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Abstract. We present a fast and numerically accurate method for expanding
digitized L × L images representing functions on [−1, 1]2 supported on the

disk {x ∈ R2 : |x| < 1} in the harmonics (Dirichlet Laplacian eigenfunctions)

on the disk. Our method runs in O(L2 logL) operations. This basis is also
known as the Fourier-Bessel basis and it has several computational advantages:

it is orthogonal, ordered by frequency, and steerable in the sense that images

expanded in the basis can be rotated by applying a diagonal transform to the
coefficients. Moreover, we show that convolution with radial functions can also

be efficiently computed by applying a diagonal transform to the coefficients.

1. Introduction

1.1. Motivation. Decomposing a function into its Fourier series can be viewed as
representing a function in the eigenfunctions of the Laplacian on the torus T :=
[0, 2π] where 0 and 2π are identified. Indeed,

−∆eıkx = k2eıkx.

The eigenfunctions of the Laplacian (harmonics) on the disk {x ∈ R2 : |x| < 1}
that satisfy the Dirichlet boundary conditions can be written in polar coordinates
(r, θ) ∈ [0, 1)× [0, 2π) as

ψnk(r, θ) = cnkJn(λnkr)e
ınθ, (1)

where cnk is a normalization constant, Jn is the n-th order Bessel function of the
first kind, and λnk is the k-th smallest positive root of Jn. The indices run over
(n, k) ∈ Z× Z>0. The functions ψnk satisfy

−∆ψnk = λ2nkψnk. (2)

In this paper, we present a fast and accurate transform of digitized L × L images
into this eigenfunction basis, often referred to as the Fourier-Bessel basis. For
computational purposes, this basis is convenient for a number of reasons:

(i) Orthonormal: these eigenfunctions are an orthonormal basis for square
integrable functions on the disk.

(ii) Ordered by frequency: the basis functions are ordered by eigenvalues, which
can be interpreted as frequencies due to the connection with the Laplacian
and Fourier series described above; therefore, low-pass filtering can be per-
formed by retaining basis coefficients up to a given threshold.
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Figure 1. Illustration of method for L×L images with L = 256.
Original image (a), low-pass filter of the original image using a
decreasing number of basis functions (b–d), radial function (e),
convolution of original image with radial function (f).

(iii) Steerable: functions expanded in the basis can be rotated by applying a
diagonal transform corresponding to phase modulation of the coefficients.

(iv) Fast radial convolutions: we show that the convolution with radial functions
can be computed by applying a diagonal transform to the coefficients.

Our method involvesO(L2 logL) operations and has precise accuracy guarantees.
Python code that implements our method is publicly available online1. To the best
of our knowledge, existing methods for computing the expansion coefficients in a
steerable basis either require O(L3) operations [19, 20] or lack accuracy guarantees
[34, 35].

Steerable bases have been utilized in numerous image processing problems in-
cluding image alignment [25], image classification [35] and image denoising [34],
including applications to machine learning [5, 7, 33] and data-driven science, such
as applications to cryo-electron microscopy (cryo-EM) [6, 23], and computer vision
[24], among other areas.

There are many possible choices of steerable bases, for instance prolate spheroidal
wave functions which are bandlimited functions optimally supported on the disk
[19, 20, 28], or Zernike polynomials which are widely used in optics [31]. The
harmonics on the disk (which satisfy Dirichlet boundary conditions) [34, 35] are
one natural choice due to their orthogonality, ordering by frequency, and fast radial
convolution.

We illustrate the frequency ordering property of the Laplacian eigenbasis by
performing a low-pass filter by projecting onto the span of eigenfunctions whose
eigenvalues are below a sequence of bandlimits that decrease the number of basis
functions successively by factors of four, starting from 39593 coefficients. Since the

1An implementation is available at https://github.com/nmarshallf/fle_2d.

https://github.com/nmarshallf/fle_2d
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basis is orthonormal this is equivalent to setting coefficients above the bandlimit
equal to zero; see Fig. 1 (a–d). Further, we demonstrate the radial convolution
property by illustrating the convolution with a point spread function, which is a
function used in computational microscopy [32]; see Fig. 1 (e–f). The image used
for this example is a tomographic projection of a 3-D density map representing a
bio-molecule (E. coli 70S ribosome) [26].

1.2. Notation. Suppose that f is an L × L image representing a function f̃ :
[−1, 1]2 → R that is supported on the unit disk {x ∈ R2 : |x| < 1}. More precisely,
we assume that

f(j1, j2) = f̃(xj1,j2), where xj1,j2 :=
1

bL/2c (j1 − bL/2c, j2 − bL/2c) ,

for j1, j2 = 1, . . . , L. Let p := L2 be the number of pixels in the image f , and let

x1, . . . , xp be an enumeration of {xj1,j2 : j1, j2 = 1, . . . , L}.
We can consider the L× L image f as a vector f ∈ Rp whose j-th entry is defined
by

fj = f̃(xj).

Similarly, for a fixed bandlimit parameter λ, let

ψ1, . . . , ψm be an enumeration of {ψnk : λnk ≤ λ},
where ψnk is defined in (1) above. With this notation, coefficients of a function in
the basis of eigenfunctions up to bandlimit λ is a vector in Rm. By Weyl’s law, see
for example [17], we have m ∼ λ2/4.

