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Fast Steerable Principal Component Analysis
Zhizhen Zhao, Yoel Shkolnisky, and Amit Singer

Abstract—Cryo-electron microscopy nowadays often requires
the analysis of hundreds of thousands of 2-D images as large as
a few hundred pixels in each direction. Here, we introduce an
algorithm that efficiently and accurately performs principal com-
ponent analysis (PCA) for a large set of 2-D images, and, for each
image, the set of its uniform rotations in the plane and their reflec-
tions. For a dataset consisting of n images of size L × L pixels,
the computational complexity of our algorithm is O(nL3 + L4),
while existing algorithms take O(nL4). The new algorithm com-
putes the expansion coefficients of the images in a Fourier–Bessel
basis efficiently using the nonuniform fast Fourier transform. We
compare the accuracy and efficiency of the new algorithm with
traditional PCA and existing algorithms for steerable PCA.

Index Terms—Steerable PCA, group invariance, non-uniform
FFT, denoising.

I. INTRODUCTION

P RINCIPAL component analysis (PCA) is widely used in
image analysis and pattern recognition for dimensional-

ity reduction and denoising. In particular, PCA is often one of
the first steps [1] in the algorithmic pipeline of cryo-electron
microscopy (cryo-EM) single particle reconstruction (SPR) [2]
to compress and denoise the acquired 2D projection images
in order to eventually determine the 3D structure of a macro-
molecule. The high level of noise in those images drastically
deteriorates the performance of single-image based denoising
methods, such as non-local means [3] and wavelet threshold-
ing [4], and so the latter are outperformed by PCA. As any
planar rotation of any given projection image is equally likely
to appear in the experiment, by either in-plane rotating the
detector or the specimen, it makes sense to include all possi-
ble rotations of the projection images when performing PCA.
The resulting decomposition, termed steerable PCA, consists of
principal components which are tensor products of radial func-
tions and angular Fourier modes [5], [6], [7], [8], [9]. Beyond
cryo-EM, steerable PCA has many other applications in image
analysis and computer vision [10].
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The term “steerable PCA” comes from the fact that rotat-
ing the principal components is achieved by a simple phase
shift of their angular part. The principal components are invari-
ant to any in-plane rotation of the images, therefore finding
steerable principal components is equivalent to finding in-plane
rotationally invariant principal components.

In cryo-EM data processing, in addition to compression and
denoising, steerable PCA is also useful in generating rotation-
ally invariant image features (i.e. bispectrum-like features [11]).
These are crucial for fast rotationally invariant nearest neigh-
bors search used in efficient computation of class averages [11].
Rotational alignment between image pairs can also be com-
puted more efficiently using the expansion coefficients in a
steerable basis.

In this letter, we focus on the action of the group O(2) on
digital images by in-plane rotating and possibly reflecting them.
The idea of using group actions for constructing group invariant
features and filters has been previously proposed in [12], [13].
This group theoretical framework has been applied to SO(3)
and SU(1, 1) in [14], [15]. The representation of finite groups,
such as the dihedral groups, has been used for computing the
Karhunen-Loéve expansion of digital images in [16].

Various efficient algorithms for steerable PCA have been
introduced [17], [8]. However, steerable PCA of modern cryo-
EM datasets that contain hundreds of thousands of large images
poses a computational challenge. Also, it is important to ensure
that the steerable PCA algorithm is numerically accurate when
the input images are noisy. In order to exploit the special separa-
tion of variables structure of the principal components in polar
coordinates, most algorithms rely on resampling the images on
a polar grid. However, the transformation from Cartesian to
polar is non-unitary, and thus changes the statistics of the noise.
In particular, resampling transforms uncorrelated white noise to
colored noise that may lead to spurious principal components.

Recently, [9] addressed this issue by incorporating a sam-
pling criterion into the steerable PCA framework and intro-
duced an algorithm called Fourier-Bessel steerable PCA
(FBsPCA). FBsPCA assumes that the underlying clean images
(before being possibly contaminated with noise) are ban-
dlimited and essentially compactly supported in a disk. This
assumption holds, for example, for 2D projection images of a
3D molecule compactly supported in a ball. It also implies that
the images can be expanded in an orthogonal basis for bandlim-
ited functions, such as the Fourier-Bessel basis. In FBsPCA,
the Fourier-Bessel expansion of each image is truncated into
a finite series using a sampling criterion that was introduced
by Klug and Crowther [18]. The sampling criterion ensures
that the transformation from the Cartesian grid to the trun-
cated Fourier-Bessel expansion is nearly unitary. Moreover, the
covariance matrix built from the expansion coefficients of the
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images and all their possible rotations has a block diagonal
structure where the block size decreases as a function of the
angular frequency. The computational complexity of FBsPCA
is O(nL4) operations for n images of size L× L. Notice that,
when n > L2, the computational complexity of traditional PCA
is O(nL4 + L6), where the first term corresponds to forming
the L2 × L2 covariance matrix and the second term corre-
sponds to its eigen-decomposition. Although FBsPCA and PCA
have a similar computational complexity, FBsPCA leads to bet-
ter denoising as it takes into account all possible rotations and
reflections. This makes FBsPCA more suitable than traditional
PCA as a tool for 2D analysis of cryo-EM images [9]. With
the enhancement of electron microscope detectors’ resolution,
a typical image size of a single particle can easily be over
300× 300 pixels. Thus, FBsPCA is still not efficient enough
to analyze a large number of images of large size (i.e. large n
and large L). The bottleneck for this algorithm is the first step
that computes the Fourier-Bessel expansion coefficients, whose
computational complexity is O(nL4).

In this letter we introduce a fast Fourier-Bessel steerable
PCA (FFBsPCA) that reduces the computational complex-
ity for FBsPCA from O(nL4) to O(nL3) by computing
the Fourier-Bessel expansion coefficients more efficiently and
accurately. This is achieved by first mapping the images from
their Cartesian grid representation to a polar grid representation
in the reciprocal (Fourier) domain using the non-uniform fast
Fourier transform (NUFFT) [19], [20], [21], [22]. The polar
grid representation enables to efficiently evaluate the Fourier-
Bessel expansion coefficients of the images by 1D FFT on
concentric circles followed by accurate evaluation of a radial
integral with a Gaussian quadrature rule. The overall com-
plexity of computing the Fourier-Bessel coefficients is reduced
to O(nL3) operations. The increased accuracy and efficiency
in evaluating the Fourier-Bessel expansion coefficients are the
main contributions of this letter.

We note that the Fourier-Bessel expansion coefficients can
be computed in O(nL2 logL) operations using algorithms for
rapid evaluation of special functions [23] or a fast analysis-
based Fourier-Bessel expansion [24]. However, such “fast”
algorithms may only lead to a marginal improvement for two
reasons. First, the break even point for them compared to
the direct approach is for relatively large L such as L = 256
or larger. Second, forming the covariance matrix from the
expansion coefficients still requires O(nL3) operations.

