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ABSTRACT. Single particle cryogenic electron microscopy (cryo-EM) is an imaging technique capa-
ble of recovering the high-resolution 3-D structure of biological macromolecules from many noisy and
randomly oriented projection images. One notable approach to 3-D reconstruction, known as Kam’s
method, relies on the moments of the 2-D images. Inspired by Kam’s method, we introduce a ro-
tationally invariant metric between two molecular structures, which does not require 3-D alignment.
Further, we introduce a metric between a stack of projection images and a molecular structure, which is
invariant to rotations and reflections and does not require performing 3-D reconstruction. Additionally,
the latter metric does not assume a uniform distribution of viewing angles. We demonstrate uses of
the new metrics on synthetic and experimental datasets, highlighting their ability to measure structural
similarity.

1. INTRODUCTION

Single particle cryogenic electron microscopy (cryo-EM) enables high-resolution reconstruction
of 3-D biological macromolecules from a large collection of noisy and randomly oriented projection
images. Kam’s method (1) is one of the earliest methods proposed for homogeneous reconstruction
in cryo-EM. It is a statistical method-of-moments approach applied to the cryo-EM reconstruction
problem, where the computation of low-order statistics of 2-D images allows for the estimation of
3-D structure through solving a polynomial system. Kam’s method has helped push the theoretical
understanding of the reconstruction process - under certain conditions, it is a provable algorithm and
provides bounds for the estimated structure’s quality in terms of the noise level and the number of
images (2–8). Kam’s method also enjoys other remarkable properties:

(1) It bypasses the need for angular assignment, typically a large computational burden in com-
peting methods.

(2) It is a streaming algorithm and is thus theoretically much faster than iterative methods.
(3) It can – in theory – break the detection limit of the minimal size of proteins that can be

observed in cryo-EM (9).
While theoretically attractive, Kam’s method has not been able to yield high-resolution reconstruc-
tions as yet. One direction that is currently being explored to resolve this issue is the development
of better priors, for instance, based on the sparsity of the solution as in (7). Separately, there has been
considerable, continued interest in utilizing the vast amount of solved structures stored in the Protein
Data Bank (PDB) (10) to improve cryo-EM reconstructions.

Leveraging the PDB as a prior, we propose a method to match either projection images or molec-
ular volumes to a database of previously solved structures (Section 3). We use this procedure as
a rotationally and reflectionally invariant metric that can be directly computed from raw image
datasets without needing a 3-D reconstruction process. Importantly, our metric neither relies on
prior knowledge of rotations nor assumes a uniform rotational distribution, making it applicable to
typical datasets.

To demonstrate the efficacy of our metric, we compare it to existing methods and show empirically
that it achieves similar performance to alignment-based metrics. As an application, we use our metric
to compute a low-dimensional embedding of a subset of the PDB into the Euclidean plane, visually

Key words and phrases. Protein structure similarity, alignment-free metric, rotationally-invariant distance, structural
search, Kam’s method, method of moments.

1

ar
X

iv
:2

40
1.

15
18

3v
1 

 [
q-

bi
o.

B
M

] 
 2

6 
Ja

n 
20

24



2 A. ZHANG, O. MICKELIN, J. KILEEL, E. J. VERBEKE, N. F. MARSHALL, M. A. GILLES, AND A. SINGER

showcasing how structurally similar proteins are embedded near each other (Section 4.2). Further,
we apply the version of the metric that can be directly computed from stacks of 2-D images, and
show that it gives an efficient methodology to identify the nearest neighbors in a database to a given
set of experimental moments on synthetic and real datasets (Sections 4.3 and 4.4).

2. BACKGROUND

This section presents the mathematical preliminaries needed to define our metric. Let Φ : R3 → R
be the electrostatic potential of a molecule and Φ̂ : R3 → C be its Fourier transform, which we define
by

Φ̂(𝜉) =
∫
R3

Φ(𝑥)𝑒−𝑖 𝜉 ·𝑥𝑑𝑥.

A single projection image is given by

𝐼 = ℎ ∗ 𝑃𝑅Φ + 𝜀,
and its Fourier transform is

�̂� = 𝐻 · 𝑆𝑅Φ̂ + �̂�,
where 𝑃 is the projection operator, 𝑆 is the slicing operator, ℎ is a point spread function, 𝐻 is the
contrast transfer function (CTF), 𝜀 is noise, and 𝑅 ∈ SO(3) is a rotation operator. We assume that
the Fourier transform Φ̂ can be expanded in a spherical harmonics expansion:

Φ̂(𝑟, 𝜃, 𝜑) =
𝐿∑︁

ℓ=0

ℓ∑︁
𝑚=−ℓ

𝐴ℓ,𝑚(𝑟)𝑌𝑚
ℓ (𝜃, 𝜑), (1)

where (𝑟, 𝜃, 𝜙) are spherical coordinates, and 𝑌𝑚
ℓ

denotes the complex spherical harmonic:

𝑌𝑚
ℓ (𝜃, 𝜑) :=

(
(ℓ − 𝑚)!(2ℓ + 1)

4𝜋(ℓ + 𝑚)!

)1/2
𝑒𝑖𝑚𝜑𝑃𝑚

ℓ (cos 𝜃),

where 𝑃𝑚
ℓ

are the associated Legendre polynomials, 𝐴ℓ,𝑚(𝑟) are 𝑟 dependent coefficients, and 𝐿 is a
bandlimit parameter. See Eq. 14.30.1 in (11) for the definitions of 𝑌𝑚

ℓ
and 𝑃𝑚

ℓ
.

Let 𝜌 : SO(3) → R be the probability density function of the rotational distribution, which
without loss of generality is invariant to in-plane rotations and reflections. (Note that by augmenting
the dataset with in-plane rotations and reflections of all 2-D images, one can always reduce to the case
of such an invariant distribution 𝜌, e.g. see (12).) More formally, 𝜌 is a function on 𝑆𝑂 (3)/𝑂 (2) ≃
S2/{±1} which is formed by identifying antipodal points on the sphere S2 (13). Thus, we model the
density as a function 𝜌 : SO(3) → R with an even-degree spherical harmonics expansion:

𝜌(𝑅) =
𝑃∑︁
ℓ=0

2ℓ∑︁
𝑚=−2ℓ

𝐵2ℓ,𝑚𝑌
𝑚
2ℓ (𝜃 (𝑅), 𝜑(𝑅)), (2)

where (𝜃 (𝑅), 𝜑(𝑅)) represent the third column of the rotation matrix given by 𝑅 in spherical coordi-
nates, and 𝑃 ∈ Z≥0 is a bandlimit parameter (see Section 4.2 in (8)). The analytical first and second
moments m1 and m2 of the Fourier-transformed projection images with respect to 𝜌 are

m1(𝑥, 𝑦) =
∫
(𝑅 · Φ̂) (𝑥, 𝑦, 0)𝜌(𝑅)𝑑𝑅, and

m2 ((𝑥, 𝑦), (𝑥′, 𝑦′)) =
∫
(𝑅 · Φ̂) (𝑥, 𝑦, 0) (𝑅 · Φ̂) (𝑥′, 𝑦′, 0)𝜌(𝑅)𝑑𝑅,

(3)

where 𝑑𝑅 denotes integration with respect to the Haar measure on 𝑆𝑂 (3). It will be convenient
to write (𝑥, 𝑦) and (𝑥′, 𝑦′) in terms of polar coordinates (𝑟, 𝜙) and (𝑟 ′, 𝜙′), respectively. In Ap-
pendix A.1, we show in Eq. (12) and (13) that the first moment only depends on 𝑟 , i.e., m1 =

m1(𝑟) : R≥0 → C, and that the second moment only depends on 𝑟, 𝑟 ′ and Δ𝜙 = 𝜙 − 𝜙′, i.e.,
m2 = m2(𝑟, 𝑟 ′,Δ𝜙) : R≥0 × R≥0 × [−2𝜋, 2𝜋] → C. We write m1 = m1(Φ̂, 𝜌) and m2 = m2(Φ̂, 𝜌)
to denote the first and second moments defined by Φ̂ and 𝜌 when discussing multiple structures. The
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basis of Kam’s method is that the moments in Eq. (3) can be estimated from images and related to
expansion coefficients for the potential Φ̂, see Appendix A for explicit formulas.

