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Abstract

In this paper we propose an algorithm for aligning three-dimensional objects when represented as
density maps, motivated by applications in cryogenic electron microscopy. The algorithm is based on
minimizing the 1-Wasserstein distance between the density maps after a rigid transformation. The
induced loss function enjoys a more benign landscape than its Euclidean counterpart and Bayesian
optimization is employed for computation. Numerical experiments show improved accuracy and
efficiency over existing algorithms on the alignment of real protein molecules. In the context of
aligning heterogeneous pairs, we illustrate a potential need for new distance functions.

1 Introduction

Alignment of three-dimensional objects is an important task in applications ranging from computer vision
and robotics such as shape registration and model retrieval (Saupe and Vranić, 2001; Makadia et al.,
2006; Chen and Ouhyoung, 2006), to medical imaging and molecular biology where protein structures
need to be aligned before further processing and conformational analysis (Kawabata, 2008; Joseph et al.,
2020; Han et al., 2021). Given a pair of 3D objects which are rigid transformations of each other, the goal
is to recover the relative translation and rotation that would match the two objects. As the alignment
procedure often needs to be applied multiple times in the applications above, designing an accurate and
efficient algorithm is of great significance.

In this paper, we shall be interested in the case where the 3D objects are represented as density
maps, motivated by applications in cryogenic electron microscopy (cryo-EM) (Lawson et al., 2016). To
formalize our setup, suppose φ1, φ2 : R3 → R are two probability density functions representing the
volumes, with φ2 being a transformed version of φ1, i.e.,

φ2(x) = φ1

(
R∗(x+ v∗)

)
, ∀x ∈ R3, (1)

for some v∗ ∈ R3 and R∗ ∈ SO(3), the rotation matrix group. The goal of the alignment problem is to
recover the rotation R∗ and translation v∗ based on the density maps φ1 and φ2. Here we have assumed
φ1 and φ2 to be probability densities only for framing our problem in Wasserstein distances below, while
the proposed algorithm will work for density maps taking negative values or having non-unit masses. In
practice, the volumes are given as three-dimensional arrays Vi ∈ RL×L×L with L an integer, which can
be treated as discretizations of the φi’s, with the voxel values encoding their configurations.

A natural idea for solving the alignment problem is to search for the optimal translation and rotation
through the following optimization task:

(v̂, R̂) ∈ arg min
(v,R)∈B×SO(3)

d
(
φ1(R(·+ v)), φ2(·)

)
=: arg min

(v,R)∈B×SO(3)

Fd(v,R), (2)

where B is a hypercube containing v∗ and d is a suitable distance function on the space P(R3) of all
probability measures over R3. Most existing works with few exceptions (see Section 2) set d as the usual
L2 distance and (2) is then solved by gradient-based methods or a type of exhaustive search over the
space B × SO(3). However, due to the irregular shapes of the volumes, the landscape of FL2 could be
highly nonconvex and gradient-based methods would fail with poor initialization. Exhaustive search-
based methods, on the other hand, could return more accurate results but have formidable costs if
implemented naively. Methods exploiting convolution structures of FL2 (Kyatkin and Chirikjian, 2000)
can lead to great computational speed up but are still considered expensive for large volumes.
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Motivated by these issues, in this paper we shall propose an alignment algorithm based on solving
(2) in the 1-Wasserstein distance, which is known to better reflect rigid transformations than Euclidean
distances and hence creates a better loss landscape. Exploiting this fact, we employ tools from Bayesian
optimization for numerical minimization of (2), which is able to return global optimizers yet with much
fewer evaluations of the objective than an exhaustive search. The resulting algorithm achieves improved
performance over existing ones as we will demonstrate on the alignment of real protein molecules.

1.1 Wasserstein versus Euclidean Landscapes

The main motivation for considering Wasserstein distances in (2) comes from the better resulting loss
landscape as we will discuss in this subsection. Recall that for two probability measures µ, ν ∈ P(R3),
the p-Wasserstein distance for p ∈ [1,∞) is defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
R3×R3

|x− y|pdγ(x, y)

)1/p

,

where Γ(µ, ν) is the set of all couplings between µ and ν, i.e., the set of all joint probability mea-
sures over R3 × R3 whose marginals are µ and ν. Wasserstein distances have been widely studied and
employed in for instance image retrieval (Rubner et al., 2000), deep learning (Arjovsky et al., 2017),
structural determination of molecular conformation (Zelesko et al., 2020) among many other areas of
applied sciences.

For the alignment problem that we are interested in, the Wasserstein distances are better able to
reflect the distances between a density map and its transformed version. For instance, it is shown by
(Hamm et al., 2022, Lemma 3.5) that for p ∈ (1,∞),

Wp

(
φ(·), φ(·+ v)

)
= |v|, ∀ v ∈ R3,

where φ(·+ v) denotes the v-shifted density and | · | is the Euclidean norm. Therefore if the volumes are
simply translations of each other (i.e. when R equals identity I3 in (1)), then the associated loss in (2)
satisfies FWp(v, I3) = |v|, a convex function with a unique minimum at v = 0. However, the same is far
from being true for the Lp loss ‖φ(·)− φ(·+ v)‖p if φ has an irregular shape.

Similar assertions can be made when the two volumes are pure rotations of each other (i.e. when
v = 0 in (1)). Precisely, one can show that (see e.g. Rao et al., 2020, Propositions 1 and 2)

Wp

(
φ(Rθ·), φ(·)

)
≤ 2 sin

(
θ

2

)
Mp(φ)1/p

for an in-plane rotation Rθ of angle θ, where Mp(φ) is the p-th moment of φ. The corresponding bound
for the Lp distance would have an additional factor of ‖∇φ‖∞, which could be large and gives a looser
control on the change of Lp distance with respect to the magnitude of θ. Figure 1 plots the loss Fd(0, R)
for two distance functions when R = Rγ ·Rβ represents a rotation around the y-axis by β ∈ [−π/2, π/2]
followed by a rotation around the z−axis by γ ∈ [−π/2, π/2], for a volume shown in Figure 2. Here
WEMD denotes the wavelet approximation of W1 that we shall use for computation (see Section 3.3.1)
and Euclidean stands for the usual L2 distance between vectors. We notice that the landscape of the

