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Abstract7

The Fourier shell correlation (FSC) is a measure of the similarity between two signals computed over corresponding shells8

in the frequency domain and has broad applications in microscopy. In structural biology, the FSC is ubiquitous in methods9

for validation, resolution determination, and signal enhancement. Computing the FSC usually requires two independent10

measurements of the same underlying signal, which can be limiting for some applications. Here, we analyze and extend11

on an approach proposed by Koho et al. [1] to estimate the FSC from a single measurement. In particular, we derive12

the necessary conditions required to estimate the FSC from downsampled versions of a single noisy measurement. These13

conditions reveal additional corrections which we implement to increase the applicability of the method. We then illustrate14

two applications of our approach, first as an estimate of the global resolution from a single 3-D structure and second as a15

data-driven method for denoising tomographic reconstructions in electron cryo-tomography. These results provide general16

guidelines for computing the FSC from a single measurement and suggest new applications of the FSC in microscopy.17

1 Introduction18

The Fourier shell correlation (FSC) is defined as the normalized cross-correlation of corresponding shells between two signals19

in the frequency domain [2, 3]. In single particle electron cryo-microscopy (cryo-EM), the FSC has become the universal20

resolution metric and is used to assess the quality of a 3-D reconstruction [4, 5]. Additional major contributions of the FSC21

in cryo-EM include setting hyperparameters of iterative algorithms, as in 3-D refinement of structures [6], and estimation of22

the spectral signal-to-noise ratio (SSNR) [7, 8].23

A core requirement of the FSC is the availability of two or more independent noisy measurements. In single particle cryo-24

EM, this is often achieved by splitting the data into random half sets [4]. However, for other forms of microscopy or data25

processing procedures, it is not always possible to apply the same strategy. To bypass the need for multiple measurements,26

a novel approach was recently proposed to estimate an FSC-like quantity from a single measurement, which we refer to as27

the self FSC (SFSC) [1]. This approach was initially used for image restoration in fluorescence microscopy [1] and has also28

been applied to estimating resolution in scanning electron microscopy [9]. The SFSC is implemented by first decimating an29

image in real space to produce downsampled images whose correlation with each other is then computed in Fourier space.30

While the interpretability of the original FSC has been discussed in [10, 11], the validity of the SFSC as a proxy for the FSC31

is more difficult to interpret, since the two downsampled signals are not independent.32

In this work, we analyze the SFSC and give sufficient conditions on the statistics of both the signal and the noise under33

which the estimator is consistent with the standard FSC. Notably, we show that the assumptions required for the SFSC are34

more restrictive than the standard FSC and that use of the SFSC outside the defined conditions can give estimates that35

deviate significantly from the FSC. The conditions are easy to check and give practical guidelines to the applicability of the36

SFSC.37

To demonstrate the validity of the SFSC, we provide two applications in the context of cryo-EM: first as a measure of the38

global resolution from a single map, and second as a data-driven method for denoising in electron cryo-tomography (cryo-ET).39

In the first application, we show that the resolution predicted by the SFSC from one half-map agrees with the standard FSC40

computed from two half maps, provided the conditions on the data described in this work are met. We then use the SFSC41

to denoise a reconstructed tomogram from cryo-ET data by applying a Wiener filter. Our approach provides significantly42

increased contrast and visibility compared to conventional low-pass filtering. The code used to generate the results in this43

work is available at: github.com/EricVerbeke/self_fourier_shell_correlation.44

2 Results45

Experimental evidence for the relationship between the correlation of noisy image measurements and the signal-to-noise ratio46

in electron microscopy date back to (at least) 1975 [12]. With the advent of the FSC, this relation was developed further47
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to describe the decay in data quality with respect to spatial frequency based on a relation to the SSNR [7]. The SSNR is48

a central quantity in computational microscopy and has specific use in cryo-EM for denoising by Wiener filtering [13], and49

post-processing (e.g., 3-D structure sharpening) [4].50

In this work, we consider the following simple model for estimating the FSC and therefore also the SSNR: we observe a51

single noisy measurement y of an underlying signal x:52

y = x+ ϵ. (1)

We discuss the effect of including the contrast transfer function (CTF) in the model in Appendix A.1. For the model in eq. (1),53

we assume that the ground truth signal is drawn from a mean-zero Gaussian distribution x ∼ N (0,Λ) with additive Gaussian54

colored noise ϵ ∼ N (0,Σ), where Λ and Σ are the covariance matrices of the signal and noise respectively. We further assume55

that all entries of x̂ := F{x} and ϵ̂ := F{ϵ}, the discrete Fourier transforms (DFT) of x and ϵ, are statistically independent56

of each other, and thus have diagonal covariance matrices in the Fourier domain. That is, we have that x̂ ∼ N (0, D(λ2))57

and ϵ̂ ∼ N (0, D(σ2)), where D(v) ∈ Cd×d denotes a diagonal matrix with entries v ∈ Cd, and λ and σ are vectors that are58

constant along frequency shells. The real space covariance matrices are therefore Λ = F ∗D(λ2)F and Σ = F ∗D(σ2)F , where59

F is the normalized DFT matrix and ∗ denotes the conjugate transpose. While the independence assumption on the signal60

in the Fourier domain may seem restrictive, it is typical in cryo-EM 3-D reconstruction—corresponding to a weighted L2
61

regularized problem in the maximum a posteriori formulation [6]; furthermore, it is justified in the “infinitely large” protein62

limit under the Wilson statistics model [14, 15]. The SSNR at spatial frequencies of radius r is then defined as:63

SSNR(r) =
λ2(r)

σ2(r)
. (2)

Typically, neither λ2 or σ2 are known a priori and thus must be estimated from data. In practice, the SSNR can be64

estimated if two independent and noisy measurements, y1 and y2, of the same signal x are available by computing their FSC.65

The FSC is defined as:66

FSC(r) =

∑
k∈Sr

Re
(
ŷ1[k]ŷ2[k]