The letter is organized as follows: Section II contains the
mathematical preliminaries of the Fourier-Bessel expansion,
the sampling criterion, and the numerical evaluation of the
expansion coefficients. The computation of the steerable prin-
cipal components is described in Section III. We present the
algorithm and give a detailed computational complexity analy-
sis in Section IV. Various numerical examples concerning the
computation time of FFBsPCA compared with FBsPCA and
traditional PCA are presented in Section V. In the same section,
we demonstrate the performance of FFBsPCA-based denoising
using simulated cryo-EM projection images.

Reproducible research: The FFBsPCA is available in the
SPR toolbox ASPIRE (http://spr.math.princeton.edu/). There
are two main functions: FBCoeff computes the Fourier Bessel

expansion coefficients and sPCA computes the steerable PCA
basis and the associated expansion coefficients.

II. FOURIER-BESSEL EXPANSION OF

BANDLIMITED IMAGES

We say that f has a band limit radius c if its Fourier transform

F(f)(ξ1, ξ2) =
∫
R2

f(x, y)e−2πı(xξ1+yξ2) dx dy (1)

satisfies F(f)(ξ1, ξ2) = 0, for ξ21 + ξ22 > c2. In our setup,
a digital image I is obtained by sampling a squared-
integrable bandlimited function f on a Cartesian grid of
size L× L, that is, I(i1, i2) = f(i1Δ, i2Δ), where i1, i2 =
− ⌈

L−1
2

⌉
, . . . ,

⌊
L−1
2

⌋
, and Δ is the pixel size.

For pixel size Δ = 1, the Nyquist-Shannon sampling theo-
rem implies that the Fourier transform of I is supported on the
square [−1/2, 1/2)× [−1/2, 1/2). In many applications, the
support size is effectively smaller due to other experimental
considerations, for example, the exponentially decaying enve-
lope of the contrast transfer function in electron microscopy.
Thus, we assume that the band limit radius of all images is
0 < c ≤ 1

2 . The scaled Fourier-Bessel functions are the eigen-
functions of the Laplacian in a disk of radius c with Dirichlet
boundary condition and they are given by

ψk,q
c (ξ, θ) =

{
Nk,qJk

(
Rk,q

ξ
c

)
eıkθ, ξ ≤ c,

0, ξ > c,
(2)

where (ξ, θ) are polar coordinates in the Fourier domain
(i.e., ξ1 = ξ cos θ, ξ2 = ξ sin θ, ξ ≥ 0, and θ ∈ [0, 2π));Nk,q =
(c
√
π|Jk+1(Rk,q)|)−1 is the normalization factor; Jk is the

Bessel function of the first kind of integer order k; and Rk,q

is the qth root of the Bessel function Jk. For a function f with
band limit c that is also in L2(R2) ∩ L1(R2),

F(f)(ξ, θ) =
∞∑

k=−∞

∞∑
q=1

ak,qψ
k,q
c (ξ, θ), (3)

which converges pointwise. In Section II-A, we derive a finite
truncation rule for the Fourier-Bessel expansion in Eq. (3).

A. Sampling Criterion

For digital implementations of Eq. (3), we must truncate it to
a finite sum, namely to derive a sampling criterion for selecting
k and q.

With the following convention for the 2D inverse polar
Fourier transform of a function g(ξ, θ),

F−1(g)(r, φ) =

∫ 2π

0

∫ ∞

0

g(ξ, θ)e2πırξ cos(θ−φ)ξ dξ dθ, (4)

the 2D inverse Fourier transform of the Fourier-Bessel func-
tions, denoted F−1(ψk,q

c ), is given in polar coordinates as

F−1(ψk,q
c )(r, φ) =

2c
√
π(−1)qRk,qJk(2πcr)

ık((2πcr)2 −R2
k,q)

eıkφ. (5)
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The maximum of |F−1(ψk,q
c )(r, φ)| in (5) is obtained near

the circle r =
Rk,q

2πc and F−1(ψk,q
c )(r, φ) vanishes on con-

centric circles of radii r =
Rk,q′
2πc with q′ �= q. The smallest

circle with vanishing F−1(ψk,q
c ) that encircles the maximum

of |F−1(ψk,q
c )| is of radius r =

Rk,(q+1)

2πc .
We assume that the underlying clean images (before being

possibly contaminated with noise) are essentially compactly
supported in a disk of radius R. Therefore, we should rule
out Fourier-Bessel functions for which the maximum of their
inverse Fourier transform resides outside a disk of radius R.
Otherwise, those functions introduce spurious information from
noise. Notice that if the maximum is inside the disk, yet the zero
after the maximum is outside the disk, then there is a signifi-
cant spillover of energy outside the disk. We therefore require
the more stringent criterion that the zero after the maximum is
inside the disk, namely

Rk,(q+1)

2πc
≤ R. (6)

This sampling argument gives a finite truncation rule for the
Fourier-Bessel expansion in Eq. (3), that is

Rk,(q+1) ≤ 2πcR. (7)

For each k, we denote by pk the number of components satis-
fying Eq. (7). We also denote by p =

∑kmax

k=−kmax
pk the total

number of components, where kmax is the maximal possible
value of k satisfying Eq. (7). The locations of Bessel zeros have
been extensively studied, for example, in [25, p.517-521], [26,
p.370], [27], [28], [29]. Several lower and upper bounds for
Bessel zeros Rk,q were proven by Breen in [29], such as

Rk,q > k +
2

3
|aq−1|3/2, (8)

where aq is the qth zero of the Airy function, shown to satisfy

[
3

8
π(4q − 1.4)

]2/3
< |aq| <

[
3

8
π(4q − 0.965)

]2/3
. (9)

Using the lower bound for |aq| and the sampling criterion in
Eq. (7), we have the following inequality for k and pk,

2πcR ≈ Rk,(pk+1) > k + πpk − 1.4π

4
. (10)

Breen also obtained

Rk,q <

(
k

2
+ q − 0.965

4

)
π, (11)

so we get another inequality for k and pk,

2πcR ≈ Rk,(pk+1) <

(
k

2
+ pk +

3.035

4

)
π. (12)

Combining Eqs. (10) and (12), we have the following lower and
upper bounds for pk,

2cR− k

2
− 3.035

4
< pk < 2cR− k

π
+

1.4

4
. (13)

The bound for the highest angular frequency kmax is deter-
mined by setting pk = 1 in Eq. (13), resulting in

4cR− 3.517 < kmax < 2πcR− 2.042. (14)

Equation (13) implies that as the angular frequency k increases,
the number of components pk decreases. Moreover, using the
lower and upper bounds for pk and kmax in Eqs. (13) and
(14), we derive that the total number of selected Fourier-Bessel
basis functions is between 8(cR)2 and 4π(cR)2. When c is
the largest possible band limit, i.e. c = 1

2 , the number of basis
functions is between 2R2 and πR2, where the latter is approx-
imately the number of pixels inside a disk of radius R. Also,
whenever c = O(1) andR = O(L), we get that p = O(L2) and
kmax = O(L).