3. DEFINITION OF KAM’S METRICS

We now use metrics between the moments in Eq. (3) to define similarity between proteins as well
as stacks of images. A first function is used to measure similarity of two known structures by the
moments of their potential as defined in Eq. (3). The second is used to measure similarity between a
known structure and the unknown structure observed in a dataset of images.

Crucially, the metrics can be computed without performing 3-D alignment of the structures, re-
ducing their computational costs compared to other approaches. Moreover, one of the metrics can be
directly computed from noisy and CTF-affected projection images. This enables a nearest neighbor
search among known structures to determine an initialization for the 3-D reconstruction pipeline,
especially in the expectation maximization procedure (14,15).

3.1. Kam’s volume metric 𝑑vKam. Here we introduce the first of Kam’s metrics, which measures
the similarity of two 3-D structures. We use this to perform dimensionality reduction to visualize the
relation between structures from a subset of the PDB.

In detail, given two 3-D structures Φ1 and Φ2, we define the distance between them through their
first and second moments m1 and m2 under a uniform distribution of viewing directions which we
denote by 𝜌 = 𝜌𝑢. We will derive the explicit equations for the uniform case in Eq. (17) and (18).
We then measure the resulting weighted deviation of the first and second moments by

∥m2(Φ̂1, 𝜌𝑢) −m2(Φ̂2, 𝜌𝑢)∥2𝐿2 (R2×R2 ) + 𝜆∥m1(Φ̂1, 𝜌𝑢) −m1(Φ̂2, 𝜌𝑢)∥2𝐿2 (R2 ) , (4)

where 𝜆 ≥ 0 is a hyperparameter which we set to 1 for all experiments. The moments will be
represented on a discretized voxel grid, and we therefore replace the continuous norms with discrete
norms. More specifically, we will represent the second moment using a grid 𝑟, 𝑟 ′ ∈ {𝑟1, . . . , 𝑟 ⌊𝑁/2⌋}
and Δ𝜙 := 𝜙 − 𝜙′ ∈ {Δ𝜙1, . . . ,Δ𝜙𝑁 }, where 𝑁 is the number of pixels of one side of the discretized
volume. We define the grid points 𝑟𝑘 = 𝛿𝑘/𝑁 , Δ𝜙 𝑗 = 2𝜋 𝑗/𝑁 − 2𝜋, for 𝑘 = 1, . . . , ⌊𝑁/2⌋, and
𝑗 = 1, . . . , 2𝑁 , where 𝛿 is the side length of the volume grid in angstroms. We then use the following
two approximations to the continuous norms above

∥M∥2𝑤2 :=
∑︁

𝑗=1,...,2𝑁
𝑘1=1,...,⌊𝑁/2⌋
𝑘2=1,...,⌊𝑁/2⌋

��M(Δ𝜙 𝑗 , 𝑟𝑘1 , 𝑟𝑘2)
��2 𝑟𝑘1𝑟𝑘2 , ∥N∥2𝑤1 :=

∑︁
𝑘=1,...,⌊𝑁/2⌋

|N(𝑟𝑘) |2 𝑟𝑘 . (5)

With these norms, we define the metric comparing two sets of moments of two 3-D structures by

𝑑vKam(Φ1,Φ2) :=
(
∥m2(Φ̂1, 𝜌𝑢) −m2(Φ̂2, 𝜌𝑢)∥2𝑤2 + 𝜆∥m1(Φ̂1, 𝜌𝑢) −m1(Φ̂2, 𝜌𝑢)∥2𝑤1

)1/2
, (6)

This distance is rotationally invariant since for any rotation 𝑅, we have �𝑅 · Φ = 𝑅 · Φ̂ and the
moments m1 and m2 in Eq. (2) satisfy

m𝑖 (�𝑅 · Φ, 𝜌) = m𝑖 (Φ̂, 𝑅𝑇 · 𝜌), (7)

as can be seen through a change of variables in Eq. (3). When 𝜌 = 𝜌𝑢 is uniform, clearly 𝑅𝑇 · 𝜌 = 𝜌,
which therefore shows rotational invariance of the cost function in Eq. (4), up to the discretization
of the volume grid. Note that this bypasses the need for an alignment step. We detail the pro-
cedure for computing m1, m2 and therefore 𝑑vKam in Appendix A.1. Under certain conditions, it
has been demonstrated that the second moment of the image collection identifies the 3-D structure
uniquely (2–4,6,7) or up to a finite list of candidate structures (8). In section Section 4.2, we show that
our metric is alike other similarity scores but remarkably doesn’t rely on alignment.
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3.2. Kam’s image metric 𝑑iKam. We now introduce a metric between the empirical moments com-
puted from a set of experimental projection images to the moments computed from the atomic coor-
dinates of a known structure that compares images to the known structure. We detail the procedure
for computing these moments in Appendix A.1.

If the distribution of poses in the experimental dataset would be known to be uniform, the empirical
moments could directly be substituted for m1 and m2 in Eq. (6) and the pseudometric could be defined
as the deviation between the moments of the two structures. In practice, however, the distribution of
angles is not uniform and is unknown. Since the moments are functions of this distribution, it must
therefore be inferred.

We will show in Eq. (12) and Eq. (13) that m1 and m2 depend linearly on the expansion coefficients
𝐵𝑝,𝑢 of the distribution of viewing directions. The optimization problem minimizing the discrepancy
between the moments of the two structures is, therefore, a linear least-squares problem in 𝐵𝑝,𝑢. It
follows from Table 3 of (8), that this linear least squares is Zariski-generically full-rank (although
not necessarily well-conditioned) for various small bandlimits 𝐿 and 𝑃. Solving this optimization
problem efficiently eliminates the unknown rotational distribution. We then define the metric between
the moments of the structure Φ and the experimental moments m̃1, m̃2 by

min
𝜌∈P
∥m̃2 −m2(Φ̂, 𝜌)∥2

𝐿2 (R2×R2 ) + 𝜆∥m̃1 −m1(Φ̂, 𝜌)∥2
𝐿2 (R2 ) , (8)

where 𝜆 ≥ 0 is a hyperparameter which we set to 1 for all experiments and

P =

{
𝜌(𝑅) : SO(3) → R s.t. 𝜌(𝑅) =

𝑃∑︁
ℓ=0

2ℓ∑︁
𝑚=−2ℓ

𝐵2ℓ,𝑚𝑌
𝑚
2ℓ (𝜃 (𝑅), 𝜑(𝑅)), and

∫
SO(3)

𝜌(𝑅)𝑑𝑅 = 1

}
,

(9)
is the set of admissible distributions of viewing directions that are invariant to global reflections and
in-plane rotations, where (𝜃 (𝑅), 𝜑(𝑅)) are as in Eq. (2). To simplify the optimization problem and
lead to faster algorithms, note that we do not impose positivity of the distributions 𝜌 ∈ P, though this
could be enforced, for instance, by imposing the linear constraints 𝜌(𝑅𝑖) ≥ 0 for a suitable choice
of 𝑅𝑖 ∈ SO(3). Moreover, the constraint

∫
SO(3) 𝜌(𝑅)𝑑𝑅 = 1 is equivalent to imposing 𝐵0,0 = 1 (8),

which can be achieved by removing 𝐵0,0 from the set of optimization variables and fixing its value
to 1. The values of the bandlimit parameters 𝐿, 𝑃 and the hyperparameter 𝜆 used in our numerical
experiments are given in Appendix B.1.