)
√ ∑

k∈Sr

|ŷ1[k]|2
∑

k∈Sr

|ŷ2[k]|2
=

⟨ŷ1, ŷ2⟩r
∥ŷ1∥r∥ŷ2∥r

, (3)

where ŷ1 and ŷ2 are the DFT of y1 and y2, the overline denotes the complex conjugate, and ⟨·, ·⟩r denotes the standard inner67

product on Cd restricted to the shell Sr with ∥ · ∥r being the associated norm. We use brackets to denote indexing of a68

discrete function and k for the multi-index on a Fourier grid. The link between the FSC and SSNR is made by considering69

a related deterministic quantity, denoted EFSC:70

EFSC(r) :=
E [⟨ŷ1, ŷ2⟩r]√

E[∥ŷ1∥2r]E[∥ŷ2∥2r]
=

λ2(r)

λ2(r) + σ2(r)
, (4)

where E is the expectation. We note that while E[FSC(r)] ̸= EFSC(r), the estimated quantity has proven to be a useful71

proxy for the SSNR. From the EFSC, we see that the SSNR can be estimated as:72

SSNR(r) =
EFSC(r)

1− EFSC(r)
. (5)

It is a common practice to replace the EFSC by the empirical FSC eq. (3) computed from two signals to estimate the SSNR.73

2.1 Fourier shell correlation from a single measurement74

The computation of the standard FSC requires two independent measurements of a signal. In this work, the goal is to75

estimate the FSC and SSNR from a single measurement. A solution proposed in [1] is to compute the FSC from downsampled76

versions of the same measurement. This approach is originally implemented by first taking a noisy, real-space measurement77

and decimating into a checkerboard-like pattern to form half-sized approximations of the original measurement, as shown78

in Figure A2. The FSC between pairs of downsampled signals can then be computed.79

Here, we modify the downsampling procedure such that the real-space measurements are split into even and odd terms80

along one spatial dimension at a time, thus providing two downsampled versions for each dimension. The FSC is then81

computed between each downsampled measurement pair for each dimension and the reported FSC is taken to be the average,82

as shown in Figure 1. There are two main advantages of this approach compared to the checkerboard-like splitting pattern.83

First, our scheme preserves the Nyquist frequency for each axis except the one split into even and odd terms. Second, we84

show in Appendix A.2 that splitting in a checkerboard-like pattern scales the variance of the noise in the SFSC by 2dim where85

dim is the number of axes split into even and odd terms. For the 1-D case, a measured signal is decimated by simply splitting86

into even and odd terms.87
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While this process is always easily computable, it is not clear that the estimate is meaningful. Indeed, the basis of the88

connection between the FSC and SSNR is the statistical independence of two measurements. However, in the SFSC case, the89

two measurements are simply downsampled versions of the same noisy measurement which are correlated in any practical90

scenario. Despite the apparent correlation, we show that under conditions on the statistics of both the signal and the noise,91

the SFSC may still be used to estimate the SSNR from the downsampled measurement, which can be used to infer the SSNR92

of the original measurement.93

measured signal

Figure 1: Illustration of the Fourier shell correlation computed from a downsampled signal (i.e., the SFSC). The measured
signal is split into even and odd voxels for each dimension and the SFSC is computed between the respective pairs. The
reported FSC is taken to be the average of the three pairs.

2.2 Conditions for accurate estimation of the FSC from the SFSC94

We present our main analysis for the SFSC here using the one-dimensional case for simplicity, although we show in Ap-95

pendix A.3 that it naturally extends to higher dimensions. Following the model in eq. (1), let y be a discrete 1-D mea-96

surement of length N , where we assume N is even. The measurment y is then downsampled by splitting it into even index97

terms ye[n] = y[2n] and odd index terms yo[n] = y[2n + 1] for n ∈ {0, . . . , (N/2) − 1}. The DFT of the even and odd term98

measurements can be related to the DFT of the original measurement y as follows (see Appendix A.3 for derivation):99

ŷe[k] = (x̂[k] + ϵ̂[k] + x̂[k +N/2] + ϵ̂[k +N/2])/2, (6)
100

ŷo[k] = (x̂[k] + ϵ̂[k]− x̂[k +N/2]− ϵ̂[k +N/2])/
(
2ωk

N

)
, (7)

where ŷe and ŷo are the DFTs of ye and yo, and ωN = exp(−2πi/N). We note that if the higher frequency terms are small101

(i.e., there is a rapid decay in the power spectrum), then ŷe[k] and ŷo[k] are approximately equal after a phase shift of ŷo[k]102

by ωk
N . Thus, as noted in [1], when computing the SFSC between downsampled pairs, a phase shift correction must be103

included. That is:104

SFSC(r) =

〈
ŷe, ŷoe

−2πi⟨a,k/N⟩〉
r

∥ŷe∥r∥ŷoe−2πi⟨a,k/N⟩∥r
, (8)

where a denotes the translation. We discuss the origin and effect of this translation further in Appendix A.4.105
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Our goal is to show that the SFSC is approximately equal to the FSC such that it can also provide an estimate of the106

SSNR as in eq. (5). Following the same arguments as stated for the EFSC in eq. (4), we have that:107

ESFSC1-D[k] :=
E
[〈
ŷe, ŷoe

−2πi⟨a,k/N⟩〉
r

]√
E[∥ŷe∥2r]E[∥ŷoe−2πi⟨a,k/N⟩∥2r]

. (9)

Under the standard assumption that the signal and the noise are statistically independent, we then get:108

ESFSC1-D[k] =
λ2[k]− λ2[k +N/2] + σ2[k]− σ2[k +N/2]

λ2[k] + λ2[k +N/2] + σ2[k] + σ2[k +N/2]
. (10)

Thus, in general, the estimates for the EFSC and ESFSC are not the same. However, if we consider the following two109

assumptions:110

Assumption 1 The Gaussian noise distribution is white, namely σ2[k] = σ2[0] ∀k,111

Assumption 2 The power spectrum of the signal decays such that λ2[k] ≫ λ2[k +N/2],112

then, we have that:113

ESFSC1-D[k] ≈ λ2[k]

λ2[k] + 2σ2[k]
. (11)

That is, the ESFSC approximates the EFSC with an additional doubling on the variance of the noise. Given the above114

assumptions are met, the ESFSC can be related to the EFSC by:115

EFSC(r) =
2ESFSC(r)

1 + ESFSC(r)
. (12)

We illustrate the importance of the assumptions on the signal and noise in Figure 2, and how to circumvent these116

assumptions in Figure 3 using a synthetic 2-D image as an example. The clean image originates from a projection of the117

