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ABSTRACT
In this paper, we propose a novel approach for manifold
learning that combines the Earthmover’s distance (EMD)
with the diffusion maps method for dimensionality reduction.
We demonstrate the potential benefits of this approach for
learning shape spaces of proteins and other flexible macro-
molecules using a simulated dataset of 3-D density maps
that mimic the non-uniform rotary motion of ATP synthase.
Our results show that EMD-based diffusion maps require far
fewer samples to recover the intrinsic geometry than the stan-
dard diffusion maps algorithm that is based on the Euclidean
distance. To reduce the computational burden of calculating
the EMD for all volume pairs, we employ a wavelet-based
approximation to the EMD which reduces the computation of
the pairwise EMDs to a computation of pairwise weighted-`1
distances between wavelet coefficient vectors.

Index Terms— Shape space, dimensionality reduction,
Wasserstein metric, diffusion maps, Laplacian eigenmaps,
cryo-electron microscopy

1. INTRODUCTION

Proteins and other macromolecules are elastic structures that
may deform in various ways. Since the spatial conformation
of an organic molecule is known to play a key role in its
biological function, the complete description of a molecule
must include more than just a single static structure (as is tra-
ditionally produced by X-ray crystallography). Ideally, we
would like to map the entire space of molecular conforma-
tions. However, understanding the topology and geometry
of these conformation spaces remains one of the grand chal-
lenges in the field of structural biology [1].

One promising approach is to employ cryo-electron mi-
croscopy (cryo-EM) as a tool for structure determination in
the presence of conformational heterogeneity [2]. In cryo-
EM, multiple images of a particular macromolecule are taken
by a transmission electron microscope and then processed us-
ing specialized algorithms. Traditionally, these algorithms
construct an estimate of the mean molecular volume, in the
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Fig. 1. EMD vs. Euclidean distance for translational motion.
Euclidean (or `2) distance is only meaningful for measuring
small displacements. e.g., the `2 distance between half-disks
(c) and (a) is the same as between (c) and (b). By contrast, for
any translational motion, the EMD is its magnitude.

form of a 3-D electrostatic density map. In particular, this
process averages out any variability in the spatial conforma-
tions of the molecules in the sample. Recent works have ap-
plied techniques from the field of manifold learning to cryo-
EM data sets, obtaining a low-dimensional representation of
the molecular conformation space [3, 4]. Specifically, these
works build affinity graphs based on the Euclidean distances
between molecular volumes (or projection images) and then
compute diffusion map embeddings [5, 6].

However, the Euclidean distance is suboptimal for captur-
ing the distance between geometric conformations. Consider,
for example, two conformations of a molecule that has only a
single moving part. If the two conformations are distant, the
support of the moving part in the two volumes may not inter-
sect, rendering the Euclidean distance independent of the con-
formational distance. See Fig. 1. In such cases, in order to ap-
ply manifold learning based on a Euclidean metric, one need
a dense cover of the conformation space by the molecules in
the sample. Since the number of points in such a cover scales
exponentially in the dimension, it may be infeasible to apply
these methods, even using the largest existing experimental
datasets, which consist of about n ≈ 106 samples.

In this paper, we propose to use the Earthmover’s distance
(EMD), also known as the Wasserstein metric, instead of the
commonly used Euclidean distance as input to manifold em-
bedding algorithms. EMD has an intuitive geometric mean-
ing: it measures the minimal amount of “work” needed to
transform one pile of mass into another pile of equal mass,
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where “work” is defined as the amount of mass moved times
the distance by which it is moved. In particular, EMD pro-
vides a distance metric that is meaningful even between spa-
tial conformations that are far from each other. Following the
discussion above, this property should reduce the number of
samples needed to learn the intrinsic manifold.

Methods for computing the EMD, based on off-the-shelf
linear programming solvers, are expensive when the number
of voxels is large. Therefore we used a fast approximation to
the EMD, based on a wavelet representation [7].

To test our proposal, we compared the standard `2-based
diffusion maps to EMD-based diffusion maps on a synthetic
dataset mimicking the motion of ATP synthase (Fig. 2). This
dataset samples the underlying manifold in a non-uniform
manner since ATP synthase has three dominant conforma-
tions that are 120◦ apart [8]. The approximate EMD-based
approach yields a marked improvement in the number of sam-
ples required for learning the conformational manifold, while
still offering a computationally feasible algorithm.

2. METHODS

In this section, we review the basic techniques that under-
lie Earthmover-based manifold learning. Our current focus is
on learning shape spaces of 3-D volumes, but the same tech-
niques may also be applied to analyze other types of datasets,
such as 2-D image sets, 1-D histograms, etc. To start, let
X = {x1, . . . ,xn} be a set of 3-D voxel arrays in RL

3

. We
assume that X obeys the manifold hypothesis [2, 9, 10], i.e.,
x1, . . . ,xn form a (noisy) sample of a low-dimensional man-
ifoldM ⊂ RL

3

. Our task is to reorganize the data to better
reflect the intrinsic geometry ofM.

