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In recent years, an abundance of new molecular structures have 
been elucidated using cryo-electron microscopy (cryo-EM), 
largely due to advances in hardware technology and data pro-

cessing techniques. Owing to these exciting new developments, 
cryo-EM was selected by Nature Methods as the “Method of the 
 Year 2015,” and the Nobel Prize in  Chemistry 2017 was award-
ed to three pioneers in the cryo-EM field: Jacques Dubochet, 
Joachim Frank, and Richard Henderson “for developing cryo-
electron microscopy for the high-resolution structure determina-
tion of biomolecules in solution” [93].

The main goal of this article is to introduce the challenging 
and exciting computational tasks involved in reconstructing 3D 
molecular structures by cryo-EM. Determining molecular 
structures requires a wide range of computational tools in a vari-
ety of fields, including signal processing, estimation and detec-

tion theory, high-dimensional statistics, convex and nonconvex 
optimization, spectral algorithms, dimensionality reduction, and 
machine learning. The tools from these fields must be adapted 
to work under exceptionally challenging conditions, including 
extreme noise levels, the presence of missing data, and massive 
data sets as large as several terabytes.

In addition, we present two statistical models, multirefer-
ence alignment (MRA) and multitarget detection (MTD), that 
abstract away much of the intricacy of cryo-EM while retain-
ing some of its essential features. Based on these abstractions, 
we discuss some recent intriguing results in the mathematical 
theory of cryo-EM and delineate relations with group, invari-
ant, and information theories.

Introduction
Structural biology studies the structure and dynamics of mac-
romolecules to broaden our knowledge about the mechanisms 
of life and impact the drug-discovery process. Owing to recent 
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groundbreaking developments, chiefly in hardware tech-
nologies and data processing techniques, many new molecular 
structures have been elucidated to near-atomic resolutions us-
ing cryo-EM [8], [44], [47], [52], [81].

In a cryo-EM experiment, biological macromolecules sus-
pended in a liquid solution are rapidly frozen into a thin ice 
layer. The 3D location and orientation of particles within the 
ice are random and unknown. An electron beam then passes 
through the sample, and a 2D tomographic projection, called a 
micrograph, is recorded. The goal is to reconstruct a high-reso-
lution estimate of the 3D electrostatic potential of the molecule 
(particularly its atomic structure) from a set of micrographs. 

The resolution measures the smallest detail that is dis-
tinguishable in a recovered  3D structure; structures with 
better resolutions resolve finer features. For example, at reso-
lutions of 9 Å, -a helices are resolved, at resolutions of 4.8 Å, 
 individual -b strands are resolved, and, at resolutions of 3.5 Å, 
many amino acid side chains are resolved [8]. Figure 1 shows 
a gallery of important biomedical structures solved by cryo-
EM at increasingly higher resolutions. Figure 2 presents an 
example of a micrograph of the enzyme -b galactosidase and 
the corresponding high-resolution 3D reconstruction [15].

The signal-to-noise ratio (SNR) of cryo-EM data is very 
low due to two compounding reasons. On the one hand, the 
micrograph’s contrast is low due to the absence of contrast 

enhancement agents, such as heavy-metal stains. On the other 
hand, the noise level is high because the electron doses must be 
kept low to prevent damage to the radiation-sensitive biologi-
cal molecules. The difficulty of estimating the 3D structure in 
this low-SNR regime, when the orientation and location of the 
particles are unknown, is the crux of the cryo-EM problem.

Forty years ago, Dubochet and colleagues [27] devised a 
new technique to preserve biological samples within a thin 
layer of an amorphous solid form of water called vitreous ice. 
In contrast to “regular” ice, vitreous ice lacks a crystalline 
molecular arrangement and, therefore, allows preservation 
of biological structures. As the vitreous ice is maintained at 
liquid-nitrogen or liquid-helium temperatures, the technique 
was named cryo-EM. In the following decades, the suc-
cessful application of cryo-EM was limited to the study of 
large and highly symmetric structures, such as ribosomes and 
different types of viruses. Before 2013, only a few struc-
tures were resolved at resolutions better than 7 Å, and the 
field was dubbed blob-ology due to the blobby appearance of 
the structures at these resolutions. We refer the reader to [8], 
[30], [52], and [81] for a more detailed historical account of the 
development of the technology.

Since 2013, single-particle reconstruction using cryo-EM 
has been undergoing fast transformations, leading to an abun-
dance of new high-resolution structures and reaching close to 
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FIGURE 1. A gallery of important biomedical structures solved by single-particle cryo-EM at increasing resolutions. (a) The 4.5-Å structure of the human 
rhodopsin receptor bound to an inhibitory G protein [43], a member of the family of G-protein-coupled receptors, which are the target of approximately 
35% of drugs approved by the U.S. Food and Drug Administration. (b) A 3.3-Å map of a voltage-activated potassium channel, an integral membrane 
protein responsible for potassium ion transport [49]. (c) The 2.9-Å cryo-EM structure of a clustered regularly interspaced short palindromic repeats 
(CRISPR)/CRISPR-associated protein implicated in gene editing [36]. (d) A 2.4-Å map of the T20s proteasome, a complex that degrades unnecessary 
or damaged proteins by proteolysis [obtained using data available from Electron Microscopy Public Image Archive (EMPIAR)-10025] [1]. (e) The 2.3-Å 
structure of human p97 adenosine triphosphate (ATP)/ATPase associated with diverse cellular activities, a key mediator of several protein homeostasis 
processes and a target for cancer [12]. (f) The 1.9-Å structure of the -b galactosidase enzyme in complex with a cell-permeant inhibitor [15]. (g) The  
1.8-Å structure of the conformationally dynamic enzyme glutamate dehydrogenase [50]. (h) A 1.6-Å map of human apoferritin, a critical intracellular  
iron-storage protein (obtained using data available from EMPIAR-10200). 
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atomic resolution [15]. Figure 3 presents the historical growth of 
the number of high-resolution structures produced by cryo-EM. 
Advances in camera technology and data processing contributed 
to the “resolution revolution” in cryo-EM [44].

First and foremost, a new generation of detectors was devel-
oped, called direct electron detectors (DEDs), that—in contrast 
to charge-coupled device cameras—do not convert electrons 
to photons. DEDs dramatically improved image quality and 
SNR, thereby increasing the attainable resolution of cryo-
EM. These detectors have high-output frame rates that allow 
the recording of multiple frames per micrograph (“movies”) 
rather than the integration of individual exposures [58]. These 
movies can be used to compensate for motion induced by the 
electron beam to the sample; see the “Motion Correction” sec-
tion. In addition, recent hardware developments have enabled 

the acquisition and storage of huge amounts of data, which, 
combined with ready access to CPU and GPU resources, have 
helped propel the field forward.

The prevalent technique in structural biology in the last half 
century was X-ray crystallography. This technique suffers from 
three intrinsic weaknesses that can be mitigated by using 
cryo-EM imaging. First, many molecules, among them differ-
ent types of membrane proteins, were notoriously difficult to 
crystallize. In contrast, the sample preparation procedure for a 
cryo-EM experiment is significantly simpler, does not require 
crystallization, and needs smaller amounts of sample. Second, 
crystal contacts may alter the structure of proteins, making it 
difficult to recover their physiologically relevant conforma-
tion. Cryo-EM samples, instead, are rapidly frozen into vitre-
ous ice, which preserves the molecules in a near-physiological 

(a) (b)

(c) (d)

FIGURE 2. Examples of high-resolution cryo-EM imaging of the -b galactosidase enzyme in complex with a cell-permeant inhibitor. (a) A micrograph of 
-b galactosidase showing individual particle projections (indicated with white circle). (b) The power spectra of the image shown in (a) and estimated CTF 

matching the characteristic Thon ring oscillations (see the “CTF Estimation and Correction” section). (c) A 1.9-Å resolution map obtained from approxi-
mately 150,000 individual particle projections extracted from the publicly available data set EMPIAR-10061 [15], [16]. (d) A close-up view of reconstruc-
tion shown in (c), highlighting high-resolution features of the map at the individual amino acid level.
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state. Third, the X-ray beam aggregates the information from 
all molecules simultaneously and, thus, hinders visualization of 
structural variability. 

In stark contrast, the projection of each particle in a cryo-
EM experiment is recorded independently, and, thus, multiple 
structures—associated with different functional states—can 
be estimated [74]. A third technique, nuclear magnetic reso-
nance (NMR), can be used to elucidate molecular structures 
in physiological conditions (water solution at room tempera-
ture) but is restricted to small structures of up to approximate-
ly 50 kDa.

The main goal of this article is to introduce the unique and 
exciting algorithmic challenges and cutting-edge mathematical 
problems arising from cryo-EM research. The estimation of 
molecular structures involves developing and adopting com-
putational tools in signal processing, estimation and detection 
theory, high-dimensional statistics, convex and nonconvex 
optimization, spectral algorithms, dimensionality reduction, 
and machine learning as well as knowledge in group theory, 
invariant theory, and information theory. 