3-D structure of a human gamma-aminobutyric acid receptor (available as entry EMD-11657 in the electron microscopy data118

bank) [16]. Using a typical B-factor decay in cryo-EM [4], we generate each image as x = F−1{x̂ exp(−B∥k∥2/4V N)}, where119

V is the voxel (or pixel) size and B modulates the decay. Here the image size is N ×N = 360×360 with a pixel size of 0.81Å.120

Noisy measurements are then produced by adding Gaussian noise. To generate noise which decays with spatial frequency121

(i.e., such that Assumption 1 is broken), a B-factor decay may also be applied to the additive noise and is delineated as122

Bsignal and Bnoise when necessary.123

Given both assumptions on the data are met, and that the correction for the scaling of the variance in eq. (12) is applied,124

we show in Figure 2a that the SFSC accurately estimates the FSC. If the noise is not white Gaussian, but instead decays with125

spatial frequency, the SFSC is unreliable and overestimates the FSC (Figure 2b). However if the noise is white Gaussian, but126

the power spectrum of the signal does not have rapid decay, then the SFSC underestimates the FSC (Figure 2c). Finally,127

if neither assumption is met, the SFSC fails to approximate the FSC and tends to give an overestimate (Figure 2d). These128

results underpin the behavior of the SFSC, whether or not it should be applied, and motivate the improvements to the129

algorithm described in the following sections which circumvent the assumptions.130

2.3 Accounting for colored noise in the SFSC131

Microscopy images are often contaminated by colored Gaussian noise. Specifically, in cryo-EM, noise is often modeled by132

a covariance matrix that is diagonal in the Fourier domain, but with entries that vary [17]. In this case, Assumption 1 is133

violated. From eq. (10), the ESFSC approximates the EFSC only in the case of white Gaussian noise and should not be134

expected to match otherwise. However, in the scenario where the noise is not white but its distribution can be estimated, we135

can first whiten the measurement prior to computing the SFSC. Suppose that the Fourier transform of the noise distribution136

is ϵ̂ ∼ N (0, D(σ2)). We define the Fourier transform of the whitened noisy measurement ŷw as:137

ŷw = W−1/2ŷ, (13)

where W = D(σ2). By construction, the noise in ŷw is white:138

ŷw = W−1/2x̂+W−1/2ϵ̂ = x̂w + ϵ̂w, (14)

where x̂w = W−1/2x̂ and ϵ̂w = W−1/2ϵ̂, and Cov[ϵ̂w] = Cov[W−1/2ϵ̂] = W−1/2WW−1/2 = I. While this transform changes139

the signal, the SSNR of the new signal is the same as the original one. Noise whitening of data has statistical justifications140

which are described in [18].141
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Figure 2: Conditions on the statistics of the signal and noise under which the SFSC accurately estimates the FSC. Each
panel shows the image, power spectrum and associated SFSC for a signal that satisfies or fails to satisfy both Assumption 1
and Assumption 2. The SNR was set to 15 for each image with additive Gaussian noise that decays with spatial frequency
when specified. The FSC was computed for each case using two synthetic images generated with the same parameters but

independent noise. (a) Bsignal = 100Å
2
, Bnoise = 0Å

2
. Both assumptions are met and the SFSC accurately estimates

the FSC. (b) Bsignal = 100Å
2
, Bnoise = 50Å

2
. The noise is not white Gaussian and the SFSC overestimates the FSC.

(c) Bsignal = 0Å
2
, Bnoise = 0Å

2
. The noise is white Gaussian but the signal does not have rapid decay. The SFSC

underestimates the FSC. (d) Bsignal = 20Å
2
, Bnoise = 10Å

2
. Neither assumption is met and the SFSC fails to estimate

the FSC. This figure demonstrates that the naive SFSC provides an accurate estimate of the FSC only if Assumption 1
and Assumption 2 are met.

To demonstrate the effect of colored noise on the SFSC, we generated an image with a noise spectrum that decays following142

exp(−B∥k∥2/4V N), with B = 50Å
2
. We show in Figure 3c that after applying a whitening transform, we can recover the143

FSC from the SFSC. While this procedure can always be done if the noise level can be estimated, we note that it also leads to144

a simpler scheme for estimating the SSNR. Specifically, if the noise variance can be estimated, the ratio of the noise variance145

subtracted from the power spectrum to the noise variance is, in expectation, also equal to the SSNR. In fact, this is always146

possible and yields approximately equivalent results to the standard FSC. The noise level is typically computed as part of147

the cryo-EM reconstruction process and could be used for a more direct measure of the SSNR without the need of the FSC.148

We demonstrate this simpler approach for estimating the SSNR in Appendix A.5.149

2.4 SFSC for measurements with slow decaying spectrum150

Assumption 2 requires that there is rapid decay in the power spectrum of the underlying signal. If this is not the case,151

we can introduce an additional correction to the SFSC. We propose the following approach: upsample the measurement by152

zero-padding in Fourier space to increase the length of the measurement to Ñ = 2N , then subtract off the noise level from153

the numerator. The effect of the zero-padding is to set the high frequency terms to zero, and thus their variance is also zero154

(i.e., λ2[k + Ñ/2] = σ2[k + Ñ/2] := 0). Returning to eq. (9) we see:155

E
[〈
ŷe, ŷoe

−2πi⟨a,k/N⟩〉
r

]
− γk√

E[∥ŷe∥2r]E[∥ŷoe−2πi⟨a,k/N⟩∥2r]
=

λ2[k]− λ2[k + Ñ/2] + σ2[k]− σ2[k + Ñ/2]− 4γk

λ2[k] + λ2[k + Ñ/2] + σ2[k] + σ2[k + Ñ/2]
=

λ2[k] + σ2[k]− 4γk
λ2[k] + σ2[k]

, (15)
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a b c d

Figure 3: Corrections required for the SFSC to accurately estimate the FSC. The image and corresponding power spectrum
in each column were generated with a specified SNR and a B-factor on both the signal and noise to exemplify each case.
The FSC was computed for each case using two synthetic images generated with the same parameters but independent

noise. (a) Phase shift correction, SNR = 105, Bsignal = 150Å
2
, Bnoise = 0Å

2
. If the phase shift induced by downsampling

is not corrected, the 2-D SFSC reduces to J0, a scaled zeroth order Bessel function of the first kind (see Appendix A.4).

