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GLOBAL REGISTRATION OF MULTIPLE POINT CLOUDS USING
SEMIDEFINITE PROGRAMMING∗

K. N. CHAUDHURY†, Y. KHOO‡, AND A. SINGER§

Abstract. Consider N points in Rd and M local coordinate systems that are related through
unknown rigid transforms. For each point, we are given (possibly noisy) measurements of its local
coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe
the coordinates of a subset of the points. The problem of estimating the global coordinates of the
N points (up to a rigid transform) from such measurements comes up in distributed approaches to
molecular conformation and sensor network localization, and also in computer vision and graphics.
The least-squares formulation of this problem, although nonconvex, has a well-known closed-form
solution when M = 2 (based on the singular value decomposition (SVD)). However, no closed-form
solution is known for M ≥ 3. In this paper, we demonstrate how the least-squares formulation can
be relaxed into a convex program, namely, a semidefinite program (SDP). By setting up connections
between the uniqueness of this SDP and results from rigidity theory, we prove conditions for exact and
stable recovery for the SDP relaxation. In particular, we prove that the SDP relaxation can guarantee
recovery under more adversarial conditions compared to earlier proposed spectral relaxations, and
we derive error bounds for the registration error incurred by the SDP relaxation. We also present
results of numerical experiments on simulated data to confirm the theoretical findings. We empirically
demonstrate that (a) unlike the spectral relaxation, the relaxation gap is mostly zero for the SDP (i.e.,
we are able to solve the original nonconvex least-squares problem) up to a certain noise threshold,
and (b) the SDP performs significantly better than spectral and manifold-optimization methods,
particularly at large noise levels.
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1. Introduction. The problem of point cloud registration comes up in computer
vision and graphics [52, 59, 65] and in distributed approaches to molecular conforma-
tion [20, 17] and sensor network localization [16, 9]. The registration problem in
question is one of determining the coordinates of a point cloud P from the knowl-
edge of (possibly noisy) coordinates of smaller point cloud subsets (called patches)
P1, . . . , PM that are derived from P through some general transformation. In certain
applications [45, 59, 40], one is often interested in finding the optimal transforms (one
for each patch) that consistently align P1, . . . , PM . This can be seen as a subproblem
in the determination of the coordinates of P [16, 51].
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In this paper, we consider the problem of rigid registration in which the points
within a given Pi are (ideally) obtained from P through an unknown rigid transform.
Moreover, we assume that the correspondence between the local patches and the
original point cloud is known; that is, we know beforehand which points from P are
contained in a given Pi. In fact, one has a control on the correspondence in distributed
approaches to molecular conformation [17] and sensor network localization [9, 69, 16].
While this correspondence is not directly available for certain graphics and vision
problems, such as multiview registration [49], it is in principle possible to estimate
the correspondence by aligning pairs of patches, e.g., using the ICP (iterative closest
point) algorithm [6, 51, 36].

1.1. Two-patch registration. The particular problem of two-patch registra-
tion has been well-studied [21, 34, 2]. In the noiseless setting, we are given two point
clouds {x1, . . . , xN} and {y1, . . . , yN} in Rd, where the latter is obtained through some
rigid transform of the former. Namely,

(1.1) yk = Oxk + t (k = 1, . . . , N),

where O is some unknown d × d orthogonal matrix (that satisfies OTO = Id) and
t ∈ Rd is some unknown translation.

The problem is to infer O and t from the above equations. To uniquely determine
O and t, one must have at least N ≥ d + 1 nondegenerate points.1 In this case, O
can be determined simply by fixing the first equation in (1.1) and subtracting (to
eliminate t) any of the remaining d equations from it. Say we subtract the next d
equations:

[y2 − y1 · · · yd+1 − y1] = O[x2 − x1 · · · xd+1 − x1];
by the nondegeneracy assumption, the matrix on the right of O is invertible, and this
gives us O. By plugging O into any of the equations in (1.1), we get t.

In practical settings, (1.1) would hold only approximately, say, due to noise or
model imperfections. A particular approach then would be to determine the optimal
O and t by considering the following least-squares program:

(1.2) min
O∈O(d), t∈Rd

N∑
k=1

‖yk −Oxk − t‖22.

Note that the problem looks difficult a priori since the domain of optimization isO(d)×
Rd, which is nonconvex. Remarkably, the global minimizer of this nonconvex problem
can be found exactly and has a simple closed-form expression [19, 39, 32, 21, 34, 2].
More precisely, the optimal O� is given by V UT , where UΣV T is the singular value
decomposition (SVD) of

N∑
k=1

(xk − xc)(yk − yc)T ,

in which xc = (x1 + · · ·+ xN )/N and yc = (y1 + · · ·+ yN)/N are the centroids of the
respective point clouds. The optimal translation is t� = yc −O�xc.

The fact that two-patch registration has a closed-form solution is used in the so-
called incremental (sequential) approaches for registering multiple patches [6]. The

1By nondegenerate, we mean that the affine span of the points is d dimensional.
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most well-known method is the ICP algorithm [51] (note that ICP uses other heuris-
tics and refinements besides registering corresponding points). Roughly, the idea in
sequential registration is to register two overlapping patches at a time, and then in-
tegrate the estimated pairwise transforms using some means. The integration can be
achieved either locally (on a patch-by-patch basis) or using global cycle-based meth-
ods such as synchronization [52, 35, 53, 59, 63]. More recently, it was demonstrated
that, by locally registering overlapping patches and then integrating the pairwise
transforms using synchronization, one can design efficient and robust methods for dis-
tributed sensor network localization [16] and molecular conformation [17]. Note that,
while the registration phase is local, the synchronization method integrates the local
transforms in a globally consistent manner. This makes it robust to error propagation
that often plagues local integration methods [35, 63].

1.2. Multipatch registration. To describe the multipatch registration prob-
lem, we first introduce some notation. Suppose x1, x2, . . . , xN are the unknown
global coordinates of a point cloud in R

d. The point cloud is divided into patches
P1, P2, . . . , PM , where each Pi is a subset of {x1, x2, . . . , xN}. The patches are in
general overlapping, whereby a given point can belong to multiple patches. We repre-
sent this membership using an undirected bipartite graph Γ = (Vx ∪ VP , E). The set
of vertices Vx = {x1, . . . , xN} represents the point cloud, while VP = {P1, . . . , PM}
represents the patches. The edge set E = E(Γ) connects Vx and VP and is given by
the requirement that (k, i) ∈ E if and only if xk ∈ Pi. We will henceforth refer to Γ
as the membership graph.

In this paper, we assume that the local coordinates of a given patch can (ideally)
be related to the global coordinates through a single rigid transform, that is, through
some rotation, reflection, and translation. More precisely, with every patch Pi we
associate some (unknown) orthogonal transform Oi and translation ti. If point xk
belongs to patch Pi, then its representation in Pi is given by (cf. (1.1) and Figure 1)

(1.3) xk,i = OT
i (xk − ti) (k, i) ∈ E(Γ).

Alternatively, if we fix a particular patch Pi, then for every point belonging to that
patch,

(1.4) xk = Oixk,i + ti (k, i) ∈ E(Γ).

In particular, a given point can belong to multiple patches and will have a different
representation in the coordinate system of each patch.

The premise of this paper is that we are given the membership graph and the
local coordinates (referred to as measurements), namely,

(1.5) Γ and {xk,i, (k, i) ∈ E(Γ)},
and the goal is to recover the coordinates x1, . . . , xN and, in the process, the unknown
rigid transforms (O1, t1), . . . , (OM , tM ), from (1.5). Note that the global coordinates
are determined up to a global rotation, reflection, and translation. We say that two
points clouds (also referred to as configurations) are congruent if one is obtained
through a rigid transformation of the other. We will always identify two congruent
configurations as being a single configuration.

Under appropriate nondegeneracy assumptions on the measurements, one task
would be to specify appropriate conditions on Γ under which the global coordinates
can be uniquely determined. Intuitively, it is clear that the patches must have enough
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Fig. 1. The problem of registering three patches on R2, where one is required to find the global
coordinates of the points from the corresponding local patch coordinates. The local coordinates of
the points in patches P2 and P3 are shown (see (1.5) for the notation of local coordinates). It is the
common points belonging to two or more patches (marked in red) that contribute to the registration.
Note that sequential or pairwise registration would fail in this case. This is because no pair of patches
can be registered as they have less than three points in common (at least three points are required to
fix rotations, reflections, and translations in R2). The SDP-based algorithm proposed in this paper
does a global registration and is able to recover the exact global coordinates for this example.

points in common for the registration problem to have a unique solution. For example,
it is clear that the global coordinates cannot be uniquely recovered if Γ is disconnected.

In practical applications, we are confronted with noisy settings where (1.4) holds
only approximately. In such cases, we would like to determine the global coordinates
and the rigid transforms such that the discrepancy in (1.4) is minimal. In particular,
we consider the following quadratic loss:

(1.6) φ =
∑

(k,i)∈E(Γ)

‖xk −Oixk,i − ti‖2,

where ‖·‖ is the Euclidean norm on Rd. The optimization problem is to minimize φ
with respect to the following variables:

x1, x2, . . . , xN ∈ R
d, O1, . . . , OM ∈ O(d), t1, . . . , tM ∈ R

d.

The input to the problem consists of the measurements in (1.5). Note that our ulti-
mate goal is to determine x1, x2, . . . , xN ; the rigid transforms can be seen as latent
variables.
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The problem of multipatch registration is intrinsically nonconvex since one is
required to optimize over the nonconvex domain of orthogonal transforms. Different
ideas from the optimization literature have been deployed to attack this problem,
including Lagrangian optimization and projection methods. In the Lagrangian setup,
the orthogonality constraints are incorporated into the objective; in the projection
method, the constraints are forced after every step of the optimization [49]. Following
the observation that the registration problem can be viewed as an optimization on
the Grassmanian and Stiefel manifolds, researchers have proposed algorithms using
ideas from the theory and practice of manifold optimization [40]. A detailed review of
these methods is beyond the scope of this paper, and instead we refer the interested
reader to these excellent reviews [18, 1]. Manifold-based methods are, however, local
in nature and are not guaranteed to find the global minimizer. Moreover, it is rather
difficult to certify the noise stability of such methods.

