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Stable Camera Motion Estimation Using Convex Programming∗

Onur Özyeşil†, Amit Singer‡, and Ronen Basri§

Abstract. We study the inverse problem of estimating n locations t1, t2, . . . , tn (up to global scale, translation,
and negation) in R

d from noisy measurements of a subset of the (unsigned) pairwise lines that con-

nect them, that is, from noisy measurements of ± ti−tj
‖ti−tj‖2 for some pairs (i, j) (where the signs are

unknown). This problem is at the core of the structure from motion (SfM) problem in computer vi-
sion, where the ti represent camera locations in R

3. The noiseless version of the problem, with exact
line measurements, has been considered previously under the general title of parallel rigidity theory,
mainly in order to characterize the conditions for unique realization of locations. For noisy pairwise
line measurements, current methods tend to produce spurious solutions that are clustered around a
few locations. This sensitivity of the location estimates is a well-known problem in SfM, especially
for large, irregular collections of images. In this paper we introduce a semidefinite programming
(SDP) formulation, specially tailored to overcome the clustering phenomenon. We further identify
the implications of parallel rigidity theory for the location estimation problem to be well-posed,
and prove exact (in the noiseless case) and stable location recovery results. We also formulate an
alternating direction method to solve the resulting semidefinite program, and provide a distributed
version of our formulation for large numbers of locations. Specifically for the camera location esti-
mation problem, we formulate a pairwise line estimation method based on robust camera orientation
and subspace estimation. Finally, we demonstrate the utility of our algorithm through experiments
on real images.

Key words. structure from motion, parallel rigidity, semidefinite programming, convex relaxation, alternating
direction method of multipliers
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1. Introduction. Global positioning of n objects from partial information about their
relative locations is prevalent in many applications spanning fields such as sensor network
localization [8, 57, 15, 17], structural biology [30], and computer vision [26, 9]. A well-known
instance that attracted much attention from both the theoretical and algorithmic perspectives
is that of estimating the locations t1, t2, . . . , tn ∈ R

d from their pairwise Euclidean distances
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STABLE CAMERA MOTION ESTIMATION 1221

‖ti − tj‖2. In this case, the large body of literature in rigidity theory (cf. [4, 53]) provides
conditions under which the localization is unique given a set of noiseless distance measure-
ments. Also, much progress has been made with algorithms that estimate positions from noisy
distances, starting with classical multidimensional scaling [47] to the more recent semidefinite
programming (SDP) approaches (see, e.g., [8, 7]).

Here we consider a different global positioning problem, in which the locations t1, . . . , tn
need to be estimated from a subset of (potentially noisy) measurements of the pairwise lines
that connect them (see Figure 1 for a noiseless instance). The line connecting ti and tj is
identified with the rank-1 projection matrix Γij defined by

(1.1) Γij = (ti − tj)(ti − tj)
T /‖ti − tj‖22 .

Notice that there is no available information about the Euclidean distances between the points.
The entire information of pairwise lines is represented as a measurement graph Gt = (Vt, Et),
where the ith node in Vt = {1, 2, . . . , n} corresponds to the location ti and each edge (i, j) ∈ Et

is endowed with the corresponding projection matrix Γij .

Γ15

t1 t2 t3

t4
t5

Γ12

Γ15

Γ34

Γ24Γ35

Γ45

Pairwise Lines Locations

Γ12 Γ24

Γ34

Γ35

Γ45

Figure 1. A (noiseless) instance of the line estimation problem in R
3, with n = 5 locations and m = 6

pairwise lines.

The noiseless version of this problem (i.e., realization of locations from exact line measure-
ments (1.1)) was previously studied in several different contexts, such as discrete geometry,
sensor network localization, and robotics, under various formulations (see [64, 63, 16, 17, 48]).
The concepts and the results for the noiseless case, to which we refer here as parallel rigidity
theory, are aimed at characterizing the conditions for the existence of a unique realization of
the locations ti (of course, up to global translation, scaling, and negation of the locations ti,
since the pairwise lines Γij are invariant under these transformations).

However, location estimation from (potentially) noisy line measurements did not receive
much attention previously. The camera location estimation part of the structure from motion
(SfM) problem in computer vision (see, e.g., [26]), where ti represent the camera locations
in R

3, is an important example of the abstract problem with noisy measurements. To the
best of our knowledge, a structured formulation (in terms of the pairwise lines) of the camera
location estimation problem and its relation to the existing results of parallel rigidity theory
(characterizing conditions for well-posed instances of the problem) were not considered previ-D

ow
nl

oa
de

d 
05

/2
9/

15
 to

 1
28

.1
12

.6
6.

66
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1222 O. ÖZYEŞIL, A. SINGER, AND R. BASRI

ously. We now give more details on the camera location estimation problem and the existing
techniques for its solution.

Camera location estimation in SfM. SfM (depicted in Figure 2) is the problem of recov-
ering a three-dimensional (3D) structure by estimating the camera motion corresponding to
a collection of two-dimensional (2D) images (cf. section 4 for technical details).

3D Structure 

Camera 
Locations

?

Figure 2. The SfM problem.

Classically, SfM is solved in three stages: (1) feature point matching between image pairs
(as in Figure 8) and relative pose estimation of camera pairs based on extracted feature
points, (2) estimation of camera motion, i.e., global camera orientations and locations, from
relative poses, and (3) 3D structure recovery based on estimated camera motion by repro-
jection error minimization (e.g., bundle adjustment of [55]). Although the first and third
stages are relatively well understood and there exist accurate and efficient algorithms in the
literature for these stages, existing methods for camera motion estimation, and specifically
for the camera location estimation part, are sensitive to errors that result from mismatched
feature correspondences. Among the widely used methods are incremental approaches (e.g.,
[1, 51, 52, 66, 70, 27, 18]), which integrate images to the estimation process one by one or
in small groups. These incremental methods usually result in accumulation of estimation
errors at each step and also require several applications of bundle adjustment for improved
accuracy, hence leading to computational inefficiency. Alternatively, global estimation of the
camera motion, i.e., solving for all camera orientations and/or locations simultaneously, can
potentially yield a more accurate estimate. A generally adapted procedure to prevent high
computational costs is to estimate the camera motion and the 3D structure separately. In
principle, considering the large reduction in the number of variables, camera motion estima-
tion can be performed jointly for all images, followed by 3D structure recovery using a single
instance of reprojection error minimization. Obviously, such a procedure presumes a stable
and efficient motion estimation algorithm. Most of the existing methods for motion estimation
perform orientation and location estimation separately. Orientation estimation turns out to
be a relatively well-posed problem, and there exist several efficient and stable methods, e.g.,
[41, 3, 25, 23, 56]. On the other hand, global estimation of camera locations, specifically for
large, unordered sets of images, usually suffers from instability to errors in feature correspon-
dences (resulting in solutions clustered around a few locations, as for [3, 9, 50]), sensitivity to
outliers in pairwise line measurements (e.g., the �∞ approach of [49, 33]), and susceptibilityD
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STABLE CAMERA MOTION ESTIMATION 1223

to local solutions in nonconvex formulations (e.g., [23]). Hence, a well-formulated, robust,
efficient method for global location estimation (scalable to large sets of images) with provable
convergence and stability guarantees is of high value.

Early works [22, 9] on location estimation reduce the problem to that of solving a set of
linear equations that originate from the pairwise line measurements. Finding solutions to these
linear systems can be done in a computationally efficient manner. However, these solutions
have been empirically observed to be sensitive to errors in the pairwise line measurements.
The sensitivity of such solutions is expressed by the tendency of the estimated locations
to cluster, regardless of the true locations (cf. Figure 3 for such a clustering solution for a
real data set, and also the optimization problem (2.2) and the following discussion). The
multistage linear method of [50] attempts to resolve this issue by first performing pairwise
reconstructions, then registering these in pairs, and finally aligning them by estimating relative
scales and locations. Nonetheless, this approach does not produce satisfactory results in
terms of estimation accuracy. Another interesting and efficient method is the Lie algebraic
averaging approach of [23]. However, this nonconvex method is susceptible to convergence to
local optima. The spectral formulation of [3], which is based on a novel decomposition of the
essential matrix and is similar to [22, 9] in its formulation of the problem, yields an efficient
linear solution for the locations, though it also suffers from spurious clustered solutions. Yet
another formulation related to our work is the quasi-convex formulation of [49], which relies
on (iteratively) optimizing a functional of the �∞ norm and requires the estimation of the
signed directions of the pairwise lines, i.e., knowledge of

ti−tj
‖ti−tj‖2 . However, the �∞ norm is

highly susceptible to outliers, resulting in unsatisfactory solutions for real image sets. Also,
the requirement for estimating signed line directions may introduce additional error to the
problem. A similar idea is employed in [33] to simultaneously estimate the 3D structure,
which exhibits the same difficulties. There are also various works that aim to improve the
high sensitivity and inefficiency of these quasi-convex methods (see, e.g., [41, 44]). Another
method requiring the estimation of the signed directions of the pairwise lines is studied in [56].
In contrast to the sensitivity of the quasi-convex method of [49] to outliers, the method
in [56] is based on optimizing a functional of the �2 norm and hence produces more accurate
location estimates. Additionally, [39] introduces a framework based on classical rigidity theory
(involving pairwise distance information), which aims to identify rigid instances of the joint
motion and structure estimation problem. Also, an SDP approach is introduced in [39] in
order to jointly estimate motion and structure from noisy feature correspondences. We note
that our work is significantly different from [39]: While we use parallel rigidity, [39] employs
classical rigidity, leading to completely different SDP formulations.

Main contributions and broader context. In this paper we make the following principal
contributions for the problem of location estimation from pairwise lines:

(i) The main contribution of our work is the introduction of a new semidefinite relaxation
(SDR) formulation for estimating locations from pairwise line measurements. Empirically, we
observe that solutions obtained by the SDR do not suffer from the clustering phenomenon of
location estimates that plague many of the existing algorithms.

(ii) To quantify the performance of our SDR formulation, we prove exact (in the noiseless
case; cf. Proposition 2.2) and stable (in the noisy case; cf. Theorem 2.3 and Corollary 2.4)D
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Figure 3. A 2D snapshot of the collapsing solution of the least squares (LS) method [3, 9] for the Notre
Dame data set from [51]. The solution of [51] is taken as the ground truth.

location recovery results. We also provide a provably convergent and efficient alternating
direction method to solve our SDR.

(iii) We provide a distributed version (scalable to a large number of locations) of the SDR
formulation, based on spectral partitioning and convex programming. Additionally, we prove
exact location recovery (in the noiseless case, cf. Proposition 3.1) for the distributed approach.

(iv) We formulate the camera location estimation problem of SfM in terms of the pairwise
line measurements (between the camera locations in R

3). Moreover, we show how to improve
the stability of our approach to outlier pairwise measurements by robust preprocessing of the
available pairwise camera information and describe a robust iterative approach for camera
orientation estimation.

(v) We also demonstrate the efficiency and the accuracy of our formulations via synthetic
and real data experiments. We note that these experiments show a specifically important
characteristic of the SDR formulation: As long as the level of noise in the pairwise lines is
below some threshold, the SDR always produces rank-1 solutions; i.e., it actually solves the
original nonconvex program, which means the relaxation is tight.1 Also, for higher noise
levels, even when the SDR does not produce rank-1 solutions, its solution typically has a large
spectral gap (i.e., it can be well approximated by a rank-1 matrix). In other words, we do not
observe a sharp phase transition in the quality of the relaxation.

(vi) Since the existing results of parallel rigidity theory (cf. Appendix A and, e.g., [64, 63,
16, 17, 48]) have not been previously applied to the camera location estimation problem, we
provide a summary of the main results of parallel rigidity theory, which completely characterize

1This is sometimes referred to as “exact rank recovery” and is not to be confused with our exact “location”
recovery results for the SDR in the presence of noiseless pairwise lines.D
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STABLE CAMERA MOTION ESTIMATION 1225

the conditions for the problem to be well-posed (in R
d, for arbitrary d). Also, we formulate a

randomized algorithm to efficiently decide in the existence of these conditions.

In the literature, convex programming relaxations (and in particular semidefinite pro-
grams) have previously served as convex surrogates for nonconvex (particularly NP-hard)
problems arising in several different areas, such as sensor network localization (from pair-
wise distances) [53, 8], low-rank matrix completion [12], phase retrieval [13], robust princi-
pal component analysis (PCA) [11], multiple-input multiple-output (MIMO) channel detec-
tion [42, 65], and many others (also see [20, 37, 60, 71]). Notably, the SDP formulation for
sensor network localization [53, 8] is not guaranteed (even in the noiseless case) to provide
the unique configuration of a globally rigid framework (cf. [4] for global rigidity and other
fundamental concepts in “classical” rigidity theory). Only if the framework is “uniquely lo-
calizable” [53] is the SDP guaranteed to provide the unique solution in the noiseless case.
In contrast, our SDR formulation is guaranteed to provide the unique solution (up to global
scale, translation, and negation) for a parallel rigid framework (cf. section 2.1). Similar to
our case, the tightness of the relaxation, i.e., obtaining rank-1 solutions from SDRs, is also
observed in several different SDR formulations (see, e.g., [14, 5] and the survey [71]).

Organization of the paper. In section 2 we provide the connection to parallel rigidity
theory and introduce the SDR formulation. Also, we prove exact (in the noiseless case) and
stable (in the noisy case) location recovery results and formulate an alternating direction
method for the SDR. In section 3 we introduce the distributed approach and prove its well-
posedness. In section 4, we formulate the camera location estimation problem in SfM as
a problem of estimating locations from their pairwise line measurements. We also present
the robust camera orientation and pairwise line estimation procedures. We evaluate the
experimental performance of our algorithm in section 5, using synthetic and real data sets.
Finally, section 6 is a summary.

Reproducibility. The methods and algorithms presented in this paper are packaged in a
MATLAB toolbox that is freely available for download from the first author’s webpage at
http://www.math.princeton.edu/∼oozyesil/.