In the following, we consider a linear transformation B which maps coefficients
in Rm to images in Rp, and its adjoint B∗ which maps images in Rp to coefficients
in Rm.

1.3. Main result. We consider the linear transform B : Rm → Rp which maps
coefficients to images by

(Ba)j =

m∑
i=1

aiψi(xj)h, (3)

and its adjoint transform B∗ : Rp → Rm which maps images to coefficients by

(B∗f)i =

p∑
j=1

fjψi(xj)h, (4)

where h = 1/b(√p − 1)/2c is a normalization constant, chosen such that B∗B is
close to the identity. In this paper, we present a fast and accurate method to apply
B and B∗. In particular, the presented method can apply the operators B and B∗

to vectors in O(p log p) operations for any fixed relative error ε. We again empha-
size that this is in contrast to previous results, since to the best of our knowledge,
existing methods for computing the expansion coefficients in a steerable basis either
require O(p3/2) operations [19, 20] or lack accuracy guarantees [34, 35]. The appli-
cation of the operators B and B∗ can be used in an iterative method to determine
least squares optimal expansion coefficients for a given image. Alternatively, apply-
ing B∗ to f can be viewed as estimating the continuous inner products that define
the coefficients by using quadrature points on a grid (and potentially quadrature
weights to provide an endpoint correction).
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We report the relative errors of our fast method for applying B and B∗ compared
to matrix multiplication for images with up to p = 1602 pixels with varying values
of ε, and report timings for images with up to p = 5122 pixels. Moreover, we present
a numerical example involving rotations, radial convolutions, and deconvolutions.

1.4. Organization. The remainder of the paper is organized as follows. In §2
we describe the analytical apparatus underlying the method. In §3 we describe
the computational method. In §4 we justify why the discretization of the analytical
apparatus performed by the computational method achieves the specified precision.
In §5 we present numerical results. In §6 we discuss implications of the method and
potential extensions.

2. Analytical apparatus

2.1. Notation. The eigenfunctions of the Laplacian on the unit disk (that satisfy
Dirichlet boundary conditions) defined in (1) can be extended to R2 as functions
supported on the unit disk by

ψnk(r, θ) = cnkJn(λnkr)e
ınθχ[0,1)(r), (5)

for (n, k) ∈ Z × Z>0, where χ[0,1) denotes an indicator function for [0, 1). For the
sake of completeness, we note that the normalization constants cnk which ensure
that ‖ψnk‖L2 = 1 are defined by

c0k =
1

π1/2J1(λ0k)
, and cnk =

21/2

π1/2Jn+1(λnk)
, for n 6= 0. (6)

We use the convention that the Fourier transform f̂ : R2 → C of an integrable
function f : R2 → C is defined by

f̂(ξ) =
1

2π

∫
R2

f(x)e−ıx·ξdx, (7)

where x · ξ denotes the Euclidean inner product. We define the convolution of two
functions f, g : R2 → C by

(f ∗ g)(x) =

∫
R2

f(x− y)g(y)dy.

Furthermore, we will make use of the identity

Jn(r) =
1

2π

∫ 2π

0

eır sin θe−ınθdθ, (8)

see for example [29, Eq. 9.19]. To verify this identity, recall that Jn(r) is the solution
to Bessel’s equation

r2∂rry + r∂ry + (r2 − n2)y = 0, (9)

see [9, Eq. 10.2.1]. Observe that

(r2∂rr + r∂r + r2)eır sin θ = −∂θθeır sin θ.
Since taking the second derivative of a function multiplies its n-th Fourier coefficient
by −n2, it follows that

(r∂rr + r∂r + (r2 − n2))
1

2π

∫ 2π

0

eır sin θe−ınθdθ = 0, (10)

which establishes that (8) is a solution to (9). It is straightforward to verify that
(8) also satisfies the same scaling relations, see [9, Eq. 10.2.2], as Jn(r) when r → 0.
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2.2. Fourier transform of eigenfunctions. The analytic foundation for the pre-
sented fast method is the following expression for the Fourier transform of the
functions ψnk defined in (5).

Lemma 2.1. The Fourier transform ψ̂nk can be expressed by

ψ̂nk(ξ) = (−ı)neınφ
∫ 1

0

cnkJn(λnkr)Jn(ρr)rdr, (11)

where (ρ, φ) are polar coordinates for ξ.

We prove this lemma for completeness.

Proof of Lemma 2.1. By the definition of the Fourier transform (7) we have

ψ̂nk(ξ) =
1

2π

∫
R2

ψnk(x)e−ıx·ξdx.

Changing to polar coordinates ξ = (ρ cosφ, ρ sinφ) and x = (r cos θ, r sin θ) gives

ψ̂nk(ξ) =
1

2π

∫ 2π

0

∫ 1

0

cnkJn(λnkr)e
ınθe−ırρ cos(θ−φ)rdrdθ,

where we used the fact that x·ξ = rρ cos(θ−φ). Changing variables θ 7→ −θ+φ−π/2
and taking the integral over θ gives

ψ̂nk(ξ) = (−ı)neınφ
∫ 1

0

cnkJn(λnkr)Jn(ρr)rdr,

as desired. �

2.3. Coefficients from eigenfunction Fourier transform. Next, we observe
how the coefficients of a function in the eigenfunction basis can be computed by an
application of Lemma 2.1. In the following, we will write the arguments of Fourier
transforms of functions in polar coordinates (ρ, φ). We have the following result:

Lemma 2.2. Suppose that I ⊂ Z× Z>0 is a finite index set, and set

f =
∑

(n,k)∈I

αnkψnk, (12)

where αnk ∈ C are coefficients. Define βn : [0,∞)→ R by

βn(ρ) := ın
∫ 2π

0

f̂(ρ, φ)e−ınφdφ. (13)

It then holds that

αnk = cnkβn(λnk). (14)

The proof is a direct consequence of Lemma 2.1.