1.3. Contributions. The main contributions of the paper can be organized into
the following categories.

1. Algorithm. We demonstrate how the translations can be factored out of (1.6),
whereby the least-squares problem can be reduced to the following optimiza-
tion:

(1.7) max
O1,...,OM

M∑
i,j=1

Tr(OiCijO
T
j ) subject to O1, . . . , OM ∈ O(d),

where Cij ∈ Rd×d(1 ≤ i, j ≤ M) are the (i, j)th subblocks of some positive
semidefinite block matrix C of sizeMd×Md. Given the solution of (1.7), the
desired global coordinates can simply be obtained by solving a linear system.
It is virtually impossible to find the global optimum of (1.7) for large-scale
problems (M � 1), since this involves the optimization of a quadratic cost on
a huge nonconvex parameter space. In fact, the simplest case d = 1 with C as
the Laplacian matrix corresponds to the MAX-CUT problem, which is known to
be NP-hard. The main observation of this paper is that (1.7) can instead be
relaxed into a convex program, namely, a semidefinite program (SDP), whose
global optimum can be approximated to any finite precision in polynomial
time using standard off-the-shelf solvers. This yields a tractable method for
global registration described in Algorithm 2. The corresponding algorithm,
derived from the spectral relaxation of (1.7) that was already considered in
[40], is described in Algorithm 1 for reference.

2. Exact recovery. We present conditions on the coefficient matrix C in (1.7)
for exact recovery using Algorithm 2. In particular, we show that the exact
recovery questions about Algorithm 2 can be mapped into rigidity theoretic
questions that have already been investigated earlier2 in [68, 25]. The contri-
bution of this section is the connection made between the C matrix in (1.7)
and various notions of rigidity considered in these papers. We also present an
efficient randomized rank test for C that can be used to certify exact recovery
(motivated by the work in [31, 26, 54]).

3. Stability analysis. We study the stability of Algorithms 1 and 2 for the noise
model in which the patch coordinates are perturbed using noise of bounded
size (note that the stability of the spectral relaxation was not investigated in

2The authors thank the anonymous referees for pointing this out.
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[40]). Our main result here is Theorem 5.2, which states that if C satisfies a
particular rank condition, then the registration error for Algorithm 2 is within
a constant factor of the noise level. To the best of our knowledge, there is
no existing algorithm for multipatch registration that comes with a similar
stability guarantee.

4. Empirical results. We present numerical results on simulated data to numer-
ically verify the exact recovery and noise stability properties of Algorithms 1
and 2. Our main empirical findings are the following:
(1) The semidefinite relaxation performs significantly better than spectral and
manifold-based optimization (say, with the spectral solution as initialization)
in terms of the reconstruction quality (cf. the first plot in Figure 7).
(2) Up to a certain noise level, we are actually able to solve the original
nonconvex problem using the semidefinite relaxation (cf. the second plot in
Figure 7).

1.4. Broader context and related work. The objective (1.6) is a straightfor-
ward extension of the objective for two patches [19, 21, 34, 2]. In fact, this objective
was earlier considered by Zhang et al. for distributed sensor localization [69]. The
present work is also closely tied to the work of Cucuringu et al. on distributed lo-
calization [16, 17], where a similar objective is implicitly optimized. The common
theme in these works is that some form of optimization is used to globally register
the patches once their local coordinates have been determined by some means. There
is, however, some fundamental differences between the various algorithms used to
actually perform the optimization. Zhang et al. [69] use alternating least-squares
to iteratively optimize over the global coordinates and the transforms, which to the
best of our knowledge has no convergence guarantee. On the other hand, Cucuringu
et al. [16, 17] first optimize over the orthogonal transforms (using synchronization
[53]), and then solve for the translations (in effect, the global coordinates) using least-
squares fitting. In this work, we combine these different ideas into a single framework.
While our objective is similar to the one used in [69], we jointly optimize the rigid
transforms and positions. In particular, the algorithms considered in section 2 avoid
the convergence issues associated with alternating least-squares in [69] and are able
to register patch systems that cannot be registered using the approach in [16, 17].

Another closely related work is the paper by Krishnan et al. on global registra-
tion [40], where the optimal transforms (rotations, to be specific) are computed by
extending the objective in (1.2) to the multipatch case. The subsequent mathemat-
ical formulation has a strong resemblance to our formulation and, in fact, leads to
a subproblem similar to (1.7). Krishnan et al. [40] propose the use of manifold op-
timization to solve (1.7), where the manifold is the product manifold of rotations.
However, as mentioned earlier, manifold methods generally do not offer guarantees on
convergence (to the global minimum) and stability. Moreover, the manifold in (1.7)
is not connected. Therefore, any local method will fail to attain the global optimum
of (1.7) if the initial guess is on the wrong component of the manifold.

It is exactly at this point that we depart from [40], namely, we propose to relax
(1.7) into a tractable SDP. This was motivated by a long line of work on the use of
SDP relaxations for nonconvex (particularly NP-hard) problems. See, for example,
[43, 23, 66, 47, 12, 41] and the reviews [60, 48, 70]. Note that for d = 1, (1.7)
is a quadratic Boolean optimization similar to the MAX-CUT problem. An SDP-based
algorithm with randomized rounding for solving MAX-CUT was proposed in the seminal
work of Goemans and Williamson [23]. The semidefinite relaxation that we consider
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in section 2 is motivated by this work. In connection with the present work, we
note that provably stable SDP algorithms have been considered for low-rank matrix
completion [12], phase retrieval [13, 62], and graph localization [37].

We note that a special case of the registration problem considered here is the
so-called generalized Procrustes problem [28]. Within the point-patch framework just
introduced, the goal in Procrustes analysis is to find O1, . . . , OM ∈ O(d) that minimize

(1.8)
N∑

k=1

M∑
i,j=1

‖Oixk,i −Ojxk,j‖2.

In other words, the goal is to achieve the best possible alignment of the M patches
through orthogonal transforms. This can be seen as an instance of the global reg-
istration problem without the translations (t1 = · · · = tM = 0), and one in which
Γ is complete. It is not difficult to see that (1.8) can be reduced to (1.7). On the
other hand, using the analysis in section 2, it can be shown that (1.6) is equivalent
to (1.8) in this case. While the Procrustes problem is known to be NP-hard, several
polynomial-time approximations with guarantees have been proposed. In particular,
SDP relaxations of (1.8) have been considered in [47, 55, 46] and, more recently, in
[3]. We use the relaxation of (1.7) considered in [3] for reasons to be made precise in
section 2.

1.5. Notation. We use uppercase letters such as O to denote matrices, and
lowercase letters such as t for vectors. We use Id to denote the identity matrix of size
d× d. We denote the diagonal matrix of size n× n with diagonal elements c1, . . . , cn
by diag(c1, . . . , cn). We will frequently use block matrices built from smaller matrices,
typically of size d× d, where d is the dimension of the ambient space. For some block
matrix A, we will use Aij to denote its (i, j)th block and A(p, q) to denote its (p, q)th
entry. In particular, if each block has size d× d, then

Aij(p, q) = A
(
(i − 1)d+ p, (j − 1)d+ q

)
(1 ≤ p, q ≤ d).

We use A � 0 to mean that A is positive semidefinite, that is, uTAu ≥ 0 for all u. We
use O(d) to denote the group of orthogonal transforms (matrices) acting on Rd, and
use O(d)M to denote theM -fold product of O(d) with itself. We will also conveniently
identify the matrix [O1 · · ·OM ] with an element of O(d)M where each Oi ∈ O(d). We
use ‖x‖ to denote the Euclidean norm of x ∈ Rn (n will usually be clear from the
context and will be pointed out if this is not so). We denote the trace of a square
matrix A by Tr(A). The Frobenius and spectral norms are defined as

‖A‖F = Tr(ATA)1/2 and ‖A‖sp = max
‖x‖≤1

‖Ax‖.

The Kronecker product between matrices A and B is denoted by A ⊗ B [24]. The
all-ones vector is denoted by e (the dimension will be obvious from the context), and
eNi denotes the all-zero vector of length N with 1 at the ith position.

1.6. Organization. In the next section, we present the semidefinite relaxation
of the least-squares registration problem described in the introduction. For reference,
we also present the closely related spectral relaxation that was already considered
in [40, 68, 25]. Exact recovery questions are addressed in section 3, followed by a
randomized test in section 4. Stability analysis for the spectral and semidefinite
relaxations is presented in section 5. Numerical simulations can be found in section
6, and a discussion of certain open questions in section 7.
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2. Spectral and semidefinite relaxations. The minimization of (1.6) involves
unconstrained variables (global coordinates and patch translations) and constrained
variables (the orthogonal transformations). We first solve for the unconstrained vari-
ables in terms of the unknown orthogonal transformations, representing the former
as linear combinations of the latter. This reduces (1.6) to a quadratic optimization
problem over the orthogonal transforms of the form (1.7).

In particular, we combine the global coordinates and the translations into a single
matrix:

(2.1) Z =
[
x1 · · · xN t1 · · · tM

] ∈ R
d×(N+M).

Similarly, we combine the orthogonal transforms into a single matrix:

(2.2) O = [O1 · · · OM ] ∈ R
d×Md.

Recall that we will conveniently identify O with an element of O(d)M .
To express (1.6) in terms of Z and O, we write xk − ti = Zeki, where

eki = eN+M
k − eN+M

N+i .

Similarly, we write Oi = O(eMi ⊗ Id). This gives us

φ(Z,O) =
∑

(k,i)∈E(Γ)

‖Zeki −O(eMi ⊗ Id)xk,i‖2.

Using ‖x‖2 = Tr(xxT ) and properties of the trace, we obtain

(2.3) φ(Z,O) = Tr

(
[Z O]

[
L −BT

−B D

] [
ZT

OT

])
,

where

L =
∑

(k,i)∈E

ekie
T
ki, B =

∑
(k,i)∈E

(eMi ⊗ Id)xk,ieTki, and(2.4)

D =
∑

(k,i)∈E

(eMi ⊗ Id)xk,ixk,iT (eMi ⊗ Id)T .

The matrix L is the combinatorial graph Laplacian of Γ [14] and is of size (N +M)×
(N +M). The matrix B is of size Md× (N +M), and the size of the block diagonal
matrix D is Md×Md.