Notation. We denote vectors in R
d, d ≥ 2, in boldface. Id and Jd are used for the d × d

identity and all-ones matrices, respectively. Sd and SO(d) denote the (Euclidean) sphere in
R
d+1 and the special orthogonal group of rotations acting on R

d, respectively. We use the hat
accent to denote estimates of our variables; e.g., X̂ is the estimate of X. We use an asterisk
to denote solutions of optimization problems, as in X∗. For an n × n symmetric matrix A,
λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) denote its eigenvalues (in ascending order), and A � 0 denotes
that A is positive semidefinite (i.e., λi(A) ≥ 0 for all i = 1, 2, . . . , n). Also, for an n × n
matrix X, diag(X) denotes the vector formed by the diagonal entries of X, and conversely,
for x ∈ R

n, Diag(x) denotes the diagonal matrix formed by the entries of x. Finally, we use
the letters n and m to denote the number of locations |Vt| and the number of edges |Et| of
graphs Gt = (Vt, Et) that encode the pairwise line information.

2. Location estimation. Consider a graph Gt = (Vt, Et) of pairwise lines, with each
edge (i, j) ∈ Et endowed with a pairwise line Γij corresponding to the locations {ti}i∈Vt (i.e.,
satisfying (1.1)). Given this information, we first address the question of unique realizability ofD
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1226 O. ÖZYEŞIL, A. SINGER, AND R. BASRI

the locations in the next subsection, followed by our SDP formulation for location estimation
(from noisy pairwise lines).

2.1. Parallel rigidity. The unique realizability of locations (or the solvability problem) from
pairwise line measurements was previously studied, mainly under the name of parallel rigidity
theory (see, e.g., [64, 63, 16, 17, 48]). However, to the best of our knowledge, the concepts and
the results of parallel rigidity theory have not been related to the well-posedness of the camera
location estimation part of SfM, which is why we study them again here. Note that while
camera orientation estimation from noiseless pairwise ratios (cf. section 4) only requires the
connectivity of the measurement graph, connectivity alone is insufficient for camera location
estimation (see Figure 4 for such an instance). To address this problem, we now briefly discuss
the main results of parallel rigidity theory. For further details on fundamental concepts and
results in parallel rigidity theory, see Appendix A.

t1

t2

t3

t1

t2

t3

t4 t5

t3

t4 t5

t1

t2

t3

t4 t5

t′4 t′5

t1 t2

t3
t4

Figure 4. (a) A formation of five locations on a connected graph, which is not parallel rigid (in R
2 and R

3).
Nonuniqueness is demonstrated by two noncongruent location solutions {t1, t2, t3, t4, t5} and {t1, t2, t3, t′4, t′5},
each of which can be obtained from the other by an independent rescaling of the solution for one of its maximally
parallel rigid components. (b) Maximally parallel rigid components of the formation in (a). (c) A parallel rigid
formation (in R

2 and R
3) obtained from the formation in (a) by adding the extra edge (1, 4) linking its maximally

parallel rigid components. (d) A formation of four locations, which is parallel rigid in R
3, but is not parallel

rigid in R
2.

We call the (noiseless) pairwise line information {Γij}(i,j)∈Et
a “formation” and consider

the following fundamental questions: Using this information, can we uniquely realize the points
{ti}i∈Vt , of course, up to a global translation, scale, and negation (i.e., can we realize a set
of points congruent to {ti}i∈Vt)? Is unique realizability a generic property (i.e., is it only
a function of the underlying graph, independent of the particular realization of the points,
assuming they are in generic position), and can it be decided efficiently? If we cannot uniquely
realize {ti}i∈Vt , can we efficiently determine maximal components of Gt that can be uniquely
realized? These questions were previously studied in several different contexts, such as discrete
geometry, bearing- and angle-based sensor network localization, and robotics, under various
formulations and names (see [64, 63, 16, 17, 48, 34, 35, 36] and references therein).

The identification of parallel rigid formations is addressed in [64, 63, 16, 17] (also see [34]
and the survey [31]), where it is shown that parallel rigidity in R

d (d ≥ 2) is a generic prop-
erty of the measurement graph Gt equivalent to unique realizability, and admits a complete
combinatorial characterization (a generalization of Laman’s condition from classical rigidity
to parallel rigidity).

Theorem 2.1. For a graph G = (V,E), let (d−1)E denote the set consisting of d−1 copiesD
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STABLE CAMERA MOTION ESTIMATION 1227

of each edge in E. Then, G is generically parallel rigid in R
d if and only if there exists a

nonempty D ⊆ (d− 1)E, with |D| = d|V | − (d+1), such that for all subsets D′ of D, we have

(2.1) |D′| ≤ d|V (D′)| − (d+ 1) ,

where V (D′) denotes the vertex set of the edges in D′.
To elucidate the conditions of Theorem 2.1, let us consider the simple examples pro-

vided in Figure 4. For R
2, if it exists, the certificate set D satisfying the conditions in

Theorem 2.1 is simply a subset of the edge set E. The graphs in subfigures (b) and (c)
are minimally parallel rigid in R

2; i.e., D = E is the certificate. On the other hand, the
graphs in subfigures (a) and (d) do not have sufficiently many edges to be parallel rigid;
i.e., even if we consider D to be the set of all edges E, we get |D| < 2|V | − 3. For
R
3, let us first consider the (triangle) graphs in subfigure (b): If we set D ⊆ 2E to be

the set of two copies of any of the two edges in E and a single copy of the remaining
edge (e.g., D = {(1, 2)1, (1, 2)2, (2, 3)1, (2, 3)2, (1, 3)1}, where (i, j)k denotes the kth copy
of the edge (i, j) ∈ E), then D is a certificate. For the graph in subfigure (c), D =
{(1, 2)1, (1, 2)2, (1, 3)1, (1, 3)2, (1, 4)1, (2, 3)1, (3, 4)1, (3, 4)2, (3, 5)1, (4, 5)1, (4, 5)2} satisfies the
conditions of Theorem 2.1. Also, for the graph in subfigure (d), D = 2E is the certificate.
On the other hand, if we consider the graph in subfigure (a), D can satisfy the first condition
|D| = 11 if and only if D = 2E \ {(i, j)k} for some i, j ∈ V , k ∈ 1, 2. However, in this case, D
has a subset D′ consisting of two copies of each of the three edges in a triangle graph, which
violates the condition (2.1).

The conditions of Theorem 2.1 can be used to design efficient algorithms (e.g., adaptations
of the pebble game algorithm [32], with a time complexity ofO(n2)) for testing parallel rigidity.
In Appendix A we detail a randomized algorithm (having time complexity O(m)) for testing
parallel rigidity. Moreover, polynomial time algorithms for finding maximally parallel rigid
components of nonparallel rigid formations are provided in [35, 34].

In the presence of noiseless pairwise line measurements, parallel rigidity (and hence, unique
realizability) is equivalent to error-free location recovery. However, for real images, we are
provided with noisy measurements. In this case, instead of uniqueness of the solution of
a specific location estimation algorithm, we consider the following question: Is there enough
information for the problem to be well-posed; i.e., if the noise is small enough, can we estimate
the locations stably? For formations which are not parallel rigid, instability may result from
independent scaling and translation of maximally rigid components. In this sense, we consider
problem instances on parallel rigid graphs to be well-posed.

Considering the existing results of parallel rigidity theory, we take the following approach
for location estimation: Given a (noisy) formation {Γij}(i,j)∈Et

on Gt = (Vt, Et), we first
check for parallel rigidity of Gt; if the formation is nonrigid, we extract its maximally rigid
components (using the algorithm in [35]) and estimate the locations for the largest maximally
rigid component. The details of our formulation for (stable) location estimation are provided
in the next subsection.

2.2. Location estimation by SDR. In this section we introduce and describe our location
estimation algorithm. Suppose that we are given a set of (noisy) pairwise line measurements
{Γij}(i,j)∈Et

on Gt = (Vt, Et). Also, for each (i, j) ∈ Et, let Qij
..= Id−Γij denote the matrix ofD
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projection onto the (d−1)-dimensional subspace orthogonal to this line. First, let us consider
the LS approach studied in [3, 9],2 which is equivalent to solving the following (nonconvex)
program:

minimize
{ti}i∈Vt⊆R

d

∑
(i,j)∈Et

(ti − tj)
T Qij (ti − tj)(2.2a)

subject to
∑
i

ti = 0 ,
∑
i

‖ti‖22 = 1 .(2.2b)

Note that we can rewrite the cost function in (2.2) as
∑

(i,j)∈Et
‖Qij (ti − tj) ‖22 (since the

projection matrices Qij satisfy Qij = QT
ijQij), which is why we call (2.2) the least squares

approach. The constraints in (2.2) are designed to exclude the trivial case ti = t0 for all i ∈ Vt,
for some t0 ∈ R

d. In fact, (2.2) is an eigenvalue problem and hence can be efficiently solved.
However, for large and noisy data sets, this formulation turns out to be “ill-conditioned” in
the following sense: The solution has the tendency to “collapse”; i.e., the problem is not
sufficiently constrained to prevent the (less trivial, but still undesired) solutions of the form
t̂i � t0 for all i ∈ Vt \ {i∗} and t̂i∗ � −

∑
i∈Vt\{i∗} t̂i, where i

∗ has a (relatively) small degree

in Gt (for such collapsing solutions in R
3, see Figure 3 for a real data set and Figure 9 for

synthetic data). For large data sets having nodes with significantly varying degrees, collapsing
solutions of (2.2) (sometimes occurring in more than one group of points) can be observed
even for low levels of noise in the Qij. It is worthwhile noting that the problem of collapsing
solutions is not caused by the quadratic nature of the cost function in (2.2): Formulations of
(2.2) using sum of (unsquared) projection errors, i.e.,

∑
(i,j)∈Et

‖Qij (ti − tj) ‖2, as the cost
function (which are also significantly harder to solve), which we studied using (heuristic)
iteratively reweighted LS solvers, exhibit even worse characteristics in terms of collapsing
solutions.

We overcome the collapsing behavior in two steps, first by introducing nonconvex “repul-
sion constraints” in (2.2) and then by formulating an SDR version of the resulting nonconvex
problem. The nonconvex problem is given by

minimize
{ti}i∈Vt⊆R

d

∑
(i,j)∈Et

Tr
(
Qij (ti − tj) (ti − tj)

T
)

(2.3a)

subject to ‖ti − tj‖22 ≥ c ∀(i, j) ∈ Et ,(2.3b) ∑
i

ti = 0 ,(2.3c)

where c ∈ R
+ is a constant fixing the (undetermined) scale of the solution (without loss of

generality (w.l.o.g.) we take c = 1) and the cost function is rewritten in a slightly different
way. The repulsion constraints ‖ti−tj‖22 ≥ 1 are nonconvex constraints making the estimation
problem difficult even for small sizes. We introduce a matrix T of size dn × dn, whose d× d

2In [3], the LS approach is studied specifically for the location estimation problem in R
3 with a slightly

different definition for the pairwise measurements Γij (also see section 4), whereas in [9], it is studied in
arbitrary dimension using unnormalized Γij (i.e., Γij do not necessarily satisfy Tr(Γij) = 1).D
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blocks are given by Tij = tit
T
j . Consequently, T � 0 and rank(T ) = 1. To rewrite the cost

function in (2.3) linearly in terms of T , we define a Laplacian matrix L ∈ R
dn×dn, whose d×d

blocks are given by

(2.4) Lij =

⎧⎪⎨
⎪⎩

−Qij for (i, j) ∈ Et ,∑
{k:(i,k)∈E} Qik for i = j ,

0d else

and which satisfies Tr(LT ) =
∑

(i,j)∈Et
Tr(Qij (ti − tj) (ti − tj)

T ). Note that L is symmetric,

since Qij = QT
ij and Qij = Qji, and also positive semidefinite, since for t ∈ R

dn, tTLt =∑
(i,j)∈Et

‖Qij(ti−tj)‖22 ≥ 0. Also, for every edge (i, j) ∈ Et, we define a matrix Cij ∈ R
dn×dn,

whose klth d× d block is given by

(2.5) Cij
kl =

⎧⎪⎨
⎪⎩

Id for (k, l) = (i, i) or (k, l) = (j, j) ,

−Id for (k, l) = (i, j) or (k, l) = (j, i) ,

0d else

and which allows us to rewrite the inequality constraints ‖ti − tj‖22 ≥ 1 in (2.3), linearly in T
as Tr(CijT ) ≥ 1. Moreover, the equality constraint

∑
i ti = 0 can be rewritten linearly in T

as Tr (HT ) = 0 for H = Jn ⊗ Id.
We now relax the only nonconvex constraint, that is, rank(T ) = 1, to formulate the

following SDR (known as “matrix lifting”):

minimize
T∈Rdn×dn

Tr (LT )(2.6a)

subject to Tr
(
CijT

) ≥ 1 ∀(i, j) ∈ Et ,(2.6b)

Tr (HT ) = 0 ,(2.6c)

T � 0 .(2.6d)

After solving for T ∗ in (2.6), we compute the location estimates {t̂i}i∈Vt by a deterministic
rounding procedure; i.e., we compute the leading eigenvector t̂ of T ∗ and let t̂i be given by
the ith d× 1 block of t̂.

2.3. Stability of SDR. In this section we analyze the SDR (2.6) in terms of exact location
recovery in the presence of noiseless pairwise line information and stable recovery with noisy
line information.

We first introduce some notation to simplify our statements. Consider a set of locations

{t0i }i∈Vt ⊆ R
d in generic position, and let γ0ij =

t0i−t0j
‖t0i−t0j‖2

denote the unit vector from t0j

to t0i . Then, the (noiseless) formation corresponding to {t0i }i∈Vt is given by {Γ0
ij}(i,j)∈Et

,

where Γ0
ij = γ0ij(γ

0
ij)

T . We also let Q0
ij denote the projection matrices onto the (d − 1)-

dimensional subspace orthogonal to γ0ij , i.e., Q
0
ij = Id − Γ0

ij, L
0 denote the Laplacian matrix

corresponding to Q0
ij (cf. (2.4)), and T0 ∈ R

dn×dn denote the matrix of the noiseless locations,

i.e., T0 = t0(t0)T , where the ith d× 1 block of t0 is equal to t0i .D
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We start with the simpler exact recovery result.
Proposition 2.2 (exact recovery in the noiseless case). Assume that the (noiseless) forma-

tion {Γ0
ij}(i,j)∈Et

is parallel rigid. Then, the SDR (2.6) (with L = L0), followed by the de-
terministic rounding procedure, recovers the locations exactly, in the sense that any rounded
solution of the SDR is congruent to {t0i }i∈Vt.