Figure 1: Comparison of local landscapes of Fd(0, R) when d is WEMD (cf. (14)) and Euclidean (L2).

loss associated with WEMD is flatter or has a larger basin of attraction compared with that for the
Euclidean distance, which can facilitate the search of the minimizer. The narrow basin of attraction in
the Euclidean case suggests the necessity of some type of exhaustive search unless the initial guess for
gradient-based methods happens to fall in such region.
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1.2 Computation via Bayesian Optimization

The landscape analysis above suggests potential benefits in using Wasserstein distances as the loss func-
tion in solving (2). However, a question remains for its numerical optimization as Wasserstein distances
are less analytically tractable and more computationally costly. In particular, computing gradients of
(2) would be challenging both analytically and numerically, and an exhaustive search would require a
huge computational budget due to the lack of a convolution structure. With these issues in mind, we
shall instead adopt a Bayesian optimization approach, which does not require gradient information of
the objective (2) while being able to return accurate solutions with much fewer evaluations of (2) than
an exhaustive search.

First of all, let’s make the following simple observation that the relative translation can be recovered
by centering the two density maps, so that the problem reduces to estimating the rotation R∗ alone.
Indeed, suppose without loss of generality that φ1 is already centered, i.e.,

∫
R3 xφ1(x)dx = 0. Then (1)

implies after a change of variable that∫
R3

xφ2(x)dx =

∫
R3

xφ1

(
R∗(x+ v∗)

)
dx = R−1

∗

∫
R3

xφ1(x)dx− v∗ = −v∗.

Therefore one can recover v∗ by computing the center of mass of φ2 and the shifted volume φ̃2(x) :=
φ2(x−v∗) = φ1(R∗x) is then a purely rotated version of φ1. This leads to a viable approach for estimating
the shift vector between φ1, φ2 when they are noise free, as we shall demonstrate in Section 4.3. For the
rest of this paper, we shall mainly focus on the rotational recovery, i.e., we assume

φ2(x) = φ1(R∗x), ∀x ∈ R3

and find the best rotation that minimizes

R̂ ∈ arg min
R∈SO(3)

d
(
φ1(R(·)), φ2(·)

)
=: arg min

R∈SO(3)

Fd(R), (3)

This will be achieved with Bayesian optimization as we overview next.
On a high level, Bayesian optimization is an iterative procedure that searches for optimizer candidates

by solving a sequence of surrogate problems instead of the original one (3). At the t-th iteration, one
collects the candidates {Ri}ti=1 picked so far together with the associated function values {Fd(Ri)}ti=1 to
form using Bayesian techniques a surrogate function ft whose landscape resembles Fd while being much
cheaper to optimize. The (t+ 1)-th candidate is then chosen by solving the surrogate problem

Rt+1 ∈ arg min
R∈SO(3)

ft(R), (4)

and is incorporated to the history {Ri, Fd(Ri)}ti=1 for updating ft. After a total number of T iterations
the approximate solution to (3) is returned as

R̂ ∈ arg min
t=1,...,T

Fd(Rt).

Note that the whole procedure only requires access to function evaluations of Fd but not its gradient.
Intuitively speaking, the algorithm explores the search space SO(3) based on the landscapes of the

surrogate functions ft’s, which will approximate that of Fd as t increases but are much simpler to decode.
As can be expected, the construction of ft is crucial for the algorithm to perform well. In this paper, we
shall take ft as a Gaussian process interpolant (see Section 3.2 for more details), which admits a simple
analytic formula whose gradient is also available in closed form so that the surrogate problems (4) can be
solved cheaply. Our numerical experiments in Section 4.2 show that a total of T = 200 iterations would
suffice for accurate rotational alignment for real protein molecules, suggesting it as a practical algorithm.
Furthermore, the fact that only evaluations of Fd are required implies that the proposed framework can
be applied to arbitrary loss functions in (3), beyond vanilla Wasserstein or Euclidean distances. This
could be a useful property when aligning a pair of heterogeneous volumes as we discuss in Section 5
where more sophisticated loss functions may be needed. The algorithm can also be extended beyond the
density map assumption to volumes represented for instance by point clouds as long as one can define a
suitable loss function as in (3).
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1.3 Our Contributions

The contributions of this paper are summarized as following:

• We propose a novel algorithm for aligning three-dimensional objects (Section 3), which achieves
both improved accuracy and efficiency over existing methods on real datasets of protein molecules
from cryo-EM (Section 4).

• Our algorithmic framework can be extended beyond the 1-Wasserstein distance to arbitrary dis-
tance functions. In the context of aligning a heterogeneous (similar but non-identical) pair of
volumes, we show a potential need for new loss functions in which case our algorithm can be
seamlessly incorporated (Section 5).

2 Related Work

A classical approach for rotational alignment when the volumes are represented as point clouds is to
perform principal component analysis and align the resulting eigenvectors. This method could give
exact recovery in theory (up to reflections) but is not robust to perturbations of the given volumes,
which is usually the case in practice, and breaks when the volumes admit certain symmetry. More recent
works in the computer vision literature include Makadia et al. (2006); Kazhdan (2007); Althloothi et al.
(2013) (see also the references therein), which again assume representations of the volumes as point
clouds or other shape descriptors and parametrizations. Our problem setting is slightly different in that
the point clouds representing our volumes are always fixed as the same Cartesian grid, where it is the
voxel values that characterize their configurations. Nevertheless, we remark that the proposed algorithm
in this paper can be extended easily to the point cloud setting.

In the context of density map alignment that we consider, the optimization approach (2) is most
often adopted, which is then solved by gradient-based or exhaustive search-based methods. Setting d as
the L2 distance, (2) is equivalent to correlation maximization

(v̂, R̂) = arg max
(v,R)∈B×SO(3)

〈φ1(R(·+ v)), φ2(·)〉L2 , (5)

where 〈·, ·〉L2 denotes the L2 inner product. The Chimera package (Pettersen et al., 2004) implements a
steepest ascent algorithm for solving (5) by relying on an initial alignment that is close to the true one,
which is usually done manually by the user. Chirikjian et al. (2004) proposes using Kullback–Leibler
divergence as the loss function which is later optimized with gradient descent, but no simulations are
presented. Setting d as an entropic regularization of the 2-Wasserstein distance, the recent work Riahi
et al. (2022) solves (2) with stochastic gradient descent after subsampling the volumes using topology
representing network (Martinetz and Schulten, 1994). This is the only work we are aware of that employs
Wasserstein-based distances for the alignment problem. Improved results are obtained over Chimera but
the algorithm still requires the initial alignment to be within certain range of the true one.