The optimization program now reads

(P) min
Z,O

φ(Z,O) subject to Z ∈ R
d×(N+M), O ∈ O(d)M .

The fact that O(d)M is nonconvex makes (P) nonconvex. In the subsections 2.1–2.5,
we will show how this nonconvex program can be approximated by tractable spectral
and convex programs.

2.1. Optimization over translations. Note that we can write (P) as

min
O∈O(d)M

[
min

Z∈Rd×(N+M)
φ(Z,O)

]
.
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That is, we first minimize over the free variable Z for some fixed O ∈ O(d)M , and
then we minimize with respect to O.

Fix some arbitrary O ∈ O(d)M , and set ψ(Z) = φ(Z,O). It is clear from (2.3)
that ψ(Z) is quadratic in Z. In particular, the stationary points Z� = Z�(O) of ψ(Z)
satisfy

(2.5) ∇ψ(Z�) = 0 ⇒ Z�L = OB.

The Hessian of ψ(Z) equals 2L, and it is clear from (2.4) that L � 0. Therefore, Z�

is a minimizer of ψ(Z).
If Γ is connected, then e is the only vector in the null space of L [14]. Let L† be

the Moore–Penrose pseudoinverse of L, which is again positive semidefinite. It can
be verified that

(2.6) LL† = L†L = IN+M − (N +M)−1eeT .

If we right multiply (2.5) by L†, we get

(2.7) Z� = OBL† + teT ,

where t ∈ Rd is some global translation. Conversely, if we right multiply (2.7) by L
and use the facts that eTL = 0 and Be = 0, we get (2.5). Thus, every solution of
(2.5) is of the form (2.7).

Substituting (2.7) into (2.3), we get

(2.8) ψ(Z�) = φ(Z�, O) = Tr(COTO) =
M∑

i,j=1

Tr(OiCijO
T
j ),

where

(2.9) C =
[
BL† IMd

] [ L −BT

−B D

] [
L†BT

IMd

]
= D −BL†BT .

Note that (2.8) has the global translation t taken out. This is not a surprise since
φ is invariant to global translations. Moreover, note that we have not forced the
orthogonal constraints on O as yet. Since φ(Z,O) ≥ 0 for any Z and O, it necessarily
follows from (2.8) that C � 0. We will see in what follows how the spectrum of C
dictates the performance of the convex relaxation of (2.8).

In analogy with the notion of stress in rigidity theory [26], we can consider (1.6)
as a sum of the “stress” between pairs of patches when we try to register them using
rigid transforms. In particular, the (i, j)th term in (2.8) can be regarded as the stress
between the (centered) ith and jth patches generated by the orthogonal transforms.
Keeping this analogy in mind, we will henceforth refer to C as the patch-stress matrix.

2.2. Optimization over orthogonal transforms. The goal now is to optimize
(2.8) with respect to the orthogonal transforms; that is, we have reduced (P) to the
following problem:

(P0) min
O∈Rd×Md

Tr(COTO) subject to (OTO)ii = Id (1 ≤ i ≤M).

This is a nonconvex problem since O lives on a nonconvex (disconnected) manifold [1].
We will generally refer to any method which uses manifold optimization to solve (P0)
and then computes the coordinates using (2.7) as “global registration over Euclidean
transforms using manifold optimization” (GRET-MANOPT).
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2.3. Spectral relaxation and rounding. Following the quadratic nature of
the objective in (P0), it is possible to relax it into a spectral problem. More precisely,
consider the domain

S = {O ∈ R
d×Md : rows of O are orthogonal and each row has norm

√
M}.

That is, we do not require the d×d blocks in O ∈ S to be orthogonal. Instead, we only
require the rows of O to form an orthogonal system, and each row to have the same
norm. It is clear that S is a larger domain than that determined by the constraints
in (P0). In particular, we consider the following relaxation of (P0):

(P1) min
O∈S

Tr(COTO).

This is precisely a spectral problem in that the global minimizers are determined from
the spectral decomposition of C. More precisely, let μ1 ≤ · · · ≤ μMd be eigenvalues
of C, and let r1, . . . , rMd be the corresponding eigenvectors. Define

(2.10) W � def
=
√
M
[
r1 · · · rd

]T ∈ R
d×Md.

Then

(2.11) Tr(CW �TW �) = min
O∈S

Tr(COTO) =M(μ1 + · · ·+ μd).

Due to the relaxation, the blocks of W � are not guaranteed to be in O(d). We
round each d × d block of W � to its “closest” orthogonal matrix. More precisely, let
W � = [W �

1 · · ·W �
M ]. For every 1 ≤ i ≤M , we find O�

i ∈ O(d) such that

‖O�
i −W �

i ‖F = min
O∈O(d)

‖O −W �
i ‖F .

As noted earlier, this has a closed-form solution, namely O�
i = UV T , where UΣV T is

the SVD of W �
i . We now put the rounded blocks back into place and define

(2.12) O� def
=
[
O�

1 . . . O
�
M

] ∈ O(d)M .

In the final step, following (2.7), we define

(2.13) Z� def
= O�BL† ∈ R

d×(N+M).

The first N columns of Z� are taken to be the reconstructed global coordinates.
We will refer to this spectral method as the “global registration over Euclidean

transforms using spectral relaxation” (GRET-SPEC). The main steps of GRET-SPEC are
summarized in Algorithm 1. We note that a similar spectral algorithm was proposed
for angular synchronization by Bandeira, Singer, and Spielman [4], and by Krishnan
et al. [40] for initializing the manifold optimization.

The question at this point is how the quantities O� and Z� are obtained from
GRET-SPEC related to the original problem (P). Since (P1) is obtained by relaxing
the block-orthogonality constraint in (P0), it is clear that if the blocks of W � are
orthogonal, then O� and Z� are solutions of (P), that is,

φ(Z�, O�) ≤ φ(Z,O) for all Z ∈ R
d×(N+M), O ∈ O(d)M .
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Algorithm 1. GRET-SPEC.

Require: Membership graph Γ, local coordinates {xk,i, (k, i) ∈ E(Γ)}, dimension d.
Ensure: Global coordinates x1, . . . , xN in Rd.
1: Build B,L, and D in (2.4) using Γ.
2: Compute L† and C = D −BL†BT .
3: Compute bottom d eigenvectors of C, and set W � as in (2.10).
4: for i = 1 to M do
5: O�

i ← UiV
T
i .

6: end for
7: O� ← [

O�
1 · · ·O�

M

]
8: Z� ← O�BL†.
9: Return first N columns of Z�.

We have actually found the global minimizer of the original nonconvex problem (P)
in this case.

Observation 2.1 (tight relaxation using GRET-SPEC). If the d × d blocks of the
solution of (P1) are orthogonal, then the coordinates and transforms computed by
GRET-SPEC are the global minimizers of (P).

If some of the blocks are not orthogonal, then the rounded quantities O� and Z�

are only an approximation of the solution of (P).

2.4. Semidefinite relaxation and rounding. We now explain how we can
obtain a tighter relaxation of (P0) using an SDP, for which the global minimizer
can be computed efficiently. Our SDP was motivated by the line of work on the
semidefinite relaxation of nonconvex problems [43, 23, 60, 12].

Consider the domain

C = {O ∈ R
Md×Md : (OTO)11 = · · · = (OTO)MM = Id}.

That is, while we require the columns of eachMd×d block of O ∈ C to be orthogonal,
we do not force the nonconvex rank constraint rank(O) = d. This gives us the following
relaxation:

(2.14) min
O∈C

Tr(COTO).

Introducing the variable G = OTO, we see that (2.14) is equivalent to

(P2) min
G∈RMd×Md

Tr(CG) subject to G � 0, Gii = Id (1 ≤ i ≤M).

This is a standard SDP [60] which can be solved using software packages such as SDPT3
[58] and CVX [29]. We provide details about SDP solvers and their computational
complexity later in subsection 2.5.

Let us denote the solution of (P2) by G
�, that is,

(2.15) Tr(CG�) = min
G∈RMd×Md

{Tr(CG) : G � 0, G11 = · · · = GMM = Id}.

By the linear constraints in (P2), it follows that rank(G
�) ≥ d. If rank(G�) > d, we

need to round (approximate) it by a rank-d matrix. That is, we need to project it onto
the domain of (P0). One possibility would be to use random rounding that comes with
approximation guarantees; for example, see [23, 3]. In this work, we use deterministic



GLOBAL REGISTRATION USING SEMIDEFINITE PROGRAMMING 479

rounding, namely, the eigenvector rounding which retains the top d eigenvalues and
discards the remaining. In particular, let λ1 ≥ λ2 ≥ · · · ≥ λMd be the eigenvalues of
G�, and let q1, . . . , qMd be the corresponding eigenvectors. Let

(2.16) W � def
=
[√

λ1q1 · · ·
√
λdqd

]T ∈ R
d×Md.

We now proceed as in the GRET-SPEC, namely, we define O� and Z� from W �

as in (2.12) and (2.13). We refer to the complete algorithm as “global registration
over Euclidean transforms using SDP” (GRET-SDP). The main steps of GRET-SDP are
summarized in Algorithm 2.

Algorithm 2. GRET-SDP.

Require: Membership graph Γ, local coordinates {xk,i, (k, i) ∈ E(Γ)}, dimension d.
Ensure: Global coordinates x1, . . . , xN in Rd.
1: Build B,L, and D in (2.4) using Γ.
2: Compute L† and C = D −BL†BT .
3: G� ← Solve the SDP (P2) using C.
4: Compute top d eigenvectors of G�, and set W � using (2.16).
5: for i = 1 to M do
6: Compute W �

i = UiΣiV
T
i .

7: O�
i ← UiV

T
i .

8: end for
9: O� ← [

O�
1 · · ·O�

M

]
10: Z� ← O�BL†.
11: Return first N columns of Z�.

Similarly to Observation 2.1, we note the following for GRET-SDP.
Observation 2.2 (tight relaxation using GRET-SDP). If the rank of the solution

of (P2) is exactly d, then the coordinates and transforms computed by GRET-SDP are
the global minimizers of (P).

