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Reducing Bias and Variance for CTF Estimation in
Single Particle Cryo-EM
Ayelet Heimowitz, Joakim Andén, and Amit Singer

Abstract—When using an electron microscope for imaging
of particles embedded in vitreous ice, the recorded image, or
micrograph, is a significantly degraded version of the tomo-
graphic projection of the sample. Apart from noise, the image
is affected by the optical configuration of the microscope. This
transformation is typically modeled as a convolution with a point
spread function. The Fourier transform of this function, known
as the contrast transfer function (CTF), is oscillatory, attenuating
and amplifying different frequency bands, and sometimes flipping
their signs. High-resolution reconstruction requires this CTF
to be accounted for, but as its form depends on experimental
parameters, it must first be estimated from the micrograph. We
present a new method for CTF estimation based on multitaper
methods, which reduces bias and variance in the estimate. We
also use known properties of the CTF and the background
noise power spectrum to further reduce the variance through
background subtraction and steerable basis projection. We show
that the resulting power spectrum estimates better capture the
zero-crossings of the CTF and yield accurate CTF estimates on
several experimental micrographs.

Index Terms—contrast transfer function, cryo-electron mi-
croscopy, linear programming, multitaper estimator, spectral
estimation, steerable basis expansion

I. INTRODUCTION

IN recent years, single particle cryo-electron microscopy
(cryo-EM) has emerged as a leading tool for resolving the

3D structure of macromolecules from multiple 2D projections
of a specimen [1]. In this technique, multiple copies of a
particle are embedded in vitreous ice and imaged in an electron
microscope. This yields a set of micrographs, each containing
several 2D particle projections.

The micrograph does not contain clean particle projections
but is contaminated by several factors, including noise, ice
aggregates and carbon film projection. The noise stems from
an inherent limitation on the number of imaging electrons
that can be applied to the specimen. The interference from
carbon film and ice aggregates are due to the particular sample
preparation techniques used.

The 2D projections in the micrograph are also distorted by
convolution with a point spread function. This point spread
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function is due to the electron microscope configuration. It
attenuates certain frequencies and flips the sign of certain
frequency bands. A 3D density map reconstructed from dis-
torted projections yields an unreliable representation of the
particle [2]. It is therefore important to estimate the point
spread function and account for it during reconstruction.

To estimate these parameters, it is convenient to consider the
Fourier transform of the point spread function, known as the
contrast transfer function (CTF). This is due to two factors.
First, the CTF has a simple expression in the polar coordinates
of the spatial frequency. Second, its effect is directly visible
in the frequency domain where the CTF acts as a pointwise
multiplication rather than a convolution [3].

CTF estimation is one of the first steps in the single particle
cryo-EM pipeline. Indeed, accounting for the CTF is needed
in a variety of tasks, such as particle picking [4], denoising
[5], class averaging [6], ab initio reconstruction [7], refinement
[6]–[9] and heterogeneity analysis [6].

The CTF is typically modeled as a sine function whose argu-
ment depends on the spatial frequency and several parameters
of the objective lens of the microscope [2]. The parameters
we focus on in this paper are the defocus and astigmatism
of the objective lens as these are unknown and must be
estimated from the data. Additionally, the CTF is multiplied
by a damping envelope, which suppresses the information in
high frequencies [10].

When estimating the CTF parameters, it is common to
first estimate the power spectrum of the micrograph. The
observed micrograph image is typically modeled as a CTF-
dependent term plus a noise term unaffected by CTF. The
first term corresponds to a noiseless micrograph, that is, the
tomographic projection of the sample filtered by the CTF [11].
Modeling the unfiltered and filtered micrographs as 2D random
fields, we find that their power spectra are closely related:
the latter equals the former multiplied by the squared CTF.
This multiplication induces concentric rings, known as Thon
rings [12], in the power spectrum of the filtered micrograph
(see Fig. 2). Estimating the CTF therefore reduces to fitting
the parameters of the CTF to the estimated power spectrum.

The vast majority of CTF estimation methods use a variant
of the periodogram when estimating the power spectrum of
the micrograph. This is due to its speed and simplicity. Unfor-
tunately, the periodogram produces a biased and inconsistent
estimate of the micrograph power spectrum.

Beyond these issues with the spectral estimators, fitting the
CTF model to the estimated power spectrum is complicated
by the high levels of noise present in the micrograph. The
noise model is additive, so the expected power spectrum equals
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the power spectrum of the clean, filtered micrograph plus the
noise spectrum. The noise power spectrum, referred to as the
background spectrum, masks the true oscillations of the power
spectrum of the particle projection. It is therefore important
to estimate and remove the background from the estimated
power spectrum [11], [13]–[15].