For this reason, exhaustive search-based methods are also popular and appear necessary. One subcat-
egory of works in this direction attempts to search for the best alignment over a dense grid of translations
and rotations that maximizes (5). Since the number of grid points is typically large, the key to these
methods is a fast algorithm for computing (5) given a pair of v and R (Kyatkin and Chirikjian, 2000;
Chen et al., 2013; Rangan, 2022). This can be achieved by expanding the correlation in spherical har-
monic bases (with the efficient spherical Fourier transform (Healy Jr et al., 2002)) and using the fact that
rotation corresponds to application of Wigner-D matrices. Translations can be treated similarly with
fast Fourier transform techniques. Existing packages include Xmipp (De la Rosa-Trev́ın et al., 2013),
and EMAN2 (Tang et al., 2007) which employs a hierarchical tree-based algorithm.

Another subcategory of works approaches this problem by considering the projections of the volumes.
The main idea is to not maximize the correlation between the volumes as in (5) but instead their
projections, where only inner products between images are computed and the search space can be reduced
to five-dimensional (Yu et al., 2013). The recent work Harpaz and Shkolnisky (2023) improves this idea
by employing common lines based techniques to further accelerate the search of matching projections.
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3 The Proposed Method

In this section we present in detail our proposed method to solve (3) with d as the 1-Wasserstein distance:

R̂ ∈ arg min
R∈SO(3)

W1

(
φ1(R(·)), φ2(·)

)
=: arg min

R∈SO(3)

FW1
(R), (6)

Our algorithm is summarized in Algorithm 1, which exploits the general framework of Bayesian op-
timization. To make our presentation self-contained, we shall introduce some necessary background
before explicating the algorithmic details. We refer to Frazier (2018) for a more thorough introduction
to Bayesian optimization. The interested reader can skip to Section 3.3 for a description of our full
algorithm.

As overviewed in Section 1.2, Bayesian optimization is an iterative procedure that searches for an
optimizer of (6) by solving instead a sequence of surrogate problems. At each iteration, the surrogate
problem is to optimize an acquisition function constructed based on a probabilistic model and all past
queries of the objective function FW1

. The acquisition function should be cheap to optimize while at
the same time encodes enough information on the landscape of FW1

. For our purpose in this paper, we
shall adopt a Gaussian process for probabilistic modeling of FW1 (Section 3.1) and a Gaussian process
interpolant for the acquisition function (Section 3.2).

3.1 Gaussian Processes

The starting point of Bayesian optimization is to build a probabilistic model for the function FW1
in (6)

that we wish to optimize, which is used to construct an acquisition function as in Section 3.2. Since FW1

is a nonparametric function, a common choice is to model it as a sample path from a Gaussian process
(Rasmussen and Williams, 2006). Recall that a Gaussian process (GP) over a space M is a collection
of random variables {u(x), x ∈ M} where any finite subcollection is jointly Gaussian. For any finite set
{xi}Ni=1 ⊂ M, the mean vector m ∈ Rn and the covariance matrix Σ ∈ Rn×n of the finite-dimensional
Gaussian [u(x1), . . . , u(xn)]T can be specified in a consistent way through a mean function µ(·) and a
covariance function c(·, ·) so that mi = µ(xi) and Σij = c(xi, xj). Intuitively speaking, a GP is a random
process whose realizations fluctuate around µ(·) according to restrictions imposed by c(·, ·). In particular,
µ(·) and c(·, ·) completely determine the distribution of the GP and from the modeling perspective it
suffices to make the appropriate choices for them.

Typically the mean is set to be zero and the covariance function encodes one’s prior belief on sample
path properties such as smoothness. When the space M is a subset of the Euclidean space, one of the
most commonly used covariance functions is the squared exponential

c(x, y) = σ2 exp

(
−|x− y|

2

2`2

)
, x, y ∈ Rn, (7)

where σ, ` > 0 are respectively the marginal variance and correlation lengthscale parameters. Roughly
speaking, σ determines the overall magnitude of the sample paths, and function values at two points
with distance on the order of ` are nearly uncorrelated. An important feature of the squared exponential
covariance function is that it leads to infinitely differentiable sample paths (see e.g. Rasmussen and
Williams, 2006, Section 4.2), which are suitable choices for modeling smooth functions.

Based on our discussion in Section 1.1 that the Wasserstein distances vary relatively smoothly with
respect to rigid transformations, the squared exponential serves as a natural choice for our problem.
Recall that in our setting the space M = SO(3) is a subset of R3×3. Therefore we shall define our
covariance function as

c(R,S) = σ2 exp

(
−‖R− S‖

2
F

2`2

)
, R, S ∈ SO(3), (8)

where ‖·‖F denotes the Frobenius norm. Notice that this is equivalent to viewing each matrix as a vector
in R9 and applying (7), as a result of which the covariance function (8) retains positive definiteness.
Therefore the probabilistic model for FW1

in (6) that we shall adopt is a GP over SO(3) with mean zero
and covariance (8).

Remark 3.1. Here we briefly discuss other possible choices of covariance functions over SO(3). On the
one hand, any other Euclidean covariance functions such as the Matérn family (see e.g. Rasmussen and
Williams, 2006, Section 4.2) can be employed by viewing SO(3) as a subset of R3×3. Our choice of (8)
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is motivated by its superior empirical performance in our alignment problem and its simple form that
facilitates numerical optimization of the acquisition function as will be discussed in Section 3.2.

On the other hand, the space SO(3) admits a manifold structure, which suggests a covariance function
over the manifold SO(3) that takes geometry into account. This for instance can be achieved by

c(R,S) = σ2 exp

(
−Θ(R,S)2

2`2

)
, Θ(R,S) = arccos

(
Trace(RST )− 1

2

)
, R, S ∈ SO(3), (9)

where Θ(R,S) is the relative angle between the two rotations, whose absolute value is also the geodesic
distance on SO(3). However, geodesic exponential kernels such as (9) are not positive definite in general
for all ` > 0, although empirical evidence suggests positive definiteness for a range of `’s in certain cases
(Feragen and Hauberg, 2016). Again, our simulation experience suggests better performance when using
(8) over (9). Finally, we point to some more sophisticated covariance functions over SO(3) proposed by
Jaquier et al. (2022).

