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Graph Laplacian Tomography From
Unknown Random Projections

Ronald R. Coifman, Yoel Shkolnisky, Fred J. Sigworth, and Amit Singer

Abstract—We introduce a graph Laplacian-based algorithm
for the tomographic reconstruction of a planar object from its
projections taken at random unknown directions. A Laplace-type
operator is constructed on the data set of projections, and the
eigenvectors of this operator reveal the projection orientations. The
algorithm is shown to successfully reconstruct the Shepp–Logan
phantom from its noisy projections. Such a reconstruction algo-
rithm is desirable for the structuring of certain biological proteins
using cryo-electron microscopy.

Index Terms—Dimensionality reduction, graph laplacian, to-
mography.

I. INTRODUCTION

A standard problem in computerized tomography (CT) is
reconstructing an object from samples of its projections.

Focusing our attention to a planar object characterized by its
density function , its Radon transform is the line
integral of along parallel lines inclined at an angle with
distances from the origin (see, e.g, [1]–[3])

(1)

The function represents a property of the examined object
which depends on the imaging modality. For example, rep-
resents the X-ray attenuation coefficient in the case of X-ray to-
mography (CT scanning), the concentration of some radioactive
isotope in PET scanning, or the refractive index of the object in
ultrasound tomography.

Tomographic reconstruction algorithms estimate the func-
tion from a finite set of samples of , assuming that
the sampling points are known. See [4] for a survey of
tomographic reconstruction methods. However, there are cases
in which the projection angles are unknown, for example,
when reconstructing certain biological proteins or moving
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objects. In such cases, one is given samples of the projection
function for a finite but unknown set of angles ,
and the problem at hand is to estimate the underlying function

without knowing the angle values. The sampling set for the
parameter is usually known and dictated by the physical
setting of the acquisition process; for example, the values of
correspond to the location of the detectors along the detectors
line, while the origin may be set at the center of mass.

In this paper, we consider the reconstruction problem for the
2-D parallel-beam model with unknown acquisition angles. For-
mally, we consider the following problem: Given projection
vectors taken at unknown an-
gles that were randomly drawn from the uniform dis-
tribution of and are fixed equally spaced
points in , find the underlying density function of the
object.

Various aspects of this problem were previously considered
in [5] and [6]. In particular, [5] derives conditions for the
existence of unique reconstruction from unknown angles and
shifts. The angle recovery problem is formulated as a nonlinear
system using the Helgason–Ludwig consistency conditions,
that is used to derive uniqueness conditions. Stability con-
ditions for the angle recovery problem under deterministic
and stochastic perturbation models are derived in [6], where
Cramér–Rao lower bounds on the variance of angle estimators
for noisy projections are also given. An algorithm for estimating
the angles is introduced in [6], and it consists of three steps: 1)
initial angle estimation; 2) angle ordering; 3) joint maximum
likelihood refinement of the angles and shifts. Step 2 uses a
simple symmetric nearest neighbor algorithm for projection
ordering. Once the ordering is determined, the projection
angles are estimated to be equally spaced on the unit circle, as
follows from the properties of the order statistics of uniformly
distributed angles. Thus, the problem boils down to sorting the
projections with respect to their angles.

Our proposed algorithm sorts the projections by using the
graph Laplacian [7], [8]. Graph Laplacians are widely used
in machine learning for dimensionality reduction, semi-su-
pervised learning and spectral clustering. However, their
application to this image reconstruction problem seems to be
new. Briefly speaking, we construct an weight matrix
related to the pairwise projection distances, followed by a
computation of its first few eigenvectors. The eigenvectors
reveal the correct ordering of the projections in a manner to
be later explained. This algorithm may also be viewed as a
generalization of the nearest-neighbor insertion algorithm [6]
as it uses several weighted nearest neighbors at once. More
importantly, the graph Laplacian incorporates all local pieces
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of information into a coherent global picture, eliminating the
dependence of the outcome on any single local datum. Small
local perturbations of the data points have almost no effect on
the outcome. This global information is encoded in the first few
smooth and slowly-varying eigenvectors, which depend on the
entire dataset. Our numerical examples show that increasing
the number of projections improves the performance of the
sorting algorithm. We examine the influence of corrupting the
projections by white Gaussian additive noise on the perfor-
mance of the graph Laplacian sorting algorithm and its ability
to reconstruct the underlying object. We find that applying
classical filtering methods to de-noise the projection vectors,
such as the translation invariant spin-cycle wavelet de-noising
[9], allows to reconstruct the underlying object at even higher
levels of noise.