Because the bandlimited function f is assumed to be essen-
tially compactly supported, the infinite expansion in Eq. (3) is
approximated by the finite expansion

Pc,RF(f)(ξ, θ) =
kmax∑

k=−kmax

pk∑
q=1

ak,qψ
k,q
c (ξ, θ), (15)

where Pc,R is the orthogonal projection from L2(Dc) (the
space of L2 functions supported on a disk of radius c), to the
space of functions spanned by a finite number of Fourier-Bessel
functions that satisfy (7).

B. Numerical Evaluation of Fourier–Bessel Expansion
Coefficients

Previously in [9], the evaluation of the expansion coeffi-
cients ak,q of Eq. (15) was done by least squares. Let Ψ be
the matrix whose entries are evaluations of the Fourier-Bessel
functions at the Cartesian grid points, with rows indexed by
the grid points and columns indexed by angular and radial fre-
quencies. Finding the coefficient vector a as the solution to
mina ‖Ψa− I‖22 requires the computation of Ψ∗I , which takes
O(pL2) = O(L4) operations, because p = O(L2). In general
a = (Ψ∗Ψ)−1Ψ∗I , but here Ψ∗Ψ is approximately the identity
matrix, due to the orthogonality of the Fourier-Bessel functions.

We introduce here a method that computes the expansion
coefficients ak,q in O(L3) operations instead of O(L4). The
expansion coefficients in Eq. (15) are given analytically by

ak,q =

∫ 2π

0

∫ c

0

F(f)(ξ, θ)ψk,q
c (ξ, θ)ξ dξ dθ

=

∫ c

0

Nk,qJk

(
Rk,q

ξ

c

)
ξ dξ

∫ 2π

0

F(f)(ξ, θ)e−ıkθdθ.

(16)

We evaluate the last integral numerically using a quadrature
rule that consists of equally spaced points in the angular direc-
tion and a Gaussian quadrature rule in the radial direction,
that is, using the nodes, ξ1(j, l) = ξj cos(2πl/nθ), ξ2(j, l) =
ξj sin(2πl/nθ), j = 1, . . . , nξ , l = 0, . . . , nθ − 1 (see Fig. 1).
The values of nξ and nθ depend on the compact support radius
R and the band limit c and are derived later in the letter. To
use this quadrature rule, we need to sample the Fourier trans-
form of f at the quadrature nodes. This is approximated by the
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Fig. 1. Pictorial summary of the procedure for computing the Fourier-Bessel
expansion coefficients. The original image (top left) is resampled on a polar
Fourier grid (Eq. (17)) using NUFFT (top right and bottom right) followed by
1D FFT (Eq. (18)) on each concentric circle. The evaluation of the radial inte-
gral (Eq. (19)) gives the expansion coefficients ak,q . The bow-tie phenomenon
illustrated in bottom-left was discussed in [31].

Fourier coefficients of the image I (consisting of samples of f
on a Cartesian grid) at the given quadrature nodes, namely by
the Fourier coefficients

F (I)(ξ1, ξ2) =
1

(2R)2

R−1∑
i1=−R

R−1∑
i2=−R

I(i1, i2)e
−ı2π(ξ1i1+ξ2i2),

(17)

which can be evaluated efficiently using the the nonuniform dis-
crete Fourier transform. The angular integration in Eq. (16) is
then sped up by 1D FFT on the concentric circles, followed by
a numerical evaluation of the radial integral with a Gaussian
quadrature rule.

As the samples on each concentric circle are equally-spaced,
the natural quadrature weights for the angular integral are
2π
nθ

, with the nodes taken at θl = 2πl
nθ

for l = 0, . . . , nθ − 1.
The angular integration using one-dimensional FFT on each
concentric circle thus yields

F̂ (I)(ξj , k) =
2π

nθ

nθ−1∑
l=0

F (I)(ξj , θl)e
−ı 2πkl

nθ . (18)

The radial integral is evaluated using the Gauss-Legendre
quadrature rule [30, Chap. 4], which determines the locations
of nξ points {ξj}nξ

j=1 on the interval [0, c] and the associated
weights w(ξj). The integral in Eq. (16) is thus approximated by

ak,q ≈
nξ∑
j=1

Nk,qJk

(
Rk,q

ξj
c

)
F̂ (I)(ξj , k)ξjw(ξj). (19)

Since I is real valued and J−k(x) = (−1)kJk(x), we get that
a−k,q = a∗k,q and thus we only need to evaluate coefficients
with k ≥ 0.

The procedure for numerical evaluation of the Fourier-Bessel
expansion coefficients is illustrated in Fig. 1. In practice, we

Fig. 2. (a) Error, as a function of nξ , in the numerical evaluation of the integral
G(0, p0, p0) in Eq. (20). (b) Error, as a function of nθ , in the evaluation of the
integral in Eq. (16).

have observed that using nξ = 4cR and nθ = 16cR results in
highly-accurate numerical evaluation of the integral in Eq. (16).

If our image can be expressed in terms of the truncated
Fourier-Bessel expansion in Eq. (15), the approximation error
in the radial integral comes from the numerical evaluation of
the integrals

G(k, q1, q2) =

∫ c

0

Jk

(
Rk,q1

ξ

c

)
Jk

(
Rk,q2

ξ

c

)
ξdξ, (20)

where the approximation error using nξ points is

E(k, q1, q2;nξ)

=

∣∣∣∣∣∣
nξ∑
j=1

Jk

(
Rk,q1

ξj
c

)
Jk

(
Rk,q2

ξj
c

)
ξjw(ξj)−G(k, q1, q2)

∣∣∣∣∣∣ .
(21)

Asymptotically, a Bessel function behaves like a decaying
cosine function with frequency Rk,q

2π for Rk,qr 
 |k2 − 1
4 |

[26],

Jk(Rk,qr) ∼
√

2

πRk,qr
cos(Rk,qr − kπ

2
− π

4
). (22)

For a fixed nξ, the largest approximation error occurs when

k = 0 and q1 = q2 = p0, since J0
(
R0,p0

ξ
c

)
is the most oscil-

latory function within the band limit. The Nyquist rate of

ξJ2
0

(
R0,p0

ξ
c

)
is 2

2R0,p0

2π ≈ 4cR and we need to sample at

Nyquist rate, or higher. Therefore, we choose nξ = �4cR
.
Fig. 2a justifies this choice as the error decays dramatically to
10−17 before nξ = �4cR
.

