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We introduce a new rotationally invariant viewing angle classification method for identifying, among a
large number of cryo-EM projection images, similar views without prior knowledge of the molecule.
Our rotationally invariant features are based on the bispectrum. Each image is denoised and compressed
using steerable principal component analysis (PCA) such that rotating an image is equivalent to phase
shifting the expansion coefficients. Thus we are able to extend the theory of bispectrum of 1D periodic
signals to 2D images. The randomized PCA algorithm is then used to efficiently reduce the dimensionality
of the bispectrum coefficients, enabling fast computation of the similarity between any pair of images.
The nearest neighbors provide an initial classification of similar viewing angles. In this way, rotational
alignment is only performed for images with their nearest neighbors. The initial nearest neighbor classi-
fication and alignment are further improved by a new classification method called vector diffusion maps.
Our pipeline for viewing angle classification and alignment is experimentally shown to be faster and
more accurate than reference-free alignment with rotationally invariant K-means clustering, MSA/MRA
2D classification, and their modern approximations.
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1. Introduction

Single particle reconstruction (SPR) from cryo-electron micros-
copy (EM) images is an entirely general technique for determining
the 3D structures of macromolecular complexes (Frank, 2006; van
Heel et al., 2000; Wang and Sigworth, 2006; Frank, 2009), which
does not require crystallization or other special preparation of
the complexes to be imaged. In cryo-EM, the functionally active
macromolecular complexes are prepared in vitro, stalled by chem-
ical means, and rapidly frozen by immersion into liquid ethane at
liquid-nitrogen temperature. The randomly oriented and posi-
tioned macromolecular “particles”, typically complexes 200 kDa
or larger in size, are maintained at the liquid-nitrogen temperature
throughout the image acquisition in the microscope. One of the
challenges in SPR with cryo-EM images is the low signal to noise
ratio (SNR), due to the lack of periodicity of the molecule frozen
in thin vitreous ice layer.

Because of the low SNR, it is extremely hard to visualize individ-
ual particle. To improve the resolution, a crucial step is alignment
and averaging of the 2D projection images, a procedure known as
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“class averaging”. Images from the same projection angles should
be identified, centered, rotationally aligned and averaged to
achieve a higher SNR. Generating 2D class averages could be useful
for common-lines based 3D ab initio reconstruction. They can also
be used for direct observation to look for heterogeneity or discover
symmetry as well as for separating particles into subgroups for
additional analysis. Therefore, it is important to have fast and accu-
rate algorithms for computing class averages.

There are two main approaches for generating 2D class aver-
ages. IMAGIC (van Heel et al.,, 1996) uses multivariate statistical
analysis (MSA) and multi-reference alignment (MRA) for 2D image
classification. The MSA compresses and denoises large image data
sets to achieve efficient classification using hierachical ascending
classification method. The clustered images produce references
for the MRA class averaging step. Since projection images can be
similar up to rotation and small translations, several invariant fea-
tures were proposed as a preprocessing step for viewing angle clas-
sification, for example, autocorrelation functions (ACF) and double
autocorrelation function (DACF) (Schatz and van Heel, 1990).
SPIDER (Shaikh et al., 2008) uses reference-free alignment (RFA)
(Penczek et al., 1992) followed by rotationally invariant K-means
clustering (Penczek et al, 1996) for 2D class averaging.
Reference-free alignment tries to globally align images. The
optimization method aims at finding alignment parameters of
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rotations and shifts for all images that minimize the sum of
squared deviations from their mean (i.e., minimum variance).
Modern software packages for SPR also include procedures for
2D class averaging. EMAN2 (Tang et al., 2007) 2D class averaging
method uses invariant features for initial classification. The calcu-
lation of invariants is a 2-stage process. It first computes the self
correlation function (SCF) (van Heel et al., 1992) of an image to
make it translational invariant, which is followed by a polar trans-
formation and a sequence of 1-D autocorrelations on each ring to
generate rotationally invariant SCF images. The invariants are only
used to bootstrap the process and the classification after this point
is MSA/MRA based. The procedure for 2D class averaging in Xmipp
(de la Rosa-Trevin et al., 2013) is CL2D, which is based on the algo-
rithm proposed by Sorzano et al. (2010). Their algorithm for 2D
multireference alignment and classification is based on a hierachi-
cal clustering approach using correntropy instead of the traditional
correlation. Computing the correntropy between each image and
the class reference gives classification results that are less sensitive
to noise. They also proposed a new clustering criterion so as to
avoid the situation that the cleaneast class “attracts” many experi-
mental images even if they belong to some other classes. This mod-
ified criterion for the definition of the clusters was shown to be
especially suited for images with low SNR. SPARX (Hohn et al.,
2007) uses a 2D class averaging method called iterative stable
alignment and clustering (ISAC) (Yang et al., 2012), which relies
on the concepts of stability and reproducibility of clusters. Relion
(Scheres, 2012) uses a Bayesian approach to infer parameters for
a statistical model from the data. This method is used in both refer-
ence-free 2D class averaging and unsupervised 3D classification.
The class averages can be deblurred and refined by using algorithms
proposed in Park et al. (2010, 2011), Park and Chirikjian (2014).
We notice that RFA produces significantly large errors when the
images have many different views. The reason for this failure is
mathematical: there does not exist an assignment of in-plane rota-
tional angles that can align all images simultaneously. The under-
lying theorem is known as the hairy ball theorem, and we will
elaborate on this issue in the following section. While global align-
ment is impossible, one can always determine the rotationally
invariant distances between all pairs of images by optimally align-

ing each pair of them. In this way, we have to perform <g> align-

ments for n images. This is computationally intensive and
unnecessary, because most of the time is spent on aligning images
from very different views. It would be more efficient to use a rota-
tionally invariant representation for the images, then find neigh-
boring images, and finally align and average only neighboring
images.

We introduce a new rotationally invariant representation for
computing the rotationally invariant distance between all pairs
of cryo-EM images. Our invariant representation is based on
expanding the images in a steerable basis and deriving a bispec-
trum for this expansion (Ponce and Singer, 2011; Zhao and Singer,
2013). Unlike ACF, DACF and SCF, the new rotationally invariant
representation maintains phase information and is complete, in
the sense of uniquely specifying the original image up to an arbi-
trary rotation. In signal and image processing, a wide variety of
invariants were devised for pattern recognition (Michaelis and
Sommer, 1995). A common feature of most invariants is that they
are lossy, in the sense that they do not uniquely specify the original
signal. Among invariant features, the bispectrum and the triple-
correlation function provide a lossless shift-invariant representa-
tion, and various algorithms have been devised to retrieve a signal
(up to translation) from its (possibly noisy) bispectrum (Sadler and
Giannakis, 1992). We therefore find this representation useful in
determining the rotationally invariant distances between any pair