Proof. W.l.o.g., we assume min(i,j)∈Et
‖t0i − t0j‖2 = 1 and

∑
i t

0
i = 0. Then we have

Tr(L0T0) = 0, i.e., T0 is a minimizer of (2.6) (since T0 is also feasible by construction).
The parallel rigidity of the formation implies rank(L0) = dn − (d + 1), where the only
eigenvector t0 of T0 with nonzero eigenvalue and the d eigenvectors v1

H ,v
2
H , . . . ,v

d
H of H

(in (2.6)) with nonzero eigenvalues form an orthogonal basis for the nullspace of L0 (see
Appendix A). Let ui

0, i = d + 2, . . . , dn, denote the (normalized) eigenvectors of L0 cor-
responding to its positive eigenvalues. Consider an arbitrary minimizer T ∗ of (2.6). Since
Tr(L0T ∗) =

∑dn
i=d+2 λi(L

0)(ui
0)

TT ∗ui
0 = 0, where λi(L

0) > 0, T ∗ � 0 satisfies (ui
0)

TT ∗ui
0 = 0

for all i = d+2, . . . , dn. Also, by the feasibility of T ∗, we get Tr(HT ∗) =
∑d

i=1(v
i
H)TT ∗vi

H = 0,
i.e., (vi

H)TT ∗vi
H = 0 for all i = 1, . . . , d. Hence, {v1

H , . . . ,v
d
H ,u

d+2
0 , . . . ,udn

0 } form an orthogo-
nal basis for the nullspace of T ∗. This implies rank(T ∗) = 1, where T ∗ is of the form T ∗ = αT0
for some α ≥ 1 (by the feasibility of T ∗), establishing the uniqueness of the solution up to scale.
As a result, applying the rounding procedure to any solution of (2.6) yields exact recovery of
t0i (of course, up to congruence).

Our next result is the stability of the SDR with noisy pairwise line information.

Noise model and error function. We let each edge (i, j) of the measurement graph Gt =
(Vt, Et) be endowed with a line measurement Γij = γijγ

T
ij, where γij = γ0ij+ εij with ‖εij‖2 ≤ ε

and ‖γij‖2 = 1. Also, LG = DG − AG denotes the Laplacian of the graph Gt, where DG is
the (diagonal) degree matrix of Gt (whose ith diagonal element is equal to the degree of the
ith node) and AG is the adjacency matrix of Gt.

This time we assume (w.l.o.g.) that Tr(T0) = 1 and Tr(HT0) = 0. For a solution T ∗ of
the SDR (2.6), we consider the following error function as our measure of stability:

(2.7) δ(T ∗, T0) = min
c≥0
‖cT ∗ − T0‖F =

∥∥∥∥Tr(T ∗T0)
‖T ∗‖2F

T ∗ − T0
∥∥∥∥
F

.

We are now ready to present the main result of this section.
Theorem 2.3 (stability of SDR solution). Consider a set of noisy pairwise line measurements

{Γij}(i,j)∈Et
related to the (noiseless) parallel rigid formation {Γ0

ij}(i,j)∈Et
as in the noise model

given above, and let T ∗ be a solution of (2.6). Then,

(2.8) δ(T ∗, T0) ≤ ε
[
α1 +

(
α2
1 + 2α2

) 1
2

]
,

where the (data-dependent) constants α1 and α2 are given by α1 =
√
2m

λd+2(L0)
and α2 =

(κ
√
d‖LG‖F
m + 1) λn(LG)

λd+2(L0)
. Here, the parameter κ is given by κ = (min(i,j)∈Et

‖t0i − t0j‖22)−1.

Proof. See Appendix B.
We can obtain the stability of the estimated locations, i.e., the rounded solution of (2.6),

as a corollary of Theorem 2.3.D
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Corollary 2.4 (location stability). Let T ∗ be as in Theorem 2.3, and let t̂ denote its normal-
ized eigenvector corresponding to its largest eigenvalue. Then

(2.9) min
a∈R
‖at̂− t0‖2 ≤ ε

[
πd(n − 1)

2

(
α1 +

(
α2
1 + 2α2

) 1
2

)]
.

Proof. We use a particular implication of the Davis–Kahan theorem (see, e.g., Chapter 7
in [6]) in order to relate the recovery error in the rounded solution to the error in the solution
of the SDR. To this end, observe that

(2.10) min
a∈R
‖at̂− t0‖2 = ‖((t0)T t̂)t̂ − t0‖2 = ‖(Idn − t0(t0)T )t̂t̂T‖F .

For a given symmetric matrix A and a subset S of the real line, let PA(S) denote the projection
matrix onto the subspace spanned by the eigenvectors of A whose eigenvalues are in S. Then
the Davis–Kahan theorem implies

(2.11) ‖PA(S1)PB(S2)‖F ≤ π

2ρ(S1, S2)
‖A−B‖F ,

where ρ(S1, S2) = min{|x − y| : x ∈ S1, y ∈ S2}. In our case, if we let S0 = {0} for T0 and
S∗ = {λdn(c̃T ∗)} for c̃T ∗, where c̃ = (Tr(T ∗))−1, we obtain

(2.12) ‖PT0(S0)Pc̃T ∗(S∗)‖F = ‖(Idn − t0(t0)T )t̂t̂T ‖F ≤ πTr(T ∗)
2λdn(T ∗)

‖c̃T ∗ − T0‖F .

Here, we use the fact that Tr(T ∗)
λdn(T ∗) ≤ rank(T ∗) and the feasibility of T ∗, i.e., that Tr(HT ∗) = 0,

to get Tr(T ∗)
λdn(T ∗) ≤ d(n − 1) (in fact, we can construct a solution T ∗ of the SDR satisfying the

stronger bound rank(T ∗) ≤ (
√

8(m+ 1) + 1 − 1)/2 (see, e.g., [46]); however, we ignore this
slight improvement for simplicity). Also, considering (2.10) and (B.14) from the proof of
Theorem 2.3, we recover the claim of the corollary.

Remark 1. We note that the bounds in Theorem 2.3 and Corollary 2.4 are quite loose
when compared to our experimental observations. Nevertheless, the recovery error is within
a constant factor of the noise level ε. Also observe that Proposition 2.2, i.e., exact recovery
in the noiseless case, is implied by Theorem 2.3 when ε = 0.

Remark 2. The proximity of the solution T ∗ of (2.6) to the space of positive semidefinite
rank-1 matrices can be considered as a measure of the quality of the relaxation. In our
experiments with real images and simulated data, we make the following observations: As long
as the noise level ε is below some threshold, we always get rank(T ∗) = 1; i.e., we can actually
solve the nonconvex problem efficiently by the SDR (2.6). For higher levels of noise, T ∗ is no
longer a rank-1 matrix, but it typically has a large spectral gap (λdn(T

∗)−λdn−1(T
∗))/λdn(T ∗).

In other words, we do not observe a sharp phase transition in the quality of the SDR, and the
relaxation is stable under various noise models. Figure 5 provides an experimental evaluation
in R

3 of our observations about the stability of relaxation, using synthetic measurements
generated under the noise model (5.1) of section 5.1 (and assuming p = 0 in (5.1), i.e., no
outlier measurements, for simplicity) for graphs of n = 50 nodes and various edge densities
θ = 2m

n(n−1) . We observe that even if the location recovery performance (represented by

normalized root mean squared error (NRMSE) defined in (5.2)) degrades as the noise level
increases, the tightness of the relaxation is preserved up to relatively high noise levels.D
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Figure 5. Spectral gap (λ3n(T
∗) − λ3n−1(T

∗))/λ3n(T
∗) of solutions T ∗ of (2.6) and logarithmic recovery

error log10(NRMSE) (see (5.2) for NRMSE) versus noise level log10(σ) for graphs with n = 50 nodes and
various edge densities θ (results are averaged over 10 random realizations of noisy line measurements and
locations).

2.4. Alternating direction augmented Lagrangian method. The SDR (2.6) is solvable
in polynomial time by the classical primal-dual interior-point SDP algorithms (e.g., [58]).
However, in case of a dense measurement graph Gt (i.e., assuming m = O(n2)), the interior-
point methods become impractical for large numbers of locations, with a time complexity of
O(n6) (and a space complexity of O(n4)) for each iteration of the algorithm. In practice,
the computational bottleneck becomes an issue for problem sizes of n ≥ 200. In this respect,
here we provide the details of alternating direction augmented Lagrangian method (ADM),
which is a first-order method with superior computational efficiency [62]. ADM is an iterative
algorithm based on minimization of an augmented Lagrangian function of the dual SDP.
In comparison to interior-point methods that aim to satisfy complementary slackness while
maintaining primal-dual feasibility at each iteration, ADM aims to construct a primal-dual
feasible pair while maintaining complementary slackness. At each iteration, ADM minimizes
the dual augmented Lagrangian function first with respect to dual variables, then with respect
to dual slack variables, and finally updates the primal variables. In the minimization over each
variable, ADM regards the other variables as fixed.

In order to obtain an ADM framework for the SDP (2.6), we rewrite it in standard form
and procure the ADM framework (involving variables of larger dimensions) for standard form
SDPs developed in [62]. Such an approach yields a (provably) convergent algorithm; however,
in general it has a high computational cost (due to the high dimensionality of the variables
associated with the standard form SDP). In our case, we are able to simplify the ADM
framework for the standard form of (2.6) significantly and hence do not artificially increase theD
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computational cost by rewriting (2.6) in standard form (we also experimentally observed that
the “ad hoc” approach in [62] developed for SDPs involving inequality constraints, which is at
least as costly as our resulting algorithm, did not produce a convergent algorithm for (2.6)).
We provide the details of rewriting (2.6) in standard form, constructing the ADM framework
for the augmented Lagrangian of its dual and the simplification of the resulting algorithm
in Appendix C. A pseudocode version of our ADM algorithm is given as Algorithm 1 (see
Appendix C for the linear operators B̃, B̃∗ and the efficient computation of (B̃B̃∗ + I)−1).

Algorithm 1. Alternating direction augmented Lagrangian method (ADM) for SDP (2.6).

Initialize: T 0 � 0 such that Tr(HT 0) = 0, R0 � 0, ν0 ≥ 0m, and η0 ≥ 0m, μ > 0

for k = 0, 1, . . . do

zk+1 ← −
(
B̃B̃∗ + I

)−1 (
1
μ(B̃(T k)− νk − 1m) + B̃(Rk − L)− ηk

)
F k+1 ← L− 1

μT
k − B̃∗(zk+1)⎢⎢⎢⎢⎣Compute the spectral decomposition of F k+1:

F k+1 = [ V+ V− ]
[
D+ 0
0 D−

] [
V T
+

V T
−

]
, where diag(D+) > 0

Rk+1 ← V+D+V
T
+

ηk+1 ← max
{
zk+1 − 1

μν
k,0m

}
T k+1 ← −μV−D−V T−

νk+1 ← −μmin
{
zk+1 − 1

μν
k,0m

}
end for

We refer the reader to [62] for practical details related to termination rules using measures
of infeasibility, stagnation detection, updating the parameter μ for faster convergence, and
using an additional step size parameter to update the primal variables T k and νk, and also
for convergence analysis of ADM. Considering the convergence rate analysis of ADM provided
in [28], we need O(1/ε) iterations in order to achieve an ε accuracy. Note that, at each iter-
ation, the most computationally expensive step of Algorithm 1 is the spectral decomposition
of F k+1. However, since we experimentally observe a stable SDP relaxation resulting in a
low-rank primal solution T ∗, computation of V− and D− can be greatly simplified by com-
puting only a few negative eigenvalues of F k+1 (e.g., by using Arnoldi iterations [2]). As a
result, assuming O(n3) complexity for spectral decomposition, the time complexity of O(n3/ε)
(already significantly less compared to interior-point methods) can be reduced even further.

3. Distributed approach. The ADM framework introduced in section 2.4 provides a com-
putationally feasible alternative to classical SDP solvers and allows us to solve the SDR (2.6)
beyond n � 200. However, for large sets of images (n � 1000), the need for a distributed
algorithm is apparent. In this section, we provide the details of a distributed algorithm for
translation estimation, based on spectral graph partitioning and convex programming.

The main structure of our distributed location estimation algorithm is the following: GivenD
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a maximum problem size, i.e., an integer Nmax denoting the maximum number of locations
that our computational resources can efficiently estimate by (2.6), we first partition Vt into
subsets (which we call “patches”) of sizes at most Nmax (by maintaining sufficient connectivity
in the induced subgraphs and sufficient overlaps between patches). Then, for each induced
subgraph, we extract the maximally parallel rigid components. We then find for each rigid
component the “local” coordinate estimates by the SDR (2.6). Finally, we stitch the local
estimates into a global solution by convex programming.

We note that the main idea of our distributed approach, i.e., division of the problem into
smaller subproblems and then constructing the global solution from the local solutions, is also
adapted for various problems in the literature (see, e.g., [15]). However, depending on the
structure and the challenges of the specific problem studied, these distributed methods usually
have significant differences. For instance, as compared to [15], while the same algorithm
(namely, the eigenvector method (EVM)) is used in our approach to remove the pairwise sign
ambiguities between local solutions (cf. section 3.2), the steps involving the graph partitioning
and extraction of well-posed local problems, computation of local solutions, and estimation of
global locations from (sign corrected) local estimates are significantly different.