This work was motivated by a similar problem in three di-
mensions, where a 3-D object is to be reconstructed from its 2-D
line integral projections (X-ray transform) taken at unknown di-
rections, as is the case in cryo-electron microscopy [10]–[12].
Though there is no sense of order anymore, the graph Lapla-
cian may be used to reveal the projection directions also in this
higher dimensional case. See Section V for a brief discussion of
extensions to higher dimensions.

The organization of the paper is as follows. In Section II, we
survey graph Laplacians, which are being used in Section III for
solving the tomography problem. The performance of the algo-
rithm is demonstrated in Section IV. Finally, Section V contains
some concluding remarks and a discussion of future extensions.

II. GRAPH LAPLACIANS SORT PROJECTIONS

Though graph Laplacians are widely used in machine
learning for dimensionality reduction of high-dimensional data,
semi-supervised learning and spectral clustering, their usage
in tomography is uncommon. For that reason, a self-contained
albeit limited description of graph Laplacians is included here.
The presentation alternates between a general presentation of
graph Laplacians and a specific consideration of their role in the
tomography problem at hand. For a more detailed description
of graph Laplacians and their applications, the reader is referred
to [7], [8], and [13]–[15] (and references therein).

A. Spectral Embedding

In the context of dimensionality reduction, high-dimensional
data points are described by a large number of coordinates

, and a reduced representation that uses only a few effective
coordinates is wanted. Such a low-dimensional representa-
tion is sought to preserve properties of the high-dimensional
dataset, such as, local neighborhoods [13], [16], geodesic
distances [17], and diffusion distances [7]. It is often assumed
that the data points approximately lie on a low-dimensional
manifold, typically a nonlinear one. In such a setting, the
data points are viewed as points in the ambient
Euclidean space , while it is assumed that they are restricted
to an intrinsic low-dimensional manifold . In other words,

and . For example,
consider a curve in . In this case, and . One
choice, out of many, of a dimensionality reducing mapping is

given by the arc-length for . In the gen-
eral setting, we assume that the structure of the manifold is
unknown, and one can only access the data points as
points in . Fitting the data points using linear methods such
as linear regression, least squares approximation or principal
component analysis, to name a few, usually performs poorly
when the manifold is nonlinear. The graph Laplacian, however,
is a nonlinear method that overcomes the shortcomings of the
linear methods. The construction of the graph Laplacian is
given below, as well as its relation to the well-known Laplace
operator. In fact, we show that this construction gives rise
to a family of Laplace-type operators, known in differential
geometry and stochastic processes as the Laplace–Beltrami and
the Fokker–Plank operators.

In our tomography problem, each data point corresponds to a
projection at some fixed angle , sampled at equally spaced
points in the direction

(2)

The vector that corresponds to each projection is viewed as a
point ; however, all points lie on a closed curve

parameterized by

(3)

The closed curve is a 1-D manifold of parame-
terized by the projection angle . The exact shape of the curve
depends on the underlying imaged object , so different
objects give rise to different curves. The particular curve is
unknown to us, because the object is unknown. How-
ever, recovering the curve, or, in general, the manifold, from a
sufficiently large number of data points sounds plausible.

In practice, the manifold is recovered by constructing the
graph Laplacian and computing its first few eigenvectors. The
starting point is constructing an weight matrix using
a suitable semi-positive kernel as follows:

(4)

where is the Euclidean norm of the ambient space and
is a parameter known as the bandwidth of the kernel.