Proof of Lemma 2.2. Observe that (11) implies

ın
∫ 2π

0

ψ̂n′k′(ρ, φ)e−ınφdφ = 2πδ(n− n′)
∫ 1

0

cn′k′Jn(λn′k′r)Jn(ρr)rdr, (15)
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where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. Evaluating (15) at radius ρ = λnk
gives

ın
∫ 2π

0

ψ̂n′k′(λnk, φ)e−ınφdφ = 2πδ(n− n′)
∫ 1

0

cn′k′Jn(λn′k′r)Jn(λnkr)rdr

= 2πδ(n− n′)
∫ 1

0

cnk′Jn(λnk′r)Jn(λnkr)rdr =
1

cnk
δ(n− n′)δ(k − k′),

where the final equality follows from the orthogonality of the eigenfunctions ψnk′ ,
(which is a consequence of the fact that the Laplacian is self-adjoint). By the
definition of βn in (13), this implies that

βn(λnk) =
∑

(n′,k′)∈I

αn′k′ ı
n

∫ 2π

0

ψ̂n′k′(ρ, φ)e−ınφdφ

=
∑

(n′,k′)∈I

αn′k′

cn′k′
δ(n− n′)δ(k − k′) =

αnk
cnk

,

which concludes the proof. �

Remark 2.1 (Special property of Bessel functions). We emphasize that the integral
expression (8) of the Bessel function is crucial for the fast method of this paper.
The possibility of extending the approach to create other fast transforms defined
on domains in R2 therefore hinges on identifying equally useful integral expressions
for the corresponding transforms.

2.4. Convolution with radial functions. Let g(x) = g(|x|) be a radial function.
In this section, we observe how the convolution with g can be computed via a
diagonal transform of the coefficients. More precisely, we compute the projection
of the convolution with g onto the span of any finite basis of the eigenfunctions
ψnk.

Lemma 2.3. Let f be a function with coefficients αnk as in (12), and g(x) = g(|x|)
be a radial function. We have

PI(f ∗ g) =
∑

(n,k)∈I

αnkĝ(λnk)ψnk,

where PI denotes the orthogonal projection onto the span of {ψnk}(n,k)∈I .

The proof is a direct application of Lemma 2.2.

Proof of Lemma 2.3. We use the notation g(x) = g(|x|) and ĝ(ξ) = ĝ(|ξ|). Since
the functions ψnk are an orthonormal basis, in order to compute the orthogonal
projection PI , it suffices to determine the coefficients of f ∗ g with respect to ψnk

for (n, k) ∈ I. Since (̂f ∗ g)(ρ, φ) = f̂(ρ, φ)ĝ(ρ), and ĝ is radial, we have

ın
∫ 2π

0

(̂f ∗ g)(λnk, φ)e−ınφdφ = ın
∫ 2π

0

f̂(λnk, φ)ĝ(λnk)e−ınφdφ

=
αnk
cnk

ĝ(λnk),

where the final equality follows from (14). An application of Lemma 2.2 then
completes the proof. �
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3. Computational method

3.1. Notation. Recall that p is the number of pixels in the given image, and m is
the number of functions in our expansion. Throughout, we write all computational
complexities in terms of p with the understanding that m ≤ p. This assumption is
not restrictive since it does not make sense to expand an image using more functions
than the number of pixels.

Remark 3.1 (Precision of calculations). The computational complexities also have a
(logarithmic) dependence on the reciprocal of the desired precision ε; for simplicity,
we treat ε as a fixed constant, say, ε = 10−7, and do not include it in complexity
statements.

Remark 3.2 (Continuous to discrete). Throughout this section, for clarity of expo-
sition, we use the same notation used in the continuous setting described in §2 to
represent the corresponding discrete objects. We justify why the discrete sums of
the algorithm will approximate the continuous integrals to the desired precision in
§4.

3.2. Overview. In the following, we describe how to apply the operators B and
B∗ defined above in §1.3 in O(p log p) operations. For the purpose of exposition,
we start by describing a simplified method before presenting the full method. The
section is organized as follows:

• In §3.3 we describe a simplified method to apply B and B∗ in O(p3/2 log p)
operations. The simplified method is a direct application of the lemmas
from the previous section.
• In §3.4 we provide an informal description of how to modify the simplified

method to create a fast method to apply B and B∗ in O(p log p) operations.
The main additional ingredient is fast interpolation from Chebyshev nodes.
• In §3.5 we give a detailed description of the fast method to apply B and
B∗ in O(p log p) operations.