(b) Correction for the scaled variance, SNR = 15, Bsignal = 100Å
2
, Bnoise = 0Å

2
. Both assumptions on the signal and

noise are met. The SFSC estimates the FSC according to eq. (12) after adjusting for the scaled variance. (c) Whitening

transform, SNR = 15, Bsignal = 100Å
2
, Bnoise = 50Å

2
. After applying a whitening transform, the SFSC estimates the FSC.

(d) Upsampling, SNR = 10, Bsignal = 10Å
2
, Bnoise = 0Å

2
. If the signal does not have rapid decay but has been whitened,

the SFSC estimates the FSC only after upsampling. These correcting factors extend the applicability of the SFSC.

where γk is a value we have chosen. The above equation equals the desired EFSC in eq. (4) when we set γk = 1
4σ

2[k].156

Importantly, this procedure only works after a whitening transform of the original measurement since the variance of the157

noise is known. We show in Figure 3d that upsampling a whitened measurement with a slow decaying power spectrum158

recovers the expected correlation curve. The effect of upsampling, and more generally frequency filtering prior to computing159

the SFSC, is discussed in Appendix A.6.160

2.5 Estimating resolution from a single cryo-EM map161

For a conventional 3-D reconstruction pipeline in single particle cryo-EM, the data are split into random half sets to generate162

two independent half maps which are used to compute the FSC. To verify the assumptions and corrections introduced in163

this work, we show that the global resolution can be estimated from a single cryo-EM half map using the SFSC. We use the164

3-D structures of a 20S proteasome (EMD-24822 [19]), a 70S ribosome (EMD-13234 [20]) and two small membrane proteins165

(EMD-27648 [21], EMD-20278 [22]) as examples.166

After 3-D reconstruction, we do not expect the noise to be white, but instead to increase proportionally to ∥ξ∥ due to the167

Fourier slice theorem, whereas the signal will show a strong exponential decay due to the B-factor. Thus, after whitening,168

our method applies. However, deposited maps usually have masking in either the volume or images which impact the noise169

statistics. Here we use the the noise in the corners of the reconstructions to estimate the noise distribution, but this assumes170

no masking was used. Otherwise, the noise in the corners and center will display different statistics. Specifically, we use171
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the region outside a sphere which encompasses the molecular structure to estimate the noise by computing the spherically172

averaged power spectrum, defined as PS(y)(r) :=
∫
Sr

|ŷ(∥k∥)|2dk (see Figure A4). We then apply the whitening transform173

and upsample procedure before computing the SFSC. The resolution reported using the standard FSC and the resolution174

calculated from the SFSC at a threshold of 1/7 [4] are approximately equal (Figure 4a-c) except for the case where there is175

a non-unifom noise distribution (Figure 4d). We attribute the deviation of the SFSC from one at the low frequencies to the176

difficulty in accurately estimating the noise using ad hoc methods. These results suggest that the SFSC provides a viable177

alternative for estimating resolution in cryo-EM and could be used in the absence of half maps.178

a b

c d

Figure 4: Global resolution estimates from single maps. The SFSC is computed for each half map after applying the
noise whitening and upsampling procedure. The noise is estimated by computing the spherically averaged power spectrum
from the region outside a sphere encompassing the structure. The SFSC is approximately equal to the standard FSC for
(a) EMD-24822 (grid points = 3603, voxel size = 1.05Å), (b) EMD-13234 (grid points = 3363, voxel size = 1.7Å) and (c)
EMD-27648 (grid points = 4163, voxel size = 0.83Å), but fails for (d) EMD-20278 (grid points = 2883, voxel size = 0.83Å)
due to the non-uniform noise which can be seen in the central slice images.
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2.6 Denoising a reconstructed tomogram179

Having established the necessary assumptions and corrections under which the SFSC provides an estimate of the SSNR,180

we next demonstrate an application to denoising tomographic reconstructions from cryo-ET data. In a typical cryo-ET tilt181

series data collection scheme, projection images are measured at ±60◦ in several degree increments. The recorded frames182

at each tilt are then motion corrected, aligned and a reconstruction technique is used to generate the 3-D tomogram. Due183

to the low electron beam dose required for imaging biological samples, the SSNR in cryo-ET data is low [23], and so there184

is a need for denoising methods [24]. Additionally, unlike in single particle cryo-EM, there are no related measurements to185

boost the SSNR by averaging. Thus, cryo-ET provides an ideal use case for the SFSC. Alternative approaches for estimating186

the resolution in cryo-ET such as computing the FSC from reconstructions of the even and odd images in a tilt series are187

described in [25].188

Considering the model for a noisy measurement in eq. (1), the minimum mean square error estimator for x given y under189

the Gaussian assumptions is known as the Wiener filter, and is widely used in cryo-EM [13, 26, 27]. The Wiener filter is190

defined as:191

x̂WF (r) =
1

1 + 1

SSNR(r)

ŷ(r). (16)

In cryo-ET, a common practice is to provide an ad hoc SSNR for Wiener filtering, or simply to use a low-pass filter. However,192

given the relationship between the EFSC and SSNR in eq. (5), and that the SFSC can estimate the FSC, we show that193

the SFSC provides a simple, data-driven method for applying a Wiener filter. Combining eq. (16) with eq. (5), we get that194

x̂WF (r) = SFSC(r) · ŷ(r). Effectively, each shell in Fourier space for measurement y is weighted according to the correlation195

profile from the SFSC. The idea of self-Wiener filtering has already been suggested in the context of signal processing and is196

described in [28].197

Here we show in Figure 5 that applying a Wiener filter from the computed SFSC improves the visibility of a reconstructed198

tomogram. The data in this example is C. elegans tissue from EMD-4869 [29]. In order to accurately estimate the SSNR,199

we know from Assumption 1 that the noise must be white Gaussian. To estimate the noise variance for a subsection of200

the tomogram, we select a slice above the region of interest. We then compute the SFSC and apply the Wiener filter201

in eq. (16). The resulting denoised section of the tomogram shows enhanced contrast over the original and a low-pass filtered202