A popular choice for the kernel function is ,
though other choices are also possible [7], [8]. The weight ma-
trix is then normalized to be row stochastic, by dividing it by
a diagonal matrix whose elements are the row sums of

(5)

The (negatively defined) normalized graph Laplacian is then
given by

(6)

where is the identity matrix. There exist normalizations
other than the row stochastic one; the choice of normalization
and the differences between them are addressed below.
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The row stochastic matrix has a complete set of
eigenvectors and eigenvalues

and the first eigenvector is constant, that is,
. The remaining eigenvectors ,

for some , define a -dimensional nonlinear spectral
embedding of the data

(7)

Examples demonstrating the rationale, properties and advan-
tages of this embedding are given below. It is sometimes ad-
vantageous to incorporate the eigenvalues into the embedding
by defining for some [7]

B. Uniform Datasets and the Laplace–Beltrami Operator

The embedding (7) has many nice properties and we choose
to emphasize only one of them, namely the intimate connec-
tion between the graph Laplacian matrix and the continuous
Laplace–Beltrami operator of the manifold .1

The connection between the graph Laplacian and the
Laplace–Beltrami operator is manifested in the following the-
orem [18]: if the data points are independently
uniformly distributed over the manifold then with high
probability

(8)

where is any smooth function. The approx-
imation in (8) incorporates two error terms: a bias term of

which is independent of and a variance term of
. The theorem implies that the discrete

operator converges pointwise to the continuous Laplace–Bel-
trami operator in the limit and as long
as . This theorem justifies the name “graph
Laplacian” given to the weighted adjacency matrix in (6).
In the sense given by (8), the graph Laplacian is a numerical
machinery for approximating a specific operator on the under-
lying manifold, by using only a finite subset of its points. Note
that the order of the data points in this theorem is irrelevant; the
theorem holds for any arbitrary ordering of the points.

In other words, (8) states that applying the discrete operator
to a smooth function sampled at the data points approximates the
Laplace–Beltrami of that function evaluated at those data points.
Moreover, the eigenvectors of the graph Laplacian approxi-
mate the eigenfunctions of that correspond to homogenous
Neumann boundary condition (vanishing normal derivative) in
the case that the manifold has a boundary [19].

1The Laplace–Beltrami operator on a manifold M is given by

�f = divgradf =
1

jgj
@ jgjg @ f

where g are the components of the inverse metric tensor of M, and jgj
is its determinant. For example, for the n-dimensional Euclidean space, the
Laplace–Beltrami operator coincides with the ordinary Laplacian and has the
form �f = (@ f=@x ), because g = � .

Fig. 1. Equally spaced sampled epitrochoid and its spectral embedding. (a)
Epitrochoid that corresponds to R = 1, r = 1=3, d = 1=6. Points are
equally spaced in arc-length. (b) Embedding the epitrochoid into the eigenvec-
tors (� ; � ) of the graph Laplacian.

This connection between the graph Laplacian and the
Laplace–Beltrami operator sheds light on the spectral embed-
ding (7). For example, consider a closed curve of
length parameterized by the arc-length . The Laplace–Bel-
trami operator of is simply the second order derivative
with respect to the arc-length, . The eigen-
functions of satisfy

(9)

with the periodic boundary conditions ,
. The first eigenfunction is the constant function

with eigenvalue . The remaining eigenfunctions are
with corresponding degen-

erated eigenvalues of multiplicity 2. It follows
that embedding using the first two nontrivial eigen-
functions results in the unit circle in the plane

(10)

For data points that are uniformly distributed over
the curve , the first two nontrivial eigenvectors of the graph
Laplacian are approximately and and the
embedding (7) reads

(11)

Due to the multiplicity of the eigenvalues, the computed eigen-
vectors may be any orthogonal 2 2 linear transformation of

and . The specific orthogonal combination depends on the
numerical procedure used to compute the eigenvectors. Thus,
the embedding is unique up to an arbitrary rotation and possibly
a reflection (orientation of the curve). Fig. 1(b) shows that the
graph Laplacian embedding of data points equally spaced with
respect to arc-length along the epitrochoid in Fig. 1(a) is, in-
deed, a circle.

The 2-D embedding (11) reveals the ordering of the data
points along the curve . The graph Laplacian provides an
approximate solution to the traveling salesman problem in .
Going back to the tomography problem, the graph Laplacian
embedding of the projection vectors (2) reveals their true or-
dering. The last statement is indeed correct, but we should ex-
ercise more carefulness in its justification.
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Fig. 2. Density dependent embedding. (a) Epitrochoid that corresponds toR =
1, r = 1=3, d = 1=6. Points are equally spaced in � 2 [0; 2�). (b) Embedding
the epitrochoid into the eigenvectors (� ; � ) of the graph Laplacian.