3.3. Simplified method. In this section, for the purpose of exposition, we present
a simplified method that applies B and B∗ in O(p3/2 log p) operations. Recall that
f1, . . . , fp ∈ R are the pixel values of the image, x1, . . . , xp ∈ [−1, 1]2 are the pixel
coordinates, and ψ1, . . . , ψm are the eigenfunctions below the given bandlimit, see
§1.2. Let λ1, . . . , λm denote the Bessel function roots (square root of the eigen-
values) corresponding to ψ1, . . . , ψm. Further, suppose that (ni, ki) are the indices
such that ψi = ψniki and λi = λniki .

Fix a positive integer s = bmax{7.08
√
p, log2 ε

−1 + log2 p}c (see §4.3 for a justi-
fication of this parameter choice). We first describe how to apply B∗ : Rp → Rm
which is defined by

(B∗f)i =

p∑
j=1

fjψi(xj)h,

where h is a normalization parameter. The simplified method has three steps, which
make use of the non-uniform fast Fourier transform (NUFFT) [11, 14, 22].

Step 1. Using the type-2 2-D NUFFT, in O(p3/2 log p) operations, compute:

f̂i` :=

p∑
j=1

fje
−ıxj ·ξi` where ξi` := λi(cos 2π`/s, sin 2π`/s),
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for (i, `) ∈ {1, . . . ,m} × {0, . . . , s− 1} to precision ε.

Step 2. Using the FFT, in O(p3/2 log p) operations, compute:

βn(λi) :=

s∑
`=1

f̂i`e
−ın2π`/s,

for (i, n) ∈ {1, . . . ,m} × {0, . . . , s− 1}.

Step 3. By Lemma 2.2 it follows that

(B∗f)i = βni(λi)cih,

where ni is the integer such that ψi = ψniki and ci = cniki .

In the following remarks, we discuss how reversing these steps provides an im-
mediate way to apply B and discuss limitations of the simplified method.

Remark 3.3 (Applying B). Note that each step of the algorithm consists of applying
a linear transform whose adjoint can be applied in a similar number of operations.

Indeed, the adjoint of Step 1 (which uses type-2 NUFFT) is a type-1 2-D NUFFT
[1], and the adjoint of Step 2 (which uses a standard FFT) is an inverse FFT. Step
3 (interpolation) can be computed in a variety of ways (including by using the
NUFFT or FFT and sparse matrices, see Remark 3.5) which each have similarly
fast adjoints [11, 14, 22]. Therefore, in order to apply B : Rm → Rp, which is
defined by

(Ba)j =

m∑
i=1

aiψi(xj)h,

we can just apply the adjoint of each step in the reverse order.

Remark 3.4 (Limitations of simplified method). The problem with the simplified
method is that the first step is prohibitively expensive since we want a method
that works in O(p log p) operations. The key to overcome this limitation is to
observe that βni

(λi) are samples from analytic functions, and to add the additional
ingredient of fast interpolation from Chebyshev nodes.

3.4. Summary of fast method. In this section, we describe how the method of
the previous section can be improved from O(p3/2 log p) to O(p log p) by using fast
interpolation from Chebyshev nodes. Recall that Lemma 2.2 defines

βn(ρ) := ın
∫ 2π

0

f̂(ρ, φ)e−ınφdφ,

and states that the coefficients can be computed by evaluating the appropriate βn
at λi. The problem with the simplified method is the first step: computing f̂(ρ, θ)
for ρ = λ1, . . . , λm and a number of points θ so that we are sampling at the Nyquist
rate is a set of O(p3/2) points, which is already prohibitive. Fortunately, there is a
simple solution to this issue: for each n, the functions βn(ρ) are analytic functions
of ρ which can be interpolated to determine the coefficients, if they are tabulated
at appropriate points; see §4.2 for a discussion of why O(

√
p) points are sufficient.

Here is an informal summary of the fast method:

• Compute the Fourier transform of f at

ξi` := ti(cos 2πφ`, sin 2πφ`),

for O(
√
p) Chebyshev nodes ti and O(

√
p) angles φ`.
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• Compute βn(ti) for the O(
√
p) Chebyshev nodes ti and O(

√
p) frequencies

n.
• For each of the O(

√
p) frequencies, use fast interpolation from the O(

√
p)

Chebyshev nodes ti to the O(
√
p) Bessel function roots associated with

each frequency n. We illustrate the interpolation step in Fig. 2.

0 20 40 60 80 100
ρ

−2

−1
0

1

2

β
40
(ρ
)

×10−2

0 20 40 60 80 100
ρ

−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

β
10
0(
ρ
)

×10−3

Figure 2. We visualize the interpolation step for a 64× 64 input
image. For n = 40, 100 we plot βn(ρ) (black line), interpolation
source nodes (black dots), and target points (orange crosses).

3.5. Detailed description of fast method. Recall that ψ1, . . . , ψm are the eigen-
functions below our bandlimit, and λ1, . . . , λm are the associated Bessel function
roots (which are the square root of the associated eigenvalues). Assume that
λ1, . . . , λm are listed in ascending order so that they are contained in the inter-
val [λ1, λm]. Fix q = dmax

{
2.4
√
p, log2 ε

−1}e, where ε is the desired relative error,
see §4.2 for a justification of this parameter choice. Recall that Chebyshev nodes
of the first kind for the interval [λ1, λm] are defined by

ti = (λm − λ1)
1− cos(π(i− 1)/q)

2
+ λ1,

for i = 1, . . . , q. The fast method follows the same strategy as the simplified method.
The key difference is that the fast method replaces the final step with fast inter-
polation, and therefore evaluates the Fourier coefficients on a smaller number of
nodes (the Chebyshev nodes).