version. Specifically, the ribosomes and membrane edges stand out from the background. We additionally consider CTF203

effects and compare our approach to the noise learning method cryo-CARE [30] using a different data set (EMD-15056 [31])204

in Appendix A.8. These results demonstrate that the SFSC can provide a simple, data-driven and parameter-free filter for205

improving the visualization of tomograms.206

3 Discussion207

In this work, we derive a set of conditions and corrections required for accurately computing the Fourier shell correlation208

from downsampled versions of a single noisy measurement. We demonstrate that we are able to estimate the global resolution209

from a single map and denoise a reconstructed tomogram using the SFSC. Our approach is broadly applicable and allows210

for estimation of the SSNR if it is not possible to collect replicate measurements or use prior information. Furthermore,211

our approach does not require instrument specific calibration as described in [1]. The corrections we introduce in this work212

extend the applicability of the SFSC but also suggest a simpler path to estimating the SSNR provided an estimate of the213

noise can be obtained. We show that the same logic applies for any data processing pipeline in cryo-EM that estimates214

the noise or computes half maps (see Appendix A.5). If the noise cannot be accurately estimated or is non-uniform, then215

the SFSC should not be expected to work. While we estimate the noise with ad hoc methods here, using more accurate216

approaches typically employed in cryo-EM data processing pipelines could improve the SFSC and associated Wiener filter.217

Although the SFSC is not always applicable, there are many situations that can benefit from having an estimate of the218

SSNR from a single measurement. For example, in single particle cryo-EM, there are a growing number of methods which219

generate 3-D structures from manifold embeddings and do not produce independent half maps with which to compute the220

standard FSC [32–34]. Thus there is a need for alternative methods to estimate signal and noise statistics. In principle, the221

SFSC could also be used to circumvent splitting data into half sets during 3-D reconstruction. This has the potential to lead222

to improved reconstructions due to an increase in SSNR from using the full data set. One additional application of the SFSC223

to single particle cryo-EM could be to both denoise and estimate the resolution of 2-D class averages.224

Other useful applications of the SFSC could include validation of SSNR enhancement after modification by neural network225

based approaches [35]. Similarly, the SFSC could provide an alternate measurement of the SSNR for noise learning based226

methods [30, 36, 37]. While the noise learning approaches give impressive results for denoising tomograms (see Figure A6),227

the benefit of the Wiener filter presented here is that it is fast to compute, requires no parameter tuning, and does not require228

extra storage (e.g., from reconstructing tomograms using odd and even frames). Further analysis of the SFSC for use with229

cryo-ET could also account for the missing wedge as well as directional and local resolution effects.230
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a b c

d e

f g

subsection noise region

Wiener filter low-pass filter

Figure 5: Denoising a reconstructed tomogram using the SFSC. (a) Slice of a reconstructed tomogram of C. elegans tissue
from EMD-4869 (N × N = 928 × 928, pixel size = 13.7Å). (b) Region of interest from a subsection of the tomogram
(N ×N = 464× 464). (c) Slice of the tomogram selected vertically above the region of interest containing background noise.
(d) Slice from the region of interest after applying a Wiener filter. (e) Conventional low-pass filter of the subsection at 66Å
determined using the 1/7 threshold of the SFSC. Both the Wiener filtered and low-pass filtered images are displayed at a
threshold of ±2 standard deviations of the pixel values. (f) SFSC computed from the tomogram subsection. (g) Spherically
averaged power spectrum of the region of interest slice and the background noise slice. The Wiener filter computed from the
SFSC provides significantly increased contrast compared to a low-pass filtering approach.

4 Methods231

4.1 Main algorithm232

The algorithm presented in this work consists of 3 main steps and 3 preprocessing steps, depending on the properties of233

the measured signal. The main steps are parameter-free and can be written succinctly as: 1) for each dimension, split234

the measured signal into even and odd index terms along that dimension, 2) for each pair of downsampled measurements,235

compute the SFSC, and 3) average the SFSC from all pairs.236

4.2 Data preprocessing237

Prior to computing the main algorithm, the user should first discern if Assumption 1 and Assumption 2 are met. This can238

be checked by plotting the spherically averaged power spectrum. If both assumptions are met, the power spectrum at the239
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latter half of spatial frequencies should appear approximately constant. However, if the required assumptions are not met,240

the preprocessing steps described in this work should be applied. These steps can be applied regardless of the signal and241

noise properties as long as an estimate of the noise variance can be obtained. The preprocessing steps are: 1) estimate the242

the noise variance, 2) whiten the measured signal, 3) upsample the whitened signal.243

4.3 Estimating the noise variance244

Several strategies exist to estimate the noise variance from data. This estimate is required for computing the SFSC if the245

noise is not white Gaussian. For the case of estimating the noise variance from a half map of a 3-D reconstruction in cryo-EM,246

we use an ad hoc approach by taking the region outside a sphere encompassing the molecular structure. For example, with247

EMD-24822, we use a spherical mask with radius = 115Å. The noise variance is then estimated by computing the spherically248

averaged power spectrum of the noise region.249

4.4 Denoising250

To estimate the noise variance for a reconstructed 3-D tomogram, we use a slice of the tomogram above the region of interest.251

Although the noise slice does not reflect the true 3-D noise profile, and more accurate methods can be used, we show that it252

is a suitable estimate for whitening based on the results of Wiener filtering. When applying the Wiener filter, we find that253

an additional low-pass filter at the spatial frequency corresponding to the 1/7 threshold from the SFSC can subtly enhance254

the contrast.255

Data Availability256

All data sets used in this work are available from the Electron Microscopy Data Bank [38]. The entries used are EMD-257

11657, EMD-24822, EMD-13234, EMD-27648 and EMD-20278 for molecular structures, and EMD-4869 and EMD-15056 for258

reconstructed tomograms.259

Code Availability260

The source code used to produce the results and figures in this work is available at github.com/EricVerbeke/self_fourier_261

shell_correlation. The SFSC will be made available as a tool in the software package ASPIRE [39].262
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A Appendix348

A.1 Applicability of the SFSC to CTF modified signals349

Microscopy images are typically corrupted by imaging artifacts. In cryo-EM, this is modeled by the contrast transfer function350