3.2 Gaussian Process Interpolant as Surrogate

With a probabilistic model for FW1
, we shall replace the original optimization problem (6) by a sequence

of simpler surrogate problems. This will be achieved by constructing simple-to-optimize approximations
ft to the objective function FW1 in (6). In this paper, we shall take ft as the conditional expectation of
the GP proposed in Section 3.1 after “observing” the data {(Ri, FW1(Ri))}ti=1, which we explain now.

Suppose we have picked the first t candidates {Ri}ti=1 (for the initial candidates, we can for instance
generate t0 random rotation matrices). Together with the associated objective function values Yi =
FW1

(Ri), we shall interpret the pairs {(Ri, Yi)}ti=1 as observations we have obtained for the unknown
function FW1 . Now in the Bayesian regression framework, we have

FW1
∼ Π, FW1

(Ri) = Yi,

where Π is the GP model as in Section 3.1. Therefore a natural estimator for FW1
is the conditional

expectation

ft(x) = EG∼Π

[
G(x)

∣∣G(Ri) = Yi, 1 ≤ i ≤ t
]
,

which is known (Stein, 1999) to minimize the squared error loss EFW1
∼Π|FW1

(x)− F̂ (x)|2 over all F̂ (x)
that is measurable with respect to {FW1

(Ri)}ti=1 when FW1
is indeed a sample path from Π. In particular,

ft interpolates FW1 , i.e., ft(Ri) = FW1(Ri) for 1 ≤ i ≤ t, and approximates FW1 increasingly well as
more observations of FW1 are obtained. Furthermore, it can be shown that (e.g. Kanagawa et al., 2018,
Theorem 3.3) ft admits a simple analytic formula

ft(x) = k(x)TK−1Y, x ∈ SO(3), (10)

where k(x) ∈ Rt is a vector with entries [k(x)]i = c(x,Ri), K ∈ Rt×t is a matrix with entries Kij =
c(Ri, Rj), and Y ∈ Rt is a vector with entries Yi = FW1(Ri). Notice that ft is simply a linear combination
of the covariance functions

ft(x) =

t∑
i=1

[
K−1Y

]
i
c(x,Ri), x ∈ SO(3),

and admits an analytic formula for its Euclidean gradient under the covariance function choice (8) as

∇Euft(x) =

t∑
i=1

[
K−1Y

]
i
c(x,Ri)

(
Ri − x
`2

)
, x ∈ SO(3). (11)

Therefore optimization of ft can be carried out much more cheaply compared with the original problem
(6) by supplying the gradient to standard optimization packages.

3.3 The Full Algorithm

Now we are ready to present the full algorithm, as summarized in Algorithm 1. Starting with a GP
model for FW1 and initial candidates {Ri}t0i=1 (which can be randomly generated), we form the surrogate
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function (10) based on all observations {(Ri, FW1
(Ri))}ti=1 obtained so far and search for the next

candidate by solving

Rt+1 ∈ arg min
R∈SO(3)

ft(R). (12)

Now with the new observation (Rt+1, FW1(Rt+1)) included, we update the surrogate to ft+1 and repeat
the process (12). After a total of T iterations, we shall return the candidate with smallest objective
function value, i.e.,

Rest ∈ arg min
t=1,...,T

FW1
(Rt) (13)

as the solution to the original problem (2). Such a procedure would serve as a prototype for our
proposed method. To further improve its practicality, below we shall introduce two modifications: (i)
approximation of the W1 distance and (ii) an optional local refinement step.

3.3.1 Wavelet Approximation of W1 Distance

Despite the favorable induced landscape as shown in Section 1.1, a notable issue for Wasserstein distances
is their high computational cost. For practical applications in cryo-EM that we shall consider, the density
maps are represented as three-dimensional arrays of size L × L × L with L on the order of hundreds.
Therefore the cost of exact computation of W1 distances is prohibitive and scales in the worst case
as O(N3 logN) with N = L3. For this reason, we seek an approximation of W1 through the wavelet
approximation proposed by Shirdhonkar and Jacobs (2008) which reduces the above cost to O(N).

Precisely, the wavelet earth mover’s distance (WEMD) (Shirdhonkar and Jacobs, 2008) is defined as

‖φ1 − φ2‖WEMD =
∑
λ

2−j(1+n/2)|Wφ1(λ)−Wφ2(λ)|, (14)

where n = 3 denotes the dimension of the density maps and Wφi denotes a 3D wavelet transform. The
index λ consists of the triplet (ε, j, k), where ε takes values in a finite set of size 2n − 1 that for instance
represents tensor products of 1D wavelets, and j is the scale parameter that ranges over ∈ Z≥0 and k
ranges over ∈ Zn. It is proved in (Shirdhonkar and Jacobs, 2008, Theorem 2) that the metric defined
above is equivalent to the W1 distance. Such an approximation has the additional advantage that the
distance (14) can be defined for density maps that take negative values, which is usually the case in
practice, whereas the original W1 distance is restricted to probability densities.

Now we shall replace all occurrences of the W1 distance in our previous algorithmic procedure by the
WEMD distance (14). Precisely, the alignment problem we shall be solving becomes

R̂ ∈ arg min
R∈SO(3)

‖φ1(R(·))− φ2(·)‖WEMD =: arg min
R∈SO(3)

FWEMD(R), (15)

and the surrogate problem (12) together with the returned solution (13) will be defined in terms of FWEMD

instead. Note that the Bayesian optimization framework only requires access to function evaluations, so
that replacing FW1

by FWEMD does not require extra modifications of the algorithm. In principle, FWEMD

can be further replaced by any other distance function, which is an important feature of the adopted
framework that we shall elaborate more in Remark 3.4.