For Riemannian manifolds, eigenfunctions of the Laplace-
Beltrami operator provide an intrinsic coordinate system
[11, 12]. Accordingly, several popular methods for dimen-
sionality reduction and data representation methods are based
on mapping input points using empirical estimates of Lapla-
cian eigenfunctions [6, 5]. Under the manifold hypothesis,
these estimates converge to eigenfunctions of the Laplace-
Beltrami operator, or more generally to eigenfunctions of a
weighted Laplacian, depending on the construction [13].

We now describe the diffusion maps method [6]. Let w :

RL
3 × RL

3 → R denote a symmetric non-negative function
that gives an affinity score for each pair of volumes. One
common way of constructing affinities is to take a distance
metric d : X × X → R and apply a Gaussian kernel with a
suitably chosen width σ to form the affinity matrixW ∈ Rn×n

Wij = w(xi,xj) = exp
(
−d(xi, xj)

2/(2σ2)
)
. (1)

The degree matrix D ∈ Rn×n is defined to be the diagonal
matrix that satisfies Dii =

∑n
j=1Wij . We use the Coifman-

Lafon normalized graph Laplacian [14], which converges
to the Laplace-Beltrami operator, regardless of the sampling

Fig. 2. ATP synthase. (left) F0 and axle subunits. They ro-
tate together in the presence of hydrogen ions, forming a tiny
electric motor; (middle) the F1 subunit (in cyan) envelops the
axle. As the axle rotates, this subunit assembles ATP; (right)
sample slice of the rotated F0 and axle subunits with the ad-
ditive Gaussian noise.

density. To compute this, one first performs a two-sided
normalization of the affinity matrix, W̃ = D−1WD−1 and
then computes the random-walk Laplacian, L = D̃−1W̃ ,

where D̃ is the degree matrix for W̃ . The random-walk
Laplacian is similar to a positive semi-definite symmetric
matrix and hence its eigenvectors are real and its eigenvalues
are non-negative. The all-ones vector is an eigenvector of L
with eigenvalue zero [15]. Let φ0, φ1, . . . , φn−1 ∈ Rn be
eigenvectors of L with corresponding eigenvalues 0 = λ0 ≤
λ1 ≤ . . . ≤ λn−1. We think of the eigenvectors φ` as real-
valued functions on X , by identifying φ`(xi) = (φ`)i. The
k-dimensional diffusion map Ψ

(k)
t : X → Rk is defined by:

xi 7→
(
λt1φ1(xi), . . . , λ

t
kφk(xi)

)
.

The mapping Ψ
(k)
t gives a system of k coordinates on X ,

which captures the intrinsic geometry of M. In our simu-
lations, we used t = 0, in which case diffusion maps coincide
with Laplacian eigenmaps [5].

The diffusion map depends on the choice of affinity. The
typical choice is a Gaussian kernel as defined in Eq. (1) that
is based on a Euclidean (or `2) distance function,

d`2(xi,xj) = ‖xi − xj‖2.

We propose instead to base the Gaussian kernel of Eq. (1) on
the Earthmover’s distance (EMD), also known as the Wasser-
stein metric [16]. EMD is popular in various applications,
e.g., image retrieval [17], however, to the best of our knowl-
edge, it has never been used to define affinities for manifold



learning algorithms. To define this distance, consider two 3-D
density maps xi,xj ∈ RL

3

that are non-negative and normal-
ized to unit mass. These densities define probability measures
on the set of voxels, [L]3, where [L] = {1, . . . , L}. We set:

dEMD(xi,xj) = min
π∈Π(xi,xj)

∑
u∈[L]3

∑
v∈[L]3

π(u,v)‖u− v‖2,

where Π(xi,xj) is the set of joint probability measures on
[L]3 × [L]3 with marginals xi and xj , respectively.

Mathematically, EMD amounts to a linear program in
O(L6) variables subject to O(L3) constraints, i.e., a signif-
icant computation. However, in the wavelet domain [18],
EMD enjoys a fast (weighted-`1) wavelet approximation [7],
which we refer to as WEMD:

dWEMD(xi,xj) =
∑
λ

2−5s/2 |Wxi(λ)−Wxj(λ)|. (2)

Here, Wx denotes the 3-D wavelet transform of x, and the
index λ contains the shifts (m1,m2,m3) ∈ Z3 and the scale
s ∈ Z≥0. More explicitly,W decomposes x = x[u1, u2, u3]
with respect to an orthonormal basis of functions,

23s/2f(2su1 −m1) g(2su2 −m2)h(2su3 −m3),

for varying s ∈ Z≥0, varying (m1,m2,m3) ∈ Z3, and
(f, g, h) ranging over {ψ, ω}3 \ {(ω, ω, ω)} where ψ, ω are
certain 1-D functions called the mother and father wavelet
[18]. Formula (2) approximates EMD in the sense that dEMD
and dWEMD are strongly equivalent metrics, i.e., there exist
constants C ≥ c > 0 such that for all x,y ∈ RL

3

, we have:

c · dWEMD(x,y) ≤ dEMD(x,y) ≤ C · dWEMD(x,y).