All tools from the aforementioned fields should be adapted 
to exceptional conditions: an extremely low-SNR environment 
and the presence of missing data (for instance, 2D location and 
3D orientation of samples in the micrograph). In addition, the 
devised algorithms should be efficient when run on massively 
large data sets on the order of several terabytes. This article 
provides an account of the leading software packages in the 
field and discusses their underlying mathematical, statistical, 
and algorithmic principles [33], [57], [63], [76].

Before moving on, we want to mention that topics of great 
importance to practitioners, such as the physics and optics of 
an electron microscope, sample preparation, and data acquisi-
tion, are not discussed in this article. These topics are thor-
oughly covered by biologically oriented surveys, such as [30], 
[52], and [81] and the references therein.

The cryo-EM reconstruction problem
Modern electron microscopes produce multiple micrographs, 
each composed of a series of frames (a “movie”). The first 
stage of any contemporary algorithmic pipeline is to align and 
average the frames to mitigate the effects of movement induced 
by the electron beam and, thus, to improve the SNR. This pro-
cess is called motion correction or movie frame alignment. 
The next step, termed particle picking, consists of detecting 
and extracting the particles’ tomographic projections from 
the micrographs.

Perfect detection requires finding the particles’ center of 
mass, which is difficult to estimate due to the characteristics 
of the Fourier transform of the microscope’s point spread func-
tion (PSF), called the contrast transfer function (CTF); see 
the “CTF Estimation and Correction” section. The output of 
the particle-picking stage is a series of images , ,I IN1 f  from 
which we wish to estimate the 3D structure; this section focus-
es on the problem of 3D reconstruction from picked particles, 
which is the heart of the computational pipeline of single-
particle reconstruction using cryo-EM. Motion correction and 

particle picking are discussed in more detail in the “Building 
Blocks in the Computational Pipeline” section. 

Figure 4 shows the complete cryo-EM imaging pipeline.  
Briefly, raw data are first preprocessed at the movie frame 
alignment (“Motion Correction” section) and CTF estimation 
(“CTF Estimation and Correction” section) steps, followed 
by particle picking to detect and extract the individual pro-
jections from micrographs. Occasionally, particle picking is 
followed by a particle-pruning stage to remove noninforma-
tive picked particles (“Particle Picking” section). The output 
of this stage is a set of 2D images; each (ideally) contains a 
noisy tomographic projection taken from an unknown view-
ing direction. 
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FIGURE 3. The recent growth in the number of high-resolution structures 
produced by single-particle cryo-EM. (a) The cumulative number of struc-
tures solved by single-particle cryo-EM in the last 17 years, as recorded 
in the Electron Microscopy Data Bank public repository [2]. (b) The 
corresponding values for the average resolution of maps deposited in the 
database showing an inflection point after the year 2013, coinciding with 
the introduction of DED technology in the cryo-EM field.
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FIGURE 4. A flowchart diagram showing the computational pipeline 
required to convert raw movie data into high-resolution structures by 
single-particle cryo-EM. (Adapted from [90].)
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Particle images are then classified (“2D Classification” sec-
tion): the 2D classes may be used to construct ab initio models, 
as templates for particle picking, to provide a quick assessment 
of the particles and for symmetry detection. Then, an ab initio 
model is built using the 2D classes or by alternative techniques 
(“Ab Initio Modeling” section). If the data contain structur-
al variability or a mix of structures (see the “The Cryo-EM 
Reconstruction Problem” and “Conformational Heterogeneity: 
Modeling and Recovery” sections), then a 3D classification 
step is applied to cluster the projection images into the differ-
ent structural conformations. 

Initial models are subjected to 3D high-resolution refine-
ment (“High-Resolution Refinement” section), and an addi-
tional per-particle refinement may be applied. Finally, a 
postprocessing stage is employed to facilitate interpretation 
of structures in terms of atomic models. Different software 
packages may use slightly different workflows and, occasion-
ally, some of the steps are applied iteratively. For instance, 
one can use the 2D classes to repeat particle picking with 
more reliable templates.

Let : RR3 "z  represent the 3D molecular structure to be 
estimated. Under the assumption that the particle picking is 
executed well (i.e., each particle is detected up to a small trans-
lation; we assume for simplicity no false detection), each image 

, ,I IN1 f  is formed by rotating z by a 3D rotation ,R~  integrat-
ing along the z-axis (tomographic projection), shifting by a 2D 
shift ,Tt  convolving with the PSF of the microscope ,hi  and 
adding noise:
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where ) denotes convolution. The model can be written more 
concisely as

 , , , ,I h T PR i N1noisei i ti i) f` _z= + =~  (2)

where the tomographic projection is denoted by ,P  and ( )( )R rz = 
( ).R rTz  The image is then sampled on a Cartesian grid. The 

integration along the z-axis is called the X-ray transform (not to 
be confused with the radon transform in which the integration 
is over hyperplanes). The rotations R~  describe the unknown 
3D orientation of the particles embedded in the ice, and they 
can be thought of as random elements of the special orthogonal 
group ( ).SO 3!~  These rotations can be represented as 3 3#  
orthogonal matrices with determinant one or by quaternions. 
The 2D shifts t R2!  result from detection inaccuracies, which 
are usually small. The PSFs hi  are assumed to be known, and 
their Fourier transforms suffer from many zero crossings, 
making deconvolution challenging; see the “CTF Estimation 
and Correction” section for further discussion.

The cryo-EM inverse problem of reconstruction con-
sists of estimating the 3D structure z  from the 2D images 

, , .I IN1 f  Importantly, the 3D rotations , , N1 f~ ~  and the 
2D shifts , ,t tN1 f  are called nuisance variables; although 
the rotations and shifts are unknown a priori, their estima-

tion is not an aim by itself. Figure 5 shows an example of 
the cryo-EM problem in its most simplified version, without 
noise, CTF, and shifts.

The reconstruction of z is possible with up to three intrin-
sic ambiguities: a global 3D rotation, the position of the center 
of the molecule (3D location), and handedness. This last sym-
metry, also called chirality, means that it is impossible to dis-
tinguish whether the molecule was reflected about a 2D plane 
through the origin. The handedness of the structure cannot be 
determined from cryo-EM images alone because the original 
3D object and its reflection give rise to identical sets of pro-
jections related by the following conjugation: ,R JR J 1

i i=~ ~
-u  

where ( , , ).J 1 1 1diag= -

In the presence of structural variability, z may be thought 
of as a random signal with an unknown distribution defined 
over a space of possible structures (which might be unknown 
as well). In this case, the task is more ambitious and involves 
estimating the whole distribution of conformations. Usually, 
the distribution is assumed to be discrete (i.e., in each mea-
surement, we observe one of a few possible structures or con-
formational states) or to lie in a low-dimensional subspace or 
manifold. This subject is further discussed in the “Conforma-
tional Heterogeneity: Modeling and Recovery” section and in 
a recent survey [74].

The chief noise source in cryo-EM at the frame level (before 
motion correction) is shot noise, which follows a Poisson dis-
tribution. After movie frames are averaged to produce micro-
graphs, it is customary to assume that the noise is characterized 
by a Gaussian distribution. Indeed, all current algorithms build 
on—implicitly or explicitly—the speculated Gaussianity of the 
noise. While the spectrum of the noise is not white—mainly 
due to inelastic scattering, variations in the thickness of ice, 
and the PSF of the microscope—it is assumed to be a 1D radial 
function (i.e., constant along the angular direction). The com-
mon practice is to estimate the parameters of the noise power 
spectrum during the 3D reconstruction process or from regions 
in the micrographs that, presumably, contain no signal.

Main computational challenges
The difficulty in determining high-resolution molecular struc-
tures using cryo-EM hinges on three characteristic features 
of the cryo-EM data: high noise level, missing data, and its 
massive size. This section elaborates on these unique features, 
while the next sections dive into the different tasks and algo-
rithms involved in cryo-EM data processing.

High noise level
In a cryo-EM experiment, the electron doses must be kept low 
to mitigate radiation damage due to electron illumination. The 
low doses induce high noise levels on the acquired raw data 
frames. Together with the image’s low contrast, this results in 
SNR levels that are usually well below 0 dB and might be as 
low as −20 dB (i.e., the power of the noise is 100 times greater 
than the power of the signal). Under such low-SNR conditions, 
standard tasks, such as aligning, detecting, or clustering sig-
nals, become very challenging.
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To comprehend the difficulty of performing estimation 
tasks in a low-SNR environment, let us consider a simple 
rotation-estimation problem. Let us denote by x RL!  the sam-
ples of a periodic signal on the unit circle; x  is assumed to be 
known. We wish to estimate a rotation [ , )0 2!i r  from a 
noisy measurement

 ,y R x f= +i  (3)

where ( , ),I0N 2+f v  and Ri  denotes the rotation operator, 
that is, ( )( ) ( ).R x t x t i= -i  To estimate ,i  we correlate the sig-
nal x  with rotated versions of y  and choose the inverse of the 
rotation that maximizes the correlation as the estimator; this 
technique is called template matching. In the absence of noise, 
template matching simply correlates the signal with its rotated 
versions; the maximum is attained when y  is rotated by .i-

However, in the presence of noise, we get an additional sto-
chastic term due to the correlation of the noise with the signal. 
Consequently, if 2v  is large, it is likely that the peak of the 
correlation will not be close to .i-  In particular, when ,"3v  
the location of the peak is distributed uniformly on the circle. 
This result can be derived formally using the Neyman–Pear-

son lemma and holds true for any estimation technique, not 
necessarily template matching [18]. Even if we collect N  mea-
surements (each with a different rotation), it is impossible to 
estimate the N  rotations accurately. In [6], it was shown that 
the Cramér–Rao bound of this problem is proportional to 2v  
and independent of .N  Therefore, if the noise level is high, the 
variance of any estimator will be high as well.