The graph Laplacian approximates the Laplace–Beltrami op-
erator if the data points are uniformly distributed over the man-
ifold. However, this is not the case in our tomography problem.
Even though the projection angles are uniformly distributed on
the unit circle, the projection vectors are not uniformly dis-
tributed over the curve in on which they lie with respect
to its arc-length. To see this, we examine the relationship be-
tween the probability density function of the projection
angle and the probability density function of the pro-
jection vectors over the curve . This relationship is given by

, for infinitesimals arc-length and angle
, because the mapping of the unit circle to conserves the

number of mapped points. The uniform distribution of the angle
means . Hence

(12)

where , and
. The

density depends on the specific object through
and is usually not uniform, because is not constant.

C. Nonuniform Densities and the Fokker–Planck Operator

When data points are distributed over a manifold ac-
cording to a nonuniform density , their graph Laplacian
does not approximate the Laplace–Beltrami operator, but
rather a different differential operator, known as the backward
Fokker–Planck operator , [8], [20]

(13)

where is the potential function. Thus, the
more general form of (8) is

(14)

Note that the Fokker–Planck operator coincides with the
Laplace–Beltrami operator in the case of a uniform distribution
for which the potential function is constant, so its gradient
vanishes.

The Fokker–Planck operator has a complete set of eigen-
functions and eigenvalues. In particular, when the manifold is
a closed curve of length , the eigenfunctions satisfy

(15)

with the periodic boundary conditions

(16)

We rewrite the eigenfunction problem (15) as a Sturm–Liouville
problem . Although the eigenfunctions
are no longer the sine and cosine functions, it follows from the
classical Sturm–Liouville theory of periodic boundary condi-
tions and positive coefficients [21] that
the embedding consisting of the first two nontrivial eigenfunc-
tions , of (15)–(16) also circles the origin exactly once
in a manner that the angle is monotonic. In other words, upon
writing the embedding in polar coordinates

the argument is a monotonic function of , with ,
. Despite the fact that the explicit form of the eigen-

functions is no longer available, the graph Laplacian embedding
reveals the ordering of the projections through the angle at-
tached to . Fig. 2(a) and (b) shows a particular embedding of
a curve into the eigenfunctions of the Fokker–Planck operator.
The embedding is no longer a circle as it depends on the density
along the curve, but still, ordering the points according to the
angle of the embedding produces the correct ordering of
the points along the original curve.

D. Density Invariant Graph Laplacian

What if data points are distributed over with some nonuni-
form density, and we still want to approximate the Laplace–Bel-
trami operator on instead of the Fokker–Planck operator?
This can be achieved by replacing the row stochastic normal-
ization in (5) and (6) by the so-called density invariant normal-
ization. Such a normalization is described in [8] and leads to
the density invariant graph Laplacian. This normalization is ob-
tained as follows. First, normalize both the rows and columns
of to form a new weight matrix

(17)

where is the diagonal matrix (5) whose elements are the row
sums of . Next, normalize the new weight matrix to be row
stochastic by dividing it by a diagonal matrix whose elements
are the row sums of . Finally, the (neg-

atively defined) density invariant graph Laplacian is given by

(18)

The density invariant graph Laplacian approximates the
Laplace–Beltrami operator on the underlying manifold ,
with replacing in (8) [8], even when the data points are
nonuniformly distributed over . Therefore, embedding data
points which are nonuniformly distributed over a closed curve

using the density-invariant graph Laplacian results in a circle
given by (10) and (11). As mentioned before, although is uni-
formly distributed in , the arc-length is not uniformly
distributed in , but rather has some nonconstant density

. It follows that the embedded points that are given by
(11) are nonuniformly distributed on the circle. Nonetheless,
the embedding reveals the ordering of the projection vectors.
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Fig. 3. Density invariant embedding of the epitrochoid and a closed helix.
(a) Epitrochoid that corresponds to R = 1, r = 1=3, d = 1=6. Points are
equally spaced in � 2 [0; 2�). (b) Embedding the epitrochoid into the eigen-
vectors (� ; � ) of the density invariant graph Laplacian. (c) A closed helix in

. Points are nonequally spaced in arc-length. (d) Embedding the closed helix
into the eigenvectors (� ; � ) of the density invariant graph Laplacian.

Fig. 3(b) and (d) shows the embedding of the epitrochoid
[Fig. 3(a)] and a closed helix in [Fig. 3(c)] into the first two
eigenfunctions of the Laplace–Beltrami operator, obtained by
applying the density-invariant normalization.