If rank(G�) > d, the output of GRET-SDP can only be considered as an approx-
imation of the solution of (P). The quality of the approximation for (P2) can be
quantified using, for example, the randomized rounding in [3]. More precisely, note
that since D is block diagonal, (2.14) is equivalent (up to a constant term) to

max
O∈C

Tr(QOTO),

where Q = BL†BT � 0. Bandeira, Kennedy, and Singer [3] show that the orthogo-
nal transforms (which we continue to denote by O�) obtained by a certain random
rounding of G� satisfy

E

[
Tr(Q O�TO�)

]
≥ α2

d ·OPT,

where OPT is the optimum of the unrelaxed problem (1.7) with Q = BL†BT , and
αd is the expected average of the singular values of a d × d random matrix with
independent entries distributed as N (0, 1/d). It was conjectured in [3] that αd is
monotonically increasing, and the boundary values were computed to be α1 =

√
2/π

(α1 was also reported in [48]) and α∞ = 8/3π. We refer the reader to [3] for further
details on the rounding procedure and its relation to previous work in terms of the
approximation ratio. Empirical results, however, suggest that the difference between
deterministic and randomized rounding is small as far as the final reconstruction is
concerned. We will therefore simply use the deterministic rounding.
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2.5. Computational complexity. The main computations in GRET-SPEC are
the Laplacian inversion, the eigenvector computation, and the orthogonal rounding.
The cost of inverting L when Γ is dense is O((N +M)3). However, for most practical
applications, we expect Γ to be sparse since every point would typically be contained
in a small number of patches. In this case, it is known that the linear system Lx = b
can be solved in time almost linear in the number of edges in Γ [57, 61]. Applied
to (2.6), this means that we can compute L† in O(|E(Γ)|) time (up to logarithmic
factors). Note that, even if L is dense, it is still possible to speed up the inversion
(say, compared to a direct Gaussian elimination) using the following formula [33, 50]:

L† = [L+ (N +M)−1eeT ]−1 − (N +M)−1eeT .

The speed up in this case is, however, in terms of the absolute run time. The overall
complexity is still O((N +M)3), but with smaller constants. We note that it is also
possible to speed up the inversion by exploiting the bipartite nature of Γ [33], although
we have not used this in our implementation.

The complexity of the eigenvector computation is O(M3d3), while that of the
orthogonal rounding is O(Md3). The total complexity of GRET-SPEC, say, using a
linear-time Laplacian inversion, is (up to logarithmic factors)

O
(|E(Γ)| + (Md)3

)
.

The main computational blocks in GRET-SDP are identical to those in GRET-SPEC,
including the SDP computation. The SDP solution can be computed in polyno-
mial time using interior-point programming [67]. In particular, the complexity of
computing an ε-accurate solution using interior-point solvers such as SDPT3 [58] is
O((Md)4.5 log(1/ε)). It is possible to lower this complexity by exploiting the particu-
lar structure of (P2). For example, notice that the constraint matrices in (P2) have
at most one nonzero coefficient. Using the algorithm in [30], one can then bring down
the complexity of the SDP to O((Md)3.5 log(1/ε)). By considering a penalized version
of the SDP, we can use first-order solvers such as TFOCS [5] to further cut down the
dependence on M and d to O((Md)3ε−1), but at the cost of a stronger dependence
on the accuracy. The quest for efficient SDP solvers is currently an active area of
research. Fast SDP solvers have been proposed that exploit either the low-rank struc-
ture of the SDP solution [11, 38] or the simple form of the linearity constraints in (P2)
[64]. More recently, a sublinear time approximation algorithm for SDP was proposed
in [22]. The complexity of GRET-SDP using a linear-time Laplacian inversion and an
interior-point SDP solver is thus

O
(|E(Γ)|+ (Md)4.5 log(1/ε) + (Md)3

)
.

For problems where the size of the SDP variable is within 150, we can solve (P2) in
reasonable time on a standard PC using SDPT3 [58] or CVX [29]. We use CVX for the
numerical experiments in section 6 that involve small-to-moderate sized SDP variables.
For larger SDP variables, one can use the low-rank structure of (P2) to speed up the
computation. In particular, we were able to solve for SDP variables of size up to
2000× 2000 using SDPLR [11] that exploits this low-rank structure.

3. Exact recovery. We now examine conditions on the membership graph under
which the proposed spectral and convex relaxations can recover the global coordinates
from the knowledge of the clean local coordinates (and the membership graph). More
precisely, let x̄1, . . . , x̄N be the true coordinates of a point cloud in Rd. Suppose that
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the point cloud is divided into patches whose membership graph is Γ, and that we are
provided the measurements

(3.1) xk,i = ŌT
i (x̄k − t̄i), (k, i) ∈ E(Γ),

for some Ōi ∈ O(d) and t̄i ∈ Rd. The patch-stress matrix C is constructed from Γ
and the clean measurements (3.1). The question is, under what conditions on Γ can
x̄1, . . . , x̄N be recovered by our algorithm? We will refer to this as exact recovery.

To express exact recovery in the matrix notation introduced earlier, define

Z̄ =
[
x̄1 · · · x̄N t̄1 · · · t̄M

] ∈ R
d×(N+M)

and

Ō = [Ō1 · · · ŌM ] ∈ R
d×Md.

Then, exact recovery means that for some Ω ∈ O(d) and t ∈ Rd,

(3.2) Z� = ΩZ̄ + teT .

Henceforth, we will always assume that Γ is connected (clearly one cannot have exact
recovery otherwise).

Conditions for exact recovery have previously been examined by Zha and Zhang
[68] in the context of tangent-space alignment in manifold learning, and later by
Gortler et al. [25] from the perspective of rigidity theory. In particular, they show
that the so-called notion of affine rigidity is sufficient for exact recovery using the
spectral method. Moreover, the authors in [68, 25] relate this notion of rigidity to
other standard notions of rigidity and provide conditions on a certain hypergraph
constructed from the patch system that can guarantee affine rigidity. The purpose of
this section is to briefly introduce the rigidity results in [68, 25] and relate these to the
properties of the membership graph Γ (and the patch-stress matrix C). We note that
the authors in [68, 25] directly examine the uniqueness of the global coordinates, while
we are concerned with the uniqueness of the patch transforms obtained by solving (P1)
and (P2). The uniqueness of the global coordinates is then immediate.

Proposition 3.1 (uniqueness and exact recovery). If (P1) and (P2) have unique
solutions, then (3.2) holds for both GRET-SPEC and GRET-SDP.

At this point, we note that if a patch has less than d+ 1 points, then even when
x̄1, . . . , x̄N are the unique set of coordinates that satisfy (3.1), we cannot guarantee
that Ō1, . . . , ŌM and t̄1, . . . , t̄M are unique. Therefore, we will work under the mild
assumption that each patch has at least d+1 nondegenerate points, so that the patch
transforms are uniquely determined from the global coordinates.

We now formally define the notion of affine rigidity. Although phrased differently,
it is in fact identical to the definitions in [68, 25]. Henceforth, by affine transform we
will mean the group of nonsingular affine maps on Rd. Affine rigidity is a property
of the patch-graph Γ and the local coordinates (xk,i). In keeping with [25], we will
collectively call these the patch framework and denote it by Θ = (Γ, (xk,i)).

Definition 3.2 (affine rigidity). Let y1, . . . , yN ∈ Rd be such that, for affine
transforms A1, . . . , AM ,

yk = Ai(xk,i), (k, i) ∈ E(Γ).

The patch framework Θ = (Γ, (xk,i)) is affinely rigid if y1, . . . , yN is identical to
x̄1, . . . x̄N up to a global affine transform.
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Since each patch has d+1 points, we now give a characterization of affine rigidity
that will be useful later.

Proposition 3.3. A patch framework Θ = (Γ, (xk,i)) is affinely rigid if and only
if for any F ∈ Rd×Md such that Tr(CFTF ) = 0 we must have F = AŌ for some
nonsingular A ∈ Rd×d.

Before proceeding to the proof, note that Ō and Ḡ = ŌT Ō are solutions of (P1)
and (P2) (this was the basis of Proposition 3.1), and the objective in either case is
zero. Indeed, from (3.1), we can write Z̄L = ŌB. Since Γ is connected,

(3.3) Z̄ = ŌBL† + teT (t ∈ R
d).

Using (3.3), it is not difficult to verify that φ(Z̄, Ō) = Tr(CḠ). Moreover, it follows
from (3.1) that φ(Z̄, Ō) = 0. Therefore,

(3.4) Tr(CḠ) = Tr(CŌT Ō) = 0.

Using an identical line of reasoning, we also record another fact. Let F =
[F1, . . . , FM ] where each Fi ∈ Rd×d. Suppose there exists y1, . . . , yN ∈ Rd and
t1, . . . , tM ∈ R

d such that

(3.5) yk = Fixk,i + ti, (k, i) ∈ E(Γ).

Then Y = [y1, . . . , yN , t1, . . . , tM ] ∈ Rd×(N+M) satisfies

(3.6) Y = FBL† + teT

and Tr(CFTF ) = 0.
Proof of Proposition 3.3. For any F such that Tr(CFTF ) = 0, letting

[y1, . . . , yN , t1, . . . , tM ] = FBL†,

we have (3.5). By the affine rigidity assumption, we must then have yk = Ax̄k + t for
some nonsingular A ∈ Rd×d and t ∈ Rd. Since each patch contains d+1 nondegenerate
points, it follows that F = AŌ.

In the other direction, assume that y1, . . . , yN ∈ Rd satisfy (3.5). We know
that Tr(CFTF ) = 0, and hence F = AŌ for some nonsingular A. Using (3.6), we
immediately have yk = Ax̄k + t.

Note that Tr(CFTF ) = 0 implies that the rows of F are in the null space of C.
Therefore, the combined facts that Tr(CFTF ) = 0 and F = AŌ for some nonsingular
A ∈ Rd×d are equivalent to saying that null space of C is within the row span of Ō.
The following result then follows as a consequence of (3.3).

Corollary 3.4. A patch framework Θ = (Γ, (xk,i)) is affinely rigid if and only
if the rank of C is (M − 1)d.

The corollary gives an easy way to check for affine rigidity. However, it is not
clear what construction of Γ will ensure such a property. In [68], the notion of graph
lateration was introduced that guarantees affine rigidity. Namely, Γ is said to be a
graph lateration (or simply laterated) if there exists a reordering of the patch indices
such that, for every i ≥ 2, Pi and P1 ∪ · · · ∪ Pi−1 have at least d + 1 nondegenerate
nodes in common. An example of a graph lateration is shown in Figure 2.