The same conclusions that were derived for the simple 
rotation estimation problem (3) remain true for cryo-EM. For 
example, even if the 3D structure is known, aligning a noisy 
raw image against multiple noiseless projection templates that 
correspond to rotations sampled from SO(3) will produce no 
salient peak in the correlation if the noise level is high. In par-
ticular, the higher the noise level, the flatter the distribution 
over SO(3).

Missing data—Unknown viewing directions and locations
The viewing direction and location associated with each particle 
in a micrograph are unknown a priori. If they were known, esti-
mating the structure z would be a linear inverse problem, simi-
lar to the reconstruction problem in computerized tomography 
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FIGURE 5. (a) A simulated 3D structure and (b) a dozen of its noise-free tomographic projections from different viewing directions. The most simplified 
version of the cryo-EM problem is estimating the 3D structure from the 2D projection images when the viewing directions are unknown. In practice, the 
projections are highly noisy, slightly shifted, and convolved with the microscope’s PSF. (Used with permission from [71].)
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(CT). The recovery in this case is based on the Fourier slice theo-
rem, which states that the 2D Fourier transform of a tomographic 
projection is the restriction of the 3D Fourier transform of z to a 
2D plane. Mathematically, it can be written succinctly as

 ,SRF F PR3 2z z=  (4)

where ,F2  ,F3  ,P  and S  are, respectively, the 2D Fourier, 
3D Fourier, tomographic projection, and restriction opera-
tors; this theorem is a direct corollary of the fact that the 
Fourier operator F  and the rotation operator R  commute, 
that is, .RF FR=

The Fourier slice theorem implies that acquiring tomographic 
projections from known viewing directions is equivalent to 
sampling the 3D Fourier space. Hence, given enough projec-
tions, one can estimate z to a certain resolution. This is the 
underlying principle behind many CT imaging algorithms, 
such as the classical filtered-back projection (FBP). However, 
FBP is not optimal for cryo-EM (even if viewing directions are 
known) since not all viewing directions are necessarily rep-
resented in the data, and the sampling in the Fourier domain 
is nonuniform; the coverage of viewing directions affects the 
quality of the solution. 

An alternative is the algebraic reconstruction technique 
(ART), which solves the linear inverse problem by iterative 
projections; this algorithm is called the Kaczmarz method 
in numerical linear algebra. However, ART is rarely used in 
cryo-EM because it is slow: it does not exploit the Fourier 
slice theorem and, thus, cannot be accelerated using fast Fou-
rier transforms (FFTs). Modern approaches were developed to 
exploit the Fourier slice theorem and account for nonuniform 
sampling; popular algorithms are based on efficient gridding 
methods (that compute a uniformly sampled version of a func-
tion from a nonuniformly sampled version by choosing proper 
weights) [55] and using nonuniform FFT packages to harness 
the structure of the linear system [14], [35].

While the viewing directions in cryo-EM are unknown, there 
is a rigorous technique to estimate them based on common lines; 
see the “Estimating Viewing Directions Using Common Lines” 
section as well as [72] and [79]. Unfortunately, any method for 
estimating the viewing directions is destined to fail when the 
SNR is low, for the same reasons that estimating i  in (3) would 
fail. Bearing in mind that the ultimate goal is to estimate the 3D 
structure—not the viewing directions—it is essential to consider 
statistical methods that circumvent rotation estimation, such as 
the maximum likelihood (ML) and the method of moments.

Massive data sets and high dimensionality
A single session of data collection in a typical cryo-EM experi-
ment produces a few thousand micrographs, each containing 
several hundred individual particle projections. Depending on 
the type of detector used during acquisition, micrographs can 
range in size from a few tens of megapixels up to 100 mega-
pixels for the newest detectors. Moreover, the new generation 
of detectors can record each micrograph as a rapid burst of 
frames, producing large movie files that result in data sets of 

several terabytes in size. The sheer volume of data must be 
taken into account early on in the algorithmic design process, 
and in addition to storage considerations, steps must be taken 
to ensure the efficient use of computational resources to keep 
up with the ever-increasing throughput of data produced by 
modern cameras.

Another issue is the dimensionality of the reconstruction 
problem. The number of voxels of a typical 200 200 200# #  
volume is 8 million. Estimating so many parameters poses a 
challenge, both from the computational complexity side (for 
example, how to find the maximum of the likelihood function 
of 8 million variables) and also on the statistical-estimation 
front (see the “Denoising and Dimensionality Reduction Tech-
niques” section). The problem is even more severe when mul-
tiple structures, or even a continuum of structures, need to be 
estimated (see the “Remaining Computational and Theoretical 
Challenges” section). Getting to high resolution is a major bot-
tleneck due to a compounding computational burden effect: as 
more parameters need to be estimated, more data are required 
for their estimation, and the computation becomes ever more 
expensive and challenging.

3D reconstruction from projections

High-resolution refinement
The reconstruction procedure of high-resolution 3D structures 
is usually split into two stages: constructing an initial low-res-
olution model, which is later refined by applying an iterative 
algorithm (“refinement algorithm”); see Figure 4. This sec-
tion is devoted to refinement techniques, while different ap-
proaches to constitute low-resolution estimates using ab initio 
modeling—initialization-free models—are discussed in the 
next section.

Refinement techniques for cryo-EM can be broadly clas-
sified into two categories: hard and soft angular-assignment 
methods. The hard-assignment approach is based on template 
matching. At each iteration, multiple projections are generat-
ed from the current estimate of the structure; the projections 
should, ideally, densely cover SO(3). Then, a single viewing 
direction is assigned to each experimental image based on the 
projection with which it correlates best. The angular assign-
ment can be performed either in real or Fourier space. 

The advantage of working in Fourier space is that it is not 
necessary to rotate the molecule: projections can be computed 
fast using off-the-shelf nonuniform FFT packages (e.g., [14]and 
[35]), as implied by the Fourier slice theorem. Moreover, with 
this representation, the CTF is simply a diagonal operator. Once 
the viewing directions of all experimental images are assigned, 
the 3D structure is constructed using standard linear-inversion 
techniques; see the discussion in the “Main Computational 
Challenges” section. The algorithm iterates between hard angu-
lar assignment and structure construction until convergence. 
Although the quality of hard angular assignments may be influ-
enced by the high noise levels, there are several examples of 
packages that follow this type of approach, including EMAN2 
[76] and cisTEM [33], among others.
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A second class of strategies comprises the soft-assignment 
methods. Similar to hard-assignment methods, in each iteration, 
the experimental images are correlated with multiple template 
projections. However, instead the best match being chosen, a 
similarity score is given to each pair of experimental image 
and projection. These scores, also called weights or respon-
sibilities, are computed according to the generative statistical 
model of the experimental images and used for reconstruction, 
as explained later in this section.

The soft assignment methods are instances or variants of 
the well-known expectation-maximization (ML-EM) algo-
rithm [25]. Notably, this relation classifies the 3D reconstruc-
tion problem as a problem of ML estimation or, more generally, 
a problem in Bayesian statistics and, thus, provides a solid the-
oretical and algorithmic framework. In particular, it enables 
the incorporation of priors that, essentially, act as regulariz-
ers in the reconstruction process. In the context of cryo-EM, 
ML-EM was first applied to 2D cryo-EM images by Sigworth 
[68] and was later implemented for 3D reconstruction by the 
software packages RELION [63] and cryoSPARC [57].

In what follows, we describe the ML-EM algorithm for a 
more general statistical model and then particularize it to the 
special case of cryo-EM. Suppose we collect N  observations 
from the model:

 , , , ,y L x i N1i ii ff= + =i  (5)

where Li  is a linear transformation acting on the signal ,x  
parameterized by a random variable ,i  and ( , ).I0N 2+f v  
The goal is to estimate ,x  while , , N1 fi i  are nuisance vari-
ables. A typical assumption is that x  can be represented by a 
finite number of coefficients (for instance, its Fourier expan-
sion is finite) and that these coefficients were drawn from a 
Gaussian distribution with mean n  and covariance matrix 

.R  The key for reliable estimation is to marginalize over 
the nuisance variables , , .N1 fi i  Without marginalization 
(i.e., when the goal is to jointly estimate x  and , , ),N1 fi i  
the number of parameters grows with the number of mea-
surements indefinitely, and, thus, the ML estimator may be 
inconsistent. This phenomenon is exemplified by the Ney-
man–Scott “paradox.”