Just as in the previous section, we replace the continuous norms in Eq. (8) by discrete norms to
define the metric between empirical moments and the moments from a 3-D structure as

𝑑iKam ((m̃1, m̃2),Φ) :=
(
min
𝜌∈P
∥m̃2 −m2(Φ̂, 𝜌)∥2𝑤2 + 𝜆∥m̃1 −m1(Φ̂, 𝜌)∥2𝑤1

)1/2
. (10)

The cost function in Eq. (8) is rotationally invariant, in that it does not depend on the orientation of
Φ, since Eq. (7) implies that

min
𝜌∈P

∥m̃2 −m2(�𝑅 · Φ, 𝜌)∥2
𝐿2 (R2×R2 ) + 𝜆 ∥m̃1 −m1(�𝑅 · Φ, 𝜌)∥2

𝐿2 (R2 )

= min
𝜌∈P

∥m̃2 −m2(Φ̂, 𝑅𝑇 · 𝜌)∥2
𝐿2 (R2×R2 ) + 𝜆 ∥m̃1 −m1(Φ̂, 𝑅𝑇 · 𝜌)∥2

𝐿2 (R2 )

= min
𝜌∈P

∥m̃2 −m2(Φ̂, 𝜌)∥2
𝐿2 (R2×R2 ) + 𝜆 ∥m̃1 −m1(Φ̂, 𝜌)∥2

𝐿2 (R2 ) .

(11)

where the last equality follows because 𝑅𝑇 · 𝜌 lies in P, since rotating a viewing angle distribution
over SO(3) results in another another viewing angle distribution over SO(3).

At the cost of a solving the small linear system detailed in Appendix A.3, our method allows for
the comparison between a stack of images and a resolved structure, without performing a 3-D recon-
struction. Furthermore, we precompute the least-squares matrices necessary for optimization, after
which the distance function can be calculated in real-time. With sufficient storage and precomputa-
tion, the procedure is scalable to the entirety of the PDB.
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In particular, 𝑑iKam can be used in an efficient scheme to match a stack of synthetic images to the
potentials of nearby PDB structures. By selecting a subset of the PDB database, one can efficiently
compute 𝑑iKam ((m̃1, m̃2),Φ) for each Φ in the subset and find the nearest neighbors.The method for
processing image moments in practice is detailed in Appendix A.4 and the computational complexity
of the metric is derived in Appendix A.5.

4. RESULTS

4.1. Existing measures of structure similarity. There are several existing methods for reporting
structure similarity between two known volumes. We list two approaches based on computing align-
ment and Zernike moments. We compare both 𝑑iKam and 𝑑vKam to these approaches in the experi-
ments in the following subsections. Note that the following existing metrics are limited to measuring
similarity between two structures and cannot compare images to structures, whereas 𝑑iKam can.

(1) Euclidean alignment: A classical approach for comparing the similarity of two structures is
to sample the volumes on a 3-D grid and calculate the Euclidean distance between the pair
over rotations and translations. However, this method is expensive to compute since opti-
mization over SO(3) is required to align the structures. Accelerated methods for computing
these alignments by maximizing the correlation between two volume maps over rotations
and translations have been implemented in various programs e.g. via gradient ascent in
Chimera (16). Further acceleration can be achieved by calculating volumetric correlations by
expanding the volumes in a well-chosen basis and applying dimensionality reduction (17) or
by maximizing the correlation between common lines in projection images generated from
the volumes (18). Similar alignment methods, such as those described in (19,20), are also used
in electron tomography for sub-volume similarity. In this paper, we use a Bayesian opti-
mization algorithm to minimize a Euclidean loss function, as described in (21), to compute
the alignment and minimum distance between two volumes.

(2) Zernike moments: Another metric for structure similarity is to expand the molecule’s struc-
ture in Zernike polynomials and compute a metric from the Zernike expansion coefficients,
as described in (22), which is used by the PDB for structure similarity search.

4.2. Applying 𝑑vKam to a PDB subset. To test the ability of 𝑑vKam to discern the similarity between
3-D structures, we first generate a database using 1420 structures downloaded from the PDB (10). The
subset chosen here was selected by filtering for human proteins with an experimental structure at
resolution between 1-3Å and a molecular weight between 150-250 kDa. We use this subset because
it encompasses a diverse range of shapes and symmetries as well as many homologous structures.
Additionally, the weight range reflects a smaller and more challenging protein size for a typical cryo-
EM experiment (23). In the future, a larger database containing the entire PDB can also be generated.

Using our database, we first generate a discretized potential for each structure as described in Ap-
pendix A.2. The first and second moments of each structure can then be computed using Eq. (3). We
then compute 𝑑vKam in Eq. (6) pairwise for all structures in the database.

To compare the performance of 𝑑vKam against existing metrics, we calculate pairwise scores using
𝑑vKam, Euclidean alignment, and the Zernike metric. We then plot the returned scores against each
other and calculate a ranking similarity using Normalized Discounted Cumulative Gain (24) (NDCG).
We use this metric since it is a popular method to quantify the similarity between sets of rankings;
its calculation is given in Appendix A.6.

In Figure 1, we report the NDCG scores between pairs of metrics. All NDCG scores are close to 1,
indicating strong agreement among the three different metrics on which structures are most similar.
However, the alignment metric and log(𝑑vKam) share the highest average NDCG score. To verify the
statistical signifance of this agreement, we report a t-test by selecting 10 different subsets, showing
that the NDCG score between 𝑑vKam and the alignment metric is statistically significantly higher
(with a 𝑝-value 𝑝 ≈ 8 × 10−9) than the NDCG score between the alignment metric and the Zernike
metric. We thus conclude that 𝑑vKam provides a fast and accurate alternative for the alignment metric.

Although it is the most interpretable metric, Euclidean alignment is computationally expensive to
execute for all pairs of structures in a database. To achieve a manageable runtime for alignment, we
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FIGURE 1. Comparison between 𝑑vKam, the Zernike metric, and Euclidean align-
ment. a-c) a random size 100 subset of the database is selected. Then, pairwise
similarity metrics are calculated and plotted, where each point represents a pair of
structures. The NDCG score is calculated using the metric on the 𝑦-axis as the pre-
dicted metric, and the metric on the 𝑥-axis as the true metric. d) The procedure is
repeated with 10 randomly selected size 100 subsets and the mean (𝜇) and standard
deviation (𝜎) of the NDCG scores are calculated. The errorbars and points visualize
𝜇 ± 𝜎.

calculate pairwise Euclidean alignment distances for subset of the database of size 100. Pairwise
alignment on this subset took 8 hours on a 2.6 GHz Intel Skylake CPU running AVX-512 using 16
physical cores and 80 GB RAM. To do pairwise alignment via Bayesian optimization for the entire
database of 1420 structures would require 46 days of computation, whereas using 𝑑vKam (including
precomputation) to calculate pairwise distances between all 1420 structures in the database requires
3 minutes on the same hardware. Despite containing an alignment component, the Zernike metric is
also fast, taking 3 minutes to compute pairwise distances for the entire database.

After observing high agreement between 𝑑vKam and the other metrics, we compute a 2-D embed-
ding of the similarity between structures in our database using t-SNE (25) (see Figure 2). Analogous
t-SNE plots for the alignment metric and Zernike metric are reported in Appendix B.2. We find that
𝑑vKam provides interpretable results in identifying similar molecules from their moments without the
need for alignment. In particular, we observe that both homologous (i.e., structures with similar
sequences) and similar-shaped structures are shown to be clustered together.