To choose nθ, we computed the root mean squared error
(RMSE) in evaluating the expansion coefficients for simulated
images composed of white Gaussian noise with various R and
nθ, while c = 1/2. We oversampled on the radial lines by nξ =
�10cR
 and the ground truth for the angular integral in Eq. (16)
was computed by Eq. (18) via oversampling in the angular
direction by nθ = 60cR. We observe that when nθ ≥ 16cR,
the estimation error for the Fourier-Bessel expansion coeffi-
cients becomes negligible (see Fig. 2b). Notice that Eq. (14)
implies that kmax < 2πcR. The corresponding Nyquist rate is
bounded by 4πcR. We therefore sample at a slightly higher rate
of nθ = 16cR to ensure numerical accuracy.



ZHAO et al.: FAST STEERABLE PRINCIPAL COMPONENT ANALYSIS 5

Fig. 3. Eigenvalues of T ∗T and Ψ∗Ψ, where T ∗ and Ψ∗ are the truncated
Fourier-Bessel transforms using numerical integration and least squares respec-
tively. These are also the spectra of the population covariance matrices of
transformed white noise images. Most eigenvalues are close to 1, indicating
that the truncated Fourier-Bessel transform is almost unitary. Thus white noise
remains approximately white.

Now that we are able to numerically evaluate ak,q with
high accuracy, we can study the spectral behavior of the finite
Fourier-Bessel expansion of the images. We define a as the
vector that contains the expansion coefficients ak,q computed
in Eq. (19) and denote by T ∗ the transformation that maps
an image I to its finite Fourier-Bessel expansion coefficients
through Eqs. (17), (18) and (19), that is,

a = T ∗I. (23)

Ideally we would like T ∗ to be a unitary transformation, that
is T ∗T = I , so that the transformation from the images to
the coefficients preserves the noise statistics. Numerically, we
observe that the majority of the eigenvalues of T ∗T are 1 and
the smallest eigenvalues are also close to 1 (see blue solid line
in Fig. 3). The transformation T ∗ is close to unitary because
it is a numerical approximation of an expansion in an orthogo-
nal basis (Fourier-Bessel), and the sampling criterion prevents
aliasing. In Fig. 3, the eigenvalues of Ψ∗Ψ are also plotted for
comparison. It can be observed that T ∗T has fewer eigenval-
ues that deviate from 1. Although the Fourier-Bessel functions
are orthogonal as continuous functions, their discrete sampled
versions are not necessarily orthogonal, hence Ψ∗Ψ deviates
from the identity matrix. The fact that T ∗T is closer to the
identity than Ψ∗Ψ implies that the numerical evaluation of the
expansion coefficient vector a as T ∗I is more accurate than esti-
mating it as Ψ∗I . We compare the numerical accuracy explicitly
with an example. We choose a signal f that satisfiesFf(ξ, θ) =
ψ1,5
c (ξ, θ) for c = 0.5 and R = 30, ak,q = 1, for k = 1 and

q = 5, and otherwise, ak,q = 0. The evaluation method from [9]
is applied here in Fourier space. It first evaluates discrete sam-
ples of F(f) and the Fourier-Bessel basis on a Cartesian grid of
size 2R× 2R, and then projects the discrete samples onto the
basis. The root mean squared error (RMSE) is 7.2× 10−5 and
the maximum absolute error is 4.0× 10−4. Using the numer-
ical evaluation in Eq. (19), we get that RMSE = 1.2× 10−16

and the maximum absolute error is 2.7× 10−15.
Computing the polar Fourier transform of an image of size

L× L on a polar grid with nξ × nθ points in Eq. (17) is imple-
mented efficiently using NUFFT [19], [20], [21], [22], whose
computational complexity is O(L2 logL+ nξnθ). Since nθ =
16cR = O(L) and nξ = 4cR = O(L), nξ × nθ = O(L2) and

the complexity of the discrete polar Fourier transform is
O(L2 logL). The complexity of the 1D FFTs in Eq. (18) is
O(nξnθ log nθ), because there are nξ concentric circles with nθ
samples on each circle. Both nξ and nθ are ofO(L), so the total
complexity of the 1D FFTs is also O(L2 logL). Evaluating
Eq. (19) (the quadrature rule for the radial integral in Eq. (16))
for all k and q requires a total ofO(L3) operations using a direct
method, because there are O(L2) basis functions to integrate,
and each function is integrated using O(L) quadrature points.
However, this complexity can be reduced to O(L2 logL) using
a fast Bessel transform [23], [24]. In summary, the computa-
tional complexity of computing the Fourier-Bessel expansion
coefficients of an image of size L× L is O(L3) operations, or
O(L2 logL) using a “fast” transform.

III. STEERABLE PRINCIPAL COMPONENTS

Given a dataset of n images {Ii}ni=1, we denote by fi
the underlying bandlimited function that corresponds to the
i’th image Ii. Under the action of the group O(2), the func-
tion fi is transformed to fα,βi , where α ∈ [0, 2π) is the
counter-clockwise rotation angle and β denotes reflection
and takes values in {+,−}. More specifically, fα,+i (r, φ) =
fi(r, φ− α) and fα,−i (r, φ) = fi(r, π − (φ− α)). The images
Iα,+i and Iα,−i are obtained by sampling fα,+i and fα,−i

respectively.
The Fourier transform of fi commutes with the action of

the group O(2), namely, F(fα,+i )(ξ, θ) = (F(fi))α,+ (ξ, θ) =

F(fi)(ξ, θ − α), and F(fα,−i )(ξ, θ) = (F(fi))α,− (ξ, θ) =
F(fi)(ξ, π − (θ − α)). The transformation of the images under
rotation and reflection can be represented by the transformation
of their Fourier-Bessel expansion coefficients in Eq. (3). Under
counter-clockwise rotation by an angle α, F(fα,+i ) is given by

F(fα,+i )(ξ, θ) =
∑
k,q

aik,qψ
k,q
c (ξ, θ − α)

=
∑
k,q

aik,qe
−ıkαψk,q

c (ξ, θ). (24)

Therefore a planar rotation introduces a phase shift in the
expansion coefficients. Under rotation and reflection,

F(fα,−i )(ξ, θ) =
∑
k,q

aik,qψ
k,q
c (ξ, π − (θ − α))

=
∑
k,q

aik,qNk,qJk

(
Rk,q

ξ

c

)
eık(π−θ+α)

=
∑
k,q

aik,qNk,q(−1)kJk
(
Rk,q

ξ

c

)
eı(−k)θeıkα

=
∑
k,q

aik,qe
ıkαψ−k,q

c (ξ, θ) =
∑
k,q

ai−k,qe
−ıkαψk,q

c (ξ, θ),

(25)

namely, the expansion coefficient aik,q changes to ai−k,qe
−ıkα.