In cryo-EM, the transformation Li  is the operator described 
in (2). This operator rotates the volume, computes its 2D tomo-
graphic projection, and applies a 2D translation and convolu-
tion with the PSF; i  is drawn from a distribution defined over 
the 5D space of 3D rotations and 2D translations. The distribu-
tion of i  is generally unknown and should be estimated as part 
of the ML-EM algorithm.

Let us denote ( , , ).y yy N1 f=  The posterior distribution 
( )p x y;  of (5) is proportional to the product of the prior ( )p x  

with the likelihood function
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where H  is a discrete space on which i  is defined, and M  
is the length of each observation. If the entire posterior dis-
tribution could be computed, then one could obtain far more 
statistical information about x  than just maximizing the likeli-
hood. For instance, the best estimator in the minimum mean 
square error (MMSE) sense is obtained by marginalizing over 
the posterior:

 ( ) ( ) { }.x x xdx xpy y yE
x

MMSE ; ;= =t #  (7)

Unfortunately, the entire posterior can rarely be comput-
ed, especially in big data problems, such as cryo-EM. The 
ML-EM framework provides a simple, yet frequently very 
effective, iterative method that tries to compute the maxi-
mum a posteriori estimator (MAP), that is, the maximal 
value of ( ).p x y;

Each iteration of the ML-EM algorithm consists of two 
steps. The first step (E-step) computes the expected value of 
the log of the posterior with respect to the nuisance variables, 
conditioned on the current estimate of ,x  denoted here by ,xt  
and the data
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If ( , ),x 0N+ R  then ( ) ( / ) .log p x x x1 2 T 1R=- -

The second step (M-step) updates x  by

 ( ),argmaxx Q x xt
x

t1 ;=+  (10)

which is usually performed by setting the gradient of Q  to 
zero. If x  is assumed to be Gaussian, then the M-step reduces 
to solving a linear system of equations with respect to .x  The 
E- and M-steps are applied iteratively. It is well known that 

( ) ( );p x p xy yt t1 ; $ ;+  however, since the landscape of ( )p x y;  
is usually nonconvex, the iterations are not guaranteed to con-
verge to the MAP estimator [25]. Usually, the ML-EM itera-
tions halt when ( ) ( ) ( )) /(p x p x p xy y yt t t1 ; ; ;-+  is smaller than 
some tolerance (but other criteria can be employed as well). 
The posterior distribution at each iteration can be evaluated 
according to (6).

The implementation details of the ML-EM algorithm for 
cryo-EM vary across different software packages. The pop-
ular package RELION, for example, incorporates a prior of 
uniform distribution of rotations over SO(3) (although the 
distribution itself is usually nonuniform), and each Fourier 
coefficient of the 3D volume was drawn independently from 
a normal distribution [63]. The variance of the Fourier coef-
ficients’ prior is updated at each iteration by averaging over 
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concentric frequency shells of the current estimate (resulting 
in a 1D radial function). If the ML-EM algorithm is initialized 
with a smooth volume (which is the common practice), the 
variance is large only at low frequencies; hence, high frequen-
cies are severely regularized. As a result, the first ML-EM 
iterations mostly update the low frequencies, while the high 
frequencies are only slightly affected. 

As the algorithm proceeds, the structure includes more 
high-frequency content; thus, the variance of these frequency 
shells increases, and the effective resolution of the 3D map 
gradually improves. This strategy of initializing with a low-
resolution structure and gradually increasing the resolution is 
called frequency marching and is shared by many packages in 
the field; see further discussion in the “Frequency Marching” 
section. Another popular package, cryoSPARC, also employs an 
ML-EM algorithm with the prior that each voxel in real space 
was drawn independently from a Poisson distribution with a 
constant parameter [57].

We mention that such statistical priors (e.g., each voxel or 
frequency is drawn from Poisson or normal distributions) are 
usually chosen out of mathematical and computational conve-
nience and may bias the reconstruction process. It is an open 
challenge to replace those statistical priors by priors that are 
based on or inspired by biological knowledge, that is, previ-
ously reconstructed structures.

The main drawback of the ML-EM approach, especially at 
high resolution, is the high computational load of the E-step 
in each iteration. Specifically, each ML-EM iteration requires 
correlating each experimental image (typically a few hundred 
thousand) with multiple synthetic projections of the current 
structure estimate [sampled densely over SO(3)] and their 2D 
translations. To alleviate the computational burden, a variety 
of methods are employed to narrow the 5D search space. Popu-
lar techniques are based on multiscale approaches, whereby 
an initial search is done on a coarse grid, followed by local 
searches on finer grids. A more sophisticated idea was sug-
gested in [57], based on the “branch-and-bound” methodology, 
that rules out regions of the search space that are not likely to 
contain the optimum of the objective function.

Ab initio modeling
In this section, we describe some of the intriguing ideas that 
were proposed to construct ab initio models, that is, models 
that do not require an initial guess. These methods usually re-
sult in low-resolution estimates that can be later refined as de-
scribed in the previous section. To emphasize the importance 
of robust ab initio techniques, we begin by discussing model 
bias—a phenomenon of crucial importance in cryo-EM and 
statistics in general.

Model bias and validation
The cryo-EM inverse problem is nonconvex and, thus, the 
output of 3D reconstruction algorithms may depend on their 
initializations. This raises the validation problem: how can we 
verify that a given estimate is a faithful representation of the 
underlying data? Currently, a 3D model is treated as valid if 

its structural features meet the common biological knowledge 
(primary structure, secondary structure, and so on) and if it 
passes some computational tests based on different heuristics. 
For instance, the reconstruction algorithm can be initialized 
from many different points. If the algorithm always converges 
to the same or similar structures, it strengthens the confidence 
in the attained solution. Moreover, since the data are usually 
uploaded to public repositories, different researchers can ex-
amine it and compare the results against each other [61]; see a 
more detailed discussion in the “Verification” section.

Despite all precautions taken by researchers in the field, the 
verification methods are not immunized against system-
ic errors—this pitfall is dubbed model bias. One important 
example concerns the particle-picking stage, when one aims to 
detect and extract particle projections from noisy micrographs. 
The majority of the detection algorithms in the field are based 
on template-matching techniques, despite their intrinsic flaws. 
Specifically, choosing improper templates can lead to erro-
neous detection, which, in turn, biases the 3D reconstruction 
algorithm toward the chosen templates; see [39] and further 
discussion on particle-picking techniques in the “Particle Pick-
ing” section.

The model bias phenomenon is exemplified by the “Einstein 
from noise” experiment [67]. In this experiment, N  images 
of pure independently identically distributed (i.i.d.) Gaussian 
noise are correlated with a reference image. (In the original 
article, the authors chose an image of Einstein as the reference 
and, thus, the name.) Then, each pure-noise image is shifted to 
best align with the reference image (based on the peak of their 
cross correlation), and, finally, all images are averaged. 

Without bias, one would expect that averaging pure-noise 
images would converge toward an image of zeros as N  diverg-
es. However, in practice, the resulting image is similar to the 
reference image, that is, the algorithm is biased toward the ref-
erence image; see [67, Fig. 2]. In the context of cryo-EM, the 
lesson is that, without prudent algorithmic design, the recon-
structed molecular structure may reflect the scientist’s pre-
sumptions rather than the structure that best explains the data. 
We now turn our attention to some of the existing techniques 
for ab initio modeling.

Stochastic gradient descent over the likelihood function
Stochastic gradient descent (SGD) has gained popularity in re-
cent years, especially due to its invaluable role in the field of 
deep learning [21]. The underlying idea is very simple. Suppose 
that we wish to minimize an objective function of the form

 ( ) ( ).f x
N

f x1
i

i

N

1

=
=

/  (11)

A gradient descent algorithm is an optimization technique 
used to minimize the objective function by iteratively moving 
in the direction opposite to its gradient. Its tth iteration takes 
on the form

 ( ),x x
N

f x1
t t t
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/  (12)
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where d  denotes a gradient and th  is called the step size or 
learning rate. In SGD, we simply replace the full sum by a ran-
dom element:

 ( ),x x f xt t t i t1 dh= -+  (13)

where i  is chosen uniformly at random from { , , }.N1 f  In 
expectation, the direction of each SGD step is the direction 
of the full gradient (12). The main advantage of SGD is that 
each iteration is significantly cheaper to compute than the full 
gradient (12). It is also easy to modify the algorithm to sum 
over a few random elements at each iteration, rather than just 
one, to improve robustness at the cost of higher computational 
load per iteration. In addition, it is commonly believed that the 
inherent randomness of SGD helps to escape local minima in 
some nonconvex problems.

This strategy was proven to be effective for constructing 
ab initio models using cryo-EM, achieving resolutions of up 
to 10 Å [57]. The objective function is the negative log of the 
posterior distribution. As the log posterior involves a sum over 
the experimental images (6), the SGD scheme chooses, at each 
iteration, one random image (or a subset of images) to approxi-
mate the gradient direction.

Estimating viewing directions using common lines
If the orientations and locations of the particles in the ice are 
known [equivalently, the 3D rotations and 2D translations in 
(2)], then recovering the 3D structure is a linear problem that 
can be solved using one of the many solutions developed for 
CT imaging. In this section, we survey an analytical method 
for estimating the viewing directions using the common-
lines property.