4.3. Database search using 𝑑iKam with synthetic cryo-EM data. We next demonstrate the ability
of 𝑑iKam to accurately find a match for the moments computed from projection images to a database
of analytical moments computed from the atomic coordinates of known structures. To test our met-
ric, we use the same dataset as the previous section, selecting the protein structure of a Mas-related
G-protein-coupled receptor (available as entry PDB-7VV3 (26)) from our database described in Sec-
tion 4.2. We use this entry because our database includes several similarly shaped yet non-identical
structures, on which we examine our metric’s performance.

We generate a synthetic cryo-EM dataset as illustrated in Figure 3: we take 25000 clean projection
images from a nonuniform distribution over SO(3) at viewing angles given by a mixture of three von
Mises-Fisher distributions (27). To simulate cryo-EM data, the images are then corrupted with one of
100 unique radial CTFs, after which we add white noise with a signal-to-noise ratio (SNR) of 0.1.
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FIGURE 2. 2-D embedding of protein structures based on their similarity using
𝑑vKam. The analytical moments of 1420 proteins were computed and compared us-
ing Eq. (6), and t-SNE was applied for visualization. Each node represents a single
structure and is colored by the number of atoms. Distinct clusters containing homol-
ogous or similarly shaped structures suggest that 𝑑vKam provides interpretable re-
sults.

FIGURE 3. Visualization of the generation of simulated images. (a) Protein struc-
ture of PDB-7VV3 (b) Clean projection images from PDB-7VV3 generated with a
nonuniform viewing angle distribution (c) Projection images corrupted with a CTF
and white noise with 𝑆𝑁𝑅 = 0.1. (d) Distribution of nonuniform viewing angles

We define the SNR by taking the signal as the average squared intensity over each pixel in all the
clean images, and setting the noise variance to the appropriate ratio of the signal. These simulated
images are generated using the ASPIRE software package (28) and have parameters consistent with
many experimental datasets.

We then compute the moments of the simulated images as will be shown in Eq. (12) and (13) and
compare to the database of moments using the image-to-volume metric described in Eq. (8). We
also report the effect of varying the number of images on the metric’s performance in Appendix B.3.
Using our metric, we can rank the similarity of the image’s moments to our database as shown
in Figure 4. We show that the most similar score (i.e., the smallest value in image Kam’s metric)
corresponds to the ground truth structure used to generate the images. Furthermore, based on our
results, the next top 116 structures correspond to structures with similar volumes and sequences.
These results demonstrate that we are able to compare directly between noisy, CTF-corrupted images
and known structures. This approach could be especially valuable if there is no known model for
initialization in 3-D reconstruction or if the molecule generating the images is unknown (29).
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FIGURE 4. Histogram ranking of dissimilarities computed using 𝑑iKam on simulated
noisy projection images generated from PDB-7VV3.

We report alignment scores between molecules in our database to PDB entry 7VV3, compare
these to our metric’s scores, and plot the results in Figure 5. Most notably, when the protein structure
becomes less similar to the ground truth (7VV3), the alignment metric begins to lose discrimina-
tive power. Figure 5 shows structures with varying degrees of dissimilarity as having the same
score (∼100). In contrast, our metric retains discriminative power, ranking structures with similar
sequences/functions before structures with similar shapes.

Alignment via Bayesian optimization between one structure and the 1420 structures in the data-
base took 95 minutes using the hardware described in Section 4.2. Aside from the computational
cost, the interpretation of the optimal rotation returned by alignment becomes unclear when compar-
ing two structures that are not volumetrically similar. On the other hand, our metric does not return
an alignment between two structures, which could render it less useful when an explicit alignment
must be computed. Without this alignment, it may become harder to visually compare their volumes.

It is computationally costly to generate and perform moment estimation on synthetic images for
every molecule in the database. As such, to compare the performance of our metric against the
Zernike metric, we select from our database a random subset of 100 structures. For each structure,
we repeat the process we perform on PDB-7VV3: first, we generate a nonuniform distribution over
S2 as a mixture of 3 von Mises-Fisher distributions with random means, weights, and covariance
matrices. We then generate 25000 images, corrupt with SNR = 0.1 and radial CTFs, compute the
moments, and search across the database.

For every structure, we recover the ground truth as one of the first six lowest-scoring molecules.
Moreover, 88 of the 100 tests recovered the ground truth as the lowest-scoring molecule. To evaluate
how well the metrics agree on structure similarity, we compute the size of the intersection between
the top ten structures returned by our metric and those returned by the Zernike metric. As shown
in Figure 6, we find that the metrics agree on two to three structures, and a large number of structures
agree only on the ground truth structure. When they occur, disagreements between the metrics are
likely due to the presence of near-identical molecules in the database.

4.4. Towards matching experimental datasets by 𝑑iKam. While our simulated result shows success
in matching a synthetic cryo-EM dataset to PDB structures, many experimental cryo-EM datasets are
corrupted by a large number of unmodeled effects that we have not considered. Among the real-data
effects are: scattering potential’s corruption by a solvent effect (30), the B-factor (31), a global scaling
ambiguity, imperfect centering, junk particles, non-radial CTF, and imperfect noise model. Our
simulation falls short on these counts.
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FIGURE 5. Comparison between the rankings given by 𝑑iKam (computed from simu-
lated images) and the minimum Euclidean distance after alignment (computed from
volumes). The structures shown are superimposed with the ground truth after align-
ment in panels A-D. The points on the graph that correspond to these structures are
colored and labeled. The ground truth corresponds to the green cross in the lower
left. Note that the Euclidean alignment metric shows stagnation whereas Kam’s met-
ric does not.

FIGURE 6. Comparison between 𝑑iKam computed from simulated images, and the
Zernike metric, computed from volumes. Here, we repeat simulated experiments
100 times. Then, the size of the intersection of the top ten structures returned by
𝑑iKam and the Zernike metric is plotted as a histogram.

In a first step towards applying 𝑑iKam to real experimental datasets, we compare the moments of
a stack of images deposited in the Electron Microscopy Public Image ARchive (EMPIAR) (32) to
the moments of its preprocessed 3-D reconstructions given by the program CryoSPARC (33). We
select the dataset EMPIAR-10076 (34), a heterogeneous dataset containing five major structures. The
dataset is well characterized, and each image in the dataset has been classified to one of the five major
states (34) or “junk" particles, which we discard. We use the classification to generate five separate
datasets, allowing us to compute five different moments, one for each of the major states. This test
case allows us to examine our metric matching on a real dataset, while bypassing some of the issues
associated with comparing datasets and volumes obtained in different experimental conditions.

We downsample the image stack to 64× 64, center using the deposited shift, and mask the images
with a circular binary mask of radius 0.8 times half the side length of the image. We then estimate the
moments for each structure and compare them to moments computed analytically from preprocessed
volume reconstructions of the five major structures, as well as two other distinctly-shaped ribosomes
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from the Electron Microscopy Data Bank (35) (EMDB), EMD-8457 and EMD-2660, used as a base-
line. Scaling issues between the moment computed from the images and the moment computed from
the volume are resolved by examining the diagonal entries of the second moments. Specifically, we
find a multiplicative scaling factor that best matches the diagonal of the image-computed second mo-
ment and those of the volume-computed second moment under a uniform distribution with respect to
the 𝑙2-norm.