If we augment the collection of bandlimited functions
{fi}ni=1 by all possible rotations and reflections, the Fourier
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transform of the sample mean of the augmented collection,
denoted fmean, becomes,

F(fmean)(ξ, θ) =
1

2n

n∑
i=1

∑
β∈{+,−}

1

2π

∫ 2π

0

F(fα,βi )(ξ, θ)dα.

(26)

Using the properties in Eqs. (24) and (25), we have

F(fmean)(ξ, θ) =
1

2n

n∑
i=1

1

2π

×
∫ 2π

0

∞∑
k=−∞

∞∑
q=1

[
aik,q + ai−k,q

]
e−ıkαψk,q

c (ξ, θ)dα

=

∞∑
q=1

(
1

n

n∑
i=1

ai0,q

)
ψ0,q
c (ξ, θ). (27)

As expected, the sample mean is radially symmetric, because
ψ0,q
c is only a function of ξ but not of θ.
The rotationally invariant covariance kernel C((ξ, θ), (ξ′, θ′))

built from Fourier transformed functions with all their possible
in-plane rotations and reflections is defined as

C((ξ, θ), (ξ′, θ′)) = 1

4πn
×

n∑
i=1

∑
β∈{+,−}

∫ 2π

0

(
F(fα,βi )(ξ, θ)−F(fmean)(ξ, θ)

)

×
(
F(fα,βi )(ξ′, θ′)−F(fmean)(ξ′, θ′)

)
dα. (28)

From Eq. (27) it follows that if we express F(fi) and
F(fmean) in terms of the Fourier-Bessel basis and the asso-
ciated expansion coefficients, subtracting the sample mean is
equivalent to subtracting 1

n

∑n
j=1 a

j
0,q from the coefficients

ai0,q , while keeping other coefficients unchanged. Therefore, we
first update the zero angular frequency coefficients by ai0,q ←
ai0,q − 1

n

∑n
j=1 a

j
0,q , and then

C((ξ, θ), (ξ′, θ′)) = 1

4πn

n∑
i=1∫ 2π

0

∞∑
k=−∞

∞∑
q=1

∞∑
k′=−∞

∞∑
q′=1

(
aik,qψ

k,q
c (ξ, θ)aik′,q′ψ

k′,q′
c (ξ′, θ′)

+ai−k,qψ
k,q
c (ξ, θ)ai−k′,q′ψ

k′,q′
c (ξ′, θ′)

)
e−ı(k−k′)αdα

=

∞∑
k=−∞

∞∑
q=1

∞∑
k′=−∞

∞∑
q′=1

ψk,q
c (ξ, θ)C(k,q),(k′,q′)ψ

k′,q′
c (ξ′, θ′),

(29)

where

C(k,q),(k′,q′)

=
1

4πn

n∑
i=1

∫ 2π

0

(
aik,qa

i
k′,q′ + ai−k,qa

i
−k′,q′

)
e−ı(k−k′)αdα

= δk,k′
1

n

n∑
i=1

Re
{
aik,qa

i
k′,q′

}
. (30)

δk,k′ comes from the integral over α ∈ [0, 2π). The covari-
ance matrix in Eq. (30) is positive semi-definite and block
diagonal because the non-zero entries of C correspond only
to k = k′. Since the images are well approximated by the
subspace spanned by a finite number of Fourier-Bessel basis
functions (see Eq. (15)), C(k,q),(k′,q′) are close to zero when
(k, q) or (k′, q′) do not satisfy the sampling criterion in Eq. (7).
Therefore, we have a finite matrix representation C of C.
Moreover, it suffices to consider k ≥ 0, because C(k,q),(k,q′) =
C(−k,q),(−k,q′). Thus, the covariance matrix in Eq. (30) can be

written as the direct sum C =
⊕kmax

k=0 C
(k), where C(k) is by

itself a sample covariance matrix of size pk × pk, given by,

C
(k)
q,q′ =

1

n

n∑
i=1

Re
{
aik,qa

i
k,q′

}
. (31)

Let us denote by A(k) the matrix of expansion coefficients,
obtained by putting the coefficients aik,q for all q and all i into
a matrix, where the columns are indexed by the image number
i and the rows are indexed by the radial index q. The coeffi-
cient matrixA(k) for k �= 0 is of size pk × n and the covariance
matrix for k �= 0 is,

C(k) =
1

n
Re

{
A(k)(A(k))∗

}
, (32)

whereA∗ is the conjugate transpose (A∗
ij = Āji). The case k =

0 is special because the expansion coefficients satisfy a0,q =
a0,q , and so A(0) is a matrix of size p0 × n and

C(0) =
1

n
A(0)(A(0))∗. (33)

We compute the eigenvalues λ
(k)
1 ≥ λ(k)2 · · · ≥ λ(k)pk and

eigenvectors u
(k)
1 , u

(k)
2 , . . . , u

(k)
pk of the covariance matrices

C(k). Because C and C are related through Eq. (29) and C is
block diagonal as in Eq. (30), C((ξ, θ), (ξ′, θ′)) is well approx-
imated by

∑kmax

k=−kmax
Ψ(k)(ξ, θ)C(k)(Ψ(k))∗(ξ′, θ′), where

Ψ(k) contains Fourier-Bessel functions with angular frequency
k. Equation (29) reveals that the eigenfunctions of C, which
are the steerable principal components, can be expressed as
linear combinations of the Fourier-Bessel functions with the
coefficients given by the eigenvectors of the matrix C,

gk,l(ξ, θ) =

pk∑
q=1

ψk,q
c (ξ, θ)u

(k)
l (q)

=

pk∑
q=1

Nk,qJk

(
Rk,q

ξ

c

)
u
(k)
l (q)eıkθ. (34)

Therefore the radial parts of the steerable principal components

fk,l(ξ) =

pk∑
q=1

Nk,qJk

(
Rk,q

ξ

c

)
u
(k)
l (q) (35)

are linear combinations of the Bessel functions within the same
angular frequency. The associated expansion coefficients for Ii
are

cik,l =

pk∑
q=1

aik,qu
(k)
l (q), for i = 1, . . . , n. (36)
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The computational complexity for forming the matrix C(k) is
O(np2k). The complexity for eigendecomposition of C(k) is
O(p3k), since the size of the covariance matrix is pk × pk. Using
the upper and lower bounds for pk in Eq. (13) and assum-
ing c = O(1) and R = O(L), we get

∑
k p

2
k = O(L3) and∑

k p
3
k = O(L4). Therefore, the complexity for forming the

covariance matrix C is O(n
∑

k p
2
k) = O(nL3) and the com-

plexity of its full eigendecomposition is O(
∑

k p
3
k) = O(L4).