of images. Bispectrum and triple-correlation function have been
considered before for generating translational or rotational invari-
ant features for cryo-EM images (Schatz and van Heel, 1990;
Joyeux and Penczek, 2002; Marabini and Carazo, 1996). However,
because the number of such features is extremely large, it was
regarded impractical for computations. We reduce the number of
bispectrum-features in two steps. We first perform principal
component analysis (PCA) for all the images and their in-plane
rotations efficiently to produce a steerable basis, where the
eigen-images are separable to angular Fourier modes and radial
functions (Zhao and Singer, 2013). The projection images are
expanded and compressed in the leading M steerable eigen-images.
Different triplets of these expansion coefficients are multiplied
together to produce the invariant image representation. The result-
ing invariant representation is still high-dimensional, consisting of
om? /kmax) features, where kpq is the maximum angular fre-
quency. Marabini and Carazo (1996) suggested projecting the
bispectrum onto a lower dimensional subspace as a pattern classi-
fication method. However, their method consists of using a prede-
termined subset of bispectrum coefficients and does not preserve
the information content well enough to discriminate images of
many different views. Instead, in the second step, we reduce the
dimensionality of the invariant feature vectors by PCA. We use a
randomized algorithm for low rank matrix approximation (Rokhlin
et al., 2009; Halko et al., 2011a,b) to efficiently compute the prin-
cipal components, overcoming the difficulties imposed by the large
number of images and the high dimensionality of the input feature
vectors. The top principal components provide the reduced invari-
ant image representation. We then efficiently compute the rota-
tionally invariant distance between images as the Euclidean
distance between their reduced invariant representations without
performing any in-plane alignment. A predetermined number of
nearest neighbors for each image are identified as those images
with the smallest invariant distances. For a large number of input
images, a randomized nearest neighbor algorithm (Jones et al.,
2011) can avoid computing the distances between all pairs of
images and effectively find the nearest neighbors in time nearly
linear with the number of images. Either ordinary or randomized
nearest neighbor search with reduced invariant image representa-
tion gives the initial classification result. The rotational alignment
angles are then computed only for nearest neighbor pairs. With the
techniques we propose here, a substantial gain in computation
time is obtained by reversing the order of alignment and
classification.

The initial nearest neighbors classification can be improved by a
clustering algorithm, such as K-means, that takes into account all
pairwise distances between images within the neighborhood. But
it is usually very difficult to get good clustering for a large number
of clusters and the cluster size varies considerably. Nearest neigh-
bor classification is a natural algorithmic framework for averaging
an image with a predetermined number of similar images. The ini-
tial classification can be further improved by taking into account
the consistency of in-plane rotations along multiple paths that
connect neighboring images through their common neighbors.
This classification method is called Vector Diffusion Maps (VDM)
(Singer et al., 2011; Singer and Wu, 2012).

This paper is organized as follows. In Section 2, we put forward
two problems with the reference-free alignment and rotationally
invariant K-means clustering. In Section 3, we present our
algorithms for generating rotationally invariant image representa-
tions for the purpose of viewing angle classification. Also in that
section, we show how to improve the initial nearest neighbor clas-
sification and rotational alignment using VDM. The nearest neigh-
bor pairs and their relative alignment are used to generate class
means. In Section 4, we detail the results of numerical experiments
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Fig.1. Schematic diagram of our class averaging procedure for single particle
reconstruction.

for simulated projection images of the 70S ribosome with the
purpose of benchmarking the efficiency and accuracy of the algo-
rithm. Our algorithm is shown to be more accurate than other
existing 2D class averaging procedures and it is also faster. We con-
clude that section by detailing the results of our class averaging
method for three experimental data sets of the 70S ribosome,
50S ribosomal subunit, and IP3R1. Our class averaging method is
available in the SPR toolbox ASPIRE.! The toolbox includes three
main functions written in MATLAB “Initial _classification.m”,
“VDM.m", and “align_main.m” that correspond to the three major
components in the pipeline of our 2D class averaging method (see
Fig. 1).

2. Motivation
2.1. No global rotational alignment

To each projection image I there corresponds a 3 x 3 unknown
rotation matrix R (RR" = R'R = 5,3 and detR = 1), describing its
orientation

]
R=|R R PR
I

The projection image can be viewed as a tangent plane to the two
dimensional unit sphere S* at the viewing direction v = v(R) = R®.
The first two columns of R, namely, R' and R?, are vectors in R® that
form an orthonormal basis for the tangent plane and are identified
with the coordinate axes of the image (see Fig. 2). Together with the
imaging direction v they make an orthonormal basis of R3. An
in-plane rotation of the projection image can thus be viewed as
changing the basis vectors R' and R*> while keeping v fixed.

1 http://spr.math.princeton.edu/.

Fig.2. The image I is identified with the tangent plane to the sphere at the viewing
direction R* which is the third column of the rotation matrix R.

The similarity of images can be measured by the Euclidean dis-
tance between the images when they are optimally aligned with
respect to in-plane rotations (assuming the images are centered):

dlj::{g})}zl}_[)uli_R(O{)Ij'L L] = 17"'7”7 (1)

where R(a) stands for rotating image I; counter-clockwise by o. The
optimal alignment angle is

oy = argmin [, - @), ij=1,....n )
ae(0.21

)

When two images I; and [; are of the same viewing angle
(7; = v;), the matrix Ri’le is of the form

coso; —sinog 0
-1 .
R 'Rj= | sinoy; cosay O |,
0 0 1

given by cos(a;) = (R7'R;),, and sin(e) = (R7'R;),,. In practice,
however, we cannot expect two projection images to have exactly
the same viewing angle.

For clean images, it is expected that a small discrepancy
between »; and »; would imply that oy, obtained from optimal
rotational alignment, approximates the angle &; given by

%; = argmin ||p(«t) — R; 'Ryl|7, 3)
ae[0,2m)
where
coso. —sino O
p(a)=] sine cosa O |,
0 0 1

and ||A|? = Tr(AAT) for any real valued m x n matrix A (i.e., it is the
squared Frobenius norm). It can be verified that o; satisfies (Singer
et al,, 2011)

(Rfle)11 + (R;1Rj)22

\/[(R;1R1)11 + (Rfle)zz]Z + [(R;1R1)21 - (Rfle)lz
(R;]RI)ZI - (R;1R1)12

VIRR)y + RR) T+ [(RR),, — (RR) )

During our simulations, the true relative in-plane rotation is defined
through Egs. (4) and (5).

Penczek et al. (1992) introduced reference-free alignment that
first globally aligns all the images and then the rotationally
invariant distance is the Euclidean distance between the
pre-aligned images. What we are about to elucidate is that such
global alignment does not exist when there is a great variety of

cos (o) =

;@)

]2

sin(ay) =

()



http://spr.math.princeton.edu/

156 Z. Zhao, A. Singer /Journal of Structural Biology 186 (2014) 153-166
5 5 6
4 4
= = — 4
+3 +3 +
2 2 2
'g% 2 ‘EE 2 é‘f 2
1 1
—980 -120 -60 0 60 120 180 —‘?80 -120 -60 60 120 180 —‘?80 -120 -60 0 60 120 180
ijj — Qg Qij — Qj iy — Qg
(a) whole sphere (b) 60° (c) 20°

Fig.3. Error in degrees of in-plane rotational alignment between images with similar viewing angles that are less than 5° apart for simulated clean projection images of the
70S ribosome, with viewing angles belonging to spherical caps of various opening angles (whole sphere, 60°, 20°). The y axis is in log scale, because the number of outliers is
small. The fraction of pairs for which the error is larger than 2° is p, = 0.13, p, = 0.09, and p. = 0.

viewing angles. In such cases, the estimation of the in-plane rota-
tions between images from similar views by RFA is not accurate.