FIGURE 7. 𝑑iKam visualization and ranking results for experimental data corre-
sponding to structure 001 (a) Experimental images from EMPIAR-10076 corre-
sponding to structure 001 downsampled to 64 × 64 pixels, centered, and with bi-
nary mask applied. (b) Comparison between diagonal entries of the second moment
computed from the reconstructed volumes 001, 002 and the moment estimated from
experimental images corresponding to structure 001. (c) Comparison between diag-
onal entries of the second moment computed from the reconstructed volumes 003,
004 and the moment estimated from experimental images from experimental images
corresponding to structure 001. (d) The five reconstructions (000-004) and two base-
line structures (EMD-8457, EMD-2600) ranked using 𝑑iKam, ordered from left to
right.

As shown in Figure 7, it is observed that Kam’s metric recovers the ground truth structure at the
lowest distance for the experimental images corresponding to structure 001. We note that the scores
for molecules 001 and 002, as well as molecules 003 and 004 are almost identical in value. Also,
we find that the analytical moments are closer to each other than to the experimentally determined
moments. Finally, the metric reports the baseline structures, which are very different in shape and
size, at the largest distances.

In Figure 8 we plot the distances between the five reconstructions (or in the case of 𝑑iKam, their ex-
perimental images) and the seven candidate structures given by both of our metrics. The exact values
for 𝑑iKam are given in Appendix B.4. There is also scaling ambiguity in 𝑑vKam since our reconstruc-
tions are preprocessed, hence we use the same approach as above: we scale each candidate structure’s
moment by a multiplicative scaling factor that best matches the candidate structure’s diagonal entries
of the second moment with those of the ground truth structure. Analyzing the trends in each row,
we observe that the metrics seem to agree on the general ranking of the molecules. While the struc-
tures 001, 002 and 003, 004 are very similar, 𝑑vKam shows that the metric distinguishes between
them given accurate moment estimation, whereas 𝑑iKam loses some discriminative power. However,
when it comes to distinct molecules such as EMD-8457 and EMD-2660, both metrics agree on their
rankings.
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FIGURE 8. Visualization of log(𝑑vKam) and log(𝑑iKam) values on the seven candi-
date structures. Here, EMD-8457 and EMD-2660 are listed as 8457 and 2660 for
brevity. Note that there are five ground truth structures but seven candidate struc-
tures since EMD-2660 and EMD-8457 are baseline structures for which there are no
images in the experimental dataset.

5. LIMITATIONS AND FUTURE WORK

𝑑iKam currently falls short of being directly applicable to experimental datasets. As stated in Sec-
tion 4.4, there are several unmodeled effects not considered in this work that could lead to unexpected
results for real data. The net effect of ignoring these experimental considerations is to bias our mo-
ment estimator, which may explain the inability of 𝑑iKam to detect the smaller differences between
structures 001 and 002, as well as 003 and 004. Developing an estimator that is robust to outliers
(such as junk particles) could help alleviate this.

While we address a few of these parameters, we do so with prior knowledge. For example, the
shifts used to center images are a byproduct of the reconstruction process. In future work, we aim to
develop methods to correct for these effects directly from the raw images. Likewise, here we have
controlled for experiment-specific artifacts by using images and structures resolved from the same
experiment, whereas in the future we wish to compare across all structures. Furthermore, in the
future we seek to compare moments computed from real data directly to the PDB, by appropriately
correcting for the discrepancies between PDB and reconstructed structures.

Even with our current mitigations, issues such as the B-factor and inaccuracies in the noise model
remain completely unmodeled. Further studies will be required to investigate which of these omis-
sions is important and which can safely be made. Then, our method could be modified to account for
the important effects.

6. DISCUSSION

We introduced structural similarity metrics for proteins based on moments, inspired by the moment
computation in Kam’s method. 𝑑vKam compares known 3-D structures according to the difference
between the moments of their potentials. We showed that the metric accurately captures similarity
according to the rotationally-aligned Euclidean metric, an interpretable but expensive-to-compute
molecular similarity metric. Therefore, 𝑑vKam allows for the efficient comparison of large number of
known structures. A potential application is to improve the similarity search presently in the PDB,
which uses the Zernike metric - a fast but less principled metric which involves learning weights and
which our results suggest performs worse than ours.

A second metric, termed 𝑑iKam, allows for the computation of a similarity score between an un-
known structure present in a large cryo-EM dataset and a solved structure. The computation of this
metric does not require a 3-D reconstruction process for the image stack, and therefore is very effi-
cient. We showed on simulated projection images that our method could discrimate between even
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very similar proteins with reasonably sized datasets. If it were to work on experimental datasets,
𝑑iKam could become a versatile tool for 3-D reconstruction. Typical reconstruction algorithms used
in practice are only locally optimal, and thus require good initialization, which 𝑑iKam could provide
by returning the homologous structures present in the PDB. By extending the database to the entirety
of the PDB and including structure predictions, both solved and predicted structures could be quickly
compared against.

Beyond its application to experiments, 𝑑iKam demonstrates that Kam’s method is a feasible strat-
egy for high-resolution reconstruction. Recent works have improved the viability of Kam’s method
by using sparsity (7) or neural network (36) priors; likewise, the search over the PDB using Kam’s
metric can be interpreted as simply running Kam’s method under a very strong prior, where only a
finite number of structures appear with non-zero probability. Our results suggest that, if one could
formulate a tractable prior over the manifold of proteins, Kam’s method could yield high-resolution
reconstructions.
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APPENDIX A. METHODOLOGY

In this section, we describe the computational details of the method.

A.1. Moment derivation. Prior work (8) has shown that the analytical first and second moments of
cryo-EM images generated by Φ̂ and 𝜌 equal

m1(Φ̂, 𝜌) =
∑︁
ℓ,𝑚

𝐵ℓ,−𝑚𝐴ℓ,𝑚(𝑟)𝑁0
ℓ

1
2ℓ + 1

(−1)𝑚, (12)

where the sum ranges over (ℓ, 𝑚) such that 0 ≤ ℓ ≤ min(𝐿, 𝑃), ℓ is even, and −ℓ ≤ 𝑚 ≤ ℓ, and

m2(Φ̂, 𝜌) =
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where
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(−1) (ℓ−𝑛)/2 if 𝑛 ≡ ℓ (mod 2)

0 if 𝑛 . ℓ (mod 2)
(14)

is an explicitly calculated constant,

𝐶ℓ′′ (ℓ, ℓ′, 𝑚, 𝑚′, 𝑛, 𝑛′) := 𝐶 (ℓ, 𝑚; ℓ′, 𝑚′ |ℓ′′, 𝑚 + 𝑚′)𝐶 (ℓ, 𝑛; ℓ′, 𝑛′ |ℓ′′, 𝑛 + 𝑛′) (15)

is a product of Clebsch-Gordan coefficients (37), and the sum ranges over those indices 𝑛, ℓ, 𝑚, ℓ′, 𝑚′, ℓ′′

that satisfy

0 ≤ 𝑛 ≤ 𝐿, −𝑛 ≤ ℓ ≤ 𝑛, −𝑛 ≤ ℓ′ ≤ 𝑛, −ℓ ≤ 𝑚 ≤ ℓ, −ℓ′ ≤ 𝑚′ ≤ ℓ′,

ℓ ≡ ℓ′ ≡ 𝑛 mod 2, max( |ℓ − ℓ′ |, |𝑚 + 𝑚′ |) ≤ ℓ′′ ≤ min(ℓ + ℓ′, 𝑃). (16)

See Sections 2.3.1 and 2.3.2 in (8) respectively for the derivations of (12) and (13). In the case of the
uniform density on SO(3), we note that 𝑁0

0 = 1√
4𝜋

so the Eq. (12) and (13) simplify to the following:

m1(𝑟) =
√︂

1
4𝜋

𝐴0,0(𝑟), (17)

m2(Δ𝜙, 𝑟, 𝑟 ′) =
1

4𝜋

∑︁
ℓ,𝑚

𝐴ℓ,𝑚(𝑟)𝐴ℓ,−𝑚(𝑟 ′)𝑃ℓ (cos(Δ𝜙 + 𝜋))

=
1

4𝜋

∑︁
ℓ,𝑚

𝐴ℓ,𝑚(𝑟)𝐴ℓ,𝑚(𝑟 ′)𝑃ℓ (cos(Δ𝜙)),
(18)

https://doi.org/10.1107/S205327332100752X
https://doi.org/10.1107/S205327332100752X
https://doi.org/10.1137/22M1542775
https://doi.org/10.1137/22M1542775
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where 𝑃ℓ is the Legendre polynomial of degree ℓ and 𝑧 denotes the complex conjugate of a complex
number 𝑧 ∈ C. The simplification of (12) to (17) is immediate, whereas the simplification of (13) to
(18) uses the sum rule for spherical harmonics, see Eq. 10 in (1).