Equations (32) and (33) show that instead of constructing the
covariance matrices C(k) to compute the principal components,
we can perform singular value decomposition (SVD) on the
coefficient matrixA(k) directly and take the left singular vectors
as the principal components. The computational complexity for
full rank SVD on A(k) is O(np2k) and the total complexity of
SVD of all coefficient matrices is O(n

∑
k p

2
k) = O(nL3).

IV. ALGORITHM AND COMPUTATIONAL COMPLEXITY

The new algorithm introduced in this letter is termed fast
Fourier-Bessel steerable PCA (FFBsPCA). The algorithm is
composed of two steps. In the first step, Fourier-Bessel expan-
sion coefficients are computed according to Algorithm 1. The
input to the algorithm includes an image dataset, the band
limit c, and the compact support radius R. The second step
(Algorithm 2) takes the Fourier-Bessel expansion coefficients
from Algorithm 1 as input and computes the steerable PCA
radial functions and the expansion coefficients of the images
in the new steerable basis. Algorithm 2 is the same as the
corresponding part of the algorithm in [9].

Algorithm 1. Fast Fourier-Bessel Expansion

Require: n images I1, . . . , In sampled on a Cartesian grid of
sizeL× Lwith compact support radiusR and band limit c.

1: (Precomputation) Select (k, q)’s that satisfy the sampling
criterion of Eq. (7). Fix nξ = �4cR
 and nθ = �16cR
.

2: (Precomputation) Find nξ Gaussian quadrature points and
weights on the interval [0, c] and evaluateNk,qJk(Rk,q

ξj
c ),

j = 1, . . . , nξ , for all selected (k, q)’s.
3: Compute F (Ii) (Eq. (17)) on a polar grid of size nξ × nθ

by NUFFT for each i = 1, . . . , n.
4: For each F (Ii), compute aik,q using Eqs. (18) and (19).
5: return aik,q for all selected (k, q)’s.

The analysis of the computational complexity of FFBsPCA
is as follows. The precomputation that generates all radial
basis functions requires O(L3) operations because there are
O(L2) basis functions, each of which is sampled over O(L)
points. Computing the Fourier-Bessel expansion coefficients
aik,q in Eq. (19) for all images takes O(nL3) operations (or
O(nL2 logL) with a fast Bessel transform) as discussed in
Section II-B.

The complexity of constructing the covariance matrix C
and computing its full eigendecomposition is O(nL3 + L4) as
described in Section III. Another method for computing the
principal components is by SVD of the coefficient matrices.

Algorithm 2. Steerable PCA

Require: Fourier-Bessel expansion coefficients aik,q for n
images and the maximum angular frequency kmax.

1: Compute the coefficient vector of the mean image
amean
0,q = 1

n

∑
j a

j
0,q . Then, set ai0,q ← ai0,q − amean

0,q .
2: for k = 0, 1, . . . , kmax do
3: Construct the coefficient matrix A(k).
4. Compute the covariance matrix C(k), its eigenvalues

λ
(k)
1 ≥ λ(k)2 · · · ≥ λ(k)pk , and eigenvectors,

u
(k)
1 , . . . , u

(k)
pk ; or perform SVD of A(k) and take the

left singular vectors u(k)1 , . . . , u
(k)
pk .

5. Compute the radial eigenvectors fk,l(ξj) for j = 1,
. . . , nξ using Eq. (35).

6. Compute the expansion coefficients of the images in
the new steerable basis cik,l using Eq. (36).

7. end for
8. return For all (k, l), u(k)l , λ(k)l , fk,l, and cik,l
i = 1, . . . , n.

Full rank SVD on all coefficient matrices requires O(nL3)
floating point operations (see Section III).

To generate the new steerable basis, we take linear combina-
tions of the Bessel functions as in line 5 of Algorithm 2, which
takes O(L4) operations. Computing the steerable PCA expan-
sion coefficients cik,l for i = 1 . . . , n (line 6 in Algorithm 2)
requires O(nL3) operations by taking linear combinations
of the Fourier-Bessel expansion coefficients as in Eq. (36).
Therefore the total computational complexity of FFBsPCA is
O(nL3 + L4).

The complexity of FBsPCA introduced in [9] is O(nL4).
Thus, FFBsPCA is faster than FBsPCA. For PCA, when the
number of images is smaller than the number of pixels in the
compact support disk, we form XTX and compute its eigende-
composition and the complexity isO(n2L2 + n3). However, as
the number of images grows, the complexity of PCA switches
to O(nL4 + L6) since it becomes more efficient to compute
the eigendecomposition of XXT . Therefore the computational
complexity of traditional PCA, without taking into account
all rotations and reflections isO(min{n2L2 + n3, nL4 + L6}).
When n > O(L), FFBsPCA is more efficient than the tradi-
tional PCA.

FFBsPCA is easily adapted for parallel computation.
The computation of Fourier-Bessel expansion coefficients in
Algorithm 1 can run on multiple workers in parallel, where each
worker is allocated with a subset of the images and Fourier-
Bessel radial basis functions. In addition, in Algorithm 2, the
radial eigenfunctions and the steerable PCA expansion coef-
ficients can also be efficiently computed in parallel for each
angular index k.

V. NUMERICAL EXPERIMENTS

We compare the running times of FFBsPCA, FBsPCA and
traditional PCA, where the latter is computed without the
images’ in-plane rotations and reflections. The algorithms are
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TABLE I
RUNNING TIMES (IN SECONDS) AS A FUNCTION OF R FOR

n = 2.4× 104 , c = 1/2, AND L = 2R

TABLE II
RUNNING TIMES (IN MINUTES) AS A FUNCTION OF n FOR IMAGE SIZE

300× 300 PIXELS (L = 300), WITH R = 150 AND c = 1/2

TABLE III
TIMING FOR FFBSPCA ON A LARGE DATASET WITH n = 105 IMAGES.
EACH IMAGE IS OF SIZE 300× 300 PIXELS, R = 150 AND c = 1/2. WE

COMPUTED THE FULL EIGENDECOMPOSITION IN ALGORITHM 2

implemented in MATLAB on a machine with 60 cores, running
at 2.3 GHz, with total RAM of 1.5TB.

We first simulated n = 24, 000 images with different radii of
compact support R, while the band limit is fixed at c = 1/2.
For small R, since FFBsPCA performs polar Fourier trans-
formation, it appears slightly slower than FBsPCA. However
when R increases, FFBsPCA is computationally more efficient
(see Tab. I). We next fixed the size of the images while using
R = 150 and c = 1/2, and varied the number of images n.
Table II shows that the running time of FBsPCA and FFBsPCA
grows linearly with n.