Step 1. Using the NUFFT, in O(p log p) operations, compute:

f̂i` :=

p∑
j=1

fje
−ıxj ·ξi` where ξi` := ti(cos 2π`/s, sin 2π`/s),

for (i, `) ∈ {1, . . . , q} × {0, . . . , s− 1}.

Step 2. Using the FFT, in O(p log p) operations, compute:

βn(ti) :=

s∑
`=1

f̂i`e
−ın2π`/s,
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for (i, n) ∈ {1, . . . ,m} × {0, . . . , s− 1}.

Step 3. Using fast interpolation from Chebyshev nodes, in O(p log p) operations,
compute:

(B∗f)i = βni
(λi),

for i ∈ {1, . . . ,m} where ni is the integer such that ψi = ψniki .

As detailed in Remark 3.3, the fact that each step is a linear operator whose
adjoint can be applied in a similar number of operations provides a similar fast
method to apply B.

Remark 3.5 (Methods for fast interpolation from Chebyshev nodes). Theoretically,
the most straightforward way to perform fast interpolation from Chebyshev nodes is
to consider the function values at the Chebyshev nodes as function values associated
with equally spaced points on a half circle (by a change of variables). Then the
fast interpolation (called spectral interpolation) can be computed by using the
NUFFT in O(p log p) operations or from arbitrary nodes using the Fast Multipole
Method, see [10]. Practically speaking, since the NUFFT run-time constant is high,
choosing a fixed number of source points centered around the target points (say 20
source points) and then applying a precomputed sparse (barycentric interpolation
[3]) matrix may be more practical; sparse interpolation can be used in combination
with standard spectral interpolation (using the discrete cosine transform) to double
or quadruple the number of Chebyshev nodes before the sparse interpolation step.

4. Continuous to discrete

We conclude the description of the fast algorithm by discussing additional an-
alytic details that justify transitioning from the continuous identities in §2 to the
discrete implementations of §3.

4.1. Maximum bandlimit. In this section, we derive a bound for the bandlimit
parameter, which controls the number of basis functions used in the expansion.
The number of basis functions should not exceed the number of pixels of the image
corresponding to points within the unit disk. In combination with Weyl’s law, this
leads to a bound on the maximum bandlimit.

In more detail, from Weyl’s law, the number of Dirichlet eigenvalues of the
Laplacian in the disk is bounded by λ is

#
{

(n, k) ∈ Z× Z>0 : λnk ≤ λ
}

=
λ2

4
− λ

2
+O(λ2/3), (16)

see [8]. Similarly, the inscribed circle in an L × L image has radius
⌊
L−1
2

⌋
. The

number of pixels contained inside this circle is therefore

#

{
(i, j) ∈ Z× Z : i2 + j2 ≤

⌊
L− 1

2

⌋2}
= π

⌊
L− 1

2

⌋2
+O(L2/3), (17)

see for example [13, 16, 30]. Equating (16) with (17) results in

λ = 2
√
π

⌊
L− 1

2

⌋
+ 1 +O

(
L−1/3

)
. (18)

Practically speaking, it can be advantageous to expand the image in fewer basis
functions than described by (18), but, in any case, λ = O(L) is a natural choice
and different motivations exist in the literature [34].
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Remark 4.1 ( FFT Bandlimit heuristic). One heuristic for setting the bandlimit
is based on the fast Fourier transform (FFT). For a centered FFT on a signal of
length L, the maximum frequency is π2(L/2)2 which corresponds to a bandlimit of
λ = πL/2. Note that

πL/2 ≈ 1.57L < 1.77L ≈ √πb(L− 1)/2c/2, (19)

so this FFT bandlimit heuristic does indeed produce a reasonable bandlimit below
the bound (18) derived from Weyl’s law. We use this bandlimit for our numer-
ical experiments. The computational complexity and accuracy guarantees of the
method presented in this paper hold for any bandlimit λ = O(L). However, the
fact that the fast method performs interpolation in Fourier space inside a disk
bounded by the maximum bandlimit provides additional motivation for this FFT-
based heuristic since it will ensure that the disk will be contained within the square
in frequency space used by the two-dimensional FFT.

4.2. Number of radial nodes. The following lemma shows that O(
√
p) Cheby-

shev nodes are sufficient for accurate interpolation.

Lemma 4.1. When running the algorithm on an image with p pixels at the maxi-
mum bandlimit, choosing the number of Chebyshev nodes q to satisfy

q = bmax
{

2.4
√
p, log2 ε

−1}c, (20)

achieves relative error less than ε in the interpolation step of §3.5.

It will be clear from the proof that the constant 2.4 in the statement of the
lemma is an overestimate, see Remark 4.2 for a discussion of how this constant can
be improved.

Proof of Lemma 4.1. When interpolating a smooth differentiable function h defined
on the interval [a, b] using an interpolating polynomial pq at q Chebyshev nodes,
the residual term R(x) = h(x)− pq(x) can be written as

|R(x)| ≤ 2Cq
q!