Theorem 3.5 (see [68]). If Γ is laterated and the local coordinates are nondegen-
erate, then the framework Θ is affinely rigid.
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P1 

P2 P3 

Fig. 2. Instance of three overlapping patches, where the overlapping points are shown in red.
In this case, P3 cannot be registered with either P1 or P2 due to insufficient overlap. Therefore, the
patches cannot be localized in two dimensions using, for example, the methods in [69, 17] that work
by registering pairs of patches. However, the patches can be registered using GRET-SPEC and GRET-SDP

since the ordered patches P1, P2, P3 form a graph lateration in R2.

Next, we turn to the exact recovery conditions for (P2). The appropriate notion
of rigidity in this case is that of universal rigidity [27]. Just as we defined affine rigidity
earlier, we can phrase universal rigidity as follows.

Definition 3.6 (universal rigidity). Suppose that (3.1) holds. Let x1, . . . , xN ∈
Rs(s ≥ d) be such that, for some orthogonal Oi ∈ Rs×d and ti ∈ Rs,

xk = Oixk,i + ti, (k, i) ∈ E.
We say that the patch framework Θ = (Γ, (xk,i)) is universally rigid in Rd if for any
such (xk), we have xk = Ωx̄k for some orthogonal Ω ∈ Rs×d.

By orthogonal Ω, we mean that the columns of Ω are orthogonal and of unit norm
(i.e., Ω can be seen as an orthogonal transform in R

s by identifying R
d as a subspace

of Rs).
Following exactly the same arguments used to establish Proposition 3.3, one can

derive the following.
Proposition 3.7. The following statements are equivalent:
(a) A patch framework Θ = (Γ, (xk,i)) is universally rigid in Rd.
(b) Let O ∈ Rs×Md(s ≥ d) be such that OT

i Oi = Id for all i. Then

Tr(COTO) = 0 ⇒ O = ΩŌ for some orthogonal Ω ∈ R
s×d.

The question then is, under what conditions is the patch framework universally
rigid? This was also addressed in [25] using a graph construction derived from Γ
called the body graph. This is given by ΓB = (VB , EB), where VB = {1, 2, . . . , N} and
(k, l) ∈ EB if and only if xk and xl belong to the same patch (cf. Figure 3). Next, the
following distances are associated with ΓB:

(3.7) dkl = ‖xk,i − xl,i‖, (k, l) ∈ EB,
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Fig. 3. This shows the body graph for a 3-patch system (patches marked with ovals, points
marked with dots). The edges of the body graph are obtained by connecting points that belong to
the same patch. The edges within a given patch are marked with the same color. GRET-SDP can
successfully register all the patches if the body graph is rigid in a certain sense.

where xk, xl ∈ Pi, say. Note that the above assignment is independent of the choice
of patch. A set of points (xk)k∈V in Rs is said to be a realization of {dkl : (k, l) ∈ E}
in Rs if dkl = ||xk − xl|| for (k, l) ∈ E.

It was shown in [25] that Θ = (Γ, (xk,i)) is universally rigid if and only if ΓB with
distances {dkl : (k, l) ∈ E} has a unique realization in Rs for all s ≥ d. Moreover,
in such a situation, using the distances as the constraints, an SDP relaxation was
proposed in [56, 71] for finding the unique realization. We note that although the
SDP in [56] has the same condition for exact recovery as (P2), it is computationally
more demanding than (P2) since the number of variables is O(N2) for this SDP,
instead of O(M2) as in (P2) (for most applications, M � N). Moreover, as we will
see shortly in section 6, (P2) also enjoys some stability properties, a fact which has
not been established for the SDP in [56].

Finally, we note that universal rigidity is a weaker condition on Γ than affine
rigidity.

Theorem 3.8 (see [56, Theorem 2]). If a patch framework is affinely rigid, then
it is universally rigid.

In [25], it was also shown that the reverse implication is not true using a counter-
example for which the patch framework fails to be affinely rigid, but for which the
body graph (a Cauchy polygon) has a unique realization in any dimension [15]. This
means that GRET-SDP can solve a bigger class of problems than GRET-SPEC, which is
perhaps not surprising.

4. Randomized rank test. Corollary 3.4 tells us that by checking the rank of
the patch-stress matrix C, we can tell whether a patch framework is affinely rigid. In
this regard, the patch-stress matrix serves the same purpose as the so-called alignment
matrix in [68] and the affinity matrix in [25]. The only difference is that the kernel
of C represents the degree of freedom of the affine transform, whereas the kernel of
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alignment or the affinity matrix directly tells us the degree of freedom of the point
coordinates. As suggested in [25], an efficient randomized test for affine rigidity using
the concept of affinity matrix can be easily derived. In this section, we describe a
randomized test based on the patch-stress matrix, which parallels the proposal in [25].
This procedure is also similar in spirit to the randomized tests for generic local rigidity
by Hendrickson [31], for generic global rigidity by Gortler, Healy, and Thurston [26],
and for matrix completion by Singer and Cucuringu [54].

Let us continue to denote the patch-stress matrix obtained from Γ and the mea-
surements (3.1) by C. We will use C0 to denote the patch-stress matrix obtained
from the same graph Γ, but using the (unknown) original coordinates as measure-
ments, namely,

(4.1) xk,i = x̄k, (k, i) ∈ Γ.

The advantage of working with C0 over C is that the former can be computed using
just the global coordinates, while the latter requires the knowledge of the global
coordinates as well as the clean transforms. In particular, this only requires us to
simulate the global coordinates. Since the coordinates of points in a given patch are
determined up to a rigid transform, we claim the following (cf. section 8.1 for a proof).

Proposition 4.1 (rank equivalence). For a fixed Γ, C and C0 have the same
rank.

In other words, the rank of C0 can be used to certify exact recovery. The proposed
test is based on Proposition 4.1 and the fact that if two different generic configurations
are used as input in (4.1) (for the same Γ), then the patch-stress matrices they produce
have the same rank. By generic, we mean that the coordinates of the configuration
do not satisfy any nontrivial algebraic equation with rational coefficients [26].

Algorithm 3. GRET-RRT.

Require: Membership graph Γ, and dimension d.
Ensure: Exact recovery certificate for GRET-SDP.
1: Build L using Γ, and compute L†.
2: Randomly pick {x1, . . . , xN} from the unit cube in Rd, where N = |Vx(Γ)|.
3: xk,i ← xk for every (k, i) ∈ E(Γ).
4: C0 ← D −BL†BT .
5: if rank(C0) = (M − 1)d then
6: Positive certificate for GRET-SPEC and GRET-SDP.
7: else
8: Negative certificate for GRET-SPEC.
9: GRET-SDP cannot be certified.

10: end if

The complete test called “GRET-randomized rank test” (GRET-RRT) is described
in Algorithm 3. Note that the main computations in GRET-RRT are the Laplacian
inversion (which is also required for the registration algorithm) and the rank compu-
tation.

5. Stability analysis. We have so far studied the problem of exact recovery
from noiseless measurements. In practice, however, the measurements are invariably
noisy. This brings us to the question of stability, namely, how stable are GRET-SPEC

and GRET-SDP to perturbations in the measurements? Numerical results (to be pre-
sented in the next section) show that both the spectral and semidefinite relaxations
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are quite stable to perturbations. In particular, the reconstruction error degrades
quite gracefully with the increase in noise (reconstruction error is the gap between
the outputs with clean and noisy measurements). In this section, we try to quan-
tify these empirical observations. In particular, we prove that, for a specific noise
model, the reconstruction error grows at most linearly with the level of noise for the
semidefinite relaxation.

The noise model we consider is the “bounded” noise model. Namely, we assume
that the measurements are obtained through bounded perturbations of the clean mea-
surements in (3.1). More precisely, we suppose that we have a membership graph Γ,
and that the observed local coordinates are of the form

(5.1) xk,i = ŌT
i (x̄k − t̄i) + εk,i, ‖εk,i‖ ≤ ε (k, i) ∈ E(Γ).

In other words, every coordinate measurement is offset within a ball of radius ε around
the clean measurements. Here, ε is a measure of the noise level per measurement. In
particular, ε = 0 corresponds to the case where we have the clean measurements (3.1).

Since the coordinates of points in a given patch are determined up to a rigid
transform, it is clear that the above problem is equivalent to the one where the
measurements are

(5.2) xk,i = x̄k + εk,i, ‖εk,i‖ ≤ ε (k, i) ∈ E(Γ).

By equivalent, we mean that the reconstruction errors obtained using either (5.1) or
(5.2) are equal. The reason we use the latter measurements is that the analysis in this
case is much more simple.

The reconstruction error is defined as follows. Generally, let Z� be the output of
Algorithms 1 and 2 using (5.2) as input, and let

(5.3) Z0
def
= [x̄1 · · · x̄N 0 · · · 0] ∈ R

d×(N+M),

where we assume that the centroid of {x̄1, . . . , x̄N} is at the origin.
Ideally, we would require that Z� = Z0 (up to a rigid transformation) when

there is no noise, that is, when ε = 0. This is the exact recovery phenomena that
we considered earlier. In general, the gap between Z0 and Z� is a measure of the
reconstruction quality. Therefore, we define the reconstruction error to be

η = min
Θ∈O(d)

‖Z� −ΘZ0‖F .

Note that we are not required to factor out the translation since Z0 is centered by
construction.

Our main results are the following.
Theorem 5.1 (stability of GRET-SPEC). Assume that R is the radius of the small-

est Euclidean ball that encloses the clean configuration {x̄1, . . . , x̄N}. For fixed noise
level ε ≥ 0 and membership graph Γ, suppose we input the noisy measurements (5.2) to
GRET-SPEC. If rank(C0) = (M−1)d, then we have the following bound for GRET-SPEC:

η ≤ |E(Γ)|1/2
λ2(L)

(K1ε+K2ε
2),

where

K1 =
8πR

μd+1(C)

√
2MN |E(Γ)|(2 +N)d(d+ 1)

(
4R

√
N |E(Γ)|
λ2(L)

+ 1

)
+
√
2 +N +M
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and

K2 =
8πR

μd+1(C)

√
2MN |E(Γ)|(2 +N)d(d+ 1)

(
2

√
N |E(Γ)|
λ2(L)

+ 1

)
.