To show that our new algorithm can handle large datasets
efficiently, we simulated a large dataset with 105 images of
size 300× 300 pixels. The images consist entirely of Gaussian
noise with mean 0 and variance 1. We assume that the
compact support in the image domain is R = 150 and the
band limit in Fourier domain is c = 1/2. In Table III, the
total running time is divided into three parts: precomputation,
Fourier-Bessel expansion (Algorithm 1), and steerable PCA
(Algorithm 2). Fourier Bessel expansion took about 24 min-
utes, during which 91% of the time was spent on mapping
images to polar Fourier grid, where we used the software pack-
age [22] downloaded from https://www-user.tu-chemnitz.de/
potts/nfft/potts/nfft/. Numerical evaluation of the angular inte-
gration by 1D FFT and the radial integration by a direct method

Fig. 4. Simulated projection images of the human mitochondrial large riboso-
mal subunit. Image size is 240× 240 pixels.

took 6.4% and 2.6% of the time respectively. Steerable PCA
took 42 seconds.

In our third experiment, we simulated n = 105 clean projec-
tion images from a reconstructed volume of a human mitochon-
drial large ribosomal subunit, downloaded from the electron
microscopy data bank [32] (EMDB-2762). The original vol-
ume in the data bank is of size 320× 320× 320 voxels. We
preprocessed the volume such that its center of mass is at the
origin and cropped out a volume of size 240× 240× 240 vox-
els that contains the particle. Each projection image is of size
240× 240 pixels. We simulated both the vanishing behavior of
the CTF at low frequencies and the blurring effect due to the
Gaussian envelope of the CTF. This was done by convolving
the images with the inverse Fourier transform of

min(πλzf2 + a, 1) exp(−Bf2), (37)

where f is the frequency, λ is the wavelength of the electron
beam, z is the defocus, and a is the phase of the CTF intro-
duced by microscope. This stems from the analytic form of
the CTF given by sin(πλzf2 + a) exp(−Bf2). For the sim-
ulations we chose λ = 0.0197Å, z = 2.5 μm, a = 0.1rad, and

B = 100Å
2
. Our clean images (see Fig. 4a) are the projection

images filtered by the filter in Eq. (37) and they were then
corrupted by additive white Gaussian noise at SNR= 1/30,
corresponding to noise variance of σ2 = 9 (see Fig. 4b).

We estimated the radius of compact support of the particle
in real domain and the band limit in Fourier domain from the
noisy images in the following way. We first subtracted the mean
image of the dataset from each image. Then we computed the
2D variance map of the dataset averaged in the angular direc-
tion, to get the mean radial variance (see Fig. 5a). At large r,
the mean radial variance levels off at 9, which corresponds to
the noise variance. We subtracted the noise variance from the
estimated mean radial variance and computed the cumulative
variance by integrating the mean radial variance over r with a
Jacobian weight rdr. The fraction of the cumulative variance
reaches 99.9% at r = 98, and therefore R was chosen to be 98.
In the Fourier domain, we computed the angular average of the
mean 2D power spectrum. The curve in Fig. 5b also levels off at
the noise variance when ξ is large. We used the same method as
before to compute the cumulative radial power spectrum. The
fraction reaches 99.9% at ξ = 0.196, therefore the band limit is
chosen to be c = 0.196.

The radial functions of the top nine principal components
are shown in Fig. 6. Each radial function is indexed by k and
l, where k determines the angular Fourier mode and l is the
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Fig. 5. Estimating R and c from n = 105 simulated noisy projection images
of a human mitochondrial large ribosomal subunit. Each image is of size 240×
240 pixels. (a) Mean radial variance of the images. The curve levels off at about
σ2 = 9 when r ≥ 98. The radius of compact support is chosen as R = 98.
(b) Mean radial power spectrum. The curve levels off at σ2 = 9 when ξ ≥
0.196. The band limit is chosen as c = 0.196.

Fig. 6. FFBsPCA principal radial functions in Fourier domain. The dataset
contains n = 105 simulated human mitochondrial large ribosomal subunit pro-
jection images corrupted by additive white Gaussian noise with SNR= 1/30.
Image size is 240× 240 pixels, R = 98, c = 0.196. Each radial function is
labeled with angular index k, radial order l, and eigenvalue λ.

order of the radial function within the same k. Taking the tensor
product of the radial functions and their corresponding angular
Fourier modes gives the two dimensional principal components
in Fourier domain. It took about 9 minutes in total to get the
steerable PCA radial components and the associated expansion
coefficients. In particular, Fourier-Bessel expansion coefficients
were computed in 9 minutes and the steerable PCA took 12
seconds.

We computed the traditional PCA and FBsPCA on the same
dataset in real image domain (see Fig. 8 for PCA compo-
nents), which took 60 minutes and 16 minutes respectively.
In order to compare the principal components computed by
FFBsPCA with those computed by traditional PCA, we take
the inverse Fourier transform of the FFBsPCA components. We
do not compute the inverse polar Fourier transform directly,
since such a transform is ill-conditioned. Instead, since the

Fig. 7. FFBsPCA principal components (eigenimages in real domain) corre-
sponding to Figure 6.

Fig. 8. Traditional PCA principal components in real image domain for the
same dataset used in Figures 6 and 7.

FFBsPCA components are linear combinations of the Fourier-
Bessel functions as in Eq. (34), we evaluate the steerable
principal components on a Cartesian grid in real space using
the linear combinations of F−1(ψk,q

c ), given by Eq. (5). Those
principal components are shown in Fig. 7. Some of the top
sixteen principal components computed from traditional PCA
and FFBsPCA look very similar, for example, the first three
and the last four principal components (see Fig. 7 and Fig. 8).
Because the gap between the eigenvalues of the traditional PCA
is very small for the components in the middle two rows of
Fig. 8, those components become degenerate and therefore look
different from the corresponding components in Fig. 7.