3.1. Graph partitioning. In order to partition Vt into sufficiently overlapping subsets (for
high quality global reconstruction) with sufficiently dense induced graphs (for high quality
local estimation) of sizes bounded by Nmax, we use the following algorithm, which bears a
resemblance to the graph partitioning algorithm of [38]. Starting with G1t = {Gt}, at the kth
iteration partition each graph in Gkt (where Gkt denotes the set of graphs to be partitioned)
into two subgraphs using the spectral clustering algorithm of [43]. Then, extend the computed
partitions to include the 1-hop neighborhoods of their vertices in Gt (and, of course, the
induced edges). Assign the (extended) partitions with sizes smaller than Nmax to the set of
patches, and those with sizes larger than Nmax to Gk+1

t . Repeat until there is no subgraph
left to partition, i.e., until the Kth iteration, where GK+1

t = ∅.
After the partitioning step, we extract the maximally parallel rigid components of each

patch as described in section 2.1 (after this stage we use the term “patch” for parallel rigid
patches). We then remove the patches that are subsets of another patch from the set of
patches. We also remove the patches that do not have sufficient overlap (i.e., overlap size ≥ 2;
also see the next subsection) with any other patch (which happens very rarely and is required
since they cannot be used in the global location estimation). At this stage, we get a patch
graph GP = (VP , EP ), where VP denotes the patches and (i, j) ∈ EP if and only if there is
sufficient overlap between the patches Pi and Pj . Here, if GP is not connected (which was
never the case in our experiments), we can either extract the largest connected component of
GP or extend the patches to include their 1-hop neighborhoods until GP is connected for the
next steps of our algorithm. We then compute the “local” coordinate estimates for these rigid
patches (whose negation signs, scales, and translations with respect to the global coordinate
system are undetermined at this stage) by solving the SDR (2.6). The computation of the
local coordinates for each patch can be done in parallel in a multicore processing environment,
where each processing unit computes the local coordinates of one or more patches.

3.2. Pairwise patch registration. After solving the SDR (2.6) for each patch Pi, we obtain
estimates {t̂ik}k∈Pi

of the representations {tik}k∈Pi
of the locations in the coordinate systemD

ow
nl

oa
de

d 
05

/2
9/

15
 to

 1
28

.1
12

.6
6.

66
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABLE CAMERA MOTION ESTIMATION 1235

of each patch. The representations {tik}k∈Pi
satisfy

(3.1) tk = citik + ti , k ∈ Pi , i ∈ VP ,

where tk denotes the global coordinates of the kth location, and ci and ti denote the signed
scale and translation of patch Pi, respectively (we use the signed scale, i.e., ci ∈ R can assume
negative values, because of the unknown negation). Given {t̂ik}k∈Pi

, i ∈ VP , our objective is to
estimate the locations {tk}k∈⋃Pi

by formulating an efficient algorithm, which will be robust to

possible outliers in the estimates t̂ik. In this respect, first observe that any algorithm designed
to minimize the errors in the linear equations (3.1) should also exclude trivial solutions of the
form ci = 0 and tk = ti = t (for some t ∈ R

d) for all i and k. However, similar to the location
estimation from noisy pairwise lines problem, the existence of this nullspace (spanned by the
trivial solutions) results in collapsing solutions for underconstrained optimization programs.
As in the case of the LS solver for the location estimation problem, we experimentally observed
such collapsing solutions for the spectral method designed to minimize the sum of squared �2
norms of the errors in equations (3.1) by excluding the solutions in the nullspace.

Collapsing solutions can be avoided simply by requiring |ci|2 ≥ 1 for all i ∈ VP , which
is a nonconvex constraint. Similar to the construction of the SDR (2.6), the nonconvexity
(resulting from the unknown patch signs allowing ci to assume negative values) can be re-
solved by using matrix lifting. An efficient method in this direction is the adaptation of the
partial matrix lifting method of [14] to our problem (applied only to the variables involved in
nonconvex constraints). In this method, using the sum of squared �2 norms of the errors in
equations (3.1) as the cost function, the unconstrained variables (tk and ti) are analytically
computed as functions of the constrained variables (in our case, ci), and the resulting quadratic
form (in ci) is used to define a matrix lifting relaxation for the constrained variables (see [14]
for further details). However, this time, instead of using a matrix lifting method, we pursue a
different approach: To overcome the nonconvexity in |ci|2 ≥ 1, we first estimate the unknown
sign of each patch Pi and then impose the convex constraints ci ≥ 1 for the sign-corrected
patches (i.e., patches with the local estimates t̂ik replaced with ẑit̂ik, where ẑ

i ∈ {−1,+1} is
the estimate of the negation zi = sign(ci) of patch Pi). Estimation of patch signs from pair-
wise signs (see (3.2) for pairwise sign estimation) is performed using the EVM (see, e.g., [15]),
which is a robust and efficient spectral algorithm allowing a reliable estimation of patch signs.
Using the estimated signs, we can minimize the sum of unsquared �2 norms in equations (3.1)
(which cannot be used as a convex cost function in the matrix lifting approach) and hence
maintain robustness to outliers in the estimates t̂ik. In our experiments with simulated data
and real images, this two-step formulation produced more accurate location estimates com-
pared to the matrix lifting alternative (with similar running times, since the partial matrix
lifting results in a semidefinite program with a matrix variable of size |VP | × |VP |), making it
our choice for stitching the global solution. We now provide the details of the sign estimation
procedure, whereas the final step of location estimation from sign-corrected patches is covered
in section 3.3.

In order to estimate the patch signs {zi}i∈VP
, the relative pairwise signs zij = zizj ,

(i, j) ∈ EP , are estimated first. This is accomplished by solving the following LS problem forD
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1236 O. ÖZYEŞIL, A. SINGER, AND R. BASRI

each (i, j) ∈ EP :

(3.2) minimize
cij∈R,tij∈Rd

∑
k∈Pi∩Pj

∥∥∥t̂ik − (cij t̂jk + tij
)∥∥∥2

2
,

where cij , tij denote the relative (signed) scale and translation between Pi and Pj , respectively.
The relative sign estimate ẑij ∈ {−1,+1} is given by ẑij = sign((cij)∗).

Using the relative sign estimates {ẑij}(i,j)∈EP
, the sign estimates {ẑi}i∈VP

are computed
by EVM, which is a spectral method for finding signs with the goal of satisfying as many
equations of the form ẑiẑj = ẑij for (i, j) ∈ EP as possible (see [15] for details). Here, we note
that, although the sum of squared norms cost function in (3.2) can be replaced by the sum of
(unsquared) norms cost to improve robustness to outliers in t̂ik, we prefer the more efficient
LS version (in fact, (3.2) has a closed-form solution) since we did not experimentally observe
a significant improvement in the accuracy of signs estimated by EVM.

3.3. Global stitching of local patches. Stitching the local patches into a globally consis-
tent d-dimensional map comprises the last step of our distributed approach. As we discussed
in section 3.2, we aim to efficiently estimate the global locations tk using the linear equa-
tions (3.1), while maintaining robustness to outliers in t̂ik and preventing collapsing solutions.
In this respect, using the estimated patch signs (i.e., estimates of signs of ci) in (3.1), we
maintain robustness by minimizing sum of (unsquared) norms of errors in equations (3.1),
while simply constraining ci ≥ 1 to prevent collapse. Hence, we solve the following convex
program (using, e.g., [58]), in which we jointly estimate the scales {ci}i∈VP

and translations
{ti}i∈VP

of the sign-corrected patches (i.e., patches with the local estimates t̂ik replaced with
ẑit̂ik) and the global locations {tk}k∈⋃Pi

:

minimize
{tk, ci, ti}

∑
i∈VP

∑
k∈Pi

∥∥tk − (ciẑit̂ik + ti
)∥∥

2
(3.3a)

subject to ci ≥ 1 ∀i ∈ VP .(3.3b)

3.4. Well-posedness of the distributed problem. Similar to the well-posedness of location
estimation from pairwise lines, we consider the following question for the distributed problem:
Do the local coordinate estimates {t̂ik}k∈Pi, i∈VP

provide enough information to yield a well-
posed instance of the global location estimation problem? Once again, we consider an instance
of the distributed problem to be well-posed if the global locations can be uniquely (of course,
up to congruence) estimated from the noiseless local coordinates {tik}k∈Pi, i∈VP

. We (partially)
answer this question in Proposition 3.1, where it is shown that the local coordinate estimates
provided via the specific construction of the patch graph GP given in section 3.1 are sufficient
for well-posedness. This result is established by proving exact recovery of global locations
from noiseless local coordinates using the two-step global location construction algorithm.

Proposition 3.1 (exact recovery from noiseless local coordinates). Consider a graph GP =
(VP , EP ) of patches {Pi}i∈VP

and a set of (noiseless) local coordinates {tik}k∈Pi, i∈VP
cor-

responding to the global locations {tk}k∈⋃Pi
(i.e., tik satisfy (3.1) for a set of signed scales

ci and translations ti of the patches for all k ∈ Pi and i ∈ VP ). Then, if GP is connected
and satisfies (i, j) ∈ EP if and only if |Pi ∩ Pj | ≥ 2, the two-step global location constructionD
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STABLE CAMERA MOTION ESTIMATION 1237

algorithm (i.e., estimation of patch signs by (3.2) and EVM [15] followed by global location
estimation by (3.3)) recovers the global locations exactly when provided with the noiseless local
coordinates (i.e., t̂ik = tik for (3.2) and (3.3)), in the sense that any solution of the algorithm
is congruent to {tk}k∈⋃Pi

.

Proof. See Appendix D.

Remark 3. We note that, in the presence of noiseless pairwise lines {Γij}(i,j)∈Et
(on parallel

rigid Gt = (Vt, Et)), and assuming that we can obtain a connected patch graph GP from Gt

using the graph partitioning procedure of section 3.1, Propositions 2.2 and 3.1 imply exact
recovery of {tk}k∈⋃Pi

from the lines {Γij}(i,j)∈Et
.

Remark 4. The conditions imposed on GP in Proposition 3.1 (i.e., connectivity and that,
for all (i, j) ∈ EP , |Pi ∩ Pj| ≥ 2) are usually not difficult to satisfy. Also, observe that these
conditions are independent of the dimension d of the locations (which is not the case, e.g.,
for the combinatorial conditions in [69, 21]). However, it may be possible to assume even
weaker conditions on GP to obtain exact recovery results using, e.g., the (partial) matrix
lifting method discussed in section 3.2: We conjecture that if the patches {Pi}i∈VP

satisfy a
specific 2-lateration3 condition, i.e., if there exists a reordering of the patch indices such that,
for every 2 ≤ i ≤ |VP |, Pi and P1 ∪ · · · ∪ Pi−1 have at least two points in common (which
is, obviously, a weaker condition compared to the conditions in Proposition 3.1), then the
matrix lifting method should recover the locations exactly. On the other hand, since in our
two-step method, the first step requires the estimation of pairwise signs (in order to estimate
the patch signs), the condition that |Pi ∩ Pj | ≥ 2 for all (i, j) ∈ EP is, in fact, necessary for
exact recovery.

4. Camera motion estimation. In this section, we provide the details of the application
of our location estimation algorithm (developed for the general problem in d dimensions) to
the camera location estimation part of the SfM problem in computer vision (defined in R

3). In
the SfM problem (see Figure 2), camera motion estimation is based on point correspondences
between pairs of images. As a result, misidentification of corresponding points can induce
estimation errors in pairwise line estimates, denoted Γ̂ij, and manifest itself through large
errors in the estimated camera locations. In that respect, our primary goal in this section
is to formulate a robust (to misidentified corresponding points) and efficient procedure for
pairwise line estimation that would then be used as input to our SDR framework (see Figure 6
for a comparison of the accuracy of the line estimates computed using our robust procedure
and a simpler estimator, which is not robust to misidentified corresponding points). We also
devise a robust algorithm for the camera orientation estimation part, which directly affects
the recovery performance of the location estimation part. We start with a brief description of
the measurement process.

Let {I1, I2, . . . , In} represent a collection of images of a stationary 3D scene. We use
a pinhole camera model (see Figure 7) and denote the orientations, locations of the focal
points, and focal lengths of the n cameras corresponding to these images by {Ri}ni=1 ⊆ SO(3),
{ti}ni=1 ⊆ R

3, and {fi}ni=1 ⊆ R
+, respectively. Consider a scene point P ∈ R

3 represented in
the ith image plane by pi ∈ R

3 (as in Figure 7). To produce pi, we first represent P in the ith

3We note that the notion of lateration considered here should not be confused with the classical laterated
graphs, although it resembles the classical concept in some aspects.D
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0 π/32 π/16 3π/32 π/8
 

 

Robust Estimates

EVM + PCA

Figure 6. Histogram plots of the errors in line estimates computed by our robust method (cf. sections
4.1 and 4.2) and a simpler estimator. The simpler estimator uses the EVM [3] for rotation estimation and
PCA for subspace estimation (using the noisy estimates of the 2D subspace samples νk

ij in (4.3)). The errors
represent the angles between the estimated lines and the corresponding ground truth lines (computed from the
camera location estimates of [51] for the Notre Dame dataset, studied in section 5.2). The errors take values
in [0, π/2]; however, the histograms are restricted to [0, π/8] to emphasize the difference of the quality in the
estimated lines. We note that, for the robust method, the percentage of the line estimates having errors larger
than π/8 is 3.7%, whereas, for the simple estimator, it is 11.5%.

tjti

P

pi pj

Epipoles

Figure 7. 3D projective geometry of the pinhole camera model (using virtual image planes for mathematical
simplicity).

camera’s coordinate system, that is, we compute Pi = RT
i (P− ti) = (Px

i ,P
y
i ,P

z
i )

T , and then
project it to the ith image plane by pi = (fi/P

z
i )Pi. Note that, for the image Ii, we in fact

observe qi = (px
i ,p

y
i )

T ∈ R
2 (i.e., the coordinates on the image plane) as the measurement

corresponding to P.D
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STABLE CAMERA MOTION ESTIMATION 1239

Following the conventions from the SfM literature, for an image pair Ii and Ij, the pairwise
rotation and translation between the ith and jth camera coordinate frames are denoted by
Rij = RT

i Rj and tij = RT
i (tj − ti) (not to be confused with ti− tj or γij , t

ij used previously),
respectively. The essential matrix Eij is then defined by Eij = [tij]×Rij, where [tij]× is the
skew-symmetric matrix corresponding to the cross product with tij. If the projections of a
3D scene point P onto the ith and jth image planes are denoted by pi ∈ R

3 and pj ∈ R
3,

respectively, the essential matrix Eij satisfies the “epipolar constraint” given by

(4.1) pT
i Eijpj = 0 .