Assuming that the micrograph power spectrum and the
background were both estimated perfectly, the background-
subtracted power spectrum equals the power spectrum of
the filtered, clean micrograph. One way to estimate the
CTF parameters is then to maximize the correlation of the
background-subtracted power spectrum estimate and a squared
CTF (or some monotonic function thereof) [13]–[16]. Optimiz-
ing the correlation then provides an estimate of the defocus and
astigmatism. Another approach identifies a single ring in the
estimated power spectrum and uses it to derive a closed-form
solution of the CTF parameters [17]. In order to formulate this
solution, all prior knowledge regarding the spherical aberration
must be ignored.

In this paper, we present ASPIRE-CTF, which is a new
method for CTF estimation, available as part of the ASPIRE
package.1 We first estimate the power spectrum using a multi-
taper estimator [18], further reducing the variance by averaging
estimates from multiple regions of the micrograph. Using this
estimated power spectrum, we estimate the background noise
spectrum using linear programming (LP). Instead of using
an approximate background model, our scheme ensures that
the background-subtracted power spectrum estimate is non-
negative and convex. We also show that the CTF is contained
in the span of a small number of steerable basis functions.
Thus, we further reduce the variance in our power spectrum
estimate by projecting onto this span.

Given the power spectrum estimate, we provide two solu-
tions for estimating the CTF parameters. Our first solution
is similar to [13]–[16], where CTF parameters are estimated
by maximizing the correlation of the square root of the
power spectrum estimate with the absolute value of simulated
CTFs. The second solution uses the spatial frequencies of
several zero-crossings. Since we expect these zero-crossings
to coincide with those of the squared CTF, we use them
to define an overdetermined system of equations over the
CTF parameters that we then solve. We note that, while our
first solution is more robust, our second solution is faster to
compute.

Our method is experimentally verified in Section VI. This
is done via a comparison of the defocus estimates with that
of [13], [15] on several datasets from the CTF challenge [19].
We show that our power spectrum estimation method is usually
in agreement with one of the state-of-the-art methods [13],
[15].

The main contribution of this paper, appearing in Sections
III-B-IV, is our method for estimating the power spectrum of
a micrograph. We reduce the variability of the power spectrum
estimate, and are therefore the first to obtain an estimate where
several zero-crossing rings of the CTF are easily recovered
without additional assumptions.

1https://github.com/ComputationalCryoEM/ASPIRE-Python
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Fig. 1. Pipeline of ASPIRE-CTF. The input is a movie and the outputs are
the estimated defocus parameters that define the CTF. In the bottom portion
of the graph, all actions done on the 1D radial profile of the power spectrum
are presented on the left. Additionally, all actions performed on the 2D power
spectrum are presented on the right.

We present the pipeline of our method in Fig. 1. For each
step of our suggested framework, we refer the reader to the
appropriate section of the paper.

Notation

Given a 2D stationary random field x defined over Z2,
we denote its autocovariance function by Rx. The Fourier
transform of Rx is known as the power spectrum of x and
is given by

Sx(g) =

∞∑
n1=−∞

∞∑
n2=−∞

Rx[m,n] ej2π(g1n1+g2n2), (1)

for g = (g1, g2) ∈ [−1/2, 1/2]2 and j =
√
−1. We denote

magnitude of the spatial frequency vector g by r and its
counterclockwise angle with the positive x-axis by α.

II. PROBLEM FORMULATION

In the sample preparation stage of the single particle cryo-
EM pipeline, many copies of a particle are embedded in
vitreous ice. The imaging process uses an electron microscope
to obtain a micrograph containing 2D projections of each
instance. Under the weak-phase object approximation, we may
describe this process by the linear model [2], [12], [14]

y = hφ ∗ x + e, (2)

https://github.com/ComputationalCryoEM/ASPIRE-Python
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(a) (b)

Fig. 2. Absolute value of example CTFs. (a) Radially symmet-
ric CTF (∆f1 − ∆f2)/(∆f1 + ∆f2) = 0. (b) Highly astigmatic CTF
(∆f1 − ∆f2)/(∆f1 + ∆f2) = 1/2).

where the clean tomographic projection x and the additive
noise e are modeled as 2D stationary random fields [2]. Since
convolution preserves stationarity, the observed micrograph y
is also a stationary random field. In this model, the clean
projection x is convolved with the point spread function of
the microscope hφ which depends on a parameter vector φ.
We will at times denote this clean, but filtered, micrograph by
z = hφ ∗ x.