Due to the Fourier slice theorem, any pair of projection 
images has a pair of central lines (one in each image) on which 
their Fourier transforms agree. For generic molecular struc-
tures (with no symmetry), it is possible to uniquely identify 
this common line, for example, by cross-correlating all pos-
sible central lines in one image with all possible central lines in 
the other image and choosing the pair of lines with maximum 
cross correlation.

The common line pins down two out of the three Euler angles 
associated with the relative rotation R Ri j

1-  between images Ii  
and .I j  A third image is required to determine the third angle: 
the three common-line pairs between the three images unique-
ly determine their relative rotations. This technique is called 
angular reconstitution, and it was suggested, independently, by 
Vainshtein and Goncharov [78] and Van Heel [79]. The main 
drawback of this procedure is its sensitivity to noise; it requires 
the three pairs of common lines to be accurately identified. 
Moreover, estimating the rotations of additional images sequen-
tially (using their common lines with the previously rotationally 
assigned images) can quickly accumulate errors.

As a robust alternative, it was proposed that the rotations 
, ,R RN1 f  be estimated from the common lines of all pairs 

,Ii  I j  simultaneously; this framework is called synchroniza-
tion. Since this strategy takes all pairwise information into 

account, it has better tolerance to noise. The rotation assign-
ment can be done using a spectral algorithm or semidefinite 
programming [72] and enjoys some theoretical guarantees; 
see, for instance, [70]. Nevertheless, as discussed in the “Main 
Computational Challenges” section, in a low-SNR regime, 
any method for estimating the rotations would fail. Therefore, 
the method requires as input high-SNR images that can be 
obtained using a procedure called 2D classification; see fur-
ther discussion in the “2D Classification” section. However, 
2D classification blurs the fine details of the images, and, 
therefore, the attained resolution of the method is limited [34].

Three last comments are in order. First, if the structure 
possesses a nontrivial symmetry, there are multiple common 
lines between pairs of images that should be considered [56]. 
Second, interestingly, this technique cannot work when the 
underlying object is a 2D image (rather than 3D, as in cryo-
EM). In this case, the Fourier transform of the tomographic 
projection (which is a 1D function in that case) is a line that 
goes through the origin of the 2D Fourier space of the under-
lying object. Therefore, the single common point of any two 
projections taken from different angles is the origin, and, 
thus, there is no way to find the relative angle between them. 
Finally, the common-lines method is effective for additional 
signal processing applications, such as the study of specimen 
populations [46].

The method of moments
Suppose that a set of parameters x  characterizes a distribution 

( )p y x;  of a random variable y  with L entries. We observe N  
i.i.d. samples of y  and wish to estimate .x  In the method of 
moments, the underlying idea is to relate the moments of the 
observed data with .x  Those moments can be estimated from 
the data by averaging over the observations
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where y k7  is a tensor with Lk  entries, and the entry indexed 
by ( , , )n n n Zk L

k
1 f !=  is given by ( ).y nii

k

1=
%  By the law of 

large numbers, when ,N "3  the average converges almost 
surely to the expectation. The right-hand side underscores that 
the expectations are solely functions of ;x  the moment tensors 

, , ,M M Mk1 2 f  can be derived analytically. For instance, in 
cryo-EM, the expectation is taken against the random rota-
tions, translations, and noise; the moments are functions of the 
3D volume, the 5D distribution over the space of 3D rotations 
and 2D translations, and some parameters of the noise statistics 
(due to bias terms). The final step of the method of moments 
is to solve the system of equations (14), which might be highly 
nontrivial. Importantly, since estimating the moments requires 
only one pass over the observations, it can be done potentially 
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on the fly during data acquisition. This is especially important 
for cryo-EM, in which hundreds of thousands of images must 
be processed.

Computing the qth moment involves the product of q  noisy 
terms and, thus, the variance of its estimation scales as / .Nq2v  
As a result, when invoking the method of moments, it is cru-
cial to determine the lowest-order moment that identifies the 
parameters x  uniquely: this moment determines the estimation 
rate of the problem, that is, how many samples are required to 
accurately estimate the parameters. Remarkably, it was shown 
that under a general statistical model that is tightly related to the 
cryo-EM problem (as will be described in the “MRA” section), 
the first moment that distinguishes between different parame-
ters determines the sample complexity of the problem (i.e., how 
many observations are necessary to attain an accurate estimate) 
in the low-SNR regime [4]. In addition, the number of equations 
in (14) increases with the order of moments. Thus, using lower-
order moments reduces the computational complexity.

The first to suggest the method of moments for single par-
ticle reconstruction, 40 years ago, was Zvi Kam [42]. Under 
the simplifying assumptions that the particles are centered, the 
rotations are uniformly distributed, and, by ignoring the CTF, 
he showed that the second moment of the experimental images 
determines the 3D structure, up to a set of orthogonal matrices. 
To determine those matrices, he suggested computing a subset 
of the third-order moment. Recently, it was shown that under 
the same assumptions, the structure is indeed determined 
uniquely from the third moment [9]. Remarkably, if the dis-
tribution of rotations is nonuniform, then the second moment 
suffices [66]. Therefore, in light of [4], the sample complex-
ity of the cryo-EM problem in the low-SNR regime, under the 
specified conditions, scales as 4v  and 6v  for nonuniform and 
uniform distribution of rotations, respectively. It is still an open 
question as to how many images are required to solve the full 
cryo-EM problem; see further discussion in the “Remaining 
Computational and Theoretical Challenges” section.

Interest in the method of moments has been recently revived, 
largely due to its potential application to X-ray free-electron 
lasers [48], [82]. We believe that the method of moments has 
been largely overlooked by the cryo-EM community since 
Kam’s article for three main reasons. First, Kam’s original for-
mulation required uniform distribution of viewing directions, 
an assumption that typically does not hold in practice; a recent 
article extends the method to any distribution over SO(3) [66]. 
Second, estimating the second- and third-order statistics accu-
rately requires a large amount of data that was not available until 
recent years. Third, accurate estimation of high-order moments 
for high-dimensional problems requires modern statistical tech-
niques, such as eigenvalue shrinkage in the spiked covariance 
model, that have been introduced only in the last decade [26].

Frequency marching
Most of the cryo-EM reconstruction algorithms start with a 
low-resolution estimate of the structure, which is then gradu-
ally refined to higher resolutions. This process is dubbed fre-
quency marching, and it can be done explicitly by constructing 

a low-resolution model using an ab initio technique that is later 
refined by ML-EM [57] or, more implicitly, by an iteration-
dependent regularization [63].

In [13], a deterministic and mathematically rigorous meth-
od to gradually increase the resolution was proposed. The 
3D Fourier transform of the object is expanded by concentric 
shells. At each iteration, each experimental image is compared 
with many simulated projections of the current low-resolution 
estimate, and a viewing direction is assigned to each experi-
mental image by template matching (hard angular assignment). 
Given the angular assignments, an updated structure with one 
more frequency shells is computed by solving a linear least 
squares problem, thus progressively increasing the resolution.

Building blocks in the computational pipeline
This section elaborates on some of the building blocks in the 
algorithmic pipeline of single-particle reconstruction using 
cryo-EM. For each task, we introduce the problem and discuss 
the underlying principles behind some of the most commonly 
used solutions.

Motion correction
During data collection, the electron beam induces sample mo-
tion that mitigates high-resolution information. The modern 
detectors (DEDs) acquire multiple frames per micrograph, al-
lowing partial correction of the motion blur by aligning and av-
eraging the frames. In essence, motion correction is an alignment 
problem (also referred to as registration or synchronization) 
that shares many similarities with classical tasks in signal pro-
cessing and computer vision. The main challenge in alignment 
is the high noise levels, which hamper the precise estimation of 
relative shifts between frames.

Several solutions were proposed to the motion-correction 
problem based on a variety of methods, such as pairwise align-
ment of all frames and optical flow; see a survey on the subject 
in [58] and the references therein. The first-generation solu-
tions aimed to estimate the movement of the entire micrograph; 
however, the drift is not homogeneous across the entire field 
of view, motivating the development of more accurate local 
techniques. One such strategy is implemented by the software 
MotionCor2 [88], which describes the motion as a block-based 
deformation that varies smoothly throughout the exposure. 

The micrograph is first divided into patches, and motions 
within each patch are estimated based on cross correlation. 
Then, the local motions are fitted to a time-varying 2D poly-
nomial, which is quadratic in the 2D frame coordinates and 
cubic in the time axis. Finally, the frames are summed, with 
or without dose weighting, which was determined according 
to a radiation-damage analysis. More recently, strategies for 
per-particle motion correction have been proposed that yield 
significant improvements in resolution [15], [92]. Figure 6 
shows examples of different motion-correction strategies.

CTF estimation and correction
Each cryo-EM image is affected by the PSF of the microscope 
through convolution with a kernel ;hi  see (2). The Fourier 
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transform of the PSF—the CTF—suffers from multiple zero 
crossings, making its inversion (i.e., deconvolution) challeng-
ing. To compensate for the missing frequencies, the standard 
routine is to apply different PSFs to different micrographs. 
Thus, spectral information that was suppressed in one micro-
graph may appear in another.