Here λ2(L) is the second smallest eigenvalue of L.
We assume here that μd+1(C) is nonzero.3 The bounds here are in fact quite

loose. Note that when ε = 0, we recover the exact recovery result for GRET-SPEC

provided in [68, 25].
Theorem 5.2 (stability of GRET-SDP). Under the conditions of Theorem 5.1, we

have the following for GRET-SDP:

η ≤ |E(Γ)|1/2
λ2(L)

[
32
√
2d(d+ 1)(2 +N)|E(Γ)|μ−1/2

d+1 (C0)R+
√
2 +N +M

]
ε.

The bounds are again quite loose. The main point here is that the reconstruction
error for GRET-SDP is within a constant factor of the noise level. In particular, Theorem
5.2 subsumes the exact recovery condition rank(C0) = (M − 1)d described in section
3.

The rest of this section is devoted to the proofs of Theorems 5.1 and 5.2. First,
we introduce some notation.

Notation. Note that the patch-stress matrix in (P1) is computed from the noisy
measurements (5.2), and the same patch-stress matrix is used in (P2). The quantities
G�,W �, O�, and Z� are as defined in Algorithms 1 and 2. We continue to denote the
clean patch-stress matrix by C0. Define

O0
def
= [Id · · · Id] and G0

def
= OT

0 O0.

Let e1, . . . , ed be the standard basis vectors of Rd, and let e be the all-ones vector of
length M . Define

(5.4) si
def
=

1√
M
e⊗ ei ∈ R

Md (1 ≤ i ≤ d).

Note that every d× d block of G0 is Id, and that we can write

(5.5) G0 =

d∑
i=1

Msis
T
i .

We first present an estimate that applies generally to both algorithms. The proof
is provided in subsection 8.2.

Proposition 5.3 (basic estimate). Let R be the radius of the smallest Euclidean
ball that encloses the clean configuration. Then, for any arbitrary Θ,

(5.6) ‖Z� −ΘZ0‖F ≤ |E(Γ)|1/2
λ2(L)

[
R(2 +N)1/2‖O� −ΘO0‖F + ε(2 +N +M)1/2

]
.

In other words, the reconstruction error in either case is controlled by the rounding
error:

(5.7) δ = min
Θ∈O(d)

‖O� −ΘO0‖F .

3Numerical experiments suggest that this is indeed the case if rank(C0) = (M − 1)d. In fact, we
notice a growth in the eigenvalue with the increase in noise level. However, we have not been able
to prove this fact.
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The rest of this section is devoted to obtaining a bound on δ for GRET-SPEC and
GRET-SDP. In particular, we will show that δ is of the order of ε in either case. Note that
the key difference between the two algorithms arises from the eigenvector rounding,
namely, the assignment of the “unrounded” orthogonal transform W � (respectively,
from the patch-stress matrix and the optimal Gram matrix). However, the analysis
in going from W � to the rounded orthogonal transform O�, and subsequently to Z�,
is common to both algorithms.

We now bound the error in (5.7) for both algorithms. Note that we can generally
write

W � =
[√
α1u1 · · · √αdud

]T
,

where u1, . . . , ud are orthonormal. In GRET-SPEC, each αi = M , while in GRET-SDP

we set αi using the eigenvalues of G�.
Our first result gives a control on the quantities obtained using eigenvector round-

ing in terms of their Gram matrices.
Lemma 5.4 (eigenvector rounding). There exist Θ ∈ O(d) such that

‖W � −ΘO0‖F ≤ 4√
M
‖W �TW � −G0‖F .

Next, we use a result by Li [42] to get a bound on the error after orthogonal
rounding.

Lemma 5.5 (orthogonal rounding). For arbitrary Θ ∈ O(d),

‖O� −ΘO0‖F ≤ 2
√
d+ 1 ‖W � −ΘO0‖F .

The proofs of Lemma 5.4 and 5.5 are provided in subsections 8.3 and 8.4. At
this point, we record a result from [44] which is repeatedly used in the proof of these
lemmas and elsewhere.

Lemma 5.6 (see Mirsky [44]). Let |||·||| be some unitarily invariant norm, and let
A,B ∈ R

n×n. Then

||| diag(σ1(A)− σ1(B), . . . , σn(A) − σn(B)) ||| ≤ |||A−B|||.

In particular, the above result holds for the Frobenius and spectral norms.
By combining Lemmas 5.4 and 5.5, we have the following bound for (5.7):

(5.8) δ ≤ 8

√
d+ 1

M
‖W �TW � −G0‖F .

We now bound the quantity on the right in (5.8) for GRET-SPEC and GRET-SDP.

5.1. Bound for GRET-SPEC. For the spectral relaxation, this can be done using
the Davis–Kahan theorem [7]. Note that from (2.10), we can write

(5.9)
1

M
(W �TW � −G0) =

d∑
i=1

rir
T
i −

d∑
j=1

sjs
T
j .

Following [7, Chap. 7], let A be some symmetric matrix, and let S be some subset of
the real line. Denote by PA(S) the orthogonal projection onto the subspace spanned
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by the eigenvectors of A for which the corresponding eigenvalues are in S. A particular
implication of the Davis–Kahan theorem is that

(5.10) ‖ PA(S1)− PB(S2) ‖sp ≤ π

2ρ(Sc
1, S2)

‖A−B‖sp,

where Sc
1 is the complement of S1, and ρ(S1, S2) = min{|u− v| : u ∈ S1, v ∈ S2}.

In order to apply (5.10) to (5.9), set A = C,B = C0, S1 = [μ1(C), μd(C)], and

S2 = {0}. If rank(C0) = (M − 1)d, then PB(S2) =
∑d

j=1 sjs
T
j . Applying (5.10), we

get

(5.11) ‖W �TW � −G0‖sp ≤ Mπ

2μd+1(C)
‖C − C0‖F .

Now, it is not difficult to verify that for the noise model (5.2),

(5.12) ‖C−C0‖F ≤ 2
√
N |E(Γ)|

[(
4R

√
N |E(Γ)|
λ2(L)

+ 1

)
ε+

(
2

√
N |E(Γ)|
λ2(L)

+ 1

)
ε2

]
.

Combining Proposition 5.3 with (5.8), (5.11), and (5.12), we arrive at Theorem 5.1.

5.2. Bound for GRET-SDP. To analyze the bound for GRET-SDP, we require fur-
ther notation. Recall (5.4), let S be the space spanned by {s1, . . . , sd} ⊂ RMd, and let
S̄ be the orthogonal complement of S in RMd. In what follows, we will be required to
use matrix spaces arising from tensor products of vector spaces. In particular, given
two subspaces U and V of RMd, denote by U ⊗ V the space spanned by the rank-one
matrices {uvT : u ∈ U, v ∈ V }. In particular, note that G0 is in S ⊗ S.

Let A ∈ RMd×Md be some arbitrary matrix. We can decompose it into

(5.13) A = P +Q+ T,

where

P ∈ S ⊗ S, Q ∈ (S ⊗ S) ∪ (S ⊗ S), and T ∈ S ⊗ S.

We record a result about this decomposition from Wang and Singer [63].
Lemma 5.7 (see [63, p. 7]). Suppose G0 +Δ � 0 and Δii = 0 (1 ≤ i ≤M). Let

Δ = P +Q+ T as in (5.13). Then

T � 0 and Pij = − 1

M

M∑
l=1

Tll (1 ≤ i, j ≤M).

It is not difficult to verify that Tr(C0G0) = 0 and that C0 � 0. From (5.5), we
have

0 = Tr(C0G0) =
d∑

i=1

sTi C0si ≥ 0.

Since each term in the above sum is nonnegative, C0si = 0 for 1 ≤ i ≤ d. In other
words, S is contained in the null space of C0. Moreover, if rank(C0) = (M −1)d, then
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S is exactly the null space of C0. Based on this observation, we give a bound on the
residual T .

Proposition 5.8 (bound on the residual). Suppose that rank(C0) = (M − 1)d.
Decompose Δ = P +Q+ T as in (5.13). Then

(5.14) Tr(T ) ≤ 4μ−1
d+1(C0)|E(Γ)|ε2.

Proof. The main idea here is to compare the objective in (P0) with the trace
of T . To do so, we introduce the following notation. Let λ1, . . . , λMd be the full
set of eigenvalues of G� sorted in nonincreasing order, and let q1, . . . , qMd be the
corresponding eigenvectors. Define

O�� def
=
[√

λ1q1 · · ·
√
λMdqMd

]T ∈ R
Md×Md,

and define O��
i to be the ith Md× d block of O��, that is, O�� def

= [O��
1 · · · O��

M ].
By construction, G� = O��TO��. Moreover, by feasibility,

G�
ii = O��

i
TO��

i = Id (1 ≤ i ≤M).

Thus, the d columns of O��
i form an orthonormal system in RMd. Now define

Z�� def
= O��BL† ∈ R

Md×(N+M).

In particular, we will use the fact that (Z��, O��) are the minimizers of the uncon-
strained program
(5.15)

min
(Z,O)

∑
(k,i)∈E(Γ)

‖Zeki −Oixk,i‖2 subject to Z ∈ R
Md×(N+M), O ∈ R

Md×Md.

Note that Tr(C0G
�) = Tr(C0(G0+Δ)) = Tr(C0T ). Now, by Lemma (5.7), T � 0.

Therefore, writing

T =
∑
i

viv
T
i (vi ∈ S̄),

we get

Tr(C0T ) =
∑
i

vTi C0vi ≥ μd+1(C0)
∑
i

vTi vi = μd+1(C0)Tr(T ).

Therefore,

(5.16) Tr(T ) ≤ μ−1
d+1(C0) Tr(C0G

�).

We are done if we can bound the term on the right. To do so, we note from (5.15)
that

Tr(C0G
�) = Tr(C0O

��TO��) = min
Z∈RMd×N+M

∑
(k,i)∈E(Γ)

‖Zeki −O��
i x̄k‖2.

Therefore,

Tr(C0G
�) ≤

∑
(k,i)∈E(Γ)

‖Z��eki −O��
i x̄k‖2.
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To bring in the error term, we write

Z��eki −O��
i x̄k = Z��eki −O��

i xk,i +O��
i εk,i,

and we use ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2) to get

(5.17) Tr(C0G
�) ≤ 2

∑
(k,i)∈E

‖Z��eki −O��
i xk,i‖2 + 2|E(Γ)|ε2.