In fact, the epipolar constraint (4.1) is a restatement of the coplanarity of the three vectors
P − ti, P − tj, and ti − tj (see Figure 7). However, since (4.1) is given in terms of the
measurable variables pi, it is used as an extra constraint (on the special structure of Eij

having six degrees of freedom) in the estimation of Eij .

Provided with the image set {Ii}ni=1, to estimate the essential matrices, we first extract
feature points and find pairs of corresponding points between images (see Figure 8 for an image
pair with corresponding points) using SIFT [40], and then estimate the essential matrices using
the eight-point algorithm4 (see, e.g., [26]), while also employing the RANSAC protocol (to
reduce the effect of outliers in point correspondences). For image pairs with sufficiently many
inliers, the estimated essential matrices Êij are then (uniquely) factorized into R̂ij and [t̂ij ]×.

Figure 8. Two images of the Notre Dame Cathedral set from [51], with corresponding feature points
(extracted using SIFT [40]). The essential matrix Eij can be estimated using the (nonlinear) five-point or the
(linear) eight-point algorithms (see, e.g., [26]), which require at least five or eight pairs of corresponding feature
points, respectively.

Classically, the relative rotation and translation estimates, R̂ij and t̂ij, computed from the
decomposition of Êij , are used to estimate the camera locations ti. However, for large and un-
ordered collections of images, these estimates usually have errors resulting from misidentified
and/or insufficiently many corresponding points. In particular, the erroneous estimates t̂ij

4We note that the essential matrix Eij can be estimated using only five point correspondences between the
images Ii and Ij (while assuming ‖ti − tj‖2 = 1). In practice, however, we use the eight-point algorithm, which
is an efficient linear method requiring a minimum of eight point correspondences.D

ow
nl

oa
de

d 
05

/2
9/

15
 to

 1
28

.1
12

.6
6.

66
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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result in large errors for the location estimation part. As a result, instead of using the existing
algorithms (e.g., [25, 3, 41]) to find the rotation estimates R̂i and then computing the pairwise
line estimates Γ̂ij = (R̂it̂ij)(R̂it̂ij)

T (assuming ‖t̂ij‖2 = 1) for the SDR solver (2.6), we follow
a different procedure: First, the rotation estimates R̂i are computed using an iterative, robust
algorithm (as detailed in section 4.1), and then we go back to the epipolar constraints (4.1) (as
explained below) to estimate the pairwise lines using a robust subspace estimation algorithm
(cf. section 4.2).

To clarify the main idea of our robust pairwise line estimation method using the epipolar
constraints, we first emphasize the linearity of (4.1) in the camera locations ti and tj by
rewriting it as (also see [3])

pT
i Eijpj = pT

i

[
RT

i (tj − ti)
]
×R

T
i Rjpj

= pT
i R

T
i {(tj − ti)×Rjpj}

= (Ripi ×Rjpj)
T (ti − tj) = 0 .(4.2)

As mentioned before, for an image Ii, the measurement corresponding to a 3D point P is
given in terms of the coordinates of the 2D image plane by qi = (px

i ,p
y
i )

T ∈ R
2. For an image

pair Ii and Ij , let {qk
i }mij

k=1 ⊆ R
2 and {qk

j }mij

k=1 ⊆ R
2 denote mij corresponding feature points.

Then, using (4.2), we get (in the noiseless case)

(νkij)
T (ti − tj) = 0, k = 1, . . . ,mij , for(4.3a)

νkij
..= Θ

[(
Ri

[
qk
i /fi
1

])
×
(
Rj

[
qk
j /fj
1

])]
,(4.3b)

where νkij are normalized (using the homogeneity of (4.2) and the normalization function
Θ[x] = x/‖x‖2, Θ[0] = 0), and fi and fj denote the focal lengths of the ith and jth cameras,
respectively. Hence, in the noiseless case, we make the following observation: Assuming
mij ≥ 2 (and that we can find at least two νkij not parallel to each other), {νkij}mij

k=1 determine
a 2D subspace to which ti − tj is orthogonal (hence the “line” through ti and tj). This 2D
subspace spanned by {νkij}mij

k=1 can be obtained by, e.g., PCA (i.e., as the subspace spanned

by the two left singular vectors of the matrix
[
ν1ij ... ν

mij
ij

]
corresponding to its two nonzero

singular values). However, in the presence of noisy measurements, if we replace Ri, fi, and qi

in (4.3) with their estimates, then we essentially obtain noisy samples ν̂kij from these subspaces
(for which, e.g., PCA might not produce robust estimates in the presence of outliers among
ν̂kij). Hence, for pairwise line estimation, our approach is to reduce the effects of noise by
employing robust rotation and subspace estimation steps, which we discuss next.

4.1. Rotation estimation. In this section, we provide the details of the rotation estimation
step using the pairwise rotation estimates R̂ij, extracted from the essential matrix estimates
Êij. Our main objective here is to reduce the effects of outliers in R̂ij in the estimation of
the rotations Ri, while preserving computational efficiency. The outliers in R̂ij, which mainly
occur due to misidentified and/or insufficiently many corresponding points used to estimate
the essential matrices, can result in large errors in rotation estimation, which manifest as
large errors in the pairwise line estimates through the noisy subspace samples ν̂kij computedD
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via (4.3). Specifically, for large and sparsely correlated image sets (i.e., image sets for which
we can obtain the estimates R̂ij for a relatively small fraction of all pairs), the proportion
of outliers in R̂ij is typically large enough to degrade the quality of rotation estimates (e.g.,
when estimated via a single iteration of the EVM used in [3]). In the literature, there are
various algorithms to estimate camera rotations from the pairwise rotation estimates R̂ij (see,
e.g., [61, 25, 3, 41]) with various theoretical and experimental robustness properties. Our
procedure for estimating the rotations is iterative; i.e., in each iteration we apply EVM in
order to detect the outliers in R̂ij with respect to the rotation estimates evaluated at that
iteration, and continue to the next iteration by removing the detected outliers. We now
provide the details.

We represent the pairwise rotation estimates R̂ij as the edges of a rotation measurement
graph GR = (VR, ER), where the set of vertices VR represents the cameras. We assume that
GR is connected. At the kth iteration of our procedure, we are given a set {R̂ij}(i,j)∈Ek

R
of

pairwise rotation measurements represented by the connected rotation measurement graph
Gk

R = (V k
R , E

k
R). First, we apply EVM to compute the kth iteration rotation estimates

{R̂i}i∈V k
R
. We then identify the outlier edges, denoted by (i, j) ∈ Ek

O, for which the con-

sistency errors ‖(R̂k
i )

T R̂k
j − R̂k

ij‖F are relatively large, i.e., “significantly” larger than the
mean (one can also identify the outliers as a fixed portion, say 10%, of the edges with largest
consistency error, or as the edges with a consistency error above a certain threshold). At
this stage, we remove the outlier edges from the measurement graph and identify Gk+1

R as the
largest connected component of G′ = (V k

R , E
k
R \Ek

O). The iterations are then repeated until a
convergent behavior in the consistency errors is observed (one can also repeat the iterations
a fixed number of times, up to an allowed number of removed points). We note that since
the eigenvector-based method is computationally very efficient, the extra iterations induce a
negligible computational cost for the whole algorithm; however, the change in the estimated
rotations can significantly improve the final estimation of camera locations.

4.2. Subspace estimation. Let ḠR = (V̄R, ĒR) denote the resulting graph of the rotation
estimation step. For each (i, j) ∈ ĒR, the estimates {ν̂kij}mij

k=1 are evaluated using the rotation

estimates {R̂i}i∈V̄R
in (4.3). {ν̂kij}mij

k=1 are noisy samples of unit vectors in a 2D subspace.
As also mentioned previously, we can estimate this subspace, e.g., by PCA; however, PCA
is not robust to outliers in the sample set. There are various algorithms for robust sub-
space estimation from noisy sample points (e.g., see [37, 59, 68] and references therein), with
different performance and convergence guarantees, computational efficiency, and numerical
stability. We choose to use the S-REAPER algorithm introduced in [37]. S-REAPER solves
the following convex problem:

minimize
Qij

mij∑
k=1

‖ν̂kij −Qij ν̂
k
ij‖2(4.4a)

subject to 0 � Qij � I3, Tr (Qij) = 2 .(4.4b)

After finding the solution Q∗
ij of (4.4), the robust subspace Q̂ij is defined to be the subspace

spanned by the two normalized leading eigenvectors, q∗
1,ij ,q

∗
2,ij , of Q

∗
ij. Hence, we set Γ̂ij

..=

I3 − (q∗
1,ij(q

∗
1,ij)

T + q∗
2,ij(q

∗
2,ij)

T ) as our robust line estimates.D
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A summary of our algorithm for camera motion estimation is provided in Table 1.

Table 1
Algorithm for camera motion estimation.

Input: Images: {Ii}ni=1, focal lengths: {fi}ni=1

Feature points,
Essential
matrices,
Relative
rotations

1. Find corresponding points between image pairs (using SIFT [40])
2. Compute essential matrices Êij , using RANSAC (for pairs with sufficiently many
correspondences)
3. Factorize Êij to compute {R̂ij}(i,j)∈ER

and GR = (VR, ER)

Rotation
estimation
(section 4.1)

4. Starting with G1
R = GR, at the kth iteration:

- Given Gk
R = (V k

R , Ek
R) and {R̂ij}(i,j)∈Ek

R
, compute {R̂i}i∈V k

R
using EVM [3]

- Detect outlier edges Ek
O

- Identify Gk+1
R to be the largest connected component of G′ = (V k

R , Ek
R \ Ek

O)

5. Repeat until convergence, output {R̂i}i∈V̄R
and ḠR = (V̄R, ĒR)

Pairwise line
estimation
(section 4.2)

6. Compute the 2D subspace samples {ν̂k
ij}mij

k=1 for each (i, j) ∈ ĒR using (4.3)

7. Estimate the pairwise lines {Γ̂ij}(i,j)∈ĒR
using the S-REAPER algorithm (4.4)

Location
estimation
(section 2)

8. Extract the largest maximally parallel rigid component Gt = (Vt, Et) of ḠR [35]
9. If |Vt| is small enough, compute the location estimates {t̂i}i∈Vt by the SDR (2.6)
9′. If |Vt| is large (with respect to the computational resources):
- Partition Gt into parallel rigid patches (section 3.1), form the patch graph GP

- Compute camera location estimates for each patch, using the SDR (2.6)
- Compute pairwise patch signs using (3.2), synchronize patches in Z2 [15]
- Estimate patch scales, translations, and camera locations {t̂i}i∈⋃

Pk
by (3.3)

Output: Camera orientations and translations: {R̂i, t̂i}

5. Experiments.

5.1. Synthetic data experiments. We first provide experimental evaluation of the per-
formance of our SDR (2.6) in R

3 with synthetic line data. The experiments present the SDR
performance with respect to the underlying graph (e.g., number of nodes, number of edges),
noise model, and noise level. Also, we provide comparisons to the LS method of [3, 9] and
the �∞ method of [49], which also directly use pairwise line information in location estima-
tion. Moreover, we compare the performance of our distributed algorithm to that of the SDR
applied directly to the entire graph.

We used a noise model incorporating the effects of small disturbances and outliers. Given
a set of locations {ti}ni=1 and Gt = (Vt, Et), for each (i, j) ∈ Et, we first let

(5.1) γij =

{
γUij with probability p ,

(ti − tj)/‖ti − tj‖2 + σγGij with probability 1− p

and normalized γij to obtain {γ̃ij = Θ[γij ]}(i,j)∈Et
as our “directed” lines. Here, {γUij}(i,j)∈Et

and {γGij}(i,j)∈Et
are independent and identically distributed (i.i.d.) random variables drawn

from uniform distribution on S2 and standard normal distribution on R
3, respectively. ForD

ow
nl

oa
de

d 
05

/2
9/

15
 to

 1
28

.1
12

.6
6.

66
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABLE CAMERA MOTION ESTIMATION 1243

the SDR and the LS solvers, we used the (undirected) lines Γij = γ̃ij(γ̃ij)
T , while the �∞

solver required the directed lines γ̃ij .
We evaluated the performance of each method in terms of the normalized root mean

squared error (NRMSE) given by

(5.2) NRMSE({t̂i}) =
√∑

i ‖t̂i − ti‖22∑
i ‖ti − tc‖22

,

where t̂i are the location estimates (after removal of the global scale, translation, and negation)
and tc is the center of mass of ti.

We performed experiments with fixed parallel rigid graphs with n = 100 and n = 200
nodes having average and minimum degrees of n/4 and 3n/100, respectively. The original
locations ti are i.i.d. random variables drawn from standard normal distribution on R

3. The
NRMSE values (averaged over 10 random realizations of the noise model and the original
locations) are summarized in Table 2. In order to observe the performance of the solvers
with different noise structures (and since the LS and �∞ solvers were already very sensitive to
outliers), we performed these experiments with pure small disturbances, i.e., with p = 0 (the
first three rows of Table 2), and with pure outliers, i.e., σ = 0 (the last three rows of Table 2).

Table 2
NRMSE (5.2) performance of the SDR (2.6) versus LS [3, 9] and �∞ [49] solvers. Measurements are

generated by the noise model (5.1), and NRMSE values are averaged over 10 trials.

n = 100 n = 200

σ SDR LS �∞ SDR LS �∞
0.01 0.0209 0.0417 0.0619 0.0178 0.0525 0.0194
0.05 0.0752 1.1947 0.3742 0.0368 1.0760 0.7448
0.1 0.1936 1.2704 1.0247 0.1453 1.3870 0.8976

p SDR LS �∞ SDR LS �∞
0.01 0.1049 1.1584 1.1350 0.1189 1.1063 0.8326
0.02 0.1481 1.1994 1.0876 0.1333 1.1226 1.0825
0.05 0.2458 1.2248 1.0689 0.2064 1.3848 1.1163

Table 2 indicates that the estimator given by our SDR is robust to both types of noise,
and increasing the number of nodes and edge connectivity further improves its accuracy.
However, the LS and the �∞ solvers are sensitive to both kinds of noise. This is mainly due
to the collapse phenomenon for the LS solver, and due to the structure of the cost function,
which is not robust to large errors, for the �∞ solver. A collapsing solution of the LS solver is
compared to the SDR solution in Figure 9 (the �∞ solution is not included since it produces a
“cloud” of locations unrelated to the ground truth and degrades the visibility of the figure).