We used a data set composed of clean images corresponding to
many different views in order to numerically test the performance
of RFA algorithm (Penczek et al., 1992) for viewing angle classifica-
tion and for rotational alignment of in-class images. Specifically,
10* centered clean projection images were simulated from the
3D model of Escherichia coli 70S ribosome with viewing directions
that are sampled from the uniform distribution over the sphere.
We used SPIDER AP RA program to run RFA on different subsets
of the simulated data to test the rotational alignment results. Since
we know the underlying rotations, we can compute &; for pairs of
images that satisfy (v, v;) > cos(5°), that is, for viewing angles
that are less than 5° apart. This list of true in-plane rotational an-
gles are compared with the estimation from the reference free
alignment. Firstly we ran RFA on the whole data set whose viewing
directions are uniformly distributed over the sphere. The algorithm
produces large errors when all views are included (see Fig. 3a). As
we decrease the size of the spherical cap to 80°, 60° and 40°, the
errors in in-plane rotational alignment become smaller (see Fig. 3).

The (perhaps surprising) failure of RFA to globally align all
images is a consequence of a mathematical theorem called the
hairy ball theorem (Milnor, 1978). The theorem says that a contin-
uous tangent vector field to the two dimensional sphere $?> must
vanish at some point on the sphere. In other words, if f is a contin-
uous function that assigns a vector in R> to every point v on the
sphere such that f(v») is tangent to the sphere at #, then there is
at least one v e S*such that f(2) = 0. The theorem attests to the
fact that it is impossible to comb a hairy (spherical) cat without
creating a cowlick. The hairy ball theorem implies that any attempt
to find a non-vanishing continuous tangent vector field to the
sphere would ultimately fail. A successful global rotational align-
ment of all projection images means that we can choose orthogo-
nal bases to all tangent planes such that the basis vectors vary
smoothly from one tangent plane to the other. However, this is a
contradiction to the hairy ball theorem.

This implies that any classification algorithm that first attempts
to globally align the images, such as K-means clustering after RFA,
would ultimately fail whenever there are many different views
that cover the sphere. We refer the reader to Appendix B of (Singer
et al., 2011) for a discussion about the relevance of the hairy ball
theorem in the discrete case of a finite number of images. For
images that lie in a spherical cap, the error produced by global
alignment is due to the curvature of the sphere.

Since we cannot align images from different views all at once,
the distance computed between images after global alignment is
not a truly rotationally invariant distance. In Section 3, we intro-
duce a new rotationally invariant image representation b and
replace the rotationally invariant distance Eq. (1) by

dj = ||b; — by (6)

00 50 100 150

200

Fig.4. Number of particles in each cluster of the 200 clusters found by K-means
clustering algorithm implemented in SPIDER. The data set has 10* clean centered
images, whose viewing angles are uniformly distributed over the sphere.

The new rotationally invariant feature vector b needs to be lower
dimensional (so that Eq. (6) can be computed efficiently), and to
retain the information in the image (so that Eq. (6) is meaningful).
Using the rotationally invariant feature vectors, we are able to find
images with similar views without performing rotational alignment.

2.2. Classification instead of clustering

Traditionally, the class averaging problem was considered as a
clustering problem, in which a large data set of n images,
with unknown corresponding rotation matrices
Ry,..., Ry, is grouped into clusters, with the goal that images within
a single cluster have similar viewing angles. In practice, however,
the size of the cluster varies considerably from cluster to cluster
(see Fig. 4, where we tried to cluster 10* clean 70S ribosome pro-
jection images, whose viewing angles are uniformly distributed
over the sphere), and therefore the resulting class averages will
have different signal to noise ratio and resolution.

Instead of K-means clustering and generating cluster means, we
propose another classification method for generating class aver-
ages. For each image, we search for a fixed number (x) of nearest
neighbors. Each image is averaged with its aligned nearest neigh-
bors to boost the signal to noise ratio. In this way, the resulting
number of class averages is the same as the number of the original
images and all class averages have the same SNR. It also prevents
the situation that clustering reduces the full coverage of the view-
ing directions.

3. Methods
3.1. Fourier-Bessel steerable PCA

We use Fourier-Bessel steerable PCA (Zhao and Singer, 2013) to
generate a data adaptive basis for compressing and de-noising

images. Since the rotated copies of the projection images are
equally likely to appear in the data set, it is meaningful to perform
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PCA on the data set with all their rotated copies. However it is chal-
lenging to compute the steerable PCA efficiently and accurately,
because the images are sampled on a Cartesian grid, while steering
operations often require a polar grid. As the transformation from
Cartesian to polar is not unitary, the eigenimages corresponding
to images mapped to polar grid are not equivalent to transforming
the original eigenimages from Cartesian to polar. In Zhao and Sing-
er (2013), we developed an accurate and efficient algorithm for
steerable PCA. Its computational complexity is lower than that of
traditional PCA (or MSA in cryo-EM 2D image processing). Since
we incorporate more information from the data set, we can get
better estimation of eigen-images that correspond to the clean pro-
jection images than the traditional PCA.

The steerable eigen-images have special separation of variables
form,
uka(r, 0) = f9(r)e™, (7)
where k and q in basis image u* are indices for angular frequency
and radial frequency, respectively. f*9 can be computed from the
Fourier-Bessel steerable PCA (Zhao and Singer, 2013), which pro-
vides an optimal basis in the least-squares sense. Images are
expanded on this steerable basis, I(r,0) = Zkvqak‘qu"q(r, 0), with
expansion coefficients ayg. It is easy to “steer” the images. When
image I is rotated counter-clockwise by angle «, the expansion coef-
ficients of I(r, 6 — o) are given by af, = a,se~'**, because

Zak uk(r, 0 — o) Zak,qe*”‘“ukq(r,e). (8)
k,q

The steerability of the basis allows us to define rotationally invari-
ant features that are introduced in Section 3.2.

I(r,0 — o)

3.2. Bispectrum-like rotationally invariant image representation

Prior to introducing the rotationally invariant image represen-
tation, we quickly review here the bispectrum for 1D signals.
Suppose we have a 1D periodic discrete signal f(x),x=1,... L.
The discrete Fourier transform of f is defined as

L
k) =3 f(x)e 't (9)
x=1
The power spectrum {f\z is the Fourier transform of the autocorre-
lation function
L
ACF(x) =

S O+ ). (10)
y=1

Both the power spectrum and the auto-correlation function are
shift-invariant. However, the ACF loses the phase information in f
and maintains only its amplitude. The idea behind bispectral
invariants is to move from the autocorrelation function to the

triple-correlation function
L

S T +x0)f (v +X2). (11)

=1

T(X17X2) =

Again by the convolution theorem, Fourier transform of the triple-
correlation function is

bki,k2) = f(kn)f (k2)f (ki + ko), (12)

and is called the bispectrum of f. Under shift by z, the Fourier trans-
form of f# = f(x — z) becomes

L L
Filky = f(x — 2) e P = e N "f (x) e R =
x=1 =1
Therefore, under translation by z, the bispectrum becomes
b* (ky ,kz)

e ef (k). (13)

(14)

_ e—i2mzky /Lf(]<1 )e—iankz/Lf(kz)eian(h +k2)/Lf‘(k1 +k2) _ b(k1 7k2),

which shows that the bispectrum is shift-invariant. Unlike the
power spectrum, the bispectrum does not lose the phase informa-
tion and under mild conditions, the original signal can be recon-
structed from its bispectrum (up to translation). The bispectrum
is widely used in signal processing as a lossless shift-invariant
representation, and various algorithms have been devised to recon-
struct f from b (Sadler and Giannakis, 1992). Because of the symme-
try properties of bispectrum coefficients, the knowledge of the
bispectrum in the triangular region k; > 0,ky < ki, k; + ka < Ky
is sufficient for a complete description of the bispectrum.