(
b− a

4

)q
,

where Cq := maxx∈[a,b] |h(q)(x)|; indeed, this can be deduced from [9, § 3.3]. If we
apply this result with [a, b] = [λ1, λm], the residual satisfies

|R(x)| ≤ 2Cq
q!

(
λm − λ1

4

)q
≤ 2Cq

q!

(√
πp

4

)q
where the final inequality follows from the bound λm ≤ √πp; see § 4.1. In order to
apply this bound to h(ρ) = βn(ρ), we estimate

Cq := max
ρ∈[λ1,λm]

|β(q)
n (ρ)|,

where β
(q)
n denotes the qth derivative of βn defined in (13). Since f is compactly

supported, its Fourier transform f̂ is analytic and the Cq are therefore all finite.
More precisely, the term Cq can be bounded uniformly by using

|β(q)
n (ρ)| =

∣∣∣∣ dq

dρq

(
1

2π

∫ 2π

0

f̂(ρ, φ)e−inφdφ

)∣∣∣∣ ≤ ( 1

2π

∫ 2π

0

∣∣∣∣ dq

dρq
f̂(ρ, φ)

∣∣∣∣ dφ) .
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We write out∣∣∣∣ dq

dρq
f̂(ρ, φ)

∣∣∣∣ =

∣∣∣∣ 1

2π

dq

dρq

∫ 2π

0

∫ ∞
0

f(r, θ)e−ırρ cos(θ−φ)rdrdθ

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ 2π

0

∫ ∞
0

(−ır cos(θ − φ))
q
f(r, θ)e−ırρ cos(θ−φ)rdrdθ

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ 2π

0

∫ 1

0

(−ır cos(θ − φ))
q
f(r, θ)e−ırρ cos(θ−φ)rdrdθ

∣∣∣∣
≤ 1

2π

∫ 2π

0

∫ 1

0

|f(r, θ)| rdrdθ =
1

2π
‖f‖L1 ≤ 1

2
√
π
‖f‖L2 ,

where the third equality uses the fact that f is supported on the disk of radius 1 and
the last inequality uses Cauchy-Schwarz applied to f multiplied by the indicator
function of the unit disk. It follows that

|R(x)| ≤ ‖f‖L2√
πq!

(√
πp

4

)q
.

Therefore, in order to achieve relative error |R(x)|/‖f‖L2 = ε, it suffices to set q
such that

ε ≤ 1√
πq!

(√
πp

4

)q
. (21)

It follows from Stirling’s approximation [9, 5.11.3] that

|R(x)|
‖f‖L2

≤
(√

πpe

4q

)q
(22)

Setting
√
πpe/4q = 1/2 and solving for q gives

q =

√
πe
√
p

2
≈ 2.4

√
p =⇒ q ≥ max{2.4√p, log2 ε

−1),

is sufficient to achieve relative error less than ε. �

4.3. Number of angular nodes. The following lemma shows that s = O(
√
p)

angular nodes is sufficient to achieve relative error ε.

Lemma 4.2. When running the algorithm on an image with p pixels at the maxi-
mum bandwidth, choosing the number of equispaced angular nodes s to satisfy

s = bmax{7.08
√
p, log2 ε

−1 + log2 p}c. (23)

achieves relative error less than ε in the FFT step of §3.5.

As above, we emphasize that the constant 7.08 in the statement of this result is
an overestimate. See 4.2 for discussion about how this constant can be improved.

Proof of Lemma 4.2. We will require a classical result, see for example [18]: suppose
that f : [0, 2π]→ R is a smooth periodic function on the torus [0, 2π] where 0 and
2π are identified. Then∣∣∣∣∣∣

∫ 2π

0

f(θ)dθ − 1

n

n−1∑
j=0

f(θj)

∣∣∣∣∣∣ < 2
‖f (n)‖2
nn

,

for all n ≥ 2, where θj = 2πj/n.
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Indeed, we start by writing f(θ) =
∑∞
k=−∞ ake

ıkθ and use the fact that 1
n

∑n−1
j=0 e

ıkθj

is equal to 1 if k is a multiple of n and is 0 otherwise to obtain:∣∣∣∣∣∣
∫ 2π

0

f(θ)dθ − 1

n

n−1∑
j=0

f(θj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣a0 − 1

n

n−1∑
j=0

∞∑
k=−∞

ake
ıkθj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
t 6=0

ant

∣∣∣∣∣∣ .
Multiplying and dividing terms by (ınt)n, and using Cauchy-Schwarz:∣∣∣∣∣∣

∑
t6=0

ant
(ınt)n

(ınt)n

∣∣∣∣∣∣ ≤
∑
t6=0

|(ınt)nant|2
1/2(∑

t>0

2

(nt)2n

)1/2

≤
( ∞∑
`=−∞

|(ı`)na`|2
)1/2(∑

t>0

2

(nt)2n

)1/2

< 2
‖f (n)‖L2

nn
,

where the last inequality follows from Parseval’s identity and the identity
∑
t>0

1
t4 =

π4

90 , together with
√
π4/45 < 2.

In order to determine the required number of angular nodes we write the image

f and its Fourier transform f̂ as

f(x) =

p∑
j=1

fjδxj
(x), f̂(ξ) =

p∑
j=1

fj
1

2π
eiξ·xj .