In our simulation, each noisy projection image I is obtained
by contaminating the clean image Ic with additive white
Gaussian noise of variance σ2 = 9. Given the noise level, we
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Fig. 9. Denoising simulated projection images. (a) clean clean projection
image, (b) noisy noisy projection image with SNR= 1/30, (c) denoised projec-
tion image using traditional PCA, (d) denoised projection image using Curvelet
transform, complex block thresholding and cycle spinning, (e) denoised image
using FBsPCA, and (f) denoised image using FFBsPCA.

would like to automatically select the appropriate principal
components to compress and denoise the noisy images. Since
the transformation T ∗ is nearly unitary, the coefficient matrices
can be modeled approximately as A(k) = A

(k)
c + ε(k), where

ε(k) is white Gaussian noise with variance σ2 and A(k)
c is the

coefficient matrix for the clean images. In the case when there
is no signal, that is A(k)

c = 0, all eigenvalues of the covari-
ance matrix C(k) from Eqs. (32) and (33) converge to σ2 as n
goes to infinity, while pk is fixed. When A(k)

c �= 0, components
with eigenvalues larger than σ2 correspond to the underlying
clean signal. In the non-asymptotic regime of a finite number of
images, the eigenvalues of the sample covariance matrix from
white Gaussian noise spread around σ2. The empirical density
of the eigenvalues can be approximated by the Marčenko-Pastur
distribution with parameter γk, where γ0 = p0

n and γk = pk

2n for

k > 0 and the eigenvalues of C(k) are supported on [λ
(k)
− , λ

(k)
+ ],

with λ
(k)
± = σ2(1±√γk)2. The principal components corre-

sponding to eigenvalues larger than λ(k)+ correspond to signal
information beyond noise level. Therefore, with the estimated
noise variance σ̂2, we denote by λ

(k)
1 ≥ λ(k)2 ≥ · · · ≥ λ(k)pk

the eigenvalues of the covariance matrix C(k), and select the
components with eigenvalues

λ
(k)
l > σ̂2(1 +

√
γk)

2, l = 1, . . . , pk. (38)

Various ways of selecting principal components from noisy
data have been proposed. We refer to [33] for an automatic
procedure for estimating the noise variance and the num-
ber of components beyond the noise level. For the simulated
ribosomal subunit projections images, there are 966 steerable
principal radial components above the threshold in Eq. (38),
whereas considerably fewer principal components (391) with
the traditional PCA were selected.

Moreover, we filter the expansion coefficients to get bet-
ter denoising. To first order approximation, when n
 pk, the

Fig. 10. Enlarged view of 100× 100 pixels box at the center of the images in
Figure 9.

Fig. 11. Cumulative variance of FFBsPCA, Fourier-Bessel and Curvelet expan-
sion coefficients of simulated clean ribosome projection images as in Fig. 4a.

noise simply shifts all eigenvalues upward by σ2 and this
calls for soft thresholding of the sample covariance eigenval-
ues: (λ− σ2)+. To correct for the finite sample effect, we can
apply more sophisticated shrinkage to the eigenvalues, such as
the methods proposed in [34], [35]. Specifically, we applied
the shrinkage method in [34] to the coefficients computed by
FFBsPCA, FBsPCA, and PCA. Because we were able to use
more principal components with FFBsPCA, we recovered finer
details of the clean projection images, comparing Fig. 10c and
Fig. 10f.

In addition to using data-adaptive bases, we also used a
non-isotropic directional multiscale transform, i.e., Curvelet
transform [36] with complex block thresholding and cycle spin-
ning, to denoise the images. An example of a denoised image
using PCA, Curvelet, FBsPCA, and FFBsPCA is shown in
Fig. 9. The steerable PCA basis captures the variance of the
clean dataset with fewer components than non-adaptive bases,
such as Fourier-Bessel basis or Curvelets (see Fig. 11).

We computed the mean squared error (MSE) and Peak SNR
(PSNR) to quantify the denoising effects in Tab. IV and Tab. V.
Comparing with the traditional PCA, FFBsPCA reduced the
MSE by more than 25% and increased the PSNR by over 1.3
dB. When the images are of low SNR, Curvelets are unable
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TABLE IV
MSE OF DENOISED IMAGES USING PCA, CURVELETS, FBSPCA AND

FFBSPCA, ALL COMPUTED USING PIXELS WITHIN R = 98

TABLE V
PSNR OF DENOISED IMAGES USING PCA, CURVELETS, FBSPCA AND

FFBSPCA, ALL COMPUTED USING PIXELS WITHIN R = 98

TABLE VI
FFBSPCA DENOISING OF IMAGES WITH MAXIMUM SHIFTS OF 0, 5, 10,

15, AND 20 PIXELS. PSNRS ARE COMPUTED WITH PIXELS WITHIN

R = 110. THE ESTIMATED COMPACT SUPPORT R INCREASES WITH

MAXIMUM SHIFT

to outperform data adaptive bases, such as PCA, FBsPCA and
FFBsPCA (see Tab. IV and Tab. V). This experiment shows that
FFBsPCA is an efficient and effective procedure for denoising
large image datasets.

Finally, we show that steerable PCA denoising is robust to
small shifts. We simulated clean data with random shifts in the
±x and ±y directions with maximum shifts equal to 0 (cen-
tered images), 5, 10, 15, and 20 pixels. The clean images are
corrupted with additive white Gaussian noise of variance 9. As
shown in Tab. VI, the denoising performance using FFBsPCA
(measured in PSNR) is almost unaffected. The denoising results
for centered images in Tab. V and Tab. VI are slightly different
because we used different support sizes to evaluate PSNRs.

VI. CONCLUSION

In this letter we presented a fast Fourier-Bessel steerable
PCA method that reduces the computational complexity with
respect to the size of the images so that it can handle larger
images. The complexity of the new algorithm is O(nL3 + L4)
compared with O(nL4) of the steerable PCA introduced in [9].
The key improvement is through mapping the images to a polar
Fourier grid using NUFFT and evaluating the Fourier-Bessel
expansion coefficients by angular 1D FFT and accurate radial
integration.

This work has been mostly motivated by its application to
cryo-EM single particle reconstruction. Besides compression
and denoising of the experimental images required for 2D class
averaging [11] and common-lines based 3D ab-initio model-
ing, FFBsPCA can also be applied in conjunction with Kam’s

approach [37] that requires the covariance matrix of the 2D
images [38]. The method developed here can also be extended
to perform fast principal component analysis of a set of 3D vol-
umes and their rotations. For this purpose, the Fourier-Bessel
basis is replaced with the spherical-Bessel basis, and the expan-
sion coefficients can be evaluated by performing the angular
integration using a fast spherical harmonics transform [39]
followed by radial integration.

Our numerical experiments show that an adaptive basis is
necessary for denoising images with very low SNR. Steerable
PCA is able to recover more signal components than PCA
and achieves better denoising results. It is definitely possi-
ble to improve the denoising obtained by just using steerable
PCA. For example, we can have more sophisticated dictionary
denoising schemes, in which part of the dictionary is made
of the steerable principal components and another part of the
dictionary is made of wavelets. As these methods require the
computation of steerable PCA, computing steerable PCA fast
would be useful also for more advanced denoising schemes.

Finally, we remark that the Fourier-Bessel basis can be
replaced in our framework with other suitable bases, for exam-
ple, the 2D prolate spheroidal wave functions (PSWF) on a disk
[40]. The 2D prolates also have a separation of variables form
which makes them convenient for steerable PCA. A possible
advantage of using 2D prolates is that they are optimal in terms
of the size of their support.
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