We also compare the performance of our distributed algorithm to that of the SDR applied
to the whole graph for n = 200. For the distributed algorithm, we fix a maximum patch size of
Nmax = 70 and divide the whole graph into eight patches. The NRMSE results, summarized
in Table 3, demonstrate that the accuracy of the distributed approach is comparable to that
of the nondistributed approach, perhaps even slightly better for higher levels of noise.

5.2. Real data experiments. We tested our location estimation algorithm on three sets of
real images with different sizes. To solve the SDR (2.6), we used the SDPT3 package from [58]D
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Figure 9. A sample solution, with n = 100, p = 0, σ = 0.05, demonstrating the collapsing behavior of the
LS solution. The line segments represent the error incurred by the SDR solution compared to the ground truth.

Table 3
NRMSE (5.2) results of the SDR solver (2.6) (denoted by “Full”) and the distributed SDR solver (denoted

by “Dist.”); see section 3 for the distributed SDR.

p = 0.01 p = 0.02 p = 0.05

σ Full Dist. Full Dist. Full Dist.

0.01 0.1089 0.1175 0.1255 0.1342 0.1957 0.1852

0.02 0.1174 0.1207 0.1381 0.1364 0.2064 0.1960

0.05 0.1426 0.1385 0.1490 0.1523 0.2137 0.2058

for small data sets (for its superlinear convergence with respect to the level of accuracy), and
for the large data set, we used ADM (Algorithm 1). To construct a sparse 3D structure in
our experiments, we used the parallel bundle adjustment (PBA) algorithm of [67]. We also
used the patch-based multi-view stereo (PMVS) algorithm of [19] to evaluate a dense 3D
reconstruction. We performed our computations on multiple workstations with Intel Xeon
X7542 CPUs, each with six cores, running at 2.67 GHz. In order to directly compare the
accuracy of the location estimation by SDR to that of LS [3, 9] and �∞ [49] solvers, we fed
all three solvers with the orientation estimates produced by our iterative solver (section 4.1)
and the robust subspace estimates (section 4.2), which produced more accurate estimates for
all data sets.

5.3. Small data sets. First we provide our results for the small Fountain-P11 and HerzJesu-
P25 data sets of [54], which include 11 and 25 images, respectively. For camera calibration and
performance evaluation, we used the focal lengths and ground truth locations provided with
the data. For these small data sets, we did not require a distributed approach. For both dataD
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STABLE CAMERA MOTION ESTIMATION 1245

sets, the SDR (2.6) estimated the camera locations very accurately in less than a second, and
the solutions of (2.6) had rank equal to 1, demonstrating the tightness of our relaxation. We
also ran the PBA algorithm, resulting in an average reprojection error of 0.17 pixels for the
Fountain-P11 data and 0.43 pixels for the HerzJesu-P25 data, to construct the 3D structures
given in Figure 10. We summarize and compare our end results to previous works5 in Table 4.

Table 4
Location estimation errors for the Fountain-P11 and HerzJesu-P 25 data sets.

Error (in meters)

Method Fountain-P11 HerzJesu-P25

SDR (2.6) 0.0002 0.0053
LS [3, 9] 0.0048 0.0054
�∞ [49] 0.0064 0.0253
Linear method of [50] 0.1317 0.2538
Bundler [52] 0.0072 0.0308

5.4. Large data set. The next set of images is the larger Notre Dame Cathedral set
from [51], composed of 715 images. This is an irregular collection of images, and hence
estimating the camera locations for all of these images (or a large subset) is challenging. Even
for orientation estimation on this data set, previous works usually discard a large subset (see,
e.g., [25, 3]). In our experiment, we used the focal lengths and radial distortion corrections
from [51]. We can accurately and efficiently estimate the camera locations for a subset of size
637. This reduction in size is due to our rotation estimation step (section 4.1) (we can robustly
recover rotations for a subset of size 687) and due to the node removals during the distributed
algorithm (section 3). We partitioned the whole graph into patches of sizes smaller than 150
(section 3.1), getting 20 rigid patches in less than a minute (where extraction of parallel rigid
components took a total of 42 seconds). The related SDRs were solved in parallel, in about
21 minutes. Finally, the stitching of the patches (sections 3.2 and 3.3) took 57 seconds.

We assessed the performance of our algorithm in terms of the NRMSE measure (5.2),
using the location estimates of [51] as the ground truth. We first got an NRMSE of 0.104,
and then applied PBA once (with an initial 3D structure of about 204,000 points) to get an
NRMSE of 0.054, and an average reprojection error of 0.43 pixels, in less than 2 minutes. The
resulting 3D structure is provided in Figure 11.

We also compared our results to those of the LS and �∞ solvers applied to the whole graph
and in a distributed fashion. In both cases, the LS and �∞ solvers resulted in very large errors6

(also, because of the very low quality of initial 3D structures for these solutions, PBA produced
no improvements). The NRMSE results are summarized in Table 5. In addition, a snapshot
of the location estimates for our distributed algorithm and the LS solver, demonstrating the
collapsing LS solution, is provided in Figure 12.

5Results of [50] are cited from [3].
6We note that (a slightly modified version of) the LS solver in [3] achieves reasonable accuracy for the Notre

Dame data set when a significant number of the images are discarded.D
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(a) (b)

(c) (d)

Figure 10. (a) Sparse 3D structure and 11 estimated camera locations (in blue) for the Fountain-P11 data.
(b) Sample images and snapshots of the dense 3D reconstruction. (c) Sparse 3D structure and 25 estimated
camera locations (in blue) for the HerzJesu-P25 data. (d) Sample images and snapshots of the dense 3D
reconstruction.

Table 5
Location estimation errors for the Notre Dame data.

Method NRMSE

Distributed SDR 0.104
Distributed SDR (followed by PBA) 0.054
Distributed LS [3, 9] 1.087
LS [3, 9] 1.392
Distributed �∞ [49] 1.125
�∞ [49] 1.273

6. Conclusion and future work. We formulated a semidefinite relaxation for estimating
positions from pairwise line measurements and applied it to the problem of camera location
estimation in structure from motion. We elucidated the importance of parallel rigidity in
determining uniqueness and well-posedness of the estimation problem and provided rigorous
analysis for stability of our SDR. Also, we introduced an alternating direction augmentedD

ow
nl

oa
de

d 
05

/2
9/

15
 to

 1
28

.1
12

.6
6.

66
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABLE CAMERA MOTION ESTIMATION 1247

(a) (b)

Figure 11. (a) Sparse 3D structure of about 204,000 points and (some of) 637 estimated camera locations
(in blue) for the Notre Dame data. (b) Sample images and snapshots of the dense 3D reconstruction.

Lagrangian method (ADM) to solve the SDR and an efficient, distributed version of our SDR
designed to handle very large sets of input images.

In the context of structure from motion (SfM), our algorithm can be used to efficiently
and stably obtain the locations and orientations of the corresponding cameras, i.e., the camera
motion, in order to produce a high-quality initial point for reprojection error minimization
algorithms, as demonstrated by our experiments on real image sets. We also note that,
for collections of images taken from an approximately planar surface (which is usually the
case for images of large 3D structures taken by visitors), the pairwise lines can also be well
approximated to lie within the same plane, and hence the SDR can take this prior knowledge
to allow a more efficient (and, perhaps, more accurate) computation of camera locations
rendered by the reduction of the problem from three to two dimensions. In addition, in SfM,
since the sign information (i.e., the directions) of the pairwise lines between camera locations
can be estimated, an optimization framework that uses this additional information is a topic
for further study (see, e.g., [45, 56]).

As future work, we plan to investigate and explain the tightness of the SDR, i.e., to
characterize the conditions under which it returns a rank-1 matrix as its solution. Also, we
plan to apply the SDR to the problem of sensor network localization with bearing information.

Appendix A. Parallel rigidity. In this appendix, we review fundamental concepts and
results in parallel rigidity theory (also see [16, 17, 64, 63] and the references therein). We begin
with the concept of point formation. A d-dimensional point formation Fp at p = [ pT

1 pT
2 ... pT

n ]TD
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Figure 12. 637 camera locations of the Notre Dame data set (with 715 images) estimated using the dis-
tributed SDR. The solution of [51] is taken as the ground truth. The collapsing solution of the LS solver of [3, 9]
is also provided.

is a set of n points {p1,p2, . . . ,pn} ⊆ R
d (assumed to be separate, i.e., pi �= pj), together with

a set E of links, satisfying E ⊆ {(i, j) : i �= j, i, j ∈ {1, 2, . . . , n}}. For the camera location
estimation problem, we think of the points pi as representing the camera locations, and the
pairs (i, j) ∈ E are used to denote the camera pairs, between which there is a pairwise
measurement. Note that each formation Fp uniquely determines a graph GFp

..= (V,E),
having the vertex set V = {1, 2, . . . , n} and the edge set E of Fp, and also a measurement
function ΓFp , whose value at (i, j) ∈ E is the measured quantity between pi and pj (to
keep the notation simple in section 2.1, by abuse of notation, we refer to the set {Γij}(i,j)∈Et

of measurements Γij
..= ΓFp(i, j), defined on Et of Gt = (Vt, Et), as the formation). In

order to represent the pairwise line measurements, we use a measurement function given
by ΓFp(i, j) = (pi − pj)(pi − pj)

T /‖pi − pj‖22. In the literature (see, e.g., [16, 17]), the
pairwise measurements are considered only in terms of the direction constraints they imply.
These constraints are used to define parallel point formations Fq of a formation Fp (explained
below), and are homogeneous equations given by

(pi − pj)
T
N1

(qi − qj) = 0 , (i, j) ∈ E ,
...

(pi − pj)
T
Nd−1

(qi − qj) = 0 , (i, j) ∈ E ,
where (pi−pj)Ni for i = 1, . . . , d−1 are (linearly independent) vectors that span the subspaceD
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orthogonal to pi − pj and, therefore, uniquely define the line between pi and pj . We use the
measurement function ΓFp to compactly represent these equations by (Id−ΓFp(i, j))(qi−qj) =
0, (i, j) ∈ E. Also, note that, for the camera location estimation problem, ΓFp encapsulates the
maximal information we can extract from the epipolar constraints; e.g., we cannot estimate
the signed pairwise lines (pi − pj)/‖pi − pj‖2 based solely on the epipolar constraints (see
section 4 for further details).

Two point sets {p1,p2, . . . ,pn} and {q1,q2, . . . ,qn} in R
d are said to be congruent if there

exist x ∈ R
d and c ∈ R such that cpi + x = qi for all i ∈ {1, 2, . . . , n}, i.e., congruent point

sets can be obtained from one another by translation, scaling, or negation. A point formation
Fp that is uniquely determined, up to congruence, by its graph GFp and its measurement
function ΓFp is called globally parallel rigid.

For a given formation Fp in R
d, a parallel point formation Fq is a point formation (with

the same graph GFp = (V,E)) in which pi − pj is parallel to qi − qj for all (i, j) in E
(i.e., ΓFp(i, j) = ΓFq(i, j) on E). It is clear that congruence transformations, i.e., translations,
scalings, and negation, produce trivial parallel point formations of the original point formation;
any other parallel formation is termed nontrivial. A point formation that does not admit any
nontrivial parallel point formations is called a parallel rigid point formation; otherwise it is
called flexible (see Figure 4 for a simple example). We note that, in contrast to the case of
classical rigidity involving distance measurements, equivalence of global parallel rigidity and
(simple) parallel rigidity turns out to be a rephrasing of definitions (also see [64, 31, 34, 16]).

The concept of parallel point formations allows us to obtain a linear algebraic characteri-
zation: Given a point formation Fp with the graph GFp = (V,E), Fq is a parallel formation
if and only if its point set satisfies

(A.1)
(
Id − ΓFp(i, j)

)
(qi − qj) = 0 , (i, j) ∈ E ,

which can be rewritten in matrix form as

(A.2) RFpq = 0 ,

where RFp ∈ R
d|E|×d|V | is termed the parallel rigidity matrix of the formation Fp (see, e.g.,

[16], for a slightly different, but equivalent, formulation). Here, point sets of the trivial parallel
formations of Fp span a (d+1)-dimensional subspace of the nullspace of RFp . As a result, Fp

is parallel rigid if and only if dim(N (RFp)) = d+1, i.e., rank(RFp) = d|V |− (d+1) (note that
RT

Fp
RFp is the matrix L of the linear cost function in (2.6) with noiseless measurements).

Now we consider the generic properties of formations. A point p in R
dn (or the point set

{p1,p2, . . . ,pn} in R
d) is said to be generic if its dn coordinates are algebraically independent,

i.e., there is no nonzero polynomial ψ on R
dn, with integer coefficients, satisfying ψ(p) = 0

(for a more general definition see [24]). The set of generic points is an open dense subset of
R
dn. A graph G = (V,E) is called generically parallel rigid (in R

d) if, for a generic point
p ∈ R

d|V |, the formation Fp having the underlying graph G is parallel rigid (in fact, if G of Fp

is generically parallel rigid, then Fp is parallel rigid for all generic p). Also, a formation Fp is
called a generically parallel rigid formation (in R

d) if its underlying graph is generically parallel
rigid (in R

d). Generic parallel rigidity is a combinatorial property of the underlying graph as
characterized by Theorem 2.1 (also see [16, 17, 34, 64, 63, 31]). Combinatorial conditions ofD
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1250 O. ÖZYEŞIL, A. SINGER, AND R. BASRI

Theorem 2.1 also translate to efficient combinatorial algorithms for generic parallel rigidity
testing (see, e.g., [32]).