For 1D periodic signals of length L, there are O(L?) bispectrum
coefficients. Therefore, the bispectrum is of very high dimensional-
ity. The possibility of using the bispectrum as shift or rotational
invariant image representation for classification of cryo-EM images
has been previously mentioned in Schatz and van Heel (1990),
Marabini and Carazo (1996). Due to its high dimensionality, the
full bispectrum has never been used for analyzing large cryo-EM
data sets to generate class averages.

The bispectrum of 1D periodic signals for shift invariant
features can be extended to generate rotationally invariant fea-
tures for 2D images. We use Fourier-Bessel steerable PCA basis
(Zhao and Singer, 2013) described in Section 3.1 to expand images.
Rotating the image is equivalent to phase shifting its expansion
coefficients, which is similar to phase shifting the Fourier coeffi-
cients in Eq. (13).

Typically, most of the energy of the clean images is concen-
trated in a relatively small number M (a typical value of M is
around 100 for noisy 2D images) of principal components with
low angular frequencies (—kpmax < k < Kmax), Whereas the additive
white Gaussian noise spreads over all components with low angu-
lar frequencies. Representing the images using only the leading M
components can compress and denoise the images. Therefore, we
use the truncated expansion coefficients with M terms instead of
the total number of pixels.

We define the bispectrum for the steerable basis expansion
coefficients as
bkl-,kz-mv‘h»% = Uiy.q; Aky g Ty +kz.q5 5 (15)
where k; and k, are the angular indices and q,,q, and g; are the
radial indices.

A modification to the bispectrum is needed when treating noisy
signals. Suppose the observed signal y is the true signal x contam-
inated with additive white Gausfdsian noise n ~ .47(0, ¢2I):

y=xtn (16)
Then the expansion coefficients are given by

T = g + gy (17)
with ay , satisfying Ea;; , = 0 and E[ay, , a; ] = 020y, 0q,q,- Then the

expectation of the bispectrum of y,
_ X n X n X v
[Ebil k2,q1.02.03 — [E[(aklih + T, q, )(akzilz + akz~‘12)(a’<1+k2~% + ak1 +ka.q3 )]

x
akl a1 %, .05 ak1+’<z a3 +E akl Q1 akz a0 ’<1+’<2 fla]

+ akz a0 ak1+k2 a3 [akl 41

X
+ Gy, g, a/<1+kz a3 [akz a2

n
+ a’<1 a1 E {akz a2 ak1+k2 a3

n
+ a/<2 a0 E {alﬁ a1 ak1+k2 a3

[
]
]
00,00, E[ @ ]
]
)
J

+ ak1+k2 a3 [a’ﬁ Qi akz 92 (18)
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Hence,

_ X 2/ X X X
Eby = by, + 0°(0q,4;00, + 4,.05 0,6, + 9q1.0,00g,)-

(19)

1:k2.01.92.43 k2.41.02.03

Therefore, if a5, = 0 for all g, then the bispectrum is unbiased, i.e.,
Eb® =b*. As a result, removing the zero-frequency part of the
bispectrum makes it less sensitive to contamination by additive
white Gaussian noise. The zero-frequency coefficients are rotational
invariant and can be added as separate invariant features.

Schatz and van Heel (1990) and van Heel et al. (1992) have
previously noted that the ACF overweighs the already strong fre-
quency components in the image due to the squaring of the Fourier
components and therefore they defined a self correlation function
(SCF) which under-emphasizes all amplitudes by replacing them
by their square roots. The SCF was shown to perform better than
the ACF. A similar situation occurs for the bispectrum, due to the
multiplication of three frequency components. We therefore mod-
ify the expansion coefficients prior to computing the bispectrum
such that the amplitude is the cubic root of the original:

. a
= (20)

Notice that the phase information of the bispectrum is unaltered, as
only the amplitudes are modified. It is natural to take the cubic root
since in this way the bispectrum scales linearly with the intensity of
the image (that is, multiplying an image I by the constant c results
in multiplication of b by c, instead of 3 for b).

The rotationally invariant image representation derived in Eq.
(15) is of very high dimensionality. Suppose that the truncated
expansion coefficients have M components and that the corre-
sponding maximum angular frequency is kn., then the resulting

invariant feature vector is of length O( ) Computing the inner

product of vectors of length 10* — 10° can be quite expensive. It
is therefore required to reduce the dimensionality of the invariant
feature vectors. While this reduction can be achieved by PCA, the
typically large number of images and the high dimensionality of
the feature vectors make the computational cost of classical PCA
quite demanding. Instead, we use the recently proposed random-
ized algorithm for low rank matrix approximation (Rokhlin et al.,
2009; Halko et al., 2011a,b). We denote by M’ the reduced dimen-
sion, that is, the number of principal components chosen in this
step.

We define the rotationally invariant affinity between image I;
and image I; as the normalized cross-correlation C;; between their
corresponding low dimensional feature vectors of length M’, where
M’ is about 200 in application.

A fixed number of nearest neighbors with the largest normal-
ized cross-correlation C; with image i are determined, with com-
putational complexity O(n?M’). For large data sets, consisting of
10° images or more, the randomized approximate nearest neighbor
(RANN) search algorithm (Jones et al., 2011) is an efficient way for
finding the nearest neighbors without computing C; for all pairs of
i andj. RANN is an iterative algorithm. It first randomly rotates the
data points (in our case, complex valued vectors of length M’) and
subdivides them into smaller boxes by looking at 1,2,3,4... coor-
dinates, until each box contains about x points. Then the suspected
nearest neighbors are determined locally as those in same boxes.
The process is repeated through independent iterations, and the
list of suspected neighbors is refined. In practice only a small num-
ber of iterations is needed in order to find the true nearest neigh-
bors with very high probability. The computational complexity for
this randomized algorithm is O(Tn(M'logM’ + K logklogn)
+ni?2(M’ + log k)), where T is the number of iterations and « is
the number of nearest neighbors.
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Fig.5. Illustration for Vector Diffusion Map (VDM) affinity. Pick an arbitrary planar
vector for node i (realized as a complex number e'*). Consider two different paths
fromitoloflength2:i— j— landi— k — L. The arrow is rotated according to the
edges i — j and i — k, respectively (by multiplying it by the phase factors, e’ and
e, respectively), and then rotated according to the edges j— 1! and k — |,
respectively (by multiplying it by the phase factors, e'%t and e's, respectively).
Different paths may be consistent as in (a) or inconsistent as in (b). When vectors
from different paths are added together the amplitude of the resulting vector can be
as large as the number of paths if they are all consistent (a), or much smaller due to
inconsistencies (b). Node i and node [ have higher affinity in (a) than in (b).