A.2. Uniform case. This section details the method to compute 𝑑vKam. Our algorithm takes as
input a PDB identifier (a list of atomic coordinates), on which we center the atomic positions by
subtracting the molecule’s center of mass. Then we use the three-dimensional non-uniform fast
Fourier transform (NUFFT) (38,39) to compute the discrete Fourier transform evaluated on a grid in
spherical coordinates, i.e., to compute

𝑎𝑘 𝑗𝑙 =

𝑞∑︁
𝑖=1

�̂�𝑖 (𝑟𝑘𝛼 𝑗𝑙)𝑒𝚤𝑥𝑖 ·𝑟𝑘𝛼𝑗𝑙 , where 𝛼 𝑗𝑙 = (sin 𝜃 𝑗 cos 𝜑𝑙, sin 𝜃 𝑗 sin 𝜑𝑙, cos 𝜃 𝑗), (19)

where 𝑥𝑖 denotes the coordinates of the 𝑖th atom from the PDB identifier and 𝑞 is the total number of
atoms. The function �̂�𝑖 is the Fourier transform of the scattering potential of the 𝑖th atom as reported
in (40,41). In real space, this corresponds to convolving a Gaussian mixture with a delta function, in
other words, adding a Gaussian blob around the atom coordinate. Here, 𝑟𝑘 = 𝑘 𝛿

𝑁
, 𝜃 𝑗 =

𝜋 𝑗

𝑁
and

𝜑𝑙 =
2𝜋𝑙
𝑁

for 𝑘 = 0, . . . , 𝑁/2 and 𝑗 , 𝑙 = 0, . . . , 𝑁 − 1 and 𝛿 is the side length of the volume grid in
angstroms.

Lastly, we apply the spherical harmonic transform to 𝑎𝑘 𝑗𝑙 defined on the spherical coordinate grid
(𝑟𝑘 , 𝜃 𝑗 , 𝜑𝑙) in Eq. (19) using SHTools (42,43). This gives us coefficients

𝐴ℓ,𝑚(𝑟𝑘) =
∑︁

0≤ℓ≤𝐿
0≤𝑘≤𝑛−1

𝑎𝑘, 𝑗,𝑙𝑌
𝑚
ℓ
(𝛼 𝑗𝑙).

Let 𝜌𝑢 denote the uniform density on the sphere. In the discrete case, we sample each image as a 2-D
polar grid at 𝑁/2 radial points 𝑟 and 𝑁 angular points 𝜙, where 𝑁 is the number of pixels of one side
of the projection images. In Eq. (12), the first moment m1 is indexed by 𝑟 , and is thus an 𝑁/2-length
vector. Note that in Eq. (5), Δ𝜙 𝑗 = 2𝜋 𝑗/𝑁 − 2𝜋 for 𝑗 = 1, . . . , 2𝑁 , but since 𝑒𝑖𝑛Δ𝜙 in Eq. (13)
is 2𝜋/𝑛 periodic, we have that 𝑒𝑖𝑛(2𝜋−Δ𝜙) = 𝑒−𝑖𝑛Δ𝜙 and hence m2(𝑟, 𝑟 ′,Δ𝜙 𝑗) = m2(𝑟, 𝑟 ′,Δ𝜙 𝑗+𝑁 ).
Thus, Δ𝜙 𝑗 for 𝑗 = 1, . . . , 𝑁 is redundant and we consider only Δ𝜙 𝑗 for 𝑗 = 𝑁 + 1, . . . , 2𝑁 , which
enumerates [0, 2𝜋]. Thus, m2 is a three dimensional tensor of size 𝑁 × 𝑁/2 × 𝑁/2, since there are
𝑁 values for Δ𝜙 and 𝑁/2 values each for 𝑟 and 𝑟 ′, where Δ𝜙 are points uniformly spaced between 0
and 2𝜋 and 𝑟, 𝑟 ′ are 𝑁 uniformly spaced points between 0 and 𝛿. Equations (17) and (18) give

m1(𝑘) = 𝐴0,0(𝑟𝑘), (20)

m2( 𝑗 , 𝑘1, 𝑘2) =
1

4𝜋

∑︁
ℓ,𝑚

𝐴ℓ,𝑚(𝑟𝑘1)𝐴ℓ,−𝑚(𝑟𝑘2)𝑃ℓ (cos(Δ𝜙 𝑗 + 𝜋))

=
1

4𝜋

∑︁
ℓ,𝑚

𝐴ℓ,𝑚(𝑟𝑘1)𝐴ℓ,𝑚(𝑟𝑘2)𝑃ℓ (cos(Δ𝜙 𝑗)).
(21)

We then compute the metric given in Eq. (10). To better approximate the 𝐿2-norm in the continuous
case, we scale the difference of each entry m2( 𝑗 , 𝑘1, 𝑘2) by√𝑟𝑘1𝑟𝑘2 so that the squared norm is scaled
by 𝑟𝑘1𝑟𝑘2 . More precisely, we define weighted ℓ2-norms ∥ · ∥𝑤1 and ∥ · ∥𝑤2 on R𝑁/2 and R𝑁×𝑁/2×𝑁/2,
as described in Eq. (5). Let Φ and Φ′ be two different molecules, and m1,m2 and m′1,m

′
2 be the

first and second moment tensor, respectively, from two different molecules. We define the distance
between the moments as in Eq. (6).

A.3. Least squares for the nonuniform case. This section describes the process for generating and
solving the least squares system for 𝐵, the matrix encoding the viewing angle distribution. We use
the following convention for the vectorization operator vec(·): ifM ∈ C𝑖× 𝑗 , vec(M) returns a vector
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of dimension 𝑖 𝑗 obtained by stacking the columns ofM, i.e.,

vec
©«

𝑎1,1 · · · 𝑎1, 𝑗
...

. . .
...

𝑎𝑖,1 · · · 𝑎𝑖, 𝑗


ª®®¬ :=

[
𝑎1,1 · · · 𝑎𝑖,1 𝑎1,2 · · · 𝑎𝑖, 𝑗

]𝑇
. (22)

The first moment is linear in 𝐵 as shown in Eq. (12), so fitting a viewing distribution to observed
moments can be solved through a least-squares problem. We detail this procedure in Algorithm 1.