By the triangle inequality, it suffices to estimate integrals of functions of the form

g(φ) = eirρ cos(θ−φ)−inφ

to precision ε
p for all r ∈ [0, 1), θ ∈ [0, 2π), ρ ∈ [λ1, λm], and |n| ≤ nm. We have

the estimate

|g(s)| ≤ (λm + nm)s.

Thus, in order to integrate these functions, we need to choose s such that(
λm + nm

s

)s
≤ ε

p
. (24)

It follows that choosing

s = max{2(λm + nm), log2 ε
−1 + log2 p},

achieves relative error ε. To complete the proof we note that λm ≤ λ, where λ is
the maximum bandlimit from § 4.1. Also by [9, 10.21.40] we have

λn1 = n+ 1.8575n1/3 +O(n−1/3),

which implies that the maximum angular frequency nm ≤ λ. We conclude that

s = max{4λ, log ε−1 + log2 p},
is sufficient to achieve error ε; using the bound λ ≤ 1.77

√
p from (19) completes

the proof. �

Remark 4.2 (Improving estimates for number of radial and angular nodes). While
Lemmas 4.1 and 4.2 show that the number of radial nodes q and angular nodes s
are O(

√
p), the constants in the lemmas are not optimal. For practical purposes,

choosing the minimal number of nodes possible to achieve the desired error is ad-
vantageous to improve the run time constant of the algorithm, and it is clear from
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the proofs how the estimates can be refined. For Lemma 4.1 we set Q = d2.4√pe,
and motivated by (21) compute

εradial(q) =
1√
πq!

(√
πp

4

)q
,

for q = 1, . . . , Q and choose the smallest value q∗ of q such that εradial(q
∗) ≤ ε.

Similarly, for Lemma 4.2, we set S = d7.08
√
pe, and motivated by (24) compute

εangular(s) = p

(
λm + nm

s

)s
,

for s = 1, . . . , S and choose the smallest value s∗ of s such that εangular(s) ≤ ε.
Then, it follows that 2.4

√
p and 7.08

√
p can be replaced by q∗ and s∗, in the state-

ments of Lemmas 4.1 and 4.2, respectively. This procedure improves the estimate
of the required number of angular and radial nodes by a constant factor.

5. Numerical results

5.1. Accuracy results. In this section, we report numerical results for the ac-
curacy of the fast algorithm compared to matrix multiplication. Recall that B :
Rm → Rp maps coefficients to images by

(Ba)j =

m∑
i=1

aiψi(xj)h,

and its adjoint transform B∗ : Rp → Rm maps images to coefficients by

(B∗f)i =

p∑
j=1

fjψi(xj)h,

see § 1.3. By defining the m× p matrix B by

B(i, j) = ψi(xj)h,

we can apply B and B∗ by dense matrix multiplication to test the accuracy of
our fast method. Since the size of the matrix scales like L4 for L × L images,
constructing these matrices quickly becomes prohibitive so the comparison is only
given up to L = 160, see Table 1, where

erra =
‖afast − adense‖2
‖adense‖2

and errf =
‖ffast − fdense‖2
‖fdense‖2

,

denote the relative errors of the coefficients and the image, respectively, where
adense = B∗f and fdense = Ba are computed by dense matrix multiplication and
afast and ffast are the corresponding quantities computed using the fast algorithm
of this paper.

The image used for the accuracy comparison is a tomographic projection of a
3-D density map representing a bio-molecule (E. coli 70S ribosome) [26], retrieved
from the online EM data bank [21].
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Table 1. Relative error of fast method compared to dense matrix multiplication.

l ε erra errf
64 1.00e-04 1.92422e-05 2.10862e-05
96 1.00e-04 1.82062e-05 2.52219e-05

128 1.00e-04 1.90648e-05 2.41142e-05
160 1.00e-04 2.00748e-05 2.49488e-05
64 1.00e-07 2.03272e-08 2.98083e-08
96 1.00e-07 2.28480e-08 2.58272e-08

128 1.00e-07 2.69215e-08 2.27676e-08
160 1.00e-07 2.47053e-08 2.51146e-08
64 1.00e-10 3.55320e-11 2.36873e-11
96 1.00e-10 2.99849e-11 2.48166e-11

128 1.00e-10 3.25650e-11 2.61890e-11
160 1.00e-10 3.13903e-11 3.50455e-11
64 1.00e-14 7.41374e-15 6.82660e-15
96 1.00e-14 9.82890e-15 8.80843e-15

128 1.00e-14 1.21146e-14 1.11909e-14
160 1.00e-14 1.36735e-14 1.51430e-14

5.2. Timing results. In this section, we plot the timing of the method for L× L
images with p = L2 pixels. We demonstrate that the method does indeed have
complexity O(p log p) and that the timings are practical. We plot the time of pre-
computation and the time of applying B using the fast method; for comparison,
we include timings for forming and applying the dense matrix B, see Fig. 3. The
timing for applying B∗ are similar to the timings for applying B (since the algorithm
consists of applying similar transforms in the reverse order) so a separate plot was
not included.

The timings were carried out on a computer with an AMD 5600X processor and
24 GB of memory. We set ε = 10−7 for the reported timings, and compare to the
dense method up to L = 160. For L > 160 comparison to the dense method was
prohibitively expensive. For reference, storing the dense transform matrix in double
precision complex numbers for L = 512 would require about 640 GB of memory.
The NUFFT uses the FINUFFT implementation [1, 2]. The image used for the
timing results is a tomographic projection of a 3-D density map representing the
SARS-CoV-2 Omicron spike glycoprotein complex [15], retrieved from the online
EM data bank [21].