3.3.2 Local Refinement

In Section 4.2, we will show numerically that after T = 200 iterations, the algorithm described so far
returns reasonably accurate recovery of the relative rotation R∗ for real protein molecules. However,
for a finite t, the surrogate ft only approximates FW1

and so does its minimizer. In order to obtain
close-to-exact recovery, the candidates should form a dense enough cover of SO(3), which would require
many more samples than T = 200 and is computationally infeasible. For this reason, we introduce an
optional local refinement step by employing the Nelder-Mead algorithm. Precisely, we shall return

Rrefine ∈ arg min
R∈SO(3)

‖φ1(R(·))− φ2(·))‖2, (16)

where (16) is optimized with the Nelder-Mead algorithm initialized at Rest given by (13). This concludes
the description of our algorithm, presented in Algorithm 1.
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Note that we switched to the L2 loss in (16) for reasons to be explained in Remark 3.5. We further
remark that (16) can be solved in principle by other standard optimization algorithms such as BFGS.
We have deliberately chosen Nelder-Mead because it only requires loss function evaluations in a similar
spirit as Bayesian optimization. Such a property can be useful and crucial in the context of aligning
heterogeneous pairs of volumes, where we show in Section 5 a potential need for new and more sophisti-
cated distance functions which one may only know how to evaluate. In this case our proposed framework
would still be applicable.

Algorithm 1 Volume Alignment in WEMD via Bayesian Optimization

Input: Volumes φ1, φ2; loss FWEMD (15); GP covariance (8); initialization {(Ri, FWEMD(Ri))}t0i=1.
for t = t0, . . . , T do

Compute ft as in (10) and find
Rt+1 ∈ arg min

R∈SO(3)

ft(R)

Add (Rt+1, FWEMD(Rt+1)) to {(Ri, FWEMD(Ri))}ti=1.
end for
Set the estimated rotation as

Rest ∈ arg min
t=1,...,T

FWEMD(Rt).

(Optional) Solve the following with Nelder-Mead algorithm initialized at Rest

Rrefine ∈ arg min
R∈SO(3)

‖φ1(R(·))− φ2(·))‖2.

Output: Rest and (optional) Rrefine.

We end this section with further remarks on the algorithmic details.

Remark 3.2 (Choice of ft). In Bayesian optimization, ft is called the acquisition function and there have
been extensive research on its choice (see e.g. Frazier, 2018), all of which could have been employed in
our problem setting. Our choice of (10) is motivated by its simple form that admits an analytic formula
for its gradient, which facilitates solving (12). For readers familiar with Bayesian optimization, (10)
corresponds to GP-UCB (Srinivas et al., 2009) with no exploration, which appears to be a suboptimal
choice. However for practical implementation, one may only want to solve (12) approximately with early
stopping to speed up the search, which can be treated as another form of exploration. Our experience
suggests better performance for using (10) than adding a term proportional to the conditional variance
as in the standard GP-UCB. Furthermore, (10) is independent of σ, the marginal variance parameter in
(8), which would otherwise be present in the standard form and requires tuning.

Remark 3.3 (Numerical optimization of ft and addressing handedness). The majority of the efforts in
Algorithm 1 are devoted to solving the surrogate problems (12), whose accuracy and efficiency are the
key to the algorithm. We note that the kernel matrix K in (10) could be ill-conditioned if two candidates
Rt and Rt′ are very close to each other. For numerical stability, a nugget term is usually incorporated
to (10) so that we consider instead

ft = k(x)T (K + τIt)
−1Y, (17)

with a small τ for practical implementation.
Taking advantage of the manifold structure of SO(3), we shall optimize ft with the Riemannian

optimization package (Boumal et al., 2014; Townsend et al., 2016). The Euclidean gradient (11) can still
be supplied for speed up, which is automatically transformed into Riemannian gradients by the package.
In cryo-EM applications, one often needs to address also the handedness of the molecules, i.e., when
φ1 and φ2 differ additionally by a reflection. This can be achieved in our framework by optimizing ft
instead over O(3), the space of orthogonal matrices, which corresponds to the Stiefel manifold St(3, 3)
in the package (Boumal et al., 2014; Townsend et al., 2016). However, we remark that this is not much
different from reflecting one of φ1, φ2 first and aligning the resulting pair since the new search space
O(3) is twice as large as SO(3) and the number of iterations T for accurate alignment is also expected
to double.
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Remark 3.4 (Choice of loss function). Algorithm 1 is presented in terms of the loss function FWEMD (15)
and only requires access to its evaluations but nothing else. An immediate observation is that Algorithm
1 can be applied to solve the alignment problem with any distance function d in (3), as a consequence of
the Bayesian optimization framework. Our choice of W1 distance is motivated by the fact that it can be
efficiently approximated with WEMD (14). Based on the discussion in Section 1.1, we believe a general
Wp distance could also be used, with for instance an entropic regularization (Cuturi, 2013) for practical
implementation.

To illustrate the advantage of employing Wasserstein-based loss functions, we will show in Section 4.2
the improved performance of Algorithm 1 over its L2 loss counterpart. Finally, in the context of aligning
a pair of heterogeneous volumes in Section 5, we shall discuss a potential need for new loss functions
other than the vanilla Wasserstein or Euclidean distances. In such a setting, the new loss function
could be analytically intractable and expensive to evaluate, which renders unclear the applicability of
gradient-based or exhaustive search-based algorithms. Nevertheless, Algorithm 1 could be seamlessly
incorporated as long as we can afford a small number of evaluations of the loss function and potentially
give a feasible solution.

Remark 3.5 (Refinement in L2 distance). We have switched to the L2 distance in the refinement step
(16) for the following two reasons. First, the recovery Rest is already very close to the global minimizer
of (15), which is likely to lie also in the basin of attraction in the L2 loss, although the latter is generally
much narrower as shown in Figure 1. Therefore a local search in L2 loss would be sufficient and more
efficient than in the WEMD.

Second, the WEMD or W1 distance appear to be more sensitive than the L2 distance to perturbations
of the density maps in terms of the optimal alignment. In practice, the density maps may correspond
to two different reconstructions of the same object and are only provided as three-dimensional arrays
V1, V2 ∈ RL×L×L for an integer L. Therefore, the minimizers of the empirical versions of (15) and (16)
are not necessarily equal to the true relative rotation R∗ but only approximately. However, we found
that the minimizer of the empirical version of (15) could be non-negligibly different from R∗ in many
cases where there is no issue with the L2 distance, suggesting the L2 loss as a more robust local search
metric. Such observation is also related to the alignment of heterogeneous pairs that we shall discuss in
Section 5.