There is also a linear algebraic characterization of generically parallel rigid formations
using the notion of generic rank: The generic rank of the parallel rigidity matrix R is given by
GenericRank(R) = max{rank(RFp), p ∈ R

d|V |}, which clearly depends only on the underlying
graph. A formation Fp (and hence its underlying graph G = (V,E)) is generically parallel
rigid in R

d if and only if GenericRank(R) = d|V | − (d + 1). Also, the set of points with
maximal rank, i.e., {p ∈ R

d|V | : rank(RFp) = GenericRank(R)}, is an open dense subset of

R
d|V |. As a result, similar to the randomized algorithm of [29] for (classical) generic rigidity

testing, we propose the following randomized test for generic parallel rigidity:
1. Given a formation on the graph G = (V,E), randomly sample p ∈ R

d|V | from an
absolutely continuous (with respect to Lebesgue measure) probability measure (e.g., let p be

sampled from i.i.d. Gaussian distribution), and centralize p such that
∑|V |

i=1 pi = 0d.
2. Construct an orthogonal basis for the trivial nullspace of RFp : For ui = 1|V | ⊗ ei (ei

denoting the ith canonical basis vector in R
d), such a basis is given by {u1,u2, . . . ,ud,p}.

3. To check whether rank(RFp) = d|V | − (d+1) or not, compute the smallest eigenvalue

λ1(WFp) of WFp = RT
Fp
RFp + UpU

T
p , where Up = [ u1 u2 ... ud p ]. If λ1(WFp) > ε (where ε is a

small positive constant set to prevent numerical precision errors), declare G to be generically
parallel rigid; otherwise declare G to be flexible.

This randomized test correctly decides (up to precision errors) the generic rigidity of G
with probability 1 (i.e., up to precision errors, our procedure can produce a false negative with
probability 0 and does not produce a false positive). Also note that λ1(WFp) = λdn(WFp) +
λ1(WFp − λdn(WFp)Idn), and since WFp is positive semidefinite, λdn(WFp) and λ1(WFp −
λdn(WFp)Idn) are largest magnitude eigenvalues, which can be computed (e.g., by the power
method7) in O(m) time. For fixed d, this yields a time complexity of O(m) (dominated by
the complexity of step 2) for the randomized test (compare to the time complexity O(n2) of
the pebble game algorithm, which is, however, an integer algorithm, i.e., is free of numerical
errors). Also, considering its simplicity, we choose to use this test for testing parallel rigidity.

Appendix B. Proof of Theorem 2.3. Let c̃ denote the suboptimal constant for (2.7) given
by c̃ = (Tr(T ∗))−1. First we consider the decomposition of c̃T ∗ in terms of the nullspace S of
L0 and its complement S̄; that is, we let

(B.1) c̃T ∗ = X + Y + Z

where X ∈ S ⊗S, Y ∈ S̄ ⊗ S̄, and Z ∈ (S̄ ⊗ S)⊕ (S ⊗ S̄).8 Using this decomposition, we can
bound δ(T ∗, T0) in terms of Tr(Y ).

Lemma B.1.

(B.2) δ(T ∗, T0) ≤ ‖c̃T ∗ − T0‖F ≤
√

2Tr(Y ) .

7Although every iteration of the power method has time complexity O(m), the number of iterations is
greater than O(1) as it depends on the spectral gap of WFp .

8For two subspaces U and V, the tensor product U ⊗ V denotes the space of matrices spanned by rank-1
matrices {uvT : u ∈ U , v ∈ V}.D
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Proof. First we note that the orthogonal decomposition (B.1) and T0 ∈ S ⊗ S imply

(B.3) δ2(T ∗, T0) ≤ ‖c̃T ∗ − T0‖2F = ‖X − T0‖2F + ‖Y ‖2F + ‖Z‖2F .

Here, since the formation is parallel rigid, we get dim(S) = d+1, where S is spanned by the d
eigenvectors of H (corresponding to its only nonzero eigenvalue n) and t0. Since Tr(c̃T ∗H) =
0, we get X = at0(t0)T (with 1 ≥ a = c̃(t0)TT ∗t0 ≥ 0). Also, since Tr(c̃T ∗) = 1 and
Tr(Z) = 0, we get

(B.4) Tr(Y ) = 1− Tr(X) = 1− a = Tr((1− a)t0(t0)T ) = Tr(T0 −X) = ‖X − T0‖F .

We now consider the spectral decomposition of L0 given by L0 = U0Σ0U
T
0 , where U0 =

[ v1 v2 ... vd t0 sd+2 ... sdn ] for vi denoting the d eigenvectors of H and {sd+2, . . . , sdn} is an
arbitrary (orthonormal) basis for S̄. The representations of X,Y,Z in this basis, given by
X̃ = UT

0 XU0, Ỹ = UT
0 Y U0, and Z̃ = UT

0 ZU0, are as follows: X̃ has a single nonzero entry
X̃d+1,d+1 = a, Ỹ is supported on its lower (dn − (d + 1)) × (dn − (d + 1)) block, and Z̃ is
supported on its (d+ 1)th row and column except the first d+ 1 entries. Hence we get

(B.5) c̃UT
0 T

∗U0 =

⎡
⎣ 0d×d 0d×(dn−d)

a z̃T

0(dn−d)×d z̃ Ỹ

⎤
⎦ � 0 ,

where z̃ denotes the nonzero entries of Z̃. By a Schur complement argument, (B.5) implies

(B.6) Ỹ − z̃z̃T

1− Tr(Ỹ )
� 0 ⇒ 2Tr(Y )(1 − Tr(Y )) ≥ 2‖z̃‖22 = ‖Z̃‖2F = ‖Z‖2F ,

where we use a = 1 − Tr(Y ) and Tr(Ỹ ) = Tr(Y ). Combining (B.3), (B.4), (B.6) with the
simple fact ‖Y ‖F ≤ Tr(Y ), we get the assertion of Lemma B.1.

The next step is to bound Tr(Y ). We provide the result in Lemma B.2, where, LG denotes
the Laplacian of the graph Gt and the parameter κ is given by κ = (min(i,j)∈Et

‖t0i − t0j‖22)−1.
Lemma B.2.

(B.7) Tr(Y ) ≤ α1ε‖c̃T ∗ − T0‖F + α2ε
2 ,

where α1 =
√
2m

λd+2(L0)
and α2 = (κ

√
d‖LG‖F
m + 1) λn(LG)

λd+2(L0)
.

Proof. We start with a (loose) bound on Tr(Y ), given by

(B.8) Tr(L0(c̃T ∗)) = Tr(L0Y ) ≥ Tr(λd+2(L
0)Y ) = λd+2(L

0)Tr(Y ) .

Now, in order to bound Tr(L0(c̃T ∗)), we consider the following partitioning:

Tr(L0(c̃T ∗)) = Tr((L0 − L)(c̃T ∗)) + c̃Tr(LT ∗)(B.9a)

= Tr((L0 − L)(c̃T ∗ − T0))− Tr(LT0) + c̃Tr(LT ∗)(B.9b)

≤ Tr((L0 − L)(c̃T ∗ − T0)) + (c̃κ− 1)Tr(LT0) ,(B.9c)
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1252 O. ÖZYEŞIL, A. SINGER, AND R. BASRI

where L is given by (2.4); (B.9b) follows from Tr(L0T0) = 0; and (B.9c) holds by the feasibility
of κT0 and the optimality of T ∗ for the SDR. Now, we use the noise model to bound the terms
in (B.9c). For the first term, we get

Tr((L0 − L)(c̃T ∗ − T0)) ≤ ‖L0 − L‖F ‖c̃T ∗ − T0‖F(B.10a)

≤
∑
i∼j

‖(γ0ij + εij)(γ
0
ij + εij)

T − γ0ij(γ0ij)T ‖F ‖c̃T ∗ − T0‖F(B.10b)

=
∑
i∼j

(‖εij‖42 + 4‖εij‖22εTijγ0ij + 2(εTijγ
0
ij)

2 + 2‖εij‖22
) 1

2 ‖c̃T ∗ − T0‖F(B.10c)

=
∑
i∼j

(
2‖εij‖22 − ‖εij‖42/2

) 1
2 ‖c̃T ∗ − T0‖F(B.10d)

≤ ε
√
2m‖c̃T ∗ − T0‖F ,(B.10e)

where (B.10d) follows from ‖γij‖22 = ‖γ0ij + εij‖22 = 1 + 2εTijγ
0
ij + ‖εij‖22 = 1. For the second

term in (B.9c), first we have

Tr(LT0) = Tr((L− L0)T0)(B.11a)

=
∑
i∼j

Tr((γ0ij(γ
0
ij)

T − γijγTij)γ0ij(γ0ij)T )‖t0i − t0j‖22(B.11b)

= −
∑
i∼j

((εTijγ
0
ij)

2 + 2εTijγ
0
ij)‖t0i − t0j‖22(B.11c)

=
∑
i∼j

(
‖εij‖22 −

‖εij‖42
4

)
‖t0i − t0j‖22(B.11d)

≤ ε2λn(LG) .(B.11e)

In order to bound the multiplier c̃κ− 1, we use the feasibility of T ∗:

m ≤
∑
i∼j

Tr(CijT ∗) = Tr((LG ⊗ Id)T ∗) ≤
√
d‖LG‖F Tr(T ∗)(B.12a)

⇒ c̃κ− 1 ≤ κ

Tr(T ∗)
+ 1 ≤ κ

√
d‖LG‖F
m

+ 1 .(B.12b)

Finally, combining (B.8), (B.9c), (B.10e), (B.11e), and (B.12b), we obtain the claim (B.7)
of Lemma B.2.

We now use Lemmas B.1 and B.2 to obtain our SDR stability result.
Proof of Theorem 2.3. The (second) inequality in (B.2) and (B.7) provide a quadratic

inequality for ‖c̃T ∗ − T0‖F , given by

(B.13) ‖c̃T ∗ − T0‖2F − 2εα1‖c̃T ∗ − T0‖F − 2ε2α2 ≤ 0 .

Examining the roots of this polynomial immediately yields

(B.14) δ(T ∗, T0) ≤ ‖c̃T ∗ − T0‖F ≤ ε
[
α1 +

(
α2
1 + 2α2

) 1
2

]
,
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STABLE CAMERA MOTION ESTIMATION 1253

which was to be shown.

Appendix C. Construction of ADM framework. We first introduce some notation: 1m
and 0m denote all-ones and all-zeros vectors of dimension m. Sm×m denotes the space of
m ×m symmetric matrices. For X ∈ R

m×m, vec(X) is the vector in R
m2

that contains the
columns of X, each stacked on top of the next in the order in which they appear in the matrix,
and mat(x) is the matrix X such that x = vec(X). We also use 0 for the all-zeros matrix
when its dimensions are obvious from the context.

In order to rewrite the SDR in standard form, consider the matrix variable X and the
(nonnegative) slack variable ν ∈ R

m satisfying

X =

[
T 0
0 Diag(ν)

]
,(C.1a)

1 = Tr(CijT )− νij = Tr(A
(1)
ij X) , (i, j) ∈ Et ,(C.1b)

where A
(1)
ij is the matrix corresponding to the linear functional X → Tr(CijT ) − νij. Let M

denote the number of (a priori) zero entries of X, i.e., M = 2dnm+m(m− 1). We can also

replace (C.1a) by a set of linear equalities in X given by Tr(A
(2)
k X) = 0 for k = 1, . . . ,M/2.

Hence, for X = [ T �
� � ], we get

{
T � 0 ,

Tr(CijT ) ≥ 1, (i, j) ∈ Et

}
⇐⇒

⎧⎪⎨
⎪⎩

X � 0 ,

Tr(A
(1)
ij X) = 1 , (i, j) ∈ Et ,

Tr(A
(2)
k X) = 0 , k = 1, . . . ,M/2

⎫⎪⎬
⎪⎭ .

Now, we can rewrite (2.6) in standard form (ignoring the equality constraint Tr(HT ) = 0 for
now)

minimize
X

Tr(WX)(C.2a)

subject to A(X) = b ,(C.2b)

X � 0 ,(C.2c)

where W =
[
L 0
0 0

]
(for L given by (2.4)), b = [

1m
0M/2

], and the linear operator A satisfies

A(X) = [
A(1)(X)

A(2)(X)
] for A(1) and A(2) given by

A(1) : Sdn+m×dn+m → R
m ; A(1)(X) = [Tr(A

(1)
1 X) . . .Tr(A

(1)
m X)]

T ,(C.3a)

A(2) : Sdn+m×dn+m → R
M/2 ; A(2)(X) = [Tr(A

(2)
1 X) . . .Tr(A

(2)
M/2X)]T .(C.3b)

Here, we let A(i) (i = 1, 2) denote the matrices satisfying A(i)(X) = A(i)vec(X) that are given
by

A(1) ..=
[
vec(A

(1)
1 ) . . . vec(A

(1)
m )
]T ∈ R

m×(dn+m)2 ,(C.4a)

A(2) ..=
[
vec(A

(2)
1 ) . . . vec(A

(2)
M/2)

]T ∈ R
M/2×(dn+m)2 .(C.4b)
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1254 O. ÖZYEŞIL, A. SINGER, AND R. BASRI

We also let A ..= [A
(1)

A(2) ], which satisfies A(X) = Avec(X). Note that A(1)(A(2))T = 0 and

A(2)(A(2))T = IM/2 (after scaling A
(2)
k ). Now, the dual of (C.2) is

minimize
y,S

− bTy(C.5a)

subject to A∗(y) + S =W ,(C.5b)

S � 0 ,(C.5c)

where the operator A∗ : R
m+M/2 → Sdn+m×dn+m is the adjoint of A and is defined by

A∗(y) ..= mat(ATy). Hence, the augmented Lagrangian function for the dual SDP (C.5) is
given by

(C.6) Lμ(y, S,X) = −bTy +Tr(X(A∗(y) + S −W )) +
μ

2
‖A∗(y) + S −W‖2F ,

where X ∈ Sdn+m×dn+m and μ > 0 is a penalty parameter. Here, we can obtain an ADM
to minimize Lμ(y, S,X) with respect to y, S,X in an alternating fashion: Starting from an
initial point (y0, S0,X0), ADM sequentially solves at each iteration [62] the problems

yk+1 ..= argmin
y

Lμ(y, Sk,Xk) ,(C.7a)

Sk+1 ..= argmin
S0

Lμ(yk+1, S,Xk) ,(C.7b)

and finally updates (the dual Lagrange multiplier) X by

(C.8) Xk+1 ..= Xk + μ(A∗(yk+1) + Sk+1 −W .