The graph Laplacian integrates local pieces of information
into a global consistent picture. Each data point interacts only
with a few of its neighbors, or a local cloud of points, because
the kernel is rapidly decaying outside a neighborhood of size

. However, the eigenvector computation involves the entire
matrix and glues those local pieces of information together.

III. RECOVERING THE PROJECTION ANGLES

So far, we have shown that by constructing the graph Lapla-
cian from the given projections and embedding each projection
into the first two eigenvectors, it is possible to recover the cor-
rect ordering of the projections along the underlying curve in

. Once the projection vectors are sorted, the values of the pro-
jection angles need to be estimated. Since the pro-
jection angles are assumed to be uniformly distributed over the
circle, we estimate the sorted projection angles

by equally spaced angles (the bar indicates that these are
estimated angle values rather than true values)

(19)

Due to rotation invariance, we fix . The remaining
random variables are known

as the th order statistics [22] and their (marginal) probability
density functions are given by

The mean value and variance of are

Thus, the equally spaced estimation (19) of the th order statis-
tics is in fact the mean value estimation, and the mean square
error (MSE) given by is maximal for

The MSE vanishes as the number of data points , and
the typical estimation error is .

Now that the projection angles have been estimated, any clas-
sical tomography algorithm may be applied to reconstruct the
image. The image can be reconstructed either from the entire
set of projection vectors, or it can be reconstructed from a
smaller subset of them. Given a set of projection vectors,
where is an over-sampling factor, we first sort all an-
gles using the density-invariant
graph Laplacian, but use only of them (every th projection)

for the image reconstruction.
The effect of sub-sampling is similarly understood in terms of
the order statistics.

Note that the symmetry of the projection function (1)
practically doubles the number of projections. For

every given projection vector that
corresponds to an unknown angle , we create the projection
vector

(20)

that corresponds to the unknown angle .
The reconstruction algorithm is summarized in Algorithm 1.

Note that in steps 2 and 3 of Algorithm 1 the graph Laplacian
can be used instead of .

Algorithm 1 Reconstruction from random orientations

Require: Projection vectors for

1: Double the number of projections to using (20).

2: Construct following (4), (5), and (17)–(18).

3: Compute and , the first nontrivial eigenvectors of .

4: Sort according to .

5: Reconstruct the image using the sorted projections
corresponding to the estimated angles .

If the distribution of the projection angles is not uniform, then
the estimation (19) should be replaced by the mean value of the
order statistics of the corresponding distribution.

IV. NUMERICAL EXAMPLES AND NOISE TOLERANCE

We applied to the above algorithm to the reconstruction of
the 2-D Shepp–Logan phantom, shown in Fig. 4(a), from its
projections at random angles. The results are illustrated in
Fig. 4(a)–(d).

The figures were generated as follows. We set , and
for each over-sampling factor , 8, 16, we generated
uniformly distributed angles in , denoted .
Then, for each , we evaluated the analytic expression of the
Radon transform of the Shepp–Logan phantom [2] at
equally spaced points between and 1.5. That is, each pro-
jection vector is a vector in . We then applied Algorithm
1 and reconstructed the Shepp–Logan phantom using
projections. The results are presented in Fig. 4(b)–(d) for 4,
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Fig. 4. Reconstructing the Shepp–Logan phantom from its random projections while using the symmetry of the Radon transform. N = 256.

Fig. 5. Reconstructing the Shepp–Logan phantom from its random projections
for different values of " [increasing from (a) to (h)]. All reconstructions use
N = 256, mN = 4096, and n = 500 pixels per projection. High-quality
reconstructions are obtained for a wide range of " values.

8, 16, respectively. The density invariant graph-Laplacian (Al-
gorithm 1) was constructed using the kernel with

. The dependence of the algorithm on is demonstrated
below. All tests were implemented in Matlab. The Radon trans-
form was inverted using Matlab’s function with spline
interpolation and a hamming filter.

Note that Fig. 4(b)–(d) exhibits an arbitrary rotation, and pos-
sibly a reflection as is the case in Fig. 4(c), due to the random
orthogonal mixing of the eigenfunctions and that consists
of merely rotations and reflections.

