltzmann distribution, and so we conclude that it is
the exact solution. For the (N21)-particle pdf pN21 we
have

pN21~x1 ,...,xN21!5
1

ZN
E

V
e2U(x1 ,...,xN)/kBTdxN , ~58!

which is both the exact and ‘‘approximate’’ result.
The probabilistic Kirkwood approximation~33! gives,

however, a different result. If it were to be exact, then the
resulting (N21)-particle pdf would have been given by Eq.
~58!. Therefore, all lower level pdf’spn (n<N21) would
be ~multiple! integrals of the Boltzmann distribution. There-
fore, by the closure~33!, pN should be a product of integrals
of the Boltzmann distribution, which is a contradiction to the
known form of the Boltzmann distribution~24!.

Although the maximum entropy closure is exact at the
highest ordern5N21, it is not exact at lower orders. The
observation that the maximum entropy closure is exact at the
highest level, while the probabilistic Kirkwood closure is
not, may indicate that the maximum entropy closure may fit
the experimental data better than the probabilistic Kirkwood
closure does in confined systems, even when used at lower
levels (n52,3).

VII. CONFINED SYSTEMS

Systems in bounded domains are particularly important
because only bounded domains can include the spatially non-
uniform boundary conditions needed to describe devices,
with spatially distinct inputs, outputs, and~sometimes!
power supplies. A large fraction of electrochemistry involves
such devices as batteries or concentration cells. A large frac-
tion of molecular biology involves such devices as transport
proteins that move ions across otherwise impermeable
membranes.26,27

In the general case, whereV,R3 is a bounded domain,
there is no known analytic solution to the system~9!. We
propose to solve this system by the following iterative
scheme:

~1! Initial guessg (0)(x1 ,x2). Set i 50.
~2! Solve the nonhomogeneous linear equation for

p2
( i )(x1 ,x2)

kBT¹x1
p2

( i )~x1 ,x2!2f~x2 ,x1!p2
( i )~x1 ,x2!2fex~x1!p2

( i )~x1 ,x2!

5~N22!E
V

f~x3 ,x1!g ( i )~x1 ,x2!g ( i )~x2 ,x3!

3g ( i )~x1 ,x3!dx3 .

~3! Solve the nonlinear system forg ( i 11)

p2
( i )~x1 ,x2!5g ( i 11)~x1 ,x2!

3E
V

g ( i 11)~x2 ,x3!g ( i 11)~x1 ,x3!dx3 . ~59!

~4! i← i 11. Return to step 2, until convergence is achieved.

The analysis of the preceding section indicates that a good
initial guess might be

g (0)~x1 ,x2!5Ap1~x1!p1~x2!g2~x1 ,x2!, ~60!
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whereg2(x1 ,x2) is the solution to the BBGKY equation with
the Kirkwood SA in the entire spaceR3. This solution can be
found rather easily using the inherited symmetries of the
problem. For example, it is well known that iffex50, then
g2(x1 ,x2)5g2(ux12x2u), and the problem forg2 becomes
one dimensional.

Step 2 requires the solution of a linear partial differential
equation in a bounded region. This equation can be written in
a gradient form as

“x1
@e[U(x1 ,x2)1Uex(x1)]/kBTp2~x1 ,x2!#

52
N22

kBT
e[U(x1 ,x2)1Uex(x1)]/kBT

3E
V
“x1

U~x1 ,x3!p3~x1 ,x2 ,x3!dx3 .

The identity“x1
3“x1

u(x1)50, for all u, imposes a solvabil-
ity condition for g. Indeed, taking the curl of the last equa-
tion, together with the closure~7! results in

05“x1
3Fe[U(x1 ,x2)1Uex(x1)]/kBT

3E
V
“x1

U~x1 ,x3!g~x1 ,x2!g~x1 ,x3!g~x2 ,x3!dx3G .
In step 3 we solve a nonlinear integral equation. We

suggest solving the nonlinear Eq.~8! by a Newton-Raphson
iterative scheme. Letg (n)(x1 ,x2) be thenth iteration. Define
the operatorG (n):V2→V2 as follows:

G (n)u~x,z!5E
V

g (n)~x,y!u~z,y!dy. ~61!

Let the operatorS:V2→V2 be the symmetrization operator,

Su~x,y!5u~y,x!. ~62!

The Newton-Raphson iteration scheme suggests

g (n11)5g (n)1D~x1 ,x2!, ~63!

whereD(x1 ,x2) satisfies the linear integral equation

p2~x1 ,x2!2p2
(n)~x1 ,x2!

5
p2

(n)~x1 ,x2!

g (n)~x1 ,x2!
D~x1 ,x2!1g (n)~x1 ,x2!G (n)D~x1 ,x2!