The CTF cannot be specified precisely by the user. Instead, 
the number and location of the zero crossings is given by the 
specific experimental parameters of the microscope, which are 
hard to control. Thus, a preceding step entails estimating the 
CTF from the acquired data. Specifically, the CTF is modeled as

( , , , ) ( ),sink f C k f
k C

E k
2

CTF s
s2

3 4

$T T; ;
; ;

; ;m rm
rm

a=- - +c m
 (15)

where k  is the frequency index, a  is a small phase-shift term, 
m  is the electron wavelength, fT  is the objective defocus, Cs is 
the spherical aberration, and ( )E k; ;  is an exponentially decaying 
envelope function—specified by a parameter called B-factor—
due to the beam energy spread, beam coherence, and sample 
drift [59]. The CTF mitigates the very low frequencies, and, 
therefore, centering projection images (i.e., finding their center 
of mass) is challenging. In fact, the center of mass depends on 
the CTF, and, thus, two projection images with the same view-
ing angles but different CTFs (e.g., different defocus values) will 
have different centers in real space.

The CTF is approximately constant along concentric rings, 
although, in practice, those rings might be slightly deformed; 
this deformation can be modeled by an additional parameter 
called astigmatism. The defocus value of the microscope has 
a pivotal role: high defocus values enhance low-resolution fea-
tures and improve the contrast of the image (increase the SNR), 
whereas low defocus values enhance high-resolution features 
(fine details) at the cost of lower contrast (lower SNR).

CTF estimation begins by computing the power spectrum 
of the whole micrograph. The power spectrum exhibits “rings,” 
called Thon rings, that correspond to the oscillations of the sine 
function (15); those rings are used to fit the CTF’s parameters 
[see Figure 2(b)]. Two popular software packages, CTFFIND4 
[59] and Gctf [85], estimate those parameters by generating 
multiple templates according to the postulated model (15). The 
template that best fits the measured Thon rings is used as the 
estimated CTF.

Once the CTF is estimated, the goal is to invert its action. 
The challenge stems from the structure of the CTF (15) because 
it has many small values and, thus, direct inversion is impos-
sible. The most popular technique for CTF correction, “phase 
flipping,” is embarrassingly simple: it disregards the informa-
tion about amplitude changes and corrects the data only for 
the sign of the CTF, thereby obtaining the correct phases in 
Fourier space. Namely, if a micrograph is represented in the 
Fourier domain by

 ( ) ( ) ( ),I k k I kCTFmicrograph =  (16)

where ( )I k  is the micrograph before the CTF action, then the 
corrected image would be

 ( ) ( )) ( ) ( ) ( ).I k k I k k I ksign(CTF CTFcorrected micrograph ; ;= =  (17)

Another approach is to apply Wiener filtering that attempts to 
correct both the amplitudes and the phases [29], [69]. However, 
this approach requires knowledge of the SNR (which is not 
trivial to estimate in a low-SNR environment) and cannot cor-
rect for missing frequencies.

Instead of inverting the CTF explicitly, an attractive alter-
native is to incorporate the CTF into the forward model of 
the reconstruction algorithm. This can be done naturally in 

(a) (b) (c)

FIGURE 6. Examples of beam-induced motion correction. All movement trajectories in this figure are color coded, with cyan representing the position of 
the first frame and magenta indicating the position of the last frame in the sequence. (a) Strategies for global motion correction compensate for move-
ment of the specimen across the entire field of view containing multiple particles. (Used with permission from [32].) (b) Semilocal strategies for motion 
correction align frames across subregions defined on a discrete grid. (Used with permission from [88].) (c) Per-particle or local drift correction allows 
accurate tracking of individual particles throughout the exposure to electrons. (Used with permission from [15].)
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the ML-EM approach, the method of moments, and the SGD 
framework. Because different CTFs are applied to different 
micrographs, in principle, full CTF correction is feasible.

Particle picking
A micrograph consists of regions that contain only noise; those 
with noisy 2D projections; and those with other contaminants, 
such as carbon film. In particle picking, the goal is to detect 
and extract the 2D projections (particles) from the noisy mi-
crographs. High-resolution reconstruction typically requires 
hundreds of thousands of particles, and, thus, manual picking 
is time consuming and tedious. In addition, it may introduce 
subjective bias into the procedure.

Many solutions have been proposed in the literature for the 
particle-picking problem, based on standard edge-detection 
techniques, machine learning [83], [84], [91], and template 
matching. For the last of these, a popular strategy is the one 
implemented in RELION. In this framework, the user manu-
ally selects a few hundred particles. These particle images are 
then 2D classified (see the next section), and the 2D classes are 
used as templates for an automatic particle picking based on 
template matching [64].

As discussed in the “Model Bias and Validation” section, 
a major concern of any particle-picking algorithm is a sys-
tematic bias. To alleviate the risk for model bias, a fully 
automated technique was proposed in [37]. Rather than tem-
plates, the algorithm automatically selects a set of reference 
windows that include both particle and noise windows. The 
selection is based on the local mean and variance: regions 
with particles typically have lower mean and higher vari-
ance than regions without particles. Then, regions in the 
micrograph are correlated with the reference windows. The 
regions that are most likely to contain a particle (high cor-
relation) and those that are least likely (low correlation with 
all reference windows) are used to train a support-vector 
machine classifier. The output of this linear classifier is used 
to pick the particles.

In practice, a considerable number of picked particles are 
usually noninformative, containing adjacent particles that are 
too close to each other, only part of a particle, or just pure noise. 
Consequently, it is common to try to prune out these outliers. In 
[62], it was proposed to employ several particle pickers simul-
taneously and compute a consensus between them using a deep 
neural network. In [90], a simple pruning strategy is devised by 
viewing the output of the particle-picking algorithm as a mix-
ture of Gaussians.

2D classification
As experimental images corresponding to similar viewing di-
rections tend to be very much alike (due to the smoothness of 
the molecular structure), it is common to divide the images into 
several classes (i.e., clustering) and average them to increase 
the SNR. This process is called 2D classification, and the aver-
aged images are referred to as class averages. Since the global 
in-plane rotation of each micrograph is arbitrary, the cluster-
ing should be invariant under in-plane rotations: two images 

from a similar viewing direction but with different in-plane 
rotations are supposed to be grouped together after appropriate 
alignment. The class averages are used for a variety of tasks: to 
construct ab initio models, as templates for particle picking, to 
provide a quick assessment of the particles, to remove picked 
particles that are associated with noninformative classes, and 
for symmetry detection.

There are three main computational aspects that make the 
2D classification task quite challenging. First, as already men-
tioned, low SNR impedes accurate clustering and alignment. 
Second, the high computational complexity of finding the 
optimal clustering among hundreds of thousands of images 
may be prohibitive unless designed carefully. Third, it is not 
clear what is the appropriate similarity metric to accurately 
compare images.

Many different strategies for 2D classification were pro-
posed; see, for instance, [73] and [80]. A popular 2D  classification 
 algorithm, implemented in RELION [65], is based on the 
ML-EM scheme. In this algorithm, each observed image is 
modeled as a sample from the statistical model

 , , , ,y h T R x i N1i i t k ii i i) ff= + =i  (18)

where k  is distributed uniformly over { , , }K1 f  (these are the 
K  class averages to be estimated), i  is distributed uniformly 
over [ , ),0 2!i r  t  is drawn from an isotropic 2D Gaussian, hi  
is the estimated PSF, and ( , ).I0Ni

2+f v  Given this model, it 
is straightforward to implement an ML-EM algorithm to es-
timate , ,x xK1 f  following the guidelines of the “3D Recon-
struction From Projections” section. 

This algorithm, although popular, suffers from three im -
perative weaknesses. First, the computational burden of run-
ning ML-EM is a major hurdle as the algorithm needs to go 
through all experimental images at each iteration. Second, 
it assumes that each experimental image is originated from 
only K  possible class averages. However, this is an inaccu-
rate model, as the orientations of particles in the ice layer 
are distributed continuously over SO(3) (in addition to struc-
tural variability that may be present). Finally, ML-EM typi-
cally suffers from the winner-takes-all phenomenon: most 
experimental images would correlate well with—and, thus, 
be assigned to—the class averages that enjoy higher SNRs. 
As a result, ML-EM tends to output only a few, low-reso-
lution classes. This phenomenon was already recognized in 
[73] and is also present for ML-EM-based 3D classification 
and refinement.

An alternative solution was proposed in [87]. In this frame-
work, each image is averaged with its few nearest neighbors, 
after a proper in-plane alignment. The nearest neighbor search 
is executed efficiently over the bispectra of the images. The 
bispectrum is a rotationally invariant feature of an image— 
that is, it remains unchanged under an in-plane rotation. To 
reduce the computational complexity and denoise the data, 
each image is first compressed using a dimensionality-reduc-
tion technique, called steerable principal component analy-
sis (PCA), which is the main topic of the next section.
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Denoising and dimensionality-reduction techniques
PCA is a widely used tool for linear dimensionality reduc-
tion and denoising, dating back to Pearson [41], [54]. PCA 
computes the best (in the least squares sense) low-dimen-
sional affine space that approximates the data by projecting 
the images into the space spanned by the leading eigenvec-
tors of their covariance matrix. In cryo-EM, covariance 
estimation was introduced by Kam [42] and was used for 
the first time for dimensionality reduction and image clas-
sification by van Heel and Frank [80]. PCA is often used 
to denoise the experimental images and as part of the 2D 
classification stage.