4 Numerical Experiments

In this section we apply our proposed method in Section 3 to align real protein molecules from a cryo-EM
database (Lawson et al., 2016). Section 4.1 contains the implementation details, in particular the choices
of hyperparameters in Algorithm 1. In Section 4.2, we investigate the performance of Algorithm 1 under
different downsampling levels, total number of iterations, and noise corruption, while comparing with
the L2 loss version of Algorithm 1. In Section 4.3, we compare the performance of Algorithm 1 with
the two recent works Harpaz and Shkolnisky (2023); Riahi et al. (2022). The algorithmic complexity is
discussed in Section 4.4. Our code is available on https://github.com/RuiyiYang/BOTalign.

4.1 Implementation Details

For GP modeling, we shall use the Gaussian kernel defined in (8) with σ = 1. Notice that the surrogate
ft defined in (10) is independent of σ so its choice is indeed arbitrary. The choice of `, on the other hand,
would have an effect and is empirically tuned for optimal algorithmic performance. As mentioned, we
shall investigate the performance of Algorithm 1 under both the WEMD loss and the L2 loss. The values
of ` are fixed as 0.75 and 1 respectively throughout the experiments. The WEMD distance is computed
using PyWavelet (Lee et al., 2019) with the sym3 wavelet and maximum scale level s = 6 following Kileel
et al. (2021).

We shall initialize Algorithm 1 with a single candidate I3, the identity matrix. Our experience
suggests that the initialization does not affect much the performance. For optimization of the surrogate
problems, we shall follow the discussion in Remark 3.2 and consider ft defined in (17) with τ = 10−3 for
numerical stability. The surrogate ft is then optimized with Riemannian steepest descent with random
initialization using Pymanopt (Townsend et al., 2016), with an early stopping if both the gradient norm
and the step size are less than 0.1. We empirically found that such an early stopping greatly improves
the efficiency of Algorithm 1 while not losing much accuracy (see Remark 3.2).

In practice, the density maps of the volumes are given as three-dimensional arrays V ∈ RL×L×L for
some integer L. In other words, V is supported on the Cartesian grid and computing its rotated versions

9

https://github.com/RuiyiYang/BOTalign


is a nontrivial and essential procedure. In our algorithm, this is done with the ASPIRE package (Wright
et al., 2023), which first computes the nonuniform Fourier transform of V over the rotated grid and then
applies an inverse Fourier transform. Note that this step is needed when computing the loss function
values in Algorithm 1.

Finally, to further speed up the computation, a common practice in cryo-EM is to downsample the
given volumes V ∈ RL×L×L to be of size RL0×L0×L0 for some integer L0 < L. This leads to faster
computation of WEMD distances and potentially a better loss landscape by removing the fine-scale
structures of the protein molecules. For the rest of this section, we shall treat L0 and the total number
of iterations T in Algorithm 1 as user-chosen parameters and in Section 4.2 demonstrate its performance
when L0 ∈ {32, 64} and T ∈ {150, 200}.

4.2 Alignment of Real Protein Molecules

In this section we shall illustrate the performance of Algorithm 1 on real protein molecules from the
publicly available Electron Microscopy Data Bank (Lawson et al., 2016). The experimental setup is as
follows. For a given volume V1 ∈ RL×L×L, we randomly generate a rotation matrix R∗ ∈ SO(3) and
compute its rotated version V2 ∈ RL×L×L using the Fourier transform-based approach mentioned above.
The goal is then to recover the rotation R∗ given only V1 and V2. In this subsection we focus on pure
rotation recovery and incorporation of translation will be demonstrated in Section 4.3. The test volumes
shown in Figure 2 will be used throughout the numerical experiments.

EMD-3683

L = 128

EMD-1717

L = 128

EMD-3342

L = 256

EMD-9515

L = 256

EMD-4547

L = 280

EMD-10180

L = 320

EMD-25892

L = 320

EMD-2660

L = 360

Figure 2: Visualization of the test volumes.

4.2.1 Algorithm 1 without Refinement

As mentioned, we shall first downsample the given volumes to V DS
i ∈ RL0×L0×L0 and then align the

V DS
i ’s with Algorithm 1. The downsampling level L0 and the total number of iterations T in Algorithm

1 are treated as user-chosen parameters which could vary depending on the molecules at hand. Below
we shall investigate their effects on the performance of Algorithm 1, first without the refinement step to
focus on the Bayesian optimization performance.

Denoting the estimated rotation byRest, we quantify the performance by the relative angle |Θ(R∗, Rest)|
between R∗ and Rest defined in (9). Figure 3 shows the results for four combinations of L0 and T for the
molecules shown in Figure 2. To illustrate the benefits of alignment in Wasserstein distances, also shown
in Figure 3 are results for the parallel experiments with WEMD loss in Algorithm 1 replaced by the L2

loss. The experiments are repeated 50 times with R∗ regenerated in each. The run time is recorded
on a laptop with Intel(R) Core(TM) i7-7500 CPU@ 2.70GHz. We see that with high probability, the
WEMD version of Algorithm 1 is able to recover the relative rotation up to a 5-degree error with only
200 evaluations of the loss function and in most cases outperforms its L2 counterpart with comparable
computing time.

4.2.2 Algorithm 1 with Refinement

With the results shown in Figure 3, we shall continue to demonstrate the performance of Algorithm 1
when refinement is included. We recall that the refinement step is a local search (16) solved with the
Nelder-Mead algorithm initialized at the estimate Rest returned by the first part of Algorithm 1. We note
that here we have the freedom to choose the combination of L0 and T for obtaining Rest with optimal
efficiency. In particular, setting L0 = 64 and T = 200 as shown in Figure 3 leads to the best overall
performance, but the other choices also give reasonably accurate recovery while requiring much less run
time. Meanwhile, it would not be too surprising that the Rest’s returned by these other choices could lie
in the basin of attraction around R∗ so that local convergence is still retained after the refinement.
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Figure 3: Performance comparison between Algorithm 1 and its L2 loss version without refinement. The
four boxplots in each subfigure correspond to (from left to right) (L0, T ) = (32, 150), (32, 200), (64, 150),
(64, 200). The vertical axis represents rotation recovery error |Θ(R∗, Rest)| in degrees. The tick labels
record the average run time in seconds.