Finally, using the optimality of (Z��, O��) for (5.15), we have

(5.18)
∑

(k,i)∈E(Γ)

‖Z��eki −O��
i xk,i‖2 ≤

∑
(k,i)∈E(Γ)

‖Z0eki − Idxk,i‖2 ≤ |E(Γ)|ε2.

The desired result follows from (5.16), (5.17), and (5.18).
Finally, we note that Tr(T ) can be used to bound the difference between the Gram

matrices.
Proposition 5.9 (trace bound). ‖W �TW � −G0‖F ≤ 2

√
2MdTr(T ).

Proof. We will heavily use decomposition (5.13) and its properties. Let G� =
G0 +Δ. By the triangle inequality,

‖W �TW � −G0‖F ≤
∥∥∥∥

Md∑
i=d+1

λi(G
�) uiu

T
i

∥∥∥∥
F

+ ‖Δ‖F

= ‖ diag(λd+1(G
�), . . . , λMd(G

�)) ‖F + ‖Δ‖F .
Moreover, since the bottom eigenvalues of G0 are zero, it follows from Lemma 5.6
that the norm of the diagonal matrix is bounded by ‖Δ‖F . Therefore,
(5.19) ‖W �TW � −G0‖F ≤ 2‖Δ‖F .
Fix {sd+1, . . . , sMd} to be some orthonormal basis of S̄. For arbitrary A ∈ RMd, let

A(p, q) = sTpAsq (1 ≤ p, q ≤Md).

That is, (A(p, q)) are the coordinates of A in the basis {s1, . . . , sd}∪ {sd+1, . . . , sMd}.
Decompose Δ = P +Q + T as in (5.13). Note that P,Q, and T are represented

in the above basis as follows: P is supported on the upper d× d diagonal block, T is
supported on the lower (M − 1)d× (M − 1)d diagonal block, and Q is supported on
the off-diagonal blocks. The matrix G0 is diagonal in this representation.

We can bound ‖P‖F using Lemma 5.7,

(5.20) ‖P‖2F =M2‖P11‖2F =

∥∥∥∥
M∑
l=1

Tll

∥∥∥∥
2

F

≤
[
Tr

( M∑
l=1

Tll

)]2
= Tr(T )2,

where we have used the properties T � 0 and Tll � 0 (1 ≤ l ≤M). In particular,

(5.21) ‖T ‖F ≤ Tr(T ).

On the other hand, since G0 +Δ � 0, we have (G0 +Δ)(p, q)2 ≤ (G0 +Δ)(p, p)(G0 +
Δ)(q, q). Therefore,

‖Q‖2F = 2

d∑
p=1

Md∑
q=d+1

Q(p, q)2 ≤ 2

d∑
p=1

(G0 +Δ)(p, p)

Md∑
q=d+1

T (q, q).
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Notice that 0 = Tr(Δ) = Tr(T ) + Tr(P ). Therefore,

(5.22) ‖Q‖2F ≤ 2MdTr(T )− 2Tr(T )2.

Combining (5.19), (5.20), (5.22), and (5.21), we get the desired bound.
Combining (5.8) with Propositions 5.3, 5.8, and 5.9, we arrive at Theorem 5.2.

6. Numerical experiments. We now present some numerical results on multi-
patch registration using GRET-SPEC and GRET-SDP. In particular, we study the exact
recovery and stability properties of the algorithm. We define the reconstruction error
in terms of the root-mean-square deviation (RMSD) given by

(6.1) RMSD = min
Ω∈O(d),t∈Rd

[
1

N

N∑
k=1

‖Z�
k − Ωx̄k − t‖2

]1/2
.

In other words, the RMSD is calculated after registering (aligning) the original and the
reconstructed configurations. We use the SVD-based algorithm [2] for this purpose.

Experiment 1. We first consider a few examples concerning the registration
of three patches in R

2, where we vary Γ by controlling the number of points in the
intersection of the patches. We work with the clean data in (3.1) and demonstrate
exact recovery (up to numerical precision) for different Γ.

In the left plot in Figure 4, we consider a patch system with N = 10 points. The
points that belong to two or more patches are marked in red, while the rest are marked
in black. The patches taken in the order P1, P2, P3 form a lateration in this case. As
predicted by Corollary 3.4 and Theorem 3.5, the rank of the patch-stress matrix C0

for this system must be 2(3 − 1) = 4. This is indeed confirmed by our experiment.
We expect GRET-SPEC and GRET-SDP to recover the exact configuration. Indeed, we
get a very small RMSD of the order of 1e-7 in this case. As shown in the figure, the
reconstructed coordinates obtained using GRET-SDP perfectly match the original ones
after alignment.

We next consider the example shown in the center plot in Figure 4. The patch
system is not laterated in this case, but the rank of C0 is 4. Again we obtain a very
small RMSD of the order 1e-7 for this example. This example demonstrates that
lateration is not necessary for exact recovery.

In the next example, we show that the condition rank(C0) = (M − 1)d is not
necessary for exact recovery using GRET-SDP. To do so, we use the fact that the uni-
versal rigidity of the body graph is both necessary and sufficient for exact recovery.
Consider the example shown in the right plot in Figure 4. This has barely enough
points in the patch intersections to make the body graph universally rigid. Experi-
ments confirm that we have exact recovery in this case. However, it can be shown
that rank(C0) < (M − 1)d = 4.

Experiment 2. We now consider the structured PACM data in R3 shown in
Figure 5. There are a total of 799 points in this example that are obtained by sampling
the 3-dimensional PACM logo [17, 20]. To begin with, we divide the point cloud into
M = 30 disjoint pieces (clusters) as shown in the figure. We augment each cluster
into a patch by adding points from neighboring clusters. We ensure that there are
sufficient common points in the patch system so that C0 has rank (M − 1)d = 87. We
generate the measurements using the bounded noise model in (5.2). In particular, we
perturb the clean coordinates using uniform noise over the hypercube [−ε, ε]d. For
the noiseless setting, the RMSDs obtained using GRET-SPEC and GRET-SDP are 3.3e-11
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Fig. 4. Instances of a 3-patch system in R2. Left: Patch system is laterated. Center: Patch
system is not laterated but C0 has rank 4. Right: The body graph is universally rigid but rank(C0) =
3. The original coordinates are marked with ◦, and the coordinates reconstructed by GRET-SDP are
marked with +.
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Fig. 5. Disjoint clusters for the PACM point cloud. Each cluster is marked with a different
color. The clusters are augmented to form overlapping patches which are then registered using
GRET-SDP.

and 1e-6. The respective RMSDs when ε = 0.5 are 1.4743 and 0.3823. The results
are shown in Figure 6.

Experiment 3. In the final experiment, we demonstrate the stability of GRET-SDP
and GRET-SPEC by plotting the RMSD against the noise level for the PACM data. We
use the noise model in (5.2) and vary ε from 0 to 2 in steps of 0.1. For a fixed
noise level, we average the RMSD over 20 noise realizations. The results are reported
in the bottom plot of Figure 7. We see that the RMSD increases gracefully with
the noise level. The result also shows that the semidefinite relaxation is more stable
than spectral relaxation, particularly at large noise levels. Also shown in the figure
are the RMSDs obtained using GRET-MANOPT with the solutions of GRET-SPEC and
GRET-SDP as initialization. In particular, we used the trust region method provided
in the Manopt toolbox [10] for solving the manifold optimization (P0). For either ini-
tialization, we notice some improvement from the plots. It is clear that the manifold
method relies heavily on the initialization, which is not surprising.

Finally, we plot the rank of the SDP solution G� and notice an interesting phe-
nomenon. Up to a certain noise level, G� has the desired rank and rounding is not
required. This means that the relaxation gap is zero for the semidefinite relaxation,
and that we can solve the original nonconvex problem using GRET-SDP up to a certain
noise threshold. It is therefore not surprising that the RMSD shows no improve-
ment after we refine the SDP solution using manifold optimization. We have noticed
that the rank of the SDP solution is stable with respect to noise for other numerical
experiments as well (not reported here).
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Fig. 6. Reconstruction of the PACM data from corrupted patch coordinates (ε = 0.5). Left:
GRET-SPEC, RMSD = 1.4743. Right: GRET-SDP, RMSD = 0.3823. The measurements were generated
using the noise model in (5.2).
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Fig. 7. Left: RMSD versus noise level ε. GRET-MANOPT1 (resp., GRET-MANOPT2) is the result
obtained by refining the output of GRET-SPEC (resp., GRET-SDP) using manifold optimization. Right:
Rank of G� in GRET-SDP.

7. Discussion. There are several directions along which the present work could
be extended and refined. We summarize some of these below.

1. Rank recovery. Exhaustive numerical simulations (see, for example, Figure
7) show us that the proposed program is quite stable as far as rank recovery
is concerned. By rank recovery, we mean that rank(G�) = d. In this case,
the relaxation gap is zero—we have actually solved the original nonconvex
problem. We have performed numerical experiments in which we fix some
Γ for which rank(C) = (M − 1)d, and gradually increase the noise in the
measurements as per the model in (5.2). When the noise is zero, we recover
the exact Gram matrix that has rank d. What is interesting is that the
program keeps returning a rank-d solution up to a certain noise level. In
other words, we observe a phase transition phenomenon in which rank(G�)
is consistently d up to a certain noise threshold. This threshold seems to
depend on the number of points in the intersection of the patches, which is
perhaps not surprising. A precise understanding of this phase transition in
terms of the properties of Γ would be an interesting study.
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2. Conditions on Γ. We have seen that the universal rigidity of the body graph
(derived from Γ) is both necessary and sufficient for exact recovery using
GRET-SDP. However, to test unique rigidity, we need to run an SDP [56].
Unfortunately, the complexity of this program is much more than GRET-SDP

itself. This led us to consider the rank criteria that could be tested efficiently.
The rank test is nonetheless not necessary for exact recovery, and weaker
conditions can be found. In particular, an interesting question is whether we
could find an efficiently testable condition that would hold for the extreme
example in Figure 4, in which Γ fails the rank test.