Moreover, there are known bounds on the ratio C/c, depend-
ing on the type of wavelet used. We have chosen the Coiflets 3
wavelet since it gives a small ratio [7]. Wavelet transforms
are computed in linear time, thus the same holds for the EMD
approximation. We implemented the approximation (2), us-
ing the PyWavelets package [19]. We computed the wavelet
transform up to scale s = 5 for accurate truncation of Eq. (2).
This overparameterizes the volumes by a factor of ≈ 3.

3. RESULTS

To test our methods, we generated two synthetic datasets of
3-D density maps that are simplified models of the conforma-
tion space of ATP synthase [8]. This enzyme is a molecular
stepper motor with a central asymmetric axle that rotates in
steps of 120◦ relative to the F1 subunit, with short transient
motion in-between the three dominant conformations. Here,
the intrinsic geometry is a circle, with a sampling density con-
centrated around three equispaced angles. We simulated this
motion by generating 3-D density maps in which the F1 sub-
unit is held in place while the F0 and axle subunits are rotated

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

WEMD
Euclidean

Fig. 3. Euclidean distance vs. WEMD as functions of the an-
gle between two angles of the ATP synthase rotor (see Fig. 2).
The `2 distances are scaled to be comparable to the WEMD.
The WEMD is monotone in the magnitude of the angular dif-
ference for almost the entire range whereas the Euclidean dis-
tance exhibits this behavior only up to about ±19◦.

n Wavelet transform WEMD distances `2 distances

25 60 0.9 0.8
50 121 3.4 1.2
100 243 13 2.4
200 481 50 4.8
400 965 221 9.4
800 1932 844 20.6

Fig. 4. Running times [sec] for computing the fast wavelet
transform, all pairwise wavelet Earthmover approximations
and all pairwise `2 distances.

together by a random angle. The angles were drawn i.i.d. ac-
cording to the following mixture model:

2

5
U [0, 360] +

1

5
N (0, 1) +

1

5
N (120, 1) +

1

5
N (240, 1),

where U and N denote uniform and Gaussian distributions,
respectively. To form our datasets, we downloaded en-
try 1QO1 [20] from the Protein Data Bank [21], produced
3-D density maps at a 6Å resolution with array dimensions
47×47×107 using the molmap command in UCSF Chimera
[22], and then took random rotations of the F0 and axle sub-
units. From this, we generated a clean dataset and a noisy
dataset. For the latter, i.i.d. Gaussian noise was added with
mean zero and standard deviation equal to one-tenth of the
maximum voxel value.

We first tested the plausibility of our proposal by com-
paring the EMD approximation to the Euclidean distance
for a range of angular differences using the noiseless dataset
(Fig. 3). We then performed 2-dimensional diffusion maps
for various sample sizes, using both the Euclidean distance



Noiseless
Euclidean

Noiseless
WEMD

Noisy
Euclidean

Noisy
WEMD

n 25 50 100 200 400 800

Fig. 5. Main results. Euclidean vs. EMD-based diffusion mappings on the clean and noisy ATP synthase datasets for sample
sizes n = 25, 50, 100, 200, 400, 800. The Euclidean diffusion maps need more than 400 samples to capture the intrinsic
geometry whereas WEMD manages to do so with merely n = 25 samples. The colors encode the (ground truth) angle.

and the wavelet-based approximation to the EMD, as de-
scribed in the previous section. The resulting embeddings are
shown in Fig. 5. The value of the width parameter σ in the
Gaussian kernel (1) was hand-picked to yield the best results.
We note that for the Euclidean diffusion maps, careful tuning
of σ was required. However, this was not necessary for the
EMD approximation, where a wide range of σ values gave
excellent results. Running times (on an Intel Core i7) for the
computation of EMD and Euclidean-based diffusion maps
are listed in Fig. 4.

4. CONCLUSION

In this paper, we proposed to use Earthmover-based affinities
in the diffusion maps framework to analyze molecular con-
formation spaces. We showed that this results in a marked
decrease in the number of samples needed to capture the in-
trinsic conformation space of ATP synthase. The method is
computationally tractable, thanks to a fast wavelet approxi-
mation, and robust to noise. Our results show promise, par-
ticularly for the analysis of cryo-EM datasets with continuous
heterogeneity. More broadly, EMD-based manifold learning
could be applied to analyze the variability of other collec-

tions of 3-D shapes [23], 2-D images [17], videos and other
signals, e.g., to better model animal motion [24]. Our work
also raises several interesting theoretical questions: in which
cases can one prove that EMD-based manifold learning has a
lower sample complexity than manifold learning based on the
Euclidean distance? More ambitiously, are there reasonable
generative models for variability where EMD is the optimal
distance metric?

5. REPRODUCIBILITY

Code for reproducing the results in this paper is available at
http://github.com/nathanzelesko/earthmover
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