In Figure 4, we show that this is indeed the case for the combinations (L0, T ) = (32, 200) and (64, 150)
for both the WEMD and L2 versions of Algorithm 1, which give after refinement more accurate recovery
but with less run time than using the combination (64, 200) without refinement. Here in the refinement
step, we are fixing the downsampling level to be 32. In particular, we see that the local search step by
Nelder-Mead appears to be not very stringent on its initializations so that even those returned by the
L2 version of Algorithm 1 would suffice for good final accuracy. However, this could be a coincidence
due to the benign structures of the test volumes. The better initial estimates returned by the WEMD
version as shown in Figure 3 could already be returned as a solution and at the same time are more
reassuring as initializations for the local refinement. For this reason, the WEMD version serves as our
main algorithm.

Figure 4: Performance comparison between Algorithm 1 and its L2 loss version with refinement. The
two boxplots in each subfigure correspond to (from left to right) (L0, T ) = (32, 200) and (64, 150). The
vertical axis represents rotation recovery error |Θ(R∗, Rest)| in degrees. The tick labels record the average
run time in seconds.

4.2.3 Robustness to Noise

We further test the performance of Algorithm 1 in the presence of noise, where we fix the test volume to
be EMD-3683 and add to each entry of V1, V2 an independent Gaussian noise of variance σ2 across a range
of signal-to-noise ratios, defined as SNR=‖V1‖22/(L3σ2). Figure 5 visualizes a central slice of the noise
corrupted volumes. The performance of Algorithm 1 is shown in Figure 6, which shows a decent level of
robustness. An interesting observation is that the L2 version with downsampling level L0 = 32 appears
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SNR=1/4 SNR=1/8 SNR=1/16 SNR=1/32 SNR=1/64 SNR=1/128 SNR=1/256 SNR=1/512

Figure 5: Visualization of a central slice of EMD-3683 under different signal-to-noise ratios.

to be more robust than the WEMD version for very high noise levels. This is related to our discussion
in Section 5 on the alignment of heterogeneous pairs since the noise corrupted volumes can be treated
as different conformations of the clean one. We will show by an example that the Wasserstein-based
distances could be more susceptible to heterogeneity.

Figure 6: Performance comparison between Algorithm 1 and its L2 loss version with refinement under
noise corruption. The two boxplots in each subfigure correspond to (from left to right) (L0, T ) = (32, 200)
and (64, 150). The vertical axis represents rotation recovery error |Θ(R∗, Rest)| in degrees. The tick labels
record the average run time in seconds.

4.3 Comparison with Existing Algorithms

Finally, we shall compare Algorithm 1 with two recent alignment algorithms proposed by Harpaz and
Shkolnisky (2023), which exploits common line-based methods for fast projection matching, and Riahi
et al. (2022), which considers an entropic regularization of 2-Wasserstein loss in (6) and employs stochastic
gradient descent for optimization. In the following comparison, we shall also consider translation recovery.
More precisely, given a volume V1 ∈ RL×L×L, we randomly generate a rotation matrix R∗ and first
compute its rotated version V rot

2 , whose shifted version V2 is then treated as the given volume. Here the
shift vector is uniformly randomly generated over the cube [−S, S]3 with S = 0.05L. This corresponds
to a typical situation in cryo-EM applications where the given volumes are already preprocessed and
approximately centered.

As mentioned in the introduction, we shall recover the shift by centering the volumes. We point out
that the volumes given in the database Lawson et al. (2016) contain negative values so a thresholding
is applied first before computing the center of mass, where the threshold is chosen based on the recom-
mended contour level for each molecule in Lawson et al. (2016) or could be tuned empirically. The code
provided by Riahi et al. (2022) also focuses only on rotation recovery so we apply the same centering
step for their algorithm.

For the comparisons below, we shall use (L0, T ) = (32, 200) with refinement in our Algorithm 1,
which will be denoted as Bayesian Optimal Transport Align (BOTalign). The algorithm in Harpaz and
Shkolnisky (2023) will be denoted as EMalign following the authors, and is applied with downsampling 32
and their recommended number of reference projections 30, also implemented with their local refinement.
Lastly, AlignOT stands for the algorithm in Riahi et al. (2022) with n = 500 in their topology representing
network step and maximum number of iteration N = 500 in their stochastic gradient descent. Again,
we repeat the experiments 50 times for each molecule and the results are shown in Figure 7.
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Figure 7: Comparison with existing methods. The three boxplots in each subfigure correspond to (from
left to right) BOTalign (our method), EMalign, and AlignOT. The vertical axis represents rotation
recovery error |Θ(R∗, Rest)| in degrees. The tick labels record the average run time in seconds.

We see that our algorithm achieves the best accuracy with minimal run time. We remark that
AlignOT is a local search algorithm where the authors report good recovery if the angle between R∗
and the identity is within 75 degrees. This is not contradictory with the results shown in Figure 7 as
here R∗ is randomly generated, which more than half of the time is 75 degrees away from the identity.
EMalign is a global search algorithm that improves over earlier alignment algorithms especially in terms
of running time (see their Tables 2 and 3). Our algorithm achieves further improvements when aligning
clean molecules. We mention that EMalign performs exhaustive search over shifts as well as rotations
and could have an advantage when the noise level is high as the centering step would be less accurate.
In this case, more sophisticated center of mass estimation method such as Heimowitz et al. (2021) needs
to be employed instead in our approach.

4.4 Algorithmic Complexity

Here we briefly discuss the complexity of our Algorithm 1 with respect to the size L of the volumes. The
majority of the computational cost of our algorithm takes place in (i) solving the surrogate problem (12)
and (ii) evaluating the loss FWEMD. The former step is always a three-dimensional optimization problem
and does not depend explicitly on L. Our empirical experience suggests that with the early stopping
that we have adopted its cost is relatively small compared to evaluating FWEMD. The latter would involve
two steps, where one first rotates one of the volumes using nonuniform fast Fourier transform that costs
O(L3 logL), and then computes the WEMD with a cost of O(L3). Therefore the total cost of Algorithm
1 is on the order of O(TL3 logL) where T is the total number of iterations which can be fixed for
instance as 200. Therefore the dependence on T improves over naive exhaustive search methods which
cost O(|S| × L3) where |S| = O(105) ∼ O(106) is the size of the rotation grid to search over, and the
dependence on L improves over the convolution based methods such as Kyatkin and Chirikjian (2000);
Chen et al. (2013) which would take O(L4).