3. Tighter bounds. The stability in Theorem 5.2 was for the bounded noise
model, which made the subsequent analysis quite straightforward. The goal
was to establish that the reconstruction error is within Cε for some constant
C independent of the noise. In particular, the bounds in Theorem 5.2 are
quite loose. One possible direction would be to consider a stochastic noise
model with statistically independent perturbations to tighten the bound.

4. Anchor points. In sensor network localization, one has to infer the coordi-
nates of sensors from the knowledge of distances between sensors and their
geometric neighbors. In distributed approaches to sensor localization [16, 9],
one is faced exactly with the multipatch registration problem described in this
paper. Besides the distance information, one often has the added knowledge
of the precise positions of selected sensors known as anchors [8]. This is often
by design and is used to improve the localization accuracy. The question
is whether can we incorporate the anchor constraints into the present regis-
tration algorithm. One possible way of leveraging the existing framework is
to introduce an additional patch (called anchor patch) for the anchor points.
The anchor coordinates are assigned to the points in the anchor patch (treat-
ing them as local coordinates). This gives us an augmented bipartite graph
Γa, which has one more patch vertex than Γ, and extra edges connecting
the anchor patch to the anchor vertices. We then proceed exactly as before;
that is, we solve for the global coordinates of both the anchor and nonanchor
points given the measurements on Γa.

8. Technical proofs. In this section, we give proofs of Propositions 4.1 and 5.3
and Lemmas 5.4 and 5.5.

8.1. Proof of Proposition 4.1. We are done if we can show that there exists
a bijection between the null space of C and that of C0. To do so, we note that the
associated quadratic forms can be expressed as

uTCu = min
z∈R1×N+M

∑
(k,i)∈E(Γ)

‖zeki − uTi xk,i‖2

and

vTC0v = min
z∈R1×N+M

∑
(k,i)∈E(Γ)

‖zeki − vTi x̄k‖2.

Here u1, . . . , uM are the d× 1 blocks of the vector u ∈ R
Md×1.

Now, it follows from (3.1) that there is a one-to-one correspondence between u
and v, namely,

ui = Ōivi (1 ≤ i ≤M),
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such that uTCu = vTC0v. In other words, the null space of C is related to the null
space of C0 through an orthogonal transform, as was required to be shown.

8.2. Proof of Proposition 5.3. Without loss of generality, we assume that the
smallest Euclidean ball that encloses the clean configuration {x̄1, . . . , x̄N} is centered
at the origin, that is,

(8.1) ‖x̄k‖ ≤ R (1 ≤ k ≤ N).

Let B0 be the matrix B in (2.4) computed from the clean measurements, i.e., from
(5.2) with ε = 0. Let B0 +H be the same matrix obtained from (5.2) for some ε > 0.

Recall that Z0 = O0B0L
† (by the centering assumption in (5.3)). Therefore,

‖Z� −ΘZ0‖F = ‖O�(B0 +H)L† −ΘO0B0L
†‖F = ‖(O� −ΘO0)B0L

† +O�HL†‖F .
By the triangle inequality,

(8.2) ‖Z� −ΘZ0‖F ≤ ‖O� −ΘO0‖F ‖B0L
†‖F + ‖O�HL†‖F .

Now

‖B0L
†‖F ≤ ‖L†‖sp‖B0‖F =

1

λ2(L)
‖B0‖F ,

where λ2(L) is the smallest nonzero eigenvalue of L. On the other hand,

B0 =
∑

(k,i)∈E(Γ)

(eMi ⊗ Id)x̄keTki.

Using the Cauchy–Schwarz inequality and (8.1), we get

‖B0‖2F =
∑

(k,i)∈E(Γ)

∑
(l,j)∈E(Γ)

Tr
(
ekix̄

T
k (e

M
i ⊗ Id)T (eMj ⊗ Id)x̄leTlj

)

=
∑

(k,i)∈E(Γ)

∑
(l,i)∈E(Γ)

x̄Tk x̄l e
T
kieli

≤
∑

(k,i)∈E(Γ)

2R2 +
∑

(k,i)∈E(Γ)

∑
(l,i)∈E(Γ)

R2.

Therefore,

(8.3) ‖B0L
†‖F ≤ λ2(L)−1

√
2 +N |E(Γ)|1/2R.

For the other term in (8.2), we can write

‖O�HL†‖F ≤ ‖L†‖sp‖O�H‖F = λ2(L)
−1‖O�H‖F .

Now

O�H = O�(B −B0) =
∑

(k,i)∈E(Γ)

O�
i εk,ie

T
ki.

Therefore, using the Cauchy–Schwarz inequality, the orthonormality of the columns
of O�

i ’s, and the noise model (5.2), we get

‖O�H‖2F =
∑

(k,i)∈E(Γ)

∑
(l,j)∈E(Γ)

(O�
i εk,i)

T (O�
j εl,j)e

T
kieli

≤
∑

(k,i)∈E(Γ)

2ε2 +
∑

(k,i)∈E(Γ)

∑
(l,i)∈E(Γ)

ε2 +
∑

(k,i)∈E(Γ)

∑
(k,j)∈E(Γ)

ε2.
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This gives us

(8.4) ‖O�HL†‖F ≤
√
2 +N +M |E(Γ)|1/2λ2(L)−1ε.

Combining (8.2), (8.3), and (8.4), we get the desired estimate.

8.3. Proof of Lemma 5.4. The proof is mainly based on the observation that
if u and v are unit vectors and 0 ≤ uT v ≤ 1, then

(8.5) ‖u− v‖ ≤ ‖uuT − vvT ‖F .
Indeed,

‖uuT − vvT ‖2F = Tr
(
uuT + vvT − 2(uT v)2

) ≥ Tr(uuT + vvT − 2uT v) = ‖u− v‖2.
To use this result in the present setting, we use the theory of principal angles

[7, Chap. 7.1]. This tells us that, for the orthonormal systems {u1, . . . , ud} and
{s1, . . . , sd}, we can find Ω1,Ω2 ∈ O(Md) such that

1. Ω1[u1 · · ·ud] = [u1 · · ·ud]ΘT
1 where Θ1 ∈ O(d),

2. Ω2[s1 · · · sd] = [s1 · · · sd]ΘT
2 where Θ2 ∈ O(d),

3. (Ω1si)
T (Ω2uj) = 0 for i �= j, and 0 ≤ (Ω1si)

T (Ω2ui) ≤ 1 for 1 ≤ i ≤ d.
Here Θ1 and Θ2 are the orthogonal transforms that map {u1, . . . , ud} and {s1, . . . , sd}
into the corresponding principal vectors.

Using properties 1 and 2 and the fact4 that αi ≤M , we can write

√
M ‖Θ1W

�−Θ2O0‖F ≤ ‖Ω1[α1u1 · · ·αdud]−MΩ2[s1 · · · sd]‖F +

[ d∑
i=1

(M−αi)
2

]1/2
.

Moreover, by triangle inequality,

‖Ω1[α1u1 · · ·αdud]−MΩ2[s1 · · · sd]‖F

≤M‖Ω1[u1 · · ·ud]− Ω2[s1 · · · sd]‖F +
[ d∑

i=1

(M − αi)
2
]1/2

.

Therefore,

√
M ‖Θ1W

� −Θ2O0‖F ≤M‖Ω1[u1 · · ·ud]− Ω2[s1 · · · sd]‖F + 2

[ d∑
i=1

(M − αi)
2

]1/2
.

Now, using (8.5) and the principal angle property 3, we get

‖Ω1[u1 · · ·ud]− Ω2[s1 · · · sd]‖F ≤
∥∥∥∥

d∑
i=1

Ω1ui(Ω1ui)
T −

d∑
i=1

Ω2si(Ω2si)
T

∥∥∥∥
F

.

Moreover, using the triangle inequality and properties 1 and 2, we have

M

∥∥∥∥
d∑

i=1

Ω1ui(Ω1ui)
T −

d∑
i=1

Ω2si(Ω2si)
T

∥∥∥∥
F

≤ ‖W �TW �−G0‖F +

[ d∑
i=1

(M −αi)
2

]1/2
.

4To see why the eigenvalues of G� are at most M (the authors thank Afonso Bandeira for
suggesting this), note that by the SDP constraints, for every block Gij , we have uTGijv ≤ (‖u‖2 +
‖v‖2)/2 (u, v ∈ Rd). Let x = (x1, . . . , xM ) where each xi ∈ Rd. Then xTGx =

∑
i,j x

T
i Gijxj ≤

∑
i,j(‖xi‖2 + ‖xj‖2)/2 = M‖x‖2.
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Finally, note that by Lemma 5.6,

(8.6)

[ d∑
i=1

(M − αi)
2

]1/2
≤ ‖W �TW � −G0‖F .

Combining the above relations and setting Θ = ΘT
1 Θ2, we arrive at Lemma 5.4.

8.4. Proof of Lemma 5.5. This is done by adapting the following result by Li
[42]: If A,B are square and nonsingular, and if R(A) and R(B) are their orthogonal
rounding (obtained from their polar decompositions [32]), then

(8.7) ‖R(A)−R(B)‖F ≤ 2

σmin(A) + σmin(B)
‖A−B‖F .

We recall that if A = UΣV T is the SVD of A, then R(A) = UV T .
Note that it is possible that some of the blocks of W � are singular, for which the

above result does not hold. However, the number of such blocks can be controlled by
the global error. More precisely, let B ⊂ {1, 2, . . . ,M} be the index set such that, for
i ∈ B, ‖W �

i −Θ‖F ≥ β. Then

‖W � −ΘO0‖2F ≥
∑
i∈B
‖W �

i −Θ‖2F = |B|β2.

This gives a bound on the size of B. In particular, the rounding error for this set can
trivially be bounded as

(8.8)
∑
i∈B
‖O�

i −Θ‖2F ≤
∑
i∈B

2d =
2d

β2
‖W � −ΘO0‖2F .

On the other hand, we known that, for i ∈ Bc, ‖W �
i −Θ‖F < β. From Lemma 5.6, it

follows that

|1− σmin(W
�
i )| ≤ ‖W �

i −Θ‖sp < β.

Fix β ≤ 1. Then σmin(W
�
i ) > 1− β, and we have from (8.7),

(8.9) ‖O�
i −Θ‖F ≤ 2

2− β ‖W
�
i −Θ‖F (i ∈ Bc).

Fixing β = 1/
√
2 and combining (8.8) and (8.9), we get the desired bound.
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