Algorithm 1: Computation of least-squares matrix 𝑉 for m1

1 initialize 𝑉 [𝑖 = 1, . . . , 𝑁/2] [(𝑝 = 1, . . . , 𝑃;𝑚 = −𝑝, . . . , 𝑝)] ← 0
2 for 𝑖 = 1, . . . 𝑁/2 do
3 for 𝑝 = 1, . . . , 𝑃 do
4 for 𝑚 = −𝑝, . . . , 𝑝 do
5 𝑉 [𝑖] [(𝑝;−𝑚)] ← 𝐴ℓ,𝑚(𝑟𝑖)𝑁0

ℓ

(−1)𝑚
2ℓ+1

6 end
7 end
8 end
9 return 𝑉

Algorithm 2: Computation of least-squares matrixU𝑛
ℓ,ℓ′ for B𝑛

ℓ,ℓ′

1 InitializeU𝑛
ℓ,ℓ′ [𝑖 = 1, . . . , (2ℓ + 1) (2ℓ′ + 1)] [(ℓ′′ = 1, . . . , 𝑃;𝑚 = −ℓ′′, . . . , ℓ′′)] ← 0

2 for 𝑖 = 1, . . . (2ℓ + 1) (2ℓ′ + 1) do
3 for 𝑚 = −ℓ, . . . , ℓ do
4 for 𝑚′ = −ℓ′, . . . , ℓ do
5 for ℓ′′ = max( |ℓ − ℓ′ |, |𝑚 + 𝑚′ |), . . . ,min(ℓ′ + ℓ, 𝑃) do
6 U𝑛

ℓ,ℓ′ [𝑖] [(ℓ
′′,−𝑚 − 𝑚′)] ←

U𝑛
ℓ,ℓ′ [𝑖] [(ℓ

′′,−𝑚 − 𝑚′)] + 𝐶ℓ′′ (ℓ, ℓ′, 𝑚, 𝑚′, 𝑛,−𝑛) (−1)𝑚+𝑚′

2ℓ′′+1
7 end
8 end
9 end

10 end
11 returnU𝑛

ℓ,ℓ′

For the second moment, we rewrite Eq. (13) more compactly:

m2(Δ𝜙) =
∑︁
𝑛

𝑒𝑖𝑛Δ𝜙
∑︁
ℓ,ℓ′
AℓB𝑛

ℓ,ℓ′A
∗
ℓ′ , (23)

where (
B𝑛
ℓ,ℓ′

)
𝑚,𝑚′

=
∑︁
ℓ′′

𝐵ℓ′′ ,−𝑚−𝑚′Cℓ′′ (ℓ, ℓ′, 𝑚, 𝑚′, 𝑛,−𝑛) (−1)𝑚+𝑚′

2ℓ′′ + 1
(24)

is a matrix of size (2ℓ + 1) × (2ℓ′ + 1) indexed by 𝑚1 = −ℓ . . . ℓ and 𝑚2 = −ℓ′ . . . ℓ′, and (Aℓ)𝑚,𝑟 =

𝐴ℓ,𝑚(𝑟) is a matrix of spherical harmonics coefficients indexed by 𝑚, 𝑟. Here, the sum ranges are
detailed in Eq. (16). Since B is linear in 𝐵, we use Algorithm 2 to construct many linear systems
U𝑛

ℓ,ℓ′ such that:

U𝑛
ℓ,ℓ′vec(𝐵) = vec

(
B𝑛
ℓ,ℓ′

)
,



18 A. ZHANG, O. MICKELIN, J. KILEEL, E. J. VERBEKE, N. F. MARSHALL, M. A. GILLES, AND A. SINGER

Using the Kronecker product, Eq. (23) can be written as

vec (m2(Δ𝜙)) =
∑︁
𝑛

𝑒𝑖𝑛Δ𝜙
∑︁
ℓ,ℓ′
(Aℓ′ ⊗ Aℓ)U𝑛

ℓ,ℓ′vec(𝐵).

This, too, is linear in 𝐵:

vec (m2(Δ𝜙)) = 𝑈 (Δ𝜙)vec(𝐵), where 𝑈 (Δ𝜙) =
∑︁
𝑛

𝑒𝑖𝑛Δ𝜙
∑︁
ℓ,ℓ′
(Aℓ′ ⊗ Aℓ)U𝑛

ℓ,ℓ′ . (25)

By vertically appending 𝑉 and copies of 𝑈 (Δ𝜙) for all values of Δ𝜙 in Section 3.1, we obtain the
least-squares formulation

min
𝑥
∥𝐴𝑥 − 𝑏∥,

where

𝐴 =

©«
𝑉

𝑈 (Δ𝜙1)
...

𝑈 (Δ𝜙𝑛)

ª®®®®¬
, 𝑥 = vec(𝐵), and 𝑏 =

(
vec(m1)
vec(m2)

)
. (26)

To solve this, we perform 𝑄𝑅-decomposition 𝐴 = 𝑄𝑅, and then solve the normal equations

𝐴∗𝐴𝑥 = 𝑅∗𝑅𝑥 = 𝐴∗𝑏 = 𝑅∗𝑄∗𝑏,

i.e., we solve 𝑅𝑥 = 𝑄∗𝑏. Since 𝑅 is a square upper triangular matrix, we solve this using back
substitution.

A.4. Change of bases for moment comparison. We compute moments from images using the fast
method (44) that produces the moments expanded in the Fourier Bessel basis. Thus, a change of
bases is required for moment comparison. The Fourier Bessel basis has several nice properties that
make it advantageous to use when computing the moment from images; it is orthonormal, frequency-
ordered, steerable, provides fast radial convolutions, and has a fast transform (45). The Fourier Bessel
basis functions can be written in polar coordinates (𝑟, 𝜃) as

𝜓𝑛,𝑘 (𝑟, 𝜃) = 𝑐𝑛,𝑘𝐽𝑛 (𝜆𝑛𝑘𝑟)𝑒𝑖𝑛𝜃 , (27)

where 𝐽𝑛 is a Bessel function of the first kind of order 𝑛, and 𝜆𝑛𝑘 is the 𝑘-h smallest positive zero of
𝐽𝑛, and 𝑐𝑛,𝑘 is a normalization constant.

We create a change of basis matrix (𝐵) (𝑟 , 𝜃 ) , (𝑛,𝑘 ) = 𝜓𝑛,𝑘 (𝑟, 𝜃) by sampling on a Cartesian grid
(𝑥, 𝑦) ∈ {𝑟𝑖} × {𝑟𝑖} with the {𝑟𝑖} grid defined as in Section 3.1, where (𝑟, 𝜃) are the grid points (𝑥, 𝑦)
in polar coordinates. This yields the moments in real space

m1(Φ, 𝜌) (𝑥, 𝑦) = 𝐵m1(Φ, 𝜌) (𝑛, 𝑘),
m2(Φ, 𝜌) (𝑥1, 𝑦1, 𝑥2, 𝑦2) = 𝐵m2(Φ, 𝜌) (𝑛1, 𝑘1, 𝑛2, 𝑘2)𝐵∗.

Now we compute the NUFFT to convert the moments into radially sampled polar coordinates in
Fourier space as in Eq. (19). In practice, we do this for m2 by taking each row (which is indexed by
(𝑥1, 𝑦1)), reshaping it into an image, and applying the transform. We then apply the same process to
the columns indexed by (𝑥2, 𝑦2).

A.5. Computational complexity. In the following, 𝐿 is the molecule bandlimit, see Eq. (1); 𝑃 is
the distribution bandlimit, see Eq. (2); 𝑀 is the number of projection images; and 𝑁 is the image
side length of the 𝑁 × 𝑁 pixel images. We assume that 𝑃 ≤ 𝐿.

There are three main steps for calculating the least squares matrix for each structure in our data-
base. We first calculate the least squares matrices U𝑛

ℓ,ℓ′ for B as described in Algorithm 2. This
needs only to be done once and does not need to be recomputed for each molecule. Calculating this
matrix takes 𝑂 (𝑃𝐿5) time and uses 𝑂 (𝑃𝐿5) space. For the calculation of the least squares matrix
itself, we precompute (Aℓ′ ⊗Aℓ)U𝑛

ℓ,ℓ′ , for ℓ, ℓ′, 𝑛 as described in Eq. (25). These intermediate steps
take 𝑂 (𝑃2𝐿2𝑁2 + 𝐿3𝑁2) time and use 𝑂 (𝐿3𝑁2) space for forming the Kronecker product and subse-
quent matrix multiplication. Finally, the construction of the least squares matrix 𝐴 in Eq. (26) takes
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𝑂 (𝐿3𝑁3) time for the scalar multiplication of a matrix for each 𝑛, ℓ, ℓ′, and the least squares uses
𝑂 (𝑃2𝑁3) space. As such, the total computational complexity for calculating a least-squares matrix
is 𝑂 (𝑃2𝐿5 + 𝑃2𝐿2𝑁2 + 𝐿3𝑁3) time and 𝑂 (𝑃2𝑁3 + 𝐿3𝑁2 + 𝑃𝐿5) space.