Cryo-EM images are equally likely to appear in any in-
plane rotation. Consequently, when performing PCA, it makes 
sense to take all in-plane rotations of each image into account. 
Luckily, there is a simple way to account for all in-plane rota-
tions without rotating the images explicitly. This can be done 
by expanding the images in a steerable basis: a basis formed 
as an outer product of radial functions with an angular Fourier 
basis; examples are Fourier Bessel, 2D prolate spheroidal wave 
functions, and Zernike polynomials. 

When integrating over all possible in-plane rotations, the 
covariance matrix of the expansion coefficients enjoys a block-
diagonal structure, reducing the computational load signifi-
cantly: while the covariance matrix of images of size L L#  has 
L4  entries, the block-diagonal structure guarantees that merely 

( )O L3  entries are nonzero. This, in turn, reduces the compu-
tational complexity of steerable PCA from ( )O NL L4 6+  to 

( ):O NL L3 4+  the first term is the cost of computing the sample 
covariance over N  images, and the second term is the cost of 
the eigendecomposition over all blocks [86].

Classical covariance-estimation techniques usually assume 
that the number of samples is considerably larger than the sig-
nal’s dimension. However, this is not the typical case in cryo-
EM, in which the dimensionality of the molecule is of the same 
order as the number of measurements. In this regime, one can 
take advantage of recent developments in high-dimensional sta-
tistics under the “spiked covariance model” [26]. These tech-
niques, based on eigenvalue shrinkage, were recently applied 
successfully to denoise cryo-EM images [20].

Mathematical frameworks for cryo-EM data analysis
Inspired by the cryo-EM problem, researchers have studied a 
couple of abstract mathematical models in recent years. These 
models provide a general framework for analyzing cryo-EM 
from theoretical and statistical perspectives while removing 
some of its complications. In what follows, we introduce the 
models and succinctly describe some intriguing results.

MRA
The MRA model reads [10]

 ( ) , ,y T g x g Gi i i i i% !f= +  (19)

where G  and Ti  are, respectively, a known compact group and 
linear operators, and ( , ).I0Ni

2+f v  The signal x RL!  is as-

sumed to lie in a known space (say, the space of signals with 
a finite spectral expansion) on which random elements of G  
act. The task is to estimate the signal x  from the observations 

, ,y yN1 f  while the group elements , ,g gN1 f  are unknown. 
Since the statistics of y  are invariant under the action of a con-
stant g  on ,x  the recovery is possible up to left multiplication 
by some group element g G! —that is, we wish to estimate 
the orbit of x  under the group action. 

Figure 7 shows an example of three discrete 1D MRA obser-
vations under the group of cyclic shifts /LZ  at different noise 
levels. If we assume perfect particle picking, then the cryo-
EM model (2) is a special case of (19) when G  is the group of 
3D rotations SO(3) and T  is the linear operator that takes the 
rotated structure, integrates along the z-axis (tomographic pro-
jection), convolves with the PSF, and samples it on a Cartesian 
grid. The MRA model formulates many additional applications, 
including structure from motion in computer vision [5], localiza-
tion and mapping in robotics [60], study of specimen popula-
tions [46], optical and acoustical trapping [28], and denoising 
of permuted data [53].

While surveying all recent results about the MRA model 
is beyond the scope of this article, we wish to present a 
remarkable information/theoretic result about the sample 
complexity of the problem (and, therefore, also for cryo-EM 
under the stated assumptions). In many cases, among them 
when T I=  and the cryo-EM setup [without shifts so that 

( )],G SO 3=  one can estimate the group elements gi  from 
the measurements yi  in the high-SNR regime using one of 
many synchronization techniques (based on spectral meth-
ods, semidefinite programming, or nonconvex program-
ming) [70], [72]. Once the group elements are identified, one 
can estimate the signal by aligning all observations (undo 
the group actions) and averaging. 

(a) (b) (c)

σ = 0 σ = 0.2 σ = 1.2

FIGURE 7. An example of MRA observations at different noise levels .v  
Each column consists of three different cyclic shifts (the group actions) 
of a 1D periodic discrete signal (the linear operator T is the identity opera-
tor): (a) ,0v =  (b) . ,0 2v =  and (c) . .1 2v =  Clearly, if the noise level 
is low, estimating the signal is easy: one can align the observations (i.e., 
undo the group action) and average out the noise. The challenge is to 
estimate the signal when high noise levels hinder alignment, as in (c). 
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The variance of averaging over i.i.d. Gaussian variables is 
proportional to / ( )N1 SNR$ —that is, the number of measure-
ments should be proportional to 1/SNR to achieve an accurate 
estimate. In this case, we say that the sample complexity of 
the problem in the high-SNR regime is 1/SNR: this is a com-
mon scenario in many data processing tasks. In the low-SNR 
regime, the situation is radically different. Specifically, it was 
shown that, when ,"3v  the sample complexity of the MRA 
problem is determined by the first moment qr  that distinguishes 
between different signals. More precisely, in the asymptotic 
regime where N and v  diverge, the estimation error of any 
method is bounded away from zero if N SNRq$ r  is bounded 
from above. We then say that the sample complexity in the low-
SNR regime is proportional to 1/SNRqr  [4].

For the cryo-EM setup, assuming perfect particle picking 
and no CTF, it was shown that the sample complexity depends 
on the distribution of rotations: for uniform distribution the 
sample complexity scales as 1/SNR3  (i.e., the structure is deter-
mined by the third moment), whereas for generic nonuniform 
distribution, the second moment suffices, and, thus, the sample 
complexity scales as 1/SNR2  [9], [66]. Similar results were 
derived for simpler setups; for instance, when a discrete signal 
is acted on by cyclic shifts (as shown in Figure 7) [3], [9], [19].

The pivotal role of moments in sample complexity analysis 
led naturally to the design of algorithms based on the method of 
moments. Some of these algorithms hinge on the tightly relat-
ed notion of invariant polynomials. A polynomial p  is called 
invariant under the action of a group G  if, for any signal x  in 
the specified space and any ,g G!  it satisfies ( ) ( ).p g x p x% =  
One particularly important invariant is the third-order poly-
nomial, the bispectrum—originally proposed by John Tukey 
[77]—that was used for 2D classification [87] and ab initio 
modeling [42]. We refer readers to [71] and the references 
therein for a more detailed account of the MRA problem.

MTD
MTD is the problem of estimating a signal that occurs multiple 
times at unknown locations in a noisy measurement. In its sim-
plest form, the MTD problem is an instance of the 1D blind 
deconvolution problem and can be written as

 ,y x s) f= +  (20)

where x RL!  is the target signal, { , }s 0 1 N L 1! - +  is a binary 
signal whose ones indicate the location of the signal copies in 
the measurement ,y RN!  and ( , );I0N 2+f v  see Figure 8. 
Detecting the signal occurrences in the data (i.e., estimating the 
signal )s  is the analog of particle picking in cryo-EM. Clearly, 
if the noise level is low, one can estimate s  (and, analogously, 
detect the particle projections in the micrograph), extract the 
signal occurrences, and average them to suppress the noise. 

However, as mentioned previously, low SNR precludes detec-
tion (and particle picking), and, therefore, one must estimate x  
directly, without explicit estimation of .s  In [18], it was shown 
that under certain generative models of ,s  the signal x  can be 
estimated provably, at any noise level, from the bispectrum 
(third-order statistics). More ambitiously, numerical experiments 
suggest that the bispectrum suffices to estimate multiple signals 

, ,x xK1 f  from a mix of blind deconvolution problems

 ,y x si
i

K

i
1

) f= +
=

/  (21)

without explicit estimation of the binary signals , ,s sK1 f  that 
indicate the location of the corresponding signals.

The MTD model can be extended to formulate a genera-
tive model of a micrograph: the key is to treat x  as a random 
signal that represents the tomographic projections of the mol-
ecule ,z  rather than a deterministic signal as in (20) and (21). 
Specifically, locations are chosen in the 2D plane: these are 
the positions of the embedded samples in the micrograph. For 
each location, a signal is drawn from a probability distribution 
described by the model

 ,x h PR) z= ~  (22)

where the 3D rotation R~  is applied to the volume z accord-
ing to a (possibly unknown) distribution of ~ over SO(3), P  is 
a tomographic projection, and h  is the microscope’s PSF; the 
goal is to estimate .z  Therefore, the MTD model paves the way 
toward fully modeling the cryo-EM problem, including most 
of its important features [18]. In particular, MTD provides a 
mathematical and computational framework for reconstruct-
ing z directly from micrographs, without intermediate particle 
picking [17]. A full analysis of this model is still lacking.

Remaining computational and theoretical challenges
Some interesting and important computational and theoretical 
challenges that lie ahead for single-particle reconstruction us-
ing cryo-EM are given next.