1g (n)~x1 ,x2!SG (n)D~x1 ,x2!,

where

p2
(n)~x1 ,x2!5g (n)~x1 ,x2!E

V
g (n)~x1 ,x3!g (n)~x2 ,x3!dx3 .

~64!

We may write the iteration equivalently as

g (n11)5g (n)1S p2
(n)

g (n) 1g (n)G (n)1g (n)SG (n)D 21

3~p22p2
(n)!. ~65!

The steps in the algorithm are iterated until convergence is
achieved.

We have yet to test our generalized Kirkwood closure in
practice. The resulting pair correlation function should be
compared with MD or MC simulations of particles in a con-
fined region. The observation of Sec. VI B and the generality
of the maximum entropy principle~minimum Helmholtz free
energy! may indicate that it will outperform the regular Kirk-
wood SA in bounded domains. The difference between the
results of the two closure methods should be seen near the
boundary walls of the domain.

VIII. MIXTURES

The maximum entropy principle can also be used to find
closure relations of mixtures, both in confined domains and
in the entire space. Suppose a mixture ofS>2 species, with
Na (a51,2,...,S) particles of each species. LetN
5(a51

S Na be the total number of particles of all species.
There areS2 two-particle pdfs,

p2
ab~x1 ,x2!, a,bP$1,2,...,S%,

that exhibit the symmetryp2
ab(x1 ,x2)5p2

ba(x2 ,x1). In this
section we briefly discuss how to find the closure relation in
the mixture problem.

In the maximum entropy approach, one is searching for
S3 three-particle pdfsp3

abg(x1 ,x2 ,x3), a,b,gP$1,2,...,S%,
that bring the entropy

H52 (
a,b,g50

S
Na

N

Nb

N

Ng

N

3E
V

p3
abg~x1 ,x2 ,x3!ln p3

abg~x1 ,x2 ,x3!dx1dx2dx3

~66!

to maximum, with the 3S3 marginal constraints

p2
ab~x1 ,x2!5E

V
p3

abg~x1 ,x2 ,x3!dx3 ,

p2
ag~x1 ,x3!5E

V
p3

abg~x1 ,x2 ,x3!dx2 , ~67!

p2
bg~x2 ,x3!5E

V
p3

abg~x1 ,x2 ,x3!dx1 .

This variational problem is solved using the Euler-Lagrange
formulation similar to the derivation done in Sec. II.

In the case of a system in the entire space, the methods
of Secs. III B and VI A show that the mixture entropy closure
coincides with the probabilistic Kirkwood closure. Both sec-
tions suggest that the triplets correlation functions are related
to the pair correlation function through

g3
abg~x1 ,x2 ,x3!5g2

ab~x1 ,x2!g2
ag~x1 ,x3!g2

bg~x2 ,x3!
~68!

for a,b,gP$1,2,...,S%. Closures of higher orders can be ob-
tained in a similar manner.

In confined systems, the Euler-Lagrange formulation
leads to integral equations of the form~8!. Note that since
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the entropy~66! depends on the particle fractionNa /N, we
expect the resulting confined system pair correlation will
also depend on the particle fraction.

IX. DISCUSSION AND SUMMARY

We have used the maximum entropy principle to derive a
closure relation for the BBGKY hierarchy. It is possible to
consider functionals over distributions other than the entropy
that can yield different~known! closures. In fact, a somewhat
similar approach is used in density functional theory~DFT!.
In the DFT problem setup, a functional of the pair correlation
function ~e.g., the Helmholtz free energy! is maximized. The
function that brings the given functional to its maximal value
is the resulting pair correlation function. Using this method,
one can recover some of the Ornstein-Zernike integral clo-
sures that relate the direct and indirect correlation functions,
such as the PY closure, for instance. Our approach differs
from that of the DFT in that we optimize over relations be-
tween the probability correlation~density! functions of suc-
cessive orders, rather than over relations between the direct
and indirect correlation functions.

In this paper we have used the maximum entropy prin-
ciple to derive a closure relation for the BBGKY hierarchy.
This approach to the closure problem appears to be new. We
proved that for systems in the entire space, the maximum
entropy closure relation coincides with the probabilistic
Kirkwood SA for all orders of the hierarchy. In finite systems
the maximum entropy closure differs from Kirkwood’s SA.
In particular, when applied to the highest level of the hierar-
chy, the maximum entropy closure is exact, whereas the
probabilistic Kirkwood approximation is not. Besides the ad-
vantage of generality, the maximum entropy closures are ex-
pected to perform better than the Kirkwood SA, even in low
order approximations. We expect the differences between the
pair correlation functions predicted by the two methods to be
significant especially near the domain boundaries. The maxi-
mum entropy closure may be applicable to nonequilibrium
systems, and in particular to systems with spatially inhomo-
geneous boundary conditions. That implementation of the
maximum entropy closure will be the subject of a separate
paper.
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