Remark 5.1 (Pre-computation time negligible when transforming many images).
The pre-computation involves organizing Bessel function roots, and creating data
structures for the NUFFT and interpolation steps of the algorithm. The pre-
computation only needs to be preformed once for a given size of image L, and
becomes negligible when the method is used to expand a large enough set of images
(around 100 images), which is a typical use-case in, for example, applications in
cryo-EM [4].

Remark 5.2 (Breakdown of timing of fast algorithm). Each step of the algorithm
has roughly the same magnitude. For example, for L = 512 and ε = 10−7 the
timings of the NUFFT, FFT, and Interpolation steps of the algorithm for applying
B are 0.035, 0.046, and 0.026 seconds, respectively. We note that the timing of each
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Figure 3. Timings of fast method versus dense method for pre-
computation (left) and applying B (right). The timings for the
dense method for L > 160 are extrapolated since the memory
requirements for the dense method were prohibitive.

step is dependent on the choice of parameters. For example, sampling more points
will increase the cost of the NUFFT step, but decrease the cost of the interpolation
step, since sparser interpolation matrices can be used; decreasing ε will increase the
cost of the NUFFT step.

Remark 5.3 (Parallelization). The timings reported in Fig. 3 are for a single-
threaded CPU code. However, each step of the code is amenable to paralleliza-
tion through GPU implementations. Indeed, the NUFFT step has a GPU imple-
mentation [27], and the 2-D FFT and interpolation steps can also benefit from
straightforward parallelization schemes.

5.3. Numerical example: convolution and rotation. We lastly present an
example illustrating the use of the steerable and fast radial convolution properties
of the eigenbasis. The example is motivated by cryo-EM, wherein tomographic
projection images of biological molecules in a sample are registered by electron
beams; see for example, [12] for more information. Because of aberrations within
the electron-microscope and random in-plane rotations of the molecular samples,
the registered image Ir does not precisely coincide with the true projection image
Ip and the following model is used:

Ir(x) = c(|x|) ∗Rθ (Ip(x)) + ε, (25)

where Rθ describes rotation around the origin by an angle of θ, c is a radial function
termed the point-spread function and ε is additive white noise. The function ĉ is
in turn known as the contrast transfer function (CTF). Examples of point spread
functions are shown in Fig. 4.

Notably, the regions of the frequency space where ĉ equals zero destroy infor-
mation of Ip(x). However, the fact that convolution is a diagonal transformation
of the coefficients in the basis of eigenfunctions enables reconstruction of a fixed

projection image Ip from a small number of registered images I
(i)
r with different

point spread functions ci(|x|), rotations Rθi , and noise ε(i), for i = 1, . . . , t. From

Lemma 2.2, it follows that the basis coefficients α
(i)
nk of the registered images satisfy

α
(i)
nk = ĉi(λnk)eınθiα

(0)
nk + ε

(i)
nk, for i = 1, . . . , t, (26)
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a b c d

e f g h

Figure 4. Two different point spread functions (a–b), result of
their convolution with a fixed image and subsequent rotation (c–
d), (e) Projection of reference image into the eigenbasis using the
fast algorithm. (f-g) result of deconvolution algorithm using t = 1,
3, 5, respectively.

where α
(0)
nk denote the basis coefficients of Ip. We assume that the parameters θi

and ci are known or estimated to a desired precision. We remark that the standard
FFT can be used to solve this problem when there are no rotations.

To recover the α
(0)
nk , we find the least-squares optimizers of (26). To improve the

conditioning of the problem, (26) is thresholded to exclude the values of i for which

ĉi(λnk) has sufficiently low magnitude. We therefore estimate α
(0)
nk by α

(0)
nk ≈ αnk,

with αnk defined by

αnk = min
αnk

∑
(n,k)∈I

t∑
i=1

γ
(i)
nk ·

∣∣∣α(i)
nk − ĉi(λnk)eınθiαnk

∣∣∣2 , (27)

where γ
(i)
nk = 0 if |ĉi(λnk)| < τ , for a given threshold τ , and γ

(i)
nk = 1 otherwise. This

describes a decoupled least-squares problem for each coefficient αnk, which can be
solved efficiently. We remark that (27) is a basic version of Wiener filtering [4],
which we use for simplicity of exposition. The result of this procedure for different
values of t and a non-zero value of the noise ε is shown in Fig. 4.

6. Discussion

This paper presents a fast method for expanding a set of L× L-images into the
basis of eigenfunctions of the Laplacian on the disk. The approach calculates the
expansion coefficients from interpolation of the Fourier-transform of the image on
distinguished subsets of the frequency space, and relies on an integral identity of
the Fourier-transform of the eigenfunctions. Unlike previous approaches [34], we
demonstrate that our fast method is guaranteed to coincide with a dense, equivalent
method up to a user-specified precision. Moreover, our method provides a natural
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way to compute the convolution with radial functions. Potential extensions of
the presented method include extending the method to three dimensions or other
domains in two dimensions.

Acknowledgements. The authors would like to thank Joakim Andén and Yun-
peng Shi for their helpful comments on a draft of this paper.
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