After classifying images of similar views, we rotationally align
images with their nearest neighbors. The in-plane rotation angle
o; for a pair of neighboring images I; and ; is determined by align-
ing their denoised versions.

3.3. Vector diffusion maps classification and rotational alignment

When the SNR is very low, the initial rotationally invariant
classification based on just nearest neighbors might still give some
outliers. Further improvement can be obtained by taking into
account the consistency of pairwise distances and rotational trans-
formations among the images in the neighborhood. This can be
achieved by using a classification method called Vector Diffusion
Maps (VDM) (Singer and Wu, 2012; Singer et al., 2011), which is
a generalization of Diffusion Maps, a popular method in manifold
learning (Coifman and Lafon, 2006). This method takes into
account the consistency of in-plane rotational transformations
(see Fig. 5). The affinity between images I; and I; (shown as nodes
i and j) is defined as the consistency of the transformations
summed over all different paths of a fixed length connecting i
and j. To quantify this, we build a sparse n x n Hermitian matrix
H (21) using the union rule that i and j are neighbors if either i is
one of j's kK nearest neighbors or j is one of i’s x nearest neighbors,

{i,j} €E, 21)

eloci*l
Hj; = 7
{ 0, ({ijl¢E

where E denotes the set of neighboring pairs and ¢ is the optimal
in-plane rotation of images I; and I;. The fact that H is Hermitian fol-
lows from o = —ao;; mod 27. Moreover, since only neighboring
images contribute non-zero entries in H, it follows that H is a sparse
matrix whose storage requires only O(nk) space. Each row of H is
divided by the degree of the corresponding image, yielding the
matrix S that is given by

S=D7"H, (22)
where D is an n x n diagonal matrix with

D(i,i) = deg(i) = ) _|Hjl. (23)
J
The matrix S (22) is similar to the Hermitian matrix

S =D ?HD 12 (24)

through $ = D~'/2SD"?. We can define the affinity between i and j
as |S2(i,j)]%, that is, as the squared absolute value of S (i, j), which
takes into account all paths of length 2t, where t is a positive
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integer. In a sense, |§2‘(i,j)\2 measures not only the number of paths
of length 2t connecting i and j but also the amount of agreement be-
tween their transformations. That is, for a fixed number of paths,
|S2(i, j)|? is larger when the path transformations are in agreement,
and is smaller when they differ. We define the normalized affinity
between i and j as

Tor e w2

|S%(i.J)]
120, D[S,
Since S is Hermitian, it has a complete set of eigenvectors
V1, Va,..., Uy and real eigenvalues 11, /5, ..., 4,. We order the eigen-

values in decreasing order of magnitude. The spectral decomposi-
tion of S and S? are given by

i.j) =Y _aw(i)u(),
=

It follows that the affinity |S(i,j)|? is an inner product for the finite
dimensional Hilbert space C* via the mapping V; :

(25)

and S%(ij) = ZA, vi(i) v (). (26)

Ve i ((ae) o) o)y (27)
That is,
IS (.4)* = (Vei), Ve(i)). (28)
Then the normalized affinity Eq. (25) can be expressed using the
mapping V; as
) < V(i) Vi) > (29)
suiPsgP VOrVO)

The matrix S2 may be too dense to be computed efficiently. Instead,
we can approximate the normalized affinity Eq. (29) by truncating
the mapping V. to its leading m? coordinates (instead of n?) as

VI i () () 2r(0)ps (30)

where m is the largest integer satisfying 22 > ¢ for some ¢ much
smaller than 1. The approximate normahzed affinity becomes

m m»
WVe@ Vel

We use Eq. (25) as the measure of closeness between two
images to improve our estimation of the x nearest neighbors for
each image. This measure of affinity can be approximated using
the eigenvectors of the matrix S as shown in Egs. (30) and (31)
(Singer and Wu, 2012). The algorithm is very efficient in terms of
running time and memory requirements, because it is based on
the computation of the top eigenvectors of a sparse Hermitian
matrix.

The eigenvectors of S encode the information for in-plane rota-
tional alignment between neighboring images. For clean images, if
i and j are of the same viewing directions and their in-plane align-
ment angle is oy, the following holds

y (i) =e%iy(), vi=1,...,n (32)

This is illustrated in Fig. 6. When the viewing directions are close
(though not identical), then Eq. (32) holds approximately. The level
of approximation deteriorates as the eigenvalues become smaller,
because their corresponding eigenvectors are more oscillatory and
more sensitive to noise. Therefore, we use /2 to give more weight
to the leading eigenvectors. We estimate the rotational angle using
the top m eigenvectors:

o = argmmZA Yui(i) — e vy ()7, (33)

% =1

given by

vi(i)
A

vil) S|/ i)

/
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Fig.6. When i and j are of the same viewing angle, the tangent plane at point i
coincides with the tangent plane at point j and the eigenvectors satisfy Eq. (32).

% i/ ) nl) (34)

= — .
AT vl
In this way, we improve the estimation of the in-plane rotational
alignment between nearest neighbors.

3.4. Shift alignment

The experimental particle images are cropped from the micro-
graphs through a particle selection procedure, and therefore they
are not centered. Shift alignment is needed for generating class
averages. Ideally we would like to center all images before per-
forming rotational alignment and classification. What we are going
to elucidate is that it is hard to center all projection images at the
class averaging stage.

There are three degrees of freedom in defining the centers of all
images. The three degrees of freedom correspond to the definition
of the center of the three-dimensional molecule. We can fix the
three degrees of freedom by choosing the center of mass of the vol-
ume as the origin. Then the center of mass of the clean projection
images should also be at the origin. Therefore, for clean images
with the same CTF function, we can center the images by finding
the center of mass of the projection images. However, this method
performs poorly at low SNR and when images are pooled together
from different defocus groups. The practical procedure in the field
is to shift-align the images iteratively by correlating them with the
mean of the data set or with a circular reference image. The estima-
tion error for this procedure is typically of the order of 5 pixels in
each direction.

To align images, we have to perform brute force shift search for
the rudimentarily shift-aligned images. For image i and image j of
the same view, with relative in-plane rotation angle o; and relative
shift (s, Sijy), the following equation holds,

(&)7 (cosoc;; mnoz;})(xj) _ (Syzx) (35)
Vi sino;  coso; Y Sijy

where (x;,y;) and (x;,y;) are the location of the center of the projec-
tion images. Eq. (35) is exact only when i and j share exactly the
same viewing direction. When they are slightly different, this equa-
tion is not exact anymore. Therefore, the least squares solution to
Eq. (35) does not produce the true global shifts (x;,y;). The least
squares solution would perform well in aligning neighboring
images, but it is not expected to find the shifts between different
classes.