5 Alignment of Heterogeneous Pairs

In this section, we shall discuss the problem of aligning a pair of similar but non-identical volumes,
which we denote as a heterogeneous pair. Such problem arises naturally in cryo-EM, where the same
protein molecule can exhibit different conformations. For example, a molecule can consist of two moving
parts that are rotating with respect to each other, or the molecule can be more elongated in certain
states than others. We shall show by an example that alignment in W1 distance as we have proposed
could be problematic in the presence of heterogeneity. The same issue is present for the L2 distance
although milder. This motivates a need of new loss functions for aligning a heterogeneous pair, which
ideally extracts and compares the common part of volumes. Such sophisticated loss functions are likely
to render gradient-based or exhaustive search-based optimization ineffective, whereas our algorithmic
framework in Algorithm 1 could be seamlessly incorporated.

To start with, let’s consider the pair of volumes V1 and V2 in Figure 8, which have an overall similar
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shape but certain differences in their “tails”. The two volumes are considered as different conformations
of the same molecule and are already aligned as given. However, if we apply Algorithm 1 (without
refinement) to this pair, the resulting aligned volume is shown as the rightmost subplot in Figure 8,
which turns out to be misaligned.

Figure 8: Volume alignment with heterogeneity in Wasserstein distance

To see what is happening in this case, let’s give a heuristic explanation by considering the following
two-dimensional abstraction of the volumes in Figure 9. Here I1 is a semi-circle and I2 is an extended
(but slightly thinner) semi-circular arc with the same radius as I1, where the extended portion of I2
is considered as the heterogeneous part, in analogy with V1 and V2 in Figure 8. Now we consider two
possible alignment of these two arcs as in Figure 9 and give a rough calculation of the corresponding W1

losses in both cases.

Figure 9: Synthetic hetergeneous pair

Suppose the extended portion in I2 has length ε. Recall that the W1 distance has the interpretation
of the amount of mass transportation needed from arc I1 to the arc I2. For Alignment 1, the optimal
transport plan would be to map both the endpoints of I1 to the endpoints of I2, and to map every other
point in the middle in a proportional way. This would incur a W1 loss approximately equal to

W1(I1, I2) ≈
∫ 1

0

εx dx =
ε

2
. (Alignment 1)

For Alignment 2, the optimal transport plan would be to map each half of I1 proportionally to the
corresponding halves of I2, which would incur a W1 loss roughly

W1(I1, I2) ≈ 2 ·
∫ 1/2

0

εx dx =
ε

4
. (Alignment 2)

Therefore Alignment 2 leads to a smaller W1 loss and is preferred as we have observed in Figure 8.
On the other hand, the L2 losses between I1 and I2 remain the same regardless of whether Alignment

1 or 2 is applied. An implementation of Algorithm 1 with WEMD replaced by the L2 loss actually gives
close-to-correct alignment as shown in Figure 10, with an error about 3 degrees. This suggests that the
L2 loss might be less sensitive to heterogeneity and explains its choice in our refinement step to avoid
the effect of perturbations of the given volumes.

However, the empirical success of L2 alignment in Figure 10 may be a coincidence thanks to other
finer structures of the molecules. Our synthetic example in Figure 9 does raise an interesting question on
what loss function to be used when aligning heterogeneous pairs. In particular, there is a potential need
of a more sophisticated distance function dheter that for instance only compares the shared components
in the volumes by extracting the common features. We shall leave such investigations for future work.
Meanwhile, we remark that in this case, exhaustive search-based methods that rely on efficient repre-
sentations of the loss function over SO(3) such as Chen et al. (2013) would be challenging unless certain
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Figure 10: Volume alignment with heterogeneity in Euclidean distance

special structures of dheter can be exploited. The same is likely to be true for gradient-based methods
where one would need to rely on numerical differentiation which could be less accurate and inefficient.
Nevertheless, our Algorithm 1 provides a ready-to-use recipe as long as we can evaluate dheter.

6 Discussion

In this paper we proposed an alignment algorithm using a Wasserstein-based distance as the loss function,
which is optimized with tools from Bayesian optimization followed by a local refinement procedure.
Numerical experiments show improved performance of our algorithm over existing methods on alignment
of real protein molecules from cryo-EM. The proposed algorithm can be extended to arbitrary loss
functions, which could be a feasible solution in the presence of heterogeneity where we have illustrated
a potential need of novel distance functions. We have presented the algorithmic framework for volumes
represented as density maps, but it can be easily extended to other volume representations as long as
one can define a suitable loss function as in (3).

Our algorithm focuses mainly on the clean volume case, where the problem reduces to rotation
estimation since the relative translation can be recovered by the centering step. We remark that this
is not a simplifying assumption in the context of cryo-EM since 3D alignment is usually carried out on
reconstructed molecules, which are much cleaner than their projection images to start with. However,
this could be a limitation of our approach, where in the presence of noise more sophisticated center of
mass estimation methods such as Heimowitz et al. (2021) would be necessary.

On the other hand, we remark that it is possible to incorporate translation estimation in the Bayesian
optimization framework that we have adopted. In particular, the alignment objective in (15) and its
surrogate problem (12) can be both extended to the product space B×SO(3). The algorithmic framework
proceeds as before except the covariance function defining the GP would also need to be extended to
B× SO(3). This for instance can be achieved simply with the product covariance

c
(
(v,R), (w, S)

)
= σ2 exp

(
−‖R− S‖

2
F

2`2r

)
exp

(
−‖v − w‖

2
2

2`2s

)
.

However, our simulations suggest slow exploration of the search space and poor recovery in comparable
amount of time as existing methods. This may be due to the fact that Bayesian optimization is known
to work better in lower dimensions. The additional set B doubles the search space dimension and
necessitates many more observations of the loss function to decode its landscape.
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