A. Choosing

For the reconstructions in Fig. 4(b)–(d), we used .
According to (8), in general, the value of should be chosen to
balance the bias term that calls for small with the variance term
that calls for large . In practice, however, the value of is set
such that for each projection vector there are several neigh-
boring projection vectors for which in (4) are non-negli-
gible. Fig. 5(a)–(h) depicts the dependence of the quality of re-
construction on the value of . We conclude that the algorithm
is stable with respect to in the sense that high-quality recon-
structions are obtained when is changed by as much as two
orders of magnitude, from 5 to 7.5 .

The value of can also be chosen in an automated way
without manually verifying the reconstruction quality and
without computing the eigenvectors of the graph Laplacian
matrix. Following [23], we use a logarithmic scale to plot the
sum of the weight matrix elements

(21)

Fig. 6. Logarithmic scale plot of W (") against " for various levels
of noise. The top (blue) curve corresponds to noiseless projections.

against (Fig. 6). As long as the statistical error in (8) is small,
the sum (21) is approximated by its mean value integral

(22)

where is the volume of the manifold and assuming
uniformly distributed data points. For small values of , we ap-
proximate the narrow Gaussian integral

(23)

because the manifold looks locally like its tangent space .
Substituting (23) in (21)–(22) gives

or, equivalently, upon taking the logarithm

(24)

which means that the slope of the logarithmic scale plot is .
In the limit , , so . On the other
hand, as , , so . Those two
limiting values assert that the logarithmic plot cannot be linear
for all values of . In the linearity region, both the statistical and
bias errors are small, and it is, therefore, desirable to choose
from that region.
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Fig. 7. Top: Reconstructing the Shepp–Logan phantom from its random pro-
jections that were corrupted by different levels of additive white noise. Bottom:
Projection angles as estimated by the graph Laplacian sorting algorithm plotted
against their true values. The jump discontinuity is due to the rotation invariance
of the problem. Reflection flips the slope to �1. (mN = 4096, N = 256,
n = 500).

In Fig. 6, the top (blue) curve corresponds to noiseless projec-
tions. The slope of that curve in the region of linearity,

, is approximately 0.5, as predicted by (24) for data
points that lie on a curve .

B. Noise Tolerance

The effect of additive noise on the reconstruction is depicted
in Fig. 7(a)–(d). For each figure, we randomly drew 4096 an-
gles from a uniform distribution, computed the projections of
the Shepp–Logan phantom corresponding to those angles and
added noise to the computed projections. For a given SNR, the
noise was Gaussian with zero mean and a variance that satis-
fied SNR [dB] , where is the array
of the noiseless projections and is a realization of the noise.
As before, once applying the algorithm, the images were recon-
structed from projections.

The reconstruction algorithm performs well above dB
and performs poorly below this SNR value. As was pointed out
in [6], this phenomenon is related to the threshold effect in non-
linear parameter estimation [24], [25] that predicts a sharp tran-
sition in the success rate of detecting and estimating the signal
from its noisy measurements as a function of the SNR. The man-
ifestation of this phenomena in our case is that the distances in
(4) become meaningless above a certain level of noise. Fig. 7(c)
and (d) demonstrates the breakdown of the algorithm when the
SNR decreases by just 0.1 dB. Fig. 7(e)–(h) demonstrates the
same breakdown by comparing the estimated projection angles
with their true value. Fig. 8 shows five different projections

separated by (left column, thick blue
curve) and their noisy realizations at 10.6 dB (center column),
gauging the level of noise that can be tolerated.

The threshold effect can also be understood by Fig. 6, where it
is shown that higher levels of noise result in higher slope values,
rendering larger empirical dimensions. In other words, adding
noise thickens the curve and effectively enlarges the
dimensionality of the data. The graph Laplacian treats the data
points as if they lie on a surface rather than a curve and stumbles
upon the threshold effect.

The threshold point can be pushed down by initially
de-noising the projections and constructing the graph Laplacian

Fig. 8. Five different projections that differ by �� = �=6 (left column, blue
thick curve), their noisy version at 10.6 dB (center column) and their noisy
version at 2.0 dB (right column). The solid red curves (right column and left
column) correspond to applying the hard thresholding full spin-cycle de-noising
algorithm with Daubechies “db2” wavelets to the 2.0 dB noisy projections of the
right column.