(CTF) which is the Fourier transform of the point spread function of the microscope. We therefore discuss the effects of351

these modifications on the estimation of the FSC by SFSC. Often, the forward model may be written as:352

ŷ = ĉ · x̂+ ϵ̂ (17)

where x̂ is the Fourier transform of the underlying signal, ĉ is the CTF effect, and ŷ is the Fourier transform of the corrupted353

observation. Given two images of the same signal affected by the same CTF, the FSC can be readily used to estimate the354

SSNR, but it should be noted that it will be an estimate of the SSNR for the corrupted signal x̃ = F−1{ĉ · x̂}, and not the355

clean signal x. Similarly, the SFSC can also be used to estimate the SSNR of the corrupted signal assuming the measurement356

follows the properties assumption 1 and assumption 2. We illustrate this with two simulated examples. The first example is357

for a typical CTF in cryo-EM images, described by:358

CTF(ξ) =
√
1− w2 sin(−πλz∥ξ∥2 + Csλ

3∥ξ∥4π/2− α)− w cos(−πλz∥ξ∥2 + Csλ
3∥ξ∥4π/2− α), (18)

with w = 0.1, λ = 2.51 pm, z = 2.8 µm, Cs = 2.0 µm, and α = 0.87. The second example is for a CTF that resembles a tilt359

series image in cryo-ET (see Appendix A.8), described by:360

CTF(ξ) = sin(α+ ∥ξ∥2/z), (19)

with α = 3/4 and z = 5. We generate noisy, CTF corrupted images following eq. (17). The FSC, SFSC and spherically361

averaged power spectrum are then computed for each image Figure A1. As expected, the oscillations of the CTF modulate362

the correlation profile in both the FSC and SFSC. Importantly, the SFSC still approximates the FSC well. In these scenarios,363

the traditional resolution value obtained from a threshold may not be meaningful as we expect the FSC to oscillate. Most364

importantly, while the CTF may change the reported resolution value, the Wiener filter computed using the SFSC of a CTF365

modified signal is still a statistically optimal filter for denoising.366

We note that if the CTF is not radially symmetric, then the CTF corrupted signal should not be expected to satisfy367

radially symmetric assumptions. In this case, both the FSC and SFSC are poor estimators of the SSNR. However, when368

applied to reconstructions from a collection of CTF corrupted images with a random and uniform distribution of poses, the369

reconstructions will have approximately radially symmetric noise and variance even if the images do not.370

a

b

Figure A1: Effect of the CTF on the FSC and SFSC. Clean image is a projection of EMD-11657 (N × N = 360 ×
360, pixel size = 0.812Å). Additive Gaussian noise was generated with SNR = 15 and Bnoise = 10Å

2
. (a) Results for image

formed using CTF in eq. (18). (b) Results for image formed using CTF in eq. (19). Also plotted is the absolute value of the
radial CTF.
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A.2 Comparison of downsampling methods371

The foundation of the SFSC is that a real space measurement can be downsampled by decimation to generate multiple372

approximations of the measurement whose correlation can then be computed in Fourier space. In our proposed downsampling373

scheme (see Figure 1), the number of measurements to be compared is equal to the spatial dimensions of the signal (e.g., 3374

pairs for a 3-D signal). In the procedure proposed by Koho et al. [1], there are
(
2dim

2

)
pairs to be compared. There are two375

main disadvantages of splitting in a checkerboard-like pattern compared to only splitting along one dimension at a time, as376

proposed in this work. First, the variance of the noise in the downsampled measurements is scaled by 2dim, where dim is the377

number of dimensions split across. This relation is derived in the following section. Second, the Nyquist frequency will be378

reduced to half of the original. We demonstrate both of these effects using the 2-D case of an image in Figure A2.379

1x split 2x split

Figure A2: SFSC computed from an image downsampled by splitting along 1 and 2 dimensions. The pixel diagram depicts
one pair out of two for the 1× split and one pair out of six for the 2× split. The input image used for the FSC and SFSC
is from Figure 3B. The SFSC from the 1× split image is reported as the average of both pairs. The SFSC from the 2× split
image is reported as the average of the six combinations and is plotted with an error envelope representing the standard
deviation of the SFSC from all combinations.
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A.3 General relation between FSC and SFSC380

To relate the SFSC to the FSC, we need to relate the DFT of the decimated signals to the DFT of the original signal. We381

first show this relation for a signal split along one dimension, as advocated in this work, and then provide an example for a382

signal split along two dimensions, as done for images in the original splitting scheme by Koho et al. [1], to demonstrate how383

it extends to a signal split along multiple dimensions.384

Let x be a 1-D signal of length N . The DFT of x is defined as x̂[k] =
∑N−1

n=0 x[n]ωnk
N , where ωN = exp(−2πi/N). The385

signal x can be split into even index terms xe[n] = x[2n] and odd index terms xo[n] = x[2n+ 1] for n ∈ {0, . . . , (N/2)− 1}.386

We want to relate x̂e[k] and x̂o[k], the DFTs of xe and xo, to the DFT of the original signal x̂[k]. The relation can be seen387

by splitting the DFT of x into the sum of the even and odd terms:388

x̂[k] =

N
2 −1∑
n=0

x[2n]ω2nk
N +

N
2 −1∑
n=0

x[2n+ 1]ω
(2n+1)k
N

=

N
2 −1∑
n=0

x[2n](ωnk
N )2 + ωk

N

N
2 −1∑
n=0

x[2n+ 1](ωnk
N )2.