The rotationally invariant features described in Section 3.2 are
not shift invariant. Therefore, we would like the images to be
centered. However, as we have shown above, centering the images
at the stage of class averaging is hard to achieve. As a result, in
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practice we use low pass filtering to make the images approxi-
mately shift invariant. During the classification by VDM we only
use the consistency of the rotations. Once we identify the nearest
neighbors and rotational alignment, we search for shift alignment
in the small neighborhood. Although we cannot globally center the
projection images in class averaging step, the centers can be esti-
mated later on using common-lines (Shkolnisky and Singer, 2012).

4. Experimental results

We performed numerical experiments to test the speed and
accuracy of our algorithm on a machine with 2 Intel (R) Xeon (R)
CPUs X7542, each with 6 cores, running at 2.67 GHz with 256 GB
RAM in total. These experiments were performed in MATLAB in
UNIX environment.

4.1. Simulated noisy data

We compared our algorithms on simulated data against five 2D
classification methods: RFA with K-means clustering implemented
in SPIDER (Shaikh et al., 2008), MSA/MRA implemented in IMAGIC
(van Heel et al., 1996), e2refine2d in EMAN2 (Tang et al., 2007), Re-
lion 2D classification (Scheres, 2012), and Xmipp CL2D (Sorzano
et al., 2010). The volume of E. coli 70S ribosome-elongation factor
G (EF-G) (Shaikh et al., 2008) was used to simulate projections.
The image size is 129 x 129 pixels with 2.82A/pixel. Images
observed by an electron microscope are not true projections of
the specimen. Imaging modifications include the effects of the
contrast transfer function (CTF), which is introduced through elec-
tron lens aberrations and defocusing (Zhu et al., 1997), and also the
envelope function of the microscope, which contains contributions
from a number of effects, such as spatial and temporal coherence,
specimen motion, etc. (Hanszen, 1971). In addition, background
noise is present from a variety of sources. Therefore, we attempted
to closely emulate the image formation process in the electron
microscope including the effects of CTF, envelope function and
noise. We projected 10* clean images at directions sampled uni-
formly over the sphere (see Fig. 7a). Then a Gaussian low-pass filter
with half-width 1/ 10A" was applied to simulate the effect of the

envelope function. CTFs with different defocus values were applied
to the images (see Fig. 7b). The contrast transfer functions are gen-
erated according to the formula,

CTF(f) = sin(mif?(Az — 0.5/2f2¢5)) + Bcos(mif?(Az — 0.5/%f%cy)),
(36)

where the variable fis the spatial frequency, Az is the defocus, c; is
the spherical abberation, / is the electron wavelength, and B is the
fraction of amplitude contrast. The imaging parameters were taken
from the simulative data in SPIDER protocol (Shaikh et al., 2008):
electron beam energy E = 200KeV with wavelength 1= 0.025A
and spherical abberation is ¢; = 2.26 mm. The images were divided
into 20 different defocus groups, with minimum defocus 1.5 pm
and maximum defocus 4 pm.

The centered projection images are randomly shifted within the
range of +4 pixels in x and y directions. The images are then con-
taminated with additive white Gaussian noise at different signal to
noise ratios, SNR = 1/50, 1/100, 1/150, and 1/200 (see Fig. 7). The
SNR in all our experiments is defined by

Var(Signal)

SNR = Var(Noise)

(37)
The input images to our algorithm are first CTF corrected by phase
flipping. More sophisticated CTF corrections are possible, but we
find that phase flipping already produces satisfactory results.

In our simulation we know the original viewing angles, so for
each image we compute the angles (in degrees) between the view-
ing angle of the image and the viewing angles of its 50 nearest
neighbors. Small angles indicate successful identification of “true”
neighbors that belong to a small spherical cap, while large angles
correspond to outliers. We compute the percentage of nearest
neighbor pairs whose viewing angles are within 18.2° spherical
cap (cos(18.2°) = 0.95) as a measure of the quality of 2D image
classification (see Table 1).

For experiments performed in SPIDER, all phase-flipped noisy
images were filtered with a low-pass Butterworth filter, with the
pass band and stop band at 0.08 and 0.12 respectively, given in
reciprocal pixels, as described in Shaikh et al. (2008). To convert
these values to Angstroms, divide the pixel size by the spatial

(d) SNR= 1/100

(e) SNR= 1/150

(f) SNR= 1,/200

Fig.7. Simulated 70S ribosome projection images. (a) Simulated clean centered projection image. (b) Clean projection image modified by Gaussian envelope function and
Contrast Transfer Function (CTF). (c-f) Slightly shifted (randomly shifted within the range of +4 pixels in x and y directions) projection images with CTF contaminated with

white Gaussian noise at SNR = 1/50, 1/100, 1/150, and 1/200.
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Table 1

Proportion of viewing angles of nearest neighbors that lie within 18.2°. Experiments
are performed with 10* projection images of 70S ribosome at different noise levels.
RFA was performed with AP SR program in SPIDER, the aligned particles were then
classified into 200 groups using K-means algorithm. MSA/MRA was implemented in
IMAGIC and was iterated for 5 times. We performed 25 iterations of Relion 2D class
averaging, 10 iterations of e2refine2d in EMAN2, and 60 iterations of CL2D in Xmipp.
The particles were classified in 200 classes, so that on average there were 50 particles
in each class. In our algorithm, we found 50 nearest neighbors for each particle. The
running time is measured for data with SNR = 1/100.

RFA/ MSA/  Relion EMAN2  Xmipp ASPIRE
K-means MRA
SNR =1/50 0.45 0.97 0.79 0.74 0.83 1.00
SNR=1/100  0.09 0.87 0.70 0.45 0.68 0.99
SNR=1/150  0.07 0.67 0.52 0.13 0.48 0.90
Timing (h) 1.5 7.5 16 12 42 0.5

frequency, i.e., in our case, 2.82/0.12A ' = 23.5A. We used a pro-
gram in SPIDER (AP SR) to perform RFA on band-pass filtered pro-
jection images. K-means clustering was used to classify the aligned
and filtered images into K = 200 groups. Software description and
details for performing the 2D image classification in SPIDER are
available in Shaikh et al. (2008). The running time for generating
200 class averages is 1.5 h (see Table 1).

For the experiments performed in IMAGIC, images were crudely
centered by correlating the images with the data mean iteratively.
The crudely centered images were first classified into 50 classes
using MSA. Then 50 reference images were generated and the pro-
jection images were aligned with the references using multi-refer-
ence alignment. The aligned images were classified into 200
groups. The multi-reference alignment and MSA classification into
200 classes were iterated 3 more times to get the final alignment
and classification results. More iterations of the MSA/MRA classifi-
cation can improve the classification result. However each iteration
took about 2 h to finish for this data set.

We also tested the more modern cryo-EM SPR packages EMAN2,
Xmipp, and Relion. The program e2refine2d in EMAN?2 is very sim-
ilar to the MSA/MRA algorithm in IMAGIC. The difference is that
the initial classification is done on translational and rotationally
invariant features. We used 10 iterations of the 2D class averaging
in EMANZ2. For experiments performed in Xmipp, we used CL2D
algorithm for generating 2D class averages. The images were clas-
sified into 8 classes initially and then refined into, 16, 32, 64, 128,
and finally 200 classes. In each level, there were 10 iterations to
refine classification and alignment. Relion employs an empirical
Bayesian approach for 2D classification. We ran 25 iterations of
2D class classification in Relion. The accuracy and running time
for 2D classification are detailed in Table 1.