Conformational heterogeneity: Modeling and recovery
One of the important opportunities offered by cryo-EM is 
its ability to analyze different functional and conformational 

FIGURE 8. An example of an MTD observation with five signal occurrences 
at different noise levels (20): (a) ,0v =  (b) . ,0 2v =  and (c) . .1 2v =  
When (a) the noise level is low, it is easy to detect the signal occurrences 
and estimate the underlying signal by averaging out the noise. However, 
(c) when the noise level is high, reliable detection is rendered challeng-
ing. The task is, then, to estimate the underlying signal directly, without 
intermediate detection of its occurrences.

(a)

(b)

(c)

σ = 0

σ = 0.2

σ = 1.2
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states of macromolecules. Mathematically, it entails estimating 
multiple 3D structures simultaneously; we refer to this as the 
heterogeneity problem. There is no consensus about the proper 
way to model the heterogeneity problem, and the computation-
al tools are not well established. Therefore, we believe that it 
offers an opportunity for researchers with strong mathematical 
and computational backgrounds to make a profound impact on 
the field of structural biology.

We now briefly survey different approaches to handling the 
heterogeneity problem. To this end, we extend the basic cryo-
EM model (2) to account for conformational variability:

 , , , ,y h T PR i N1noisei i t ii i) f` _z= + =~  (23)

where the goal is to estimate the distribution from which 
the structures , ,i Nfz z  are sampled. With this formulation, 
the problem is ill posed: there is not enough information in 
N  2D images to recover N  3D structures. Hence, additional 
 assumptions about the structures must be made. The differ-
ent techniques in the field can be broadly classified into two 
categories: discrete and continuous models. The discrete het-
erogeneous model assumes that the measurements stem from 
a few independent volumes (i.e., a discrete distribution). Under 
this model, each projection image can be written as

 , , , ,y h T PR i N1noisei i t ki i i) f` _z= + =~  (24)

where ,kz  , , ,k K1 f=  represent the K  different volumes. 
The advantage of this approach is evident: it is easy to ex-
tend the ML-EM framework to incorporate several volumes 
simultaneously. Alternatively, some software packages apply 
a preliminary 3D classification stage, in which the 2D experi-
mental images are being classified into different structures. 
CryoSPARC runs multiple trials of an SGD algorithm from 
different initializations. This procedure occasionally leads to 
multiple low-resolution estimates, and each of those is refined 
by an ML-EM algorithm [57]. Although the simplicity of the 
discrete model is a big advantage, its drawbacks are apparent: 
it does not scale well for large K  and ignores the correlation 
between different functional states of the molecule and, thus, 
overlooks important information.

The second approach, referred to as continuous heterogene-
ity, assumes that , , N1 fz z  can be embedded in a low-dimen-
sional space. For instance, one approach is to assume that the set 
of conformations lies in a linear subspace (that can be learned 
using PCA) or in more intricate low-dimensional manifolds 
(that could be learned by other spectral methods, e.g., diffusion 
maps). An alternative suggestion was to model the structure as 
a set of rigid domains that can move with respect to each other. 
We refer readers to a thorough survey on the subject in [74].

Verification
Given a 3D reconstruction, how do we verify that it is a reli-
able and faithful representation of the underlying molecule? 
This is a question of crucial importance for any scientific 
field. Several validation techniques were proposed in the 

cryo-EM literature. For example, it is possible to check the 
consistency of the 3D map by recording pairs of images of the 
same particles at different tilt angles and comparing the rela-
tive angle between orientations assigned to each projection: 
ideally, it should agree with the relative rotation angle of the 
microscope’s specimen holder used during the experiment. 

This approach is called the tilt-pair validation technique and 
is useful only for intermediate-resolution structures [40], [61]. In 
practice, structure validation is based on a set of heuristics and 
the experts’ knowledge and experience. For instance, it is com-
mon to initialize 3D reconstruction algorithms from multiple 
random points; if all instances attain similar structures, it serves 
as a validation fidelity. If the same molecule were reconstituted 
by other technologies, such as X-ray crystallography and NMR, 
then structures can be compared. In addition, experimental 
data are usually uploaded to public repositories, and, thus, other 
researchers can process the same data, experiment with different 
computational techniques, and compare the results [61].

Verification is also related to the question of determining 
the resolution of a recovered structure. The current convention 
is to reconstruct two structures independently, each from one 
half of the data. The two subsets are chosen at random. The 
highest frequency for which the two structures agree (up to 
some tolerance) determines the resolution [75]. This process 
can be understood as an indication for the confidence we have 
in the structure at a given resolution.

However, this method is susceptible to systematic flaws; 
if the same refinement procedure is applied to both halves of 
the data, it can induce correlated blunders (although the data 
are independent), and the resolution determination would 
be unsound. In [24], a simple computational procedure was 
proposed to validate a structure by assessing the amount of 
overfitting that is present in the 3D map. Establishing com-
putational tools that provide confidence intervals to estimated 
structures and are immunized against systematic errors is one 
of the remaining challenges in the field.

Theoretical foundations of cryo-EM
Many mathematical and statistical properties of the cryo-EM 
problem are still unexplained (and even unexplored). A promi-
nent example is the sample complexity of the full cryo-EM 
problem: given a fixed SNR level (that might be very low) and a 
fixed setup, how many particles are required to achieve a desired 
resolution? An initial analysis was conducted in [9] and [66]; see 
the “MRA” section.

Another interesting question concerns computational com-
plexity and information-computational gaps [11]. The fact that 
there is enough information to solve a problem (sample com-
plexity) does not immediately imply that there is an efficient 
(polynomial time) algorithm to solve it. For example, it might 
be that for nonuniform distribution of rotations, the second 
moment would suffice to estimate a 3D structure from an infor-
mation-theoretic perspective [66], but, at the same time, it could 
be computationally hard in that regime. In that case, we might 
need to consider the third-order moment to design a compu-
tationally efficient algorithm. Information-computational gaps 
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have been observed empirically in variants of the MRA and 
MTD models [18], [22]. Related questions—that might be even 
more challenging—deal with the properties of specific algo-
rithms, such as ML-EM, the method of moments, and SGD, 
that are not well understood.

Another interesting research thread regards the size limit 
of molecular structures that can be elucidated by cryo-EM. 
The common belief in the community is that very small mol-
ecules cannot be visualized using cryo-EM. The logic is sim-
ple: small molecules induce low contrast, and, thus, low SNR 
on the micrograph, which, in turn, hinders detection (particle 
picking) [38]. A recent article contends this belief and suggests 
that it is possible, at least in principle, to reconstruct structures 
directly from the micrograph, without particle picking and at 
any SNR level, given enough data [17].

Machine learning
The groundbreaking advances in machine learning in the 
last decade have dramatically reshaped many computational 
fields and penetrated into some scientific applications. Nat-
urally, learning techniques based on deep neural networks 
have been applied to cryo-EM as well. Examples are particle 
picking [83], [84], [91] (as discussed in the “Particle Picking” 
section), validation [7], 3D reconstruction [89], and particle 
pruning [62]. In addition, manifold-learning techniques were 
designed for 3D heterogeneity analysis [31], [51] and denoising 
[45]. Modern-learning techniques were also implemented in 
other cryo-EM applications that do not involve single-particle 
reconstruction; see, for instance, an application to feature ex-
traction in cellular electron cryotomography [23].

Deep learning gained its popularity in applications with 
low noise levels. The performance of these techniques in more 
challenging environments, such as with highly contaminated 
data, is not clear yet. In addition, supervised-learning tech-
niques are susceptible to model bias—the reconstruction will 
depend heavily on the training data rather than on the experi-
mental images. This explains why the impact of deep learn-
ing on the cryo-EM field—especially on more involved tasks, 
such as 3D reconstruction and the heterogeneity problem—is 
limited at the moment. We expect that more efforts in this 
direction will be made in the coming years. In particular, it is 
still to be clarified whether this set of computational tools can 
outperform current tools in the field, which are based on more 
classical statistics.

Perspective
Single-particle reconstruction using cryo-EM is an alluring re-
search area for investigators interested in developing modern 
computational tools and sophisticated mathematical models 
for an emerging scientific field. In this article, we introduced 
the problem of constituting 3D molecular structures using 
cryo-EM and described its unique computational characteris-
tics and challenges. We delineated relations between the cryo-
EM inverse problem and a variety of disciplines at the core 
of signal processing, information theory, statistics, machine 
learning, and group theory. We believe that contributions from 

these areas have the potential to drive the field forward. New 
ideas and solutions can, and should, be tested on experimental 
cryo-EM data sets publicly available online [1], [2]. We also 
reviewed two abstract frameworks to conveniently study the 
cryo-EM inverse problem from computational, statistical, and 
theoretical perspectives.

We believe that the challenges arising in cryo-EM research 
provide ample opportunities to investigate and test novel algo-
rithms and advanced mathematical techniques to impact a task 
of paramount importance: to broaden our understanding of the 
fundamental mechanisms of life.
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include theoretical and computational aspects of data science and 
developing computational methods for structural biology.
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