We solve (C.7a) by setting ∇yLμ = 0 and obtain

(C.9) yk+1 = − (AA∗)−1

(
1

μ

(
A(Xk)− b

)
+A

(
Sk −W

))
,

where the operator AA∗ satisfies AA∗(y) =
[
A(1)(A(1))T 0

0 IM/2

]
y. Letting B : Sdn+m×dn+m →

R
m denote the linear operator

(C.10) B(X) = [Tr(C1T ) . . .Tr(CmT )]T for X =

[
T �
� �

]
,

where Ck is the constraint matrix of the kth edge in Et (given by (2.5)), we get A(1)(A(1))∗ =
BB∗ + I (and hence, A(1)(A(1))T = BBT + Im, where B satisfies B(X) = Bvec(X)), making
AA∗ invertible. Also, by rearranging the terms of Lμ(yk+1, S,Xk), (C.7b) becomes equivalent
to

(C.11) Sk+1 = argmin
S0

∥∥∥S −Θk+1
∥∥∥
F
,
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where Θk+1 ..=W −A∗(yk+1)− 1
μX

k. Hence, we get the solution Sk+1 = U+Σ+U
T
+ , where

(C.12) Θk+1 =
[
U+ U−

] [Σ+ 0
0 Σ−

] [
UT
+

UT−

]

is the spectral decomposition of Θk+1 and Σ+ denotes the diagonal matrix of positive eigen-
values of Θk+1. Finally, using (C.8), Xk+1 is given by

(C.13) Xk+1 = −μU−Σ−UT
− .

When implemented as is, the y, S, and X updates of each iteration of ADM are extremely
costly. This computational cost stems from the increase in the dimensions of the variables
involved (after stating the primal and dual SDPs in standard form) and manifests itself via
the computation of the inverse of AA∗, the y update (C.9), and the decomposition (C.12).
However, considering the convergence analysis of ADM given in [62], since A is full-rank
and the Slater condition (clearly) holds for the SDP (C.2) (i.e., there exists X̂ � 0 such
that A(X̂) = b), ADM converges to a primal-dual solution (X∗,y∗, S∗) of (C.2) and (C.5)
irrespective of the initial point (X0,y0, S0). Here, we make the following crucial observation:
Starting from X0 and S0 having the form

(C.14) X0 =

[
T 0 0
0 Diag(ν0)

]
, S0 =

[
R0 0
0 Diag(η0)

]
,

i.e., satisfying A(2)(X0) = A(2)(S0) = 0M/2, it follows that yk becomes essentially m-

dimensional (i.e., yk
i = 0 for i = m + 1, . . . ,m + M/2), and Xk, Sk preserve their form

(i.e., A(2)(Xk) = A(2)(Sk) = 0M/2) for each k ≥ 1. To see this, consider Xk and Sk satisfying

(C.14) for some T k � 0, νk ≥ 0, and Rk � 0, ηk. Then, by (C.9), we have

yk+1 = −
[(
A(1)(A(1))T

)−1
0

0 IM/2

](
1

μ

[A(1)(Xk)− 1m
0M/2

]
+

[A(1)
(
Sk −W )
0M/2

])
(C.15a)

= −
[(
B̃B̃∗ + I

)−1 (
1
μ(B̃(T k)− νk − 1m) + B̃(Rk − L)− ηk

)
0M/2

]
(C.15b)

=

[
zk+1

0M/2

]
,(C.15c)

where B̃ is the (trivial) restriction of B to Sdn×dn, i.e., B̃(T ) = B(X) for X = [ T �
� � ]. For

Θk+1 =W −A∗(yk+1)− 1
μX

k, we obtain

Θk+1 =

[
L 0
0 0

]
−mat

(
(A(1))T zk+1

)
− 1

μ

[
T k 0
0 Diag(νk)

]
(C.16a)

=

[
L− 1

μT
k − B̃∗(zk+1) 0

0 Diag(zk+1 − 1
μν

k)

]
.(C.16b)
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Here, we define F k+1 ..= L− 1
μT

k − B̃∗(zk+1), and consider its spectral decomposition given
by

F k+1 = [ V+ V− ]
[
D+ 0
0 D−

] [
V T
+

V T−

]
,

where D+ denotes the diagonal matrix of positive eigenvalues of F k+1. Then, using (C.11),
(C.12), and (C.13), the Sk+1 and Xk+1 updates are given by

Sk+1 =

[
V+D+V

T
+ 0

0 Diag
(
max

{
zk+1 − 1

μν
k,0m

})] ,(C.17a)

Xk+1 =

[−μV−D−V T− 0

0 −μDiag
(
min

{
zk+1 − 1

μν
k,0m

})] .(C.17b)

As a result, we can rewrite the updates (C.7a), (C.7b), and (C.8) (or, equivalently, (C.9),
(C.11), and (C.13)), in terms of the new variables z, ν, η ∈ R

m and R,T ∈ R
dn×dn, as

zk+1 ..= −
(
B̃B̃∗ + I

)−1
(
1

μ
(B̃(T k)− νk − 1m) + B̃(Rk − L)− ηk

)
,(C.18a)

Rk+1 ..= V+D+V
T
+ ,(C.18b)

ηk+1 ..= max

{
zk+1 − 1

μ
νk,0m

}
,(C.18c)

T k+1 ..= −μV−D−V T
− ,(C.18d)

νk+1 ..= −μmin

{
zk+1 − 1

μ
νk,0m

}
.(C.18e)

Hence, we are able to overcome the excess computational cost induced by rewriting (2.6) in
standard form and maintain convergence. Also, the linear constraint Tr(HT ) = 0 of (2.6) can
be trivially incorporated into the ADM framework in the following way: Let B̃ ∈ R

m×d2n2

denote the matrix corresponding to the linear operator B̃, i.e., B̃(T ) = B̃vec(T ), and let
B̃l denote the lth row of B̃ given by B̃l = vec(C l)T for l ∈ Et. Then, since B̃∗(zk+1) =
mat(B̃T zk+1) =

∑
l z

k+1
l C l, we get

Tr(HF k+1) = Tr(HL)− 1

μ
Tr(HT k)−

m∑
l=1

zk+1
l Tr(HC l)(C.19a)

= − 1

μ
Tr(HT k) .(C.19b)

Here, if we have Tr(HT k) = 0, we get Tr(HF k+1) = 0, which, together with T k � 0, implies
that the eigenvectors of H are in the nullspace of F k+1. Hence, we obtain Tr(HT k+1) = 0.
As a result, if we choose T 0 such that Tr(HT 0) = 0, by induction we get Tr(HT k) = 0 for
all k, hence for the solution T ∗ of ADM (as requested in (2.6)).

Moreover, we now show that the operator B̃B̃∗ has a simple structure allowing efficient
computation of the inverse (B̃B̃∗ + I)−1.D
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Lemma C.1. Let B̃ ∈ R
m×d2n2

denote the matrix corresponding to the linear operator B̃,
i.e., B̃(T ) = B̃vec(T ). Then the inverse (B̃B̃∗ + I)−1 is given by

(
B̃B̃∗ + I

)−1
(z) =

(
B̃B̃T + Im

)−1
z(C.20a)

=

(
VB̃
(
DB̃ + In

)−1
V T
B̃

+
1

2d+ 1

(
Im − VB̃V T

B̃

))
z ,(C.20b)

where VB̃ and DB̃ denote the matrix of eigenvectors and the diagonal matrix of eigenvalues

of B̃B̃T , corresponding to its n largest eigenvalues.
Proof. Let k = (ik, jk) denote the kth edge in Et, and let B̃k denote the kth row of B̃

given by B̃k = vec(Ck)T , where Ck is given by (2.5). Then, the (k, l)th entry of B̃B̃T is given
by

(C.21) B̃B̃T
k,l =

⎧⎪⎨
⎪⎩

0 , {(ik, il), (ik, jl), (jk , il), (jk , jl)} ∩ Et = ∅ ,
d , {(ik, il), (ik , jl), (jk , il), (jk , jl)} ∩ Et �= ∅ and k �= l ,

4d , k = l ,

i.e., B̃B̃T = dMT
GMG + 2dIm, where MG ∈ R

n×m is the (vertex-edge) incidence matrix of Gt

(see, e.g., [10]). Hence, the spectral decomposition of B̃B̃T is given by

(C.22) B̃B̃T =
[
VB̃ UB̃

] [DB̃ 0
0 2dIm−n

][
V T
B̃

UT
B̃

]
,

which clearly implies the claim of the lemma.
As a result, in order to compute (B̃B̃∗ + I)−1, we need to compute only the n largest

eigenvalues and the corresponding eigenvectors of the sparse matrix B̃B̃T .

Appendix D. Proof of Proposition 3.1. We prove the result in two steps: First we
prove exact recovery of patch signs by (3.2) and EVM; then we prove exact recovery of global
locations by (3.3) (given the noiseless signs).

Consider a pair of patches Pi and Pj , (i, j) ∈ EP . Using (3.1), we obtain (where we tamely
assume |ci| > 0 for all i ∈ VP , and tk = tl ⇐⇒ k = l for all k, l ∈ ⋃Pi)

(D.1) tik =
cj

ci
tjk +

tj − ti

ci
, k ∈ Pi ∩ Pj .

Observe that (D.1) implies that cij = cj/ci and tij = (tj − ti)/ci comprise a minimizer of the
pairwise patch registration step (3.2), with a cost equal to 0. Hence, every minimizer of (3.2)
has a cost equal to 0, i.e., is a solution of the linear equations

(D.2) tik = cijtjk + tij , k ∈ Pi ∩ Pj .

However, since |Pi∩Pj | ≥ 2, cij can be uniquely determined by simply selecting two equations
from (D.2), subtracting one equation from the other (to eliminate tij) and solving for cij (note
that, since we assume tk �= tl for k �= l and |ci| > 0 for all i ∈ VP , we get tik �= til for k �= l,D
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which allows us to solve for cij). Also, tij is uniquely determined by substituting the solution
for cij in one of the equations in (D.2). As a result, cij = cj/ci and tij = (tj − ti)/ci is the
unique solution of (3.2) for each (i, j) ∈ EP , which yields the (unique) pairwise sign solution
zij = sign(cj/ci) = zizj (i.e., (3.2) recovers the pairwise signs exactly for all (i, j) ∈ EP ).
Given the noiseless pairwise signs {zij}(i,j)∈EP

defined on the connected graph GP , EVM [15]
recovers the exact patch signs zi (up to a global sign z); i.e., we obtain ẑi = zzi (for arbitrary
z ∈ {−1,+1}).

Now we define β ..= (mini |ci|)−1, xk
..= zβtk, s

i ..= β|ci|, and ui ..= zβti for each i ∈ VP
and k ∈ ⋃Pi. Here, {xk, s

i,ui} satisfy

(D.3) xk − (siẑitik + ui) = zβ(tk − (citik + ti)) = 0 ∀k ∈ Pi, i ∈ VP ,

where the last equality follows from (3.1). We note that (D.3), together with the feasibility
si ≥ 1, implies that {xk, s

i,ui}k∈Pi,i∈VP
is a minimizer of (3.3), with a cost equal to 0. We

now show that, for any minimizer {yk, r
i,wi}k∈Pi,i∈VP

of (3.3), {yk}k∈⋃Pi
is congruent to

{xk}k∈⋃Pi
, which is itself congruent to {tk}k∈⋃Pi

. Since {yk, r
i,wi}k∈Pi,i∈VP

(with ri ≥ 1 for
all i ∈ VP ) must have the cost value 0, for each i ∈ VP we get

(D.4) tik =
yk −wi

zziri
=

xk − ui

zzisi
⇒ yk =

ri

si
xk +wi − ri

si
ui ∀k ∈ Pi .

Here, for each (i, j) ∈ EP , we can find at least two separate k ∈ Pi ∩ Pj (say k1 and k2) for
which (D.4) implies

yk1 − yk2 =
ri

si
(xk1 − xk2) =

rj

sj
(xk1 − xk2)(D.5a)

⇒ ri

si
= c ∀i ∈ VP ⇒ wi − ri

si
ui = t ∀i ∈ VP ,(D.5b)

where, in (D.5b), the first implication follows from ri ≥ 1, xk1 �= xk2 (since xk are congruent
to tk), and the connectivity of GP (i.e., since each pair results in a constant ratio of scales
ri/si, we can propagate this information to all the patches to conclude that this constant is
the same for all patches), and also the second implication follows from substituting ri/si = c
in (D.4) and the connectivity of GP (again, allowing us to conclude that wi − (ri/si)ui is
fixed for all patches). This completes the proof, since we just showed that, for any minimizer
{yk, r

i,wi}k∈Pi,i∈VP
of (3.3), we have

(D.6) yk = z(cβ)tk + t ; z ∈ {−1,+1} , β > 0 , c ≥ 1 , t ∈ R
d ,

i.e., {yk}k∈⋃Pi
is congruent to {tk}k∈⋃Pi

.
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1262 O. ÖZYEŞIL, A. SINGER, AND R. BASRI

[69] H. Zha and Z. Zhang, Spectral properties of the alignment matrices in manifold learning, SIAM Rev.,
51 (2009), pp. 545–566.

[70] Z. Zhang and Y. Shan, Incremental Motion Estimation through Local Bundle Adjustment, Technical
report MSR-TR-01-54, Microsoft Research, Redmond, WA, 2001.

[71] L. Zhi-Quan, M. Wing-Kin, A. M.-C. So, Y. Ye, and S. Zhang, Semidefinite relaxation of quadratic
optimization problems, IEEE Signal Processing Mag., 27 (2010), pp. 20–34.

D
ow

nl
oa

de
d 

05
/2

9/
15

 to
 1

28
.1

12
.6

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