(20)

Next, we use that ω2
N = exp(−2πi/(N/2)) = ωN/2 to get:389

x̂[k] =

N
2 −1∑
n=0

x[2n]ωnk
N/2 + ωk

N

N
2 −1∑
n=0

x[2n+ 1]ωnk
N/2. (21)

Applying the definition of the DFT to the right side of the equation yields:390

x̂[k] = x̂e[k] + ωk
N x̂o[k]. (22)

Importantly, k = 0, . . . , N − 1, and x̂e and x̂o are N/2 periodic1. We can then independently relate x̂e[k] and x̂o[k] to x̂[k]391

as follows:392

x̂e[k] = (x̂[k] + x̂[k +N/2])/2 (23)
393

x̂o[k] = (x̂[k]− x̂[k +N/2])/
(
2ωk

N

)
. (24)

Equation (23) and eq. (24) form the framework of our analysis presented in Section 2.2, and describe the relation between394

the DFTs of a 2-D or 3-D measurement that has been split into alternating voxels along one dimension.395

The analysis above holds for a signal split along multiple dimensions as well, since the DFT can be applied along subsequent396

dimensions. Specifically, we are referring here to the checkerboard-like splitting pattern from [1]. Suppose now that x is a397

2-D signal (i.e., an image). If the signal x is split into even and odd index terms along both dimensions, then we have that:398

x̂e,e[k1, k2] = (x̂[k1, k2] + x̂[k1 +N/2, k2] + x̂[k1, k2 +N/2] + x̂[k1 +N/2, k2 +N/2])/4 (25)
399

x̂o,o[k1, k2] = (x̂[k1, k2]− x̂[k1 +N/2, k2]− x̂[k1, k2 +N/2] + x̂[k1 +N/2, k2 +N/2])/
(
4ω

(k1+k2)
N

)
, (26)

where e denotes even and o denotes odd indexing for each dimension of x, and k1 and k2 are the frequency indexes of x̂. In400

the case of a noisy measurement, we are interested in the relation between the SFSC from the downsampled measurements401

using this splitting scheme and the SSNR. Following the arguments presented in Section 2.2, if both assumptions on the402

signal and noise are met, then:403

ESFSC2-D(r) :=
E
[〈
ŷe,e, ŷo,oe

−2πi⟨a,k/N⟩〉
r

]√
E[∥ŷe,e∥2r]E[∥ŷo,oe−2πi⟨a,k/N⟩∥2r]

=
λ2(r)

λ2(r) + 4σ2(r)
.

(27)

For the general case of decimating into even and odd terms over multiple dimensions, we see that:404

ESFSC(r) =
λ2(r)

λ2(r) + 2dimσ2(r)
. (28)

1This well known recursive identity is at the core of the fast Fourier transform algorithm.
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Thus, when splitting along multiple dimensions, there is a scaling of 2dim on the noise variance compared to a scaling of 2405

from splitting once as proposed in this work. From eq. (28), the relation between the EFSC and ESFSC split over multiple406

dimensions is:407

EFSC(r) =
2dim ESFSC(r)

1 + (2dim − 1)ESFSC(r)
. (29)

We show in Figure 3A that the SFSC will yield an underestimate of the FSC if the correction in eq. (29) is not applied. For408

the 2-D case in Figure 3A, the SFSC was computed using our splitting scheme. Thus eq. (29) is equal to eq. (12).409
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A.4 FSC with a phase shifted input410

We consider the effect of a translation between real space signals when computing the FSC. A translation is naturally induced411

between pairs of decimated measurements when computing the SFSC and must be corrected. For example, as noted in [1],412

when an image is decimated in a checkerboard-like pattern, each downsampled image pair is offset by a single pixel in each413

dimension. Here we show that if the power spectrum of the signal is approximately spherically symmetric, a translation414

between the inputs to the SFSC, and more generally the FSC, leads to a signal-independent quantity unique for the 1-D,415

2-D and 3-D case.416

Continuing with the 2-D case, the decimated images represent the same area as the original image, but with half the417

length for each split dimension. This leads to an effective pixel size of twice the original. With respect to the original image,418

we expect the translation between the downsampled image pairs to be:419

y2(p) ≈ y1(p− a), (30)

where a = [1/2, 0]T for an image split along one dimension, or a = [1/2, 1/2]T for an image split along two. A translation420

of 1/2 reflects the increase in pixel size. If the power spectrum of the image decays fast, then the adjacent pixels are indeed421

correlated. Here we consider the signal to be continuous, with its Fourier transform defined as ŷ(ξ) =
∫
y(p) exp(−2πi ⟨ξ, p⟩)dp,422

where ξ is the frequency variable. A translation in real space is equivalent to a phase shift in Fourier space. It follows that:423

ŷ2(ξ) = F{y2(p)} ≈ F{y1(p− a)} = ŷ1(ξ) exp(2πi⟨a, ξ⟩). (31)

That is, we expect the spectrum of image y2 to be approximately equal to the spectrum of image y1 multiplied by a phase424

shift. The continuous analogue of the FSC can be expressed as:425

FSC(r) =

∫
Re

(
ŷ1(ξ)ŷ2(ξ)

)
dξ√∫

|ŷ1(ξ)|2 dξ
∫
|ŷ2(ξ)|2 dξ

. (32)

From eq. (30), ŷ1 and ŷ2 are approximately equal after a phase shift. We can then rewrite the FSC as:426

FSC(r) =

∫
Re

(
ŷ1(ξ)ŷ1(ξ)e

2πi⟨a,ξ⟩
)
dξ√∫

|ŷ1(ξ)|2dξ
∫
|ŷ1(ξ)e2πi⟨a,ξ⟩|2dξ

. (33)

If the power spectrum of y is approximately spherically symmetric, then we then have that:427

FSC(r) =
|ŷ1(ξ)|2

∫
e2πi⟨a,ξ⟩dξ

|ŷ1(ξ)|2
√∫

dξ
∫
|e2πi⟨a,ξ⟩|2 dξ

=

∫
e2πi⟨a,ξ⟩dξ√

2π2π
=

1

2π

∫
e2πi⟨a,ξ⟩dξ. (34)

For the 2-D case, the inner product can be written as: ⟨a, ξ⟩ = ∥a∥∥ξ∥ cos(ϕ) = ∥a∥r cos(ϕ). Since the integral is over the428

ring, we can reparametrize ϕ, the angle between a and ξ, so that cos(ϕ) = sin(θ). We then get that:429

FSC2-D(r) =
1

2π

∫ 2π

0

e2πi∥a∥ r sin(θ) dθ. (35)

In this form, the FSC is equivalent to a scaled zeroth order Bessel function of the first kind, J0(q), defined as:430

J0(q) =
1

2π

∫ 2π

0

eiq sin(θ) dθ. (36)

Comparing eq. (35) to eq. (36), we see that FSC2-D(r) = J0(2π∥a∥r). We show in Figure 3A that failing to account for the431

induced phase shift in a 2-D image reduces the SFSC to eq. (36) which no longer matches the FSC. For the 3-D case, under432

the similar assumption of a spherically symmetric power spectrum, evaluating the integral in eq. (34) yields:433