The computation of moments from noisy projection images in the Fourier-Bessel basis takes
𝑂 (𝑀𝑁3 + 𝑁4) time and uses 𝑂 (𝑀𝑁2 + 𝑁3) space. To convert this to polar coordinates in Fourier
space, we must first evaluate the moments in the Fourier-Bessel basis. This takes 𝑂 (𝑁2 log 𝑁) time
for each expansion, and we require 2𝑁2 such expansions (see Appendix A.4). Hence, in total, this
step takes 𝑂 (𝑁4 log 𝑁) time, and uses 𝑂 (𝑀𝑁2 + 𝑁4) space. Converting into Fourier space using
the NUFFT takes 𝑂 (𝑁4 log 𝑁) time and uses 𝑂 (𝑁4 log 𝑁) space, and we do this 2𝑁2 times for a
total of 𝑂 (𝑁6 log 𝑁) time and space complexity. Storing the final moment uses 𝑂 (𝑁3) space (since
the resulting matrix from the NUFFT is block circulant). Overall, computing moments from images
and converting them to polar coordinates in Fourier space takes 𝑂 (𝑁6 log 𝑁 + 𝑀𝑁3) time and uses
𝑂 (𝑀𝑁2 + 𝑁6 log 𝑁) space.

A.6. NDCG Score. The NDCG (24) is calculated by taking the Discounted Cumulative Gain (DCG)
and normalizing by Ideal Discounted Cumulative Gain (IDCG):

𝐷𝐶𝐺 =
∑︁
𝑖

true score of item 𝑖

log(𝑖 + 1) ,

𝐼𝐷𝐶𝐺 =
∑︁
𝑖

𝑖𝑡ℎ highest true score
log(𝑖 + 1) ,

𝑁𝐷𝐶𝐺 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
,

(28)

where 𝑖 is enumerated in the order induced by the predicted scores.
The NDCG puts weight on scores that are agreed to be high by both metrics. However, our

metric and the metrics we compare to are dissimilarity scores, so we prefer weight on scores that are
considered low by both metrics. To remedy this, we use the reverse of the order enumerated by the
predicted scores. For the true scores, we first normalize the scores to the range [0, 1] and then take
the exponential 𝑒−𝑠 for each true score 𝑠.

APPENDIX B. ADDITIONAL RESULTS

B.1. Parameter selection. In the experiments, we set the bandlimit parameters to 𝑃 = 6 and 𝐿 = 25.
Note that this value of 𝑃 is comparable to previous work as described in (8), whereas the higher value
of 𝐿 allows for a more accurate representation of the molecule in spherical harmonics. Furthermore,
the hyperparameter 𝜆 was set to be 1. As shown in Table 1 below, varying 𝜆 does not greatly impact
the performance of the metric.

TABLE 1. Effect of the value of the hyperparameter 𝜆 on the ranking induced by
𝑑iKam. 𝐴𝑖 denotes the structure with the 𝑖th lowest value of 𝑑iKam. In each row, the
entry shaded green indicates the ground truth structure.

𝜆 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

1e-2 7VV3 7VUZ 7TRK 7TRP 7VDM
1e-1 7VV3 7VUZ 7TRK 7TRP 7VDM

1 7VV3 7VUZ 7TRK 7TRP 7VDM
1e1 7VV3 7VUZ 7TRK 7TRP 7VDM
1e2 7VV3 7VUZ 7TRK 7TRP 7VDM
1e3 7Y15 6K41 7VDM 7VUZ 7E33
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B.2. Additional t-SNE plots. This appendix includes t-SNE visualizations of the Zernike metric on
our database and the alignment metric on a subset of our database of size 100. The alignment metric
is restricted to a subset of size 100 since calculating pairwise distances for a 1420 is computationally
taxing, see Section 4.2. Visually, the Zernike t-SNE seems to have fewer distinct clusters than the t-
SNE plot generated using 𝑑vKam, and also groups molecules with different numbers of atoms together.
It seems possible that Zernike metric is less discriminative, although this may also be an artifact of
t-SNE’s dimensionality reduction.

FIGURE 9. Additional t-SNE plots. a) t-SNE plot of pairwise Euclidean alignment
distances on a subset of size 100. b) t-SNE plot of pairwise Zernike distances on the
entire database c) t-SNE plot of pairwise 𝑑vKam distances on the entire database

B.3. Robustness to number of images. Here we examine the robustness of our metric to inaccu-
racies of moment estimation. Specifically, we vary the number of noisy synthetic projection images
that the metric has access to and record the highest-ranking structures.

TABLE 2. Effect of the number of projection images used for moment estimation
on the ranking induced by 𝑑iKam. 𝐴𝑖 denotes the structure with the 𝑖th lowest value
of 𝑑iKam. In each row, the entry shaded green indicates the ground truth structure.
The relative error in each moment is between the moment estimated from noisy
projection images and the moment calculated from their clean counterparts.

number of images 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 relative 𝑀1 error (%) relative 𝑀2 error (%)

500 7VDM 7VUZ 7Y15 7E33 7VV3 1.49 8.23
1000 7VUZ 7VDM 7VV3 7TRK 7EJ8 0.76 6.22
2500 7VUZ 7VDM 7VV3 7TRK 7TRP 0.43 4.02
5000 7VV3 7TRK 7VUZ 7TRP 7VDM 0.27 2.95
10000 7VV3 7VUZ 7TRK 7TRP 7VDM 0.25 1.89
25000 7VV3 7VUZ 7TRK 7VDM 7TRP 0.19 1.37
50000 7VV3 7VUZ 7TRK 7VDM 7TRP 0.14 1.15

B.4. Additional experimental results. Table 3 reports the metric’s rankings using experimental
images corresponding to the five structures resolved from EMPIAR-10076.



MOMENT-BASED METRICS FOR MOLECULES COMPUTABLE FROM CRYO-EM IMAGES 21

TABLE 3. Performance of 𝑑iKam on structures 001, 002, 003, 004, 005 of EMPIAR-
10076. 𝐴𝑖 denotes the structure with the 𝑖th lowest value of 𝑑iKam. The value of
log(𝑑iKam) is reported next to each structure in parenthesis. In each row, the entry
shaded green indicates the ground truth structure.

number of images 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7

2018 000 (14.56) 004 (16.22) EMD-2660 (16.23) 003 (16.32) 002 (16.42) 001 (16.45) EMD-8457 (17.43)
12650 001 (14.28) 002 (14.29) 004 (14.34) 003 (14.35) 000 (14.95) EMD-8457 (15.15) EMD-2660 (15.64)
26104 001 (15.13) 002 (15.16) 004 (15.18) 003 (15.29) 000 (16.50) EMD-8457 (16.51) EMD-2660 (17.14)
26138 003 (14.56) 004 (14.73) 001 (14.74) 002 (14.74) 000 (15.50) EMD-8457 (15.83) EMD-2660 (16.08)
36561 003 (14.62) 004 (14.80) 001 (14.84) 002 (14.88) 000 (15.40) EMD-8457 (16.00) EMD-2660 (16.09)
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