We applied our rotational invariant viewing angle classification
on the phase-flipped images. Our rotational invariant classification
achieves better classification results in finding particles of similar
views than the other five methods (see Table 1). Each image was
aligned and averaged with its 50 nearest neighbors. It took about
half an hour to generate 10* class averages. Table 2 summarizes
the timing for each step of our algorithm.

In another set of experiments, we used Fourier-Bessel steerable
PCA denoised images (SNR= 1/100) as the input for both SPIDER,
IMAGIC, EMAN2 and Xmipp 2D classification programs. The classi-
fication results are greatly improved (see Table 3). This demon-
strates that the denoising scheme we used in our pipeline is very
useful for 2D image classification.

The resulting class averages were used to find common-lines.
An ab initio estimate of the 3D orientations was determined by
the least unsquared deviation (LUD) method (Wang et al., 2013),
which is also available in the ASPIRE toolbox under “est_orienta-
tions_LUD.m". The reconstructed volumes from the class averages

Table 2
Timing for different steps of our 2D class averaging algorithm.
Step Time (s)
Fourier-Bessel sPCA 537.7
Rotationally invariant features 28.2
Initial nearest neighbor search 139
VDM classification 57.4
Local alignment and class average 1081.0
Total 1718.3 (28.6 min)
Table 3

Denoising using FBSPCA improves the classification results in RFA/K-means, MSA/
MRA, EMAN2 and Xmipp 2D image classification (SNR= 1/100). Values in the table
are the proportion of the viewing angles of particles in the same class that are within
18.2°.

No FBsPCA denoising FBsPCA denoising

RFA/K-means 0.09 0.48
MSA/MRA 0.87 0.95
EMAN2 0.45 0.76
Xmipp 0.68 0.96

are shown in Fig. 8. We were unable to reconstruct a meaningful
model from the class averages generated by RFA/K-means proce-
dure due to the large error in classification. The reconstructed
volumes from the class averages produced by IMAGIC, Relion,
Xmipp and EMAN2 and this paper were compared with the refer-
ence volume (Fig. 8f). The ab initio model built from the class aver-
ages with this paper’s methods agrees best with the reference
volume (see Fig. 9).

After ab initio reconstruction, we used Relion 3D auto-refine
(Scheres, 2013) to refine those five different ab initio models (IMA-
GIC, Relion, Xmipp, EMANZ2, and ASPIRE) with simulated projection
images whose SNR is 1/100. The FSC curves look very similar for
the refined models (see Fig. 10). However it takes different number
of iterations to reach convergence (see Table 4). Refinement start-
ing from ASPIRE ab initio model converged most quickly and it took
14 iterations. The FSC curves (in Fig. 9) and the number of itera-
tions (in Table 4) show that the quality of the ab inito volume af-
fects the refinement’s convergence rate.

4.2. Experimental data: 70S ribosome

We applied the pipeline of image denoising, classification and
alignment to an experimental data set provided by Dr. Joachim
Frank’s group (Agirrezabala et al., 2012). This data set comes from
a larger heterogeneous data set with 216,517 particles. ML3D
(Scheres et al., 2007) was used to separate the data into 6 more
homogeneous subsets. The data used here is class number 6 and
contains 40,778 projection images of 70S ribosome (see top row
of Fig. 11). The images are of size 250 x 250 pixels with 1.5A/pixel
and the electron beam wavelength 4 = 0.0197A. They were pooled
together from 77 different defocus groups and CTF corrected by
phase-flipping. We split the data set randomly into two equally
sized groups, each containing 20,389 images. 50 nearest neighbors
and the corresponding rotational and shift alignment were identi-
fied for each image. The second row of Fig. 11 shows the averaged
images. 1500 class averages were used to build a ab initio model for
each group, with the common-lines based method (Singer and
Shkolnisky, 2011; Wang et al., 2013) for orientation determination.

The ab initio volumes (see Fig. 12a and b) are consistent with
each other up to 11.53A. Below the corresponding frequency, the
Fourier shell correlation (blue line in Fig. 13) between the two
volumes is above 0.143. The ab initio model was refined in Relion
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(d) EMAN2

(¢) ASPIRE

(f) Reference

Fig.8. Ab initio models of 70S obtained from 10* simulated noisy projection images (SNR = 1/100) with 20 defocus groups. The ab initio models are obtained by assigning
orientations to the class averages using the common-lines based LUD method (Wang et al., 2013). Reconstructed volumes from class averages generated by (a) MSA/MRA 2D
image classification implemented in IMAGIC with 5 iterations, (b) 2D class averaging in Relion with 25 iterations, (c) CL2D in Xmipp with 60 iterations, (d) e2refine2d in
EMAN?2 with 10 iterations, and (e) 2D class averaging in ASPIRE (described in this paper). (f) Reference volume. The reconstructed volumes are Gaussian filtered.
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Fig.9. Fourier shell correlation of the reference volume with the ab initio models
from different class averages (IMAGIC, Relion, Xmipp, EMAN2, and ASPIRE).
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Fig.10. Fourier shell correlation of the reference volume with the refined models
from different ab initio models (IMAGIC, Relion, Xmipp, EMAN2, and ASPIRE).

Table 4

Number of refinement iterations needed for convergence starting from different
ab initio models (IMAGIC, Relion, Xmipp, EMAN, and ASPIRE). We used Relion 3D
auto-refine for refinement.

IMAGIC EMAN2 Xmipp ASPIRE
17 18 20 18 14

Relion

3D auto-refine (Scheres, 2013). The refined model achieves 8.58A
resolution with 0.143 cutoff and 10.25A with 0.5 cutoff (see red
dot-dash line in Fig. 13). Our refined model achieves higher resolu-
tion than the previously reported resolution 11.5A, with 0.5 cutoff
criterion for FSC (Agirrezabala et al., 2012). Note that in our refine-
ment process, two volumes were refined independently until the
refinement converges whereas in the previous work (Agirrezabala
et al., 2012), the refinement was not done independently with the
gold-standard FSC. With our ab initio model, the refined model
achieves higher resolution.

To compare with another 2D class averaging method, we used
Relion 2D classification to generate 400 class averages for each
group. About 60 good class averages in each group were chosen
to generate ab initio models. The resolution for the ab initio model
is 15.38A with 0.143 cutoff criterion (see magenta line in Fig. 13).
The refined model achieves the same resolution as the refined
model from ASPIRE (see Fig. 13). The refinement took 20 iterations
to converge, three more iterations than was needed for ASPIRE
ab initio model. Therefore, our 2D class averaging method im-
proved the resolution of the ab initio model of 70S ribosome and
the refinement converged more quickly.

4.3. Experimental data: 50S ribosomal subunit

A set of micrographs of E. coli 50S ribosomal subunit was
provided by Dr. Marin van Heel. We applied our algorithms to this
data set, which contains 27,121 projection images of the 50S ribo-
somal subunit. These micrographs were acquired by a Philips
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Fig.11. Top row: Samples of experimental images for 70S ribosome. Bottom row: Class averages by averaging the raw images of the top row with their 50 aligned nearest

neighbors. Courtesy of Dr. Joachim Frank.