FSC3-D(r) =
sin(2π∥a∥r)

2π∥a∥r
, (37)

which is equivalent to a scaled and normalized sinc function. Finally, in the 1-D case, without accounting for the translation,434

we simply have that the FSC reduces to exp(−2πik/N). Apart from describing a necessary correction needed for computing435

the SFSC, these results emphasize that the inputs to the FSC must be carefully aligned. Otherwise, the output from the FSC436

might not reflect the signal to noise ratio, but rather the deterministic and signal-independent functions described above.437
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A.5 Estimation of the SSNR without the FSC438

In Section 2.2 we describe the assumptions under which the SFSC provides an estimate of the FSC. For some scenarios, if439

both Assumption 1 and Assumption 2 hold, we can estimate σ2, the variance of the noise, directly from the high frequencies440

of the power spectrum. In particular, this is true for high frequency shells when the signal spectrum has decayed and the441

noise level dominates the power spectrum (i.e., the SSNR is small). If the spherically averaged power spectrum does not442

appear flat at high frequencies, the noise variance cannot be estimated from the power spectrum and a different approach443

is needed. Estimating the noise is a standard part of the cryo-EM pipeline and is essential for the whitening transform444

described in Section 2.3. In this work we show the noise variance can be estimated from regions of noise or the difference of445

half maps from 3-D reconstructions. If one has access to the noise variance, the following simpler and more direct approach446

can be used to obtain the SSNR:447

SSNR(r) ≈ PS(y)(r)− σ2(r)

σ2(r)
≈ λ2(r) + σ2(r)− σ2(r)

σ2(r)
=

λ2(r)

σ2(r)
, (38)

from which the EFSC can also be computed as:448

EFSC(r) =
SSNR(r)

1 + SSNR(r)
. (39)

We show in Figure A3 that the SFSC from a half map and the FSC determined using a noise region of the half map for eq. (38)449

are approximately equal. We additionally show that if two half maps have been computed, the SSNR, and therefore the450

FSC, can be estimated just as well from the difference of half maps. Thus, this property is not intrinsic to just the SFSC.451

Nonetheless, the FSC still has the advantage of being scale invariant and can be applied even when there is ambiguity in the452

scale between the two measurements.453

Figure A3: Comparison of the FSC from half maps and the SSNR estimated from measurement noise. The FSC and SSNR
are computed from EMD-24822 by four different methods and show similar profiles.
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A.6 Remarks on frequency filtering for the SFSC454

To avoid aliasing when downsampling a signal, the standard approach is to first low-pass filter the original signal [40].455

However, frequency filtering should not be applied when computing the SFSC as both the low and high frequency terms of456

the original signal are needed to correctly estimate the FSC. This can be directly seen in the DFTs of the downsampled457

signals which are modified by ±(x̂[k+N/2] + ϵ̂[k+N/2]), the higher frequency terms. If an ideal low-pass filter was applied458

to the original signal such that all frequencies k > N/4 are set to zero, the resulting SFSC would equal 1 at all frequencies,459

regardless of the SSNR. Similarly, if the original signal was high-pass filtered such that all frequencies k < N/4 are set to460

zero, the SFSC would equal −1 at all frequencies. Thus, in order to accurately estimate the FSC from the SFSC, frequency461

filtering of the original signal should be avoided. The upsampling procedure in Section 2.4 used to compute the SFSC for462

measurements without decaying power spectrum effectively creates a low-pass filter. However, since the measurement must463

first be whitened for the upsampling procedure to work, we can compensate for the necessary high frequency noise terms464

since the variance of the noise has been set to 1.465
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A.7 Noise estimation from reconstructed volumes466
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Figure A4: Central slices of the raw half maps, the regions containing only noise, and their corresponding power spectrum
(below each image) for the four structures in Figure 4.
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A.8 CTF and denoising for tomograms467

In Figure A5, we visualize the CTF from a tilt series image and the tomographic reconstruction of EMD-15056 [31]. The468

power spectrum of the full size tilt series image clearly displays Thon rings. However, the downsampled image used for469

reconstruction only shows one zero crossing of the CTF. The Wiener filter denoised tomogram and a comparison to the470

cryo-CARE denoised tomogram is shown in Figure A6.471

a b c

d e f

g h i

tilt series image power spectrum

power spectrum

power spectrum

tilt series image 
(4x downsampled)

tomogram central slice
(at 4x downsample)

Figure A5: CTF visualization for tilt series and reconstruction. (a) Motion corrected tilt series image from EMPIAR-11058
(N×N = 3712×3712, pixel size = 3.52Å). (b) Power spectrum of tilt series image. (c) Spherically averaged power spectrum
of tilt series image. (d) Tilt series image in (a) downsampled 4× as done in the reconstruction pipeline. (e) Power spectrum
of the downsampled tilt series image. (f) Spherically averaged power spectrum of the downsampled tilt series image. (g)
Central slice of the reconstructed tomogram. (h) Power spectrum of a central slice of the reconstructed tomogram. (i)
Spherically averaged power spectrum of the reconstructed tomogram central slice. The tilt series image and downsampled
version used for reconstruction clearly show the CTF. However the CTF effects are less visible in the reconstructed tomogram.
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subsectiona b c

d e

f g

low-pass filter

Wiener filter cryo-CARE

Figure A6: Comparison of denoising methods for a subsection of the tomogram EMD-15056 [31]. (a) Slice of the recon-
structed tomogram (N × N = 928 × 928, pixel size = 14.1Å). (b) Region of interest from a subsection of the tomogram
(N ×N = 500×500). (c) Low-pass filter of the subsection at 72Å, corresponding to the 1/7 threshold in the SFSC. (d) Slice
from the region of interest after applying a Wiener filter. (e) Slice from the region of interest denoised using cryo-CARE.
Images in (c-e) are displayed at a threshold of ±2 standard deviations of the pixel values. (f) SFSC computed from the
tomogram subsection. (g) Spherically averaged power spectrum of the region of interest slice and the background noise
slice. While the Wiener filter improves contrast for features like membrane edges and ribosomes, cryo-CARE excels at both
suppressing background and enhancing relevant high frequency information.
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