Fig. 9. Top: Reconstructing the Shepp–Logan phantom from its random pro-
jections that were corrupted by additive white noise by first spin-cycle filtering
the projections. The main features of the phantom are reconstructed even at 2 dB.
Bottom: Projection angles as estimated by the graph Laplacian sorting algorithm
with spin-cycled denoised projections plotted against their true values for dif-
ferent levels of noise (mN = 4096,N = 256, n = 500).

using the de-noised projections rather than the original noisy
ones. In practice, we used the fast implementation
of the full translation invariant wavelet spin-cycle algorithm
[9] with Daubechies wavelets “db2” of length 4 combined
with hard thresholding the wavelet coefficients at ,
where [9]. Using this classical nonlinear
filtering method, we were able to push down the threshold point
from 10.6 to 2.0 dB as illustrated in Fig. 9(a)–(h). Samples of
spin-cycled de-noised projections (originally 2.0 dB) are shown
in Fig. 8 in solid red.

For the sorting algorithm to succeed, we need to be able to
identify local neighborhoods along the projections curve. The
information that is required for such identification is carried by
a few robust features. For example, the support of the projec-
tion or the number of peaks in it provide very strong cues for
its neighboring projections. Without de-noising, the Euclidean
distance between projections is dominated by noise. However,
since these features are very robust, they survive even a very
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aggressive de-noising procedure. This suggests that designing
a suitable metric to construct the graph in (4) is of great prac-
tical importance. Spatial correlations take no advantage of ro-
bust features specific to the underlying problem, and the result
is dominated by noise. Applying a specifically designed metric
(de-noising) pulls out these features even in very high noise
levels.

V. SUMMARY AND DISCUSSION

In this paper, we introduced a graph Laplacian-based algo-
rithm for imaging a planar object given its projections at random
unknown directions. The graph Laplacian is widely used nowa-
days in machine learning and high-dimensional data analysis,
however, its usage in tomography seems to be new. The graph
Laplacian embeds the projection functions into a closed planar
curve from which we estimate the projection angles. The graph
Laplacian ensembles local projection similarities into a global
embedding of the data. In that respect, our algorithm may be
viewed as the natural generalization of the nearest neighbor al-
gorithm of [6], and can be viewed as an approximate solution to
the traveling salesman problem in high dimensions.

We tested the graph Laplacian reconstruction algorithm for
the Shepp–Logan phantom and examined its tolerance to noise.
We observed the threshold effect and were able to improve
the tolerance to noise by constructing a graph Laplacian based
on de-noised projections. Our success in pushing down the
threshold limit using the wavelets spin-cycle algorithm suggests
that more sophisticated filtering techniques may tolerate even
higher levels of noise. In particular, we speculate that filtering
the entire set of projection vectors all together, rather than
one at a time, using neighborhood filters [26], nonlocal means
[27] and functions adapted kernels [28], may push down the
threshold even further. The original non-noisy projection vec-
tors have similar features or building blocks (e.g., peaks, jumps,
quiet regions, etc.) when the underlying imaged object is not
too complex. We expect better recovery of those features when
averaging similar slices across many different projections.

The application which motivated the current work is the re-
construction of 3-D objects from their line integrals taken at
random unknown orientations, as is the case for cryo-electron
microscopy of molecular structures [10]–[12]. The algorithm
presented in this paper relies on the special structure of the un-
derlying projections manifold. That is, the fact that the projec-
tions manifold is a curve in . When considering the 3-D re-
construction problem, the underlying manifold is no longer a
curve but rather a 2-D surface. Therefore, the presented method
is not directly applicable, as manifolds which are not curves
have no notion of order. To extend our method to higher dimen-
sions, we need to take a different approach. Instead of using the
embedding to order the projections, it is possible to modify the
graph Laplacian so that the embedding gives directly the ori-
entation of each projection, by constructing the Laplacian over
the orientations manifold instead over the projections manifold.
Such an extension can be derived along the lines of the approach
in [29]. However, in the case of 3-D random tomography, the
special geometry induced by the Fourier slice theorem gives rise
to a much simpler and numerically superior approach. Instead of
constructing the graph Laplacian from the projection data, it is

possible to design a different operator (an averaging operator),
whose eigenvectors are exactly the projection orientations. The
relation between the orientations and the eigenvectors of this
operator is exact, and not asymptotic as for the graph Laplacian
case [see (8)]. This will be described in a separate publication.
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