(a) Recon. 1

(b) Recon. 2

Fig.12. Ab initio reconstructions of 70S ribosome from two independent data sets.
(a) Snapshot of ab initio volume 1. (b) Snapshot of ab initio volume 2.
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Fig.13. Fourier shell correlation curves for ab initio models and refined models.
With 0.143 cutoff criterion, the resolution is 11.53 A for ASPIRE ab initio model
(blue) and 15.38 A for Relion ab initio model (magenta). Both refined models
achieve 8.58 A resolution according to gold-standard FSC (green and red dot-dash
lines). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

CM20 electron microscope at 9 different defocus values between
1.37 and 2.06 pum. Each image (see top row of Fig. 14) is of size
90 x 90 pixels with 3.36A/pixel. The particles were picked using
the automated particle picking algorithm in EMAN Boxer (Ludtke
et al., 1999). Then using the IMAGIC software package (van Heel

et al., 1996), the images were phase-flipped to remove the phase
reversals in the CTF, bandpass filtered at 1/150 and 1/8.4A_1.
and normalized by their variance. The images were initially cru-
dely centered by correlating them with a fixed circularly-symmet-
ric reference (rotationally averaged total sum of the data).

We split the data set randomly into two groups of size 13,560 to
generate class averages and reconstructions separately. Each image
was identified with 50 nearest neighbors (including reflection) and
aligned to get class averaged images. We randomly chose 200 class
averages in each group to build the ab initio models with the com-
mon-lines based method (Singer and Shkolnisky, 2011; Wang
et al.,, 2013) for orientation determination. Fig. 14 shows 5 arbi-
trarily chosen class averaged images produced by our algorithm.
The two volumes (see Fig. 15) are consistent with each other up
to 9.75A with 0.143 cutoff criterion (see blue line in Fig. 16). We
refined the ab initio model using Relion 3D auto-refine (Scheres,
2013), and it took 20 iterations to converge to the refined resolu-
tion 8.64A with gold-standard FSC (see red dot-dash line in
Fig. 16).

We used Xmipp CL2D to generate class averages for compari-
son. CL2D computed 256 class averages for each group and all class
averages were used to build ab initio models. The resolution for the
ab initio model is 15.91A with 0.143 cutoff criterion (see magenta
line in Fig. 16). The refined model achieves the same resolution as
the refined model from ASPIRE (see Fig. 16). The refinement took
19 iterations to converge, one less iteration than was needed for
ASPIRE ab initio model. In this example, our class averaging method
improved the resolution of the ab initio model. However the refine-
ment starting from ASPIRE ab initio model did not converge faster
than the refinement starting from Xmipp ab initio model.

4.4. Experimental data: IP3R1

A set of Inositol 1,4, 5-triphosphate receptor 1 (IPsR1) particle
images were provided by Dr. Irina Serysheva. The protein has four-
fold symmetry. We are able to generate class averages (the bottom
row of Fig. 17) from the original data set (the top row of Fig. 17),
which contains 37,382 images of size 256 x 256 pixels. We refer
the readers to (Ludtke et al., 2011) for the details of the data set.
The experiment shows that our 2D class averaging method, espe-
cially the vector diffusion maps classification, also works for parti-
cles with non-trivial point group symmetries. The common-lines
based ab initio orientation determination procedures (Singer and
Shkolnisky, 2011; Wang et al., 2013) have yet to be modified for
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Fig.14. Top row: Samples of experimental images of 50S ribosomal subunit. Bottom row: Class averages by averaging the raw images of the top row with their 50 aligned

nearest neighbors (including reflected images). Courtesy of Dr. Marin van Heel.

(a) Recon. 1

(b) Recon. 2

Fig.15. Ab initio reconstructions of 50S ribosomal subunit from two independent
data sets. (a) Snapshot of reconstructed volume 1. (b) Snapshot of reconstructed
volume 2.
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Fig.16. Fourier shell correlation curves for ab initio models and refined models.
With 0.143 cutoff criterion, the resolution is 9.75 A for ASPIRE ab initio model (blue)
and 15.91A for Xmipp ab initio model (magenta). Both refined models achieve 8.64A
resolution according to gold-standard FSC (green and red dot-dash lines). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

particles with non-trivial point group symmetry, therefore, we did
not attempt to reconstruct the 3D model for this data set.

5. Summary and discussion

Vitreous-ice-embedded biological macromolecules show a
great randomness in orientation. This randomness is exactly what
is desired for obtaining high quality 3D reconstructions. However

the variety of viewing angles poses a problem for methods that at-
tempt to rotationally align all images since it is mathematically
impossible to bring all images to global alignment. This means that
in practice, the distance computed from allegedly globally aligned
images is not a rotationally invariant distance.

In this paper, we introduced a new 2D class averaging proce-
dure. The algorithm has three major components: Fourier-Bessel
steerable PCA for image compression and de-noising, bispec-
trum-like rotational invariant features for classification, and Vector
Diffusion Maps for more robust nearest neighbor search and rota-
tional alignment.

Fourier-Bessel steerable PCA is a fast and accurate procedure
for computing the eigen-images of a set of 2D images and their
in-plane rotated copies. It is a viable alternative to MSA for com-
pressing and de-noising of the raw 2D images. We demonstrated
that this image de-noising method improves the classification re-
sults in RFA based classification, MSA/MRA classification, EMAN2
and Xmipp.

Our rotationally invariant representation of images is based on
the bispectrum of their expansion coefficients in the steerable
basis. Although the resulting invariant feature vectors are of very
high dimensionality, we are able to efficiently project them into
a lower dimensional space that captures most variability. Align-
ment parameters are searched only for nearest neighbors. Revers-
ing the order of alignment and classification leads to a significantly
faster viewing angle classification. The algorithm scales almost lin-
early with the number of images by using a randomized algorithm
for nearest neighbor search.

For low SNR, the method that uses direct normalized cross-
correlation of the rotationally invariant feature vectors can have
many misidentified neighbors. For such situations, Vector Diffusion
Maps, a classification method which takes into account the consis-
tency of in-plane rotational transformations between images with-
in the neighborhood, is used to boost the initial viewing angle
classification. The eigenvectors of the VDM matrix contain the
information of in-plane rotation for nearest neighbor pairs and
lead to a much faster and more accurate estimation of the rota-
tional alignments.

Through both simulated and experimental data sets, we dem-
onstrated that the new 2D class averaging procedure proposed in
this paper is not only fast, but also very robust to noise compared
with the commonly used class averaging methods in the field, such
as those implemented in SPIDER, IMAGIC, EMAN2, Relion, and
Xmipp. The ab initio models we built from the experimental data
sets are of high resolution and they need fewer iterations of
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Fig.17. Top row: Samples of experimental images for IP3R1. Bottom row: Class averages obtained by averaging the raw images of the top row with their 50 aligned nearest

neighbors. Courtesy of Dr. Irina Serysheva.

refinement to reach convergence. The methods presented in this
paper are also applicable for molecules with non-trivial point
group symmetries. The 2D class averaging method described in
this paper is freely available as part of our ASPIRE toolbox.
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