The CTF is the Fourier transform of the point spread
function Hφ and may be modeled by [13]

Hφ(g) = − sin(χφ(g)), (3)

where g is the spatial frequency. Its phase is given by

χφ(g) =
1

2p2
πλr2∆fφ(α)− 1

2p4
πλ3r4Cs + w, (4)

where λ is the electron wavelength, Cs is the spherical
aberration, w is the amplitude contrast, and p is the pixel size.
We also have the astigmatic defocus depth

∆fφ(α) = ∆f1 + ∆f2 + (∆f1 −∆f2) cos(2α− 2αf ), (5)

where α is the polar angle of g and ∆f1, ∆f2, and αf
are the major and minor defocus depths and the defocus
angle, respectively. These together form the defocus vector
φ = (∆f1,∆f2, αf ), which parametrizes the CTF. The values
∆f1 and ∆f2 determine the amount of defocus along two
perpendicular axes, while αf specifies the counterclockwise
angle between the major defocus axis and the positive x-axis.
The difference ∆f1−∆f2 measures the amount of astigmatism
in the CTF. A visualization of the effect of astigmatism is
provided in Fig. 2.

The model (3) allows us to discern several properties of
the CTF. First, Hφ is real and oscillates between positive
and negative values. As a result, it has several zero crossings.
Second, the CTF is radially symmetric when ∆f1 = ∆f2 (the
non-astigmatic case). Third, with no spherical aberration (i.e.,
Cs = 0) the level sets of the CTF consist of ellipses centered
at the origin. The spherical aberration Cs thus accounts for
small deviations from the elliptical shape.

While the parameters λ, Cs, and w are typically known
from the microscope configuration, the defocus parameters φ
vary widely between experiments. We must therefore estimate
them to obtain an accurate model of the CTF.

To estimate φ, we turn to the power spectrum of the
micrograph. The power spectra Sx, Sy, and Se of x, y, and
e, respectively, are related by

Sy(g) = |Hφ(g)|2 Sx(g) + Se(g). (6)

This follows from (2) and the fact that convolving a stationary
random field with hφ multiplies its power spectrum by the
square Fourier transform magnitude |Hφ|2.

Equation (6) suggests that estimates of the power spectra
Sy, Sx, and Se can be useful in resolving the CTF. We note
that Sx and Se are slowly decaying while |Hφ|2 oscillates
rapidly in comparison. The background subtracted power
spectrum is therefore approximately proportional to |Hφ|2. It
follows that in order to estimate the defocus parameters φ,
we may estimate Sy − Se and maximize its correlation with
|Hφ|2. This approach is used in [13]–[15].

Another approach is to estimate φ from zero-crossings of
Sy −Se [16], [17]. Specifically, for spatial frequencies where
Hφ(g) = 0, we have Sy(g) − Se(g) = 0. Identifying these
zero-crossings from estimates of Sy − Se thus constrains the
zeros of Hφ and lets us estimate its defocus parameters φ.

For both approaches, the first step is to estimate the
background-subtracted power spectrum Sy − Se. In the fol-
lowing, we propose an estimation method and show how
the resulting estimate may be used to estimate φ by either
maximizing correlation or matching zero-crossings.

As mentioned above, the CTF is also multiplied by an expo-
nentially decreasing envelope function [10], which effectively
acts as a low-pass filter on hφ ∗ x. In this paper, rather than
include the envelope function in our analysis, we ignore high
frequencies as they are strongly attenuated by the envelope. We
also reduce the effect of the envelope function by estimating
the CTF using the square root of our power spectrum estimate
as in [13], [14]. In this way, the effect of the envelope function
on the two methods discussed is smaller.

III. POWER SPECTRUM ESTIMATION

In this section we present several methods for estimating
the power spectrum of the micrograph. We first present the
periodogram estimator and then show different methods for
reducing its bias and variance.

A. Periodogram estimator

In an experimental setting, we only have access to an
N × N sample of y, given by the values y[k1, k2] for
(k1, k2) ∈ {0, 1, . . . , N − 1}2. Given these values, a common
power spectrum estimator is provided by the periodogram [20]

Ŝ(p)
y (g) =

1

N2

∣∣∣∣∣∣
N−1∑

k1,k2=0

y [k1, k2] e−j2π(g1k1+g2k2)

∣∣∣∣∣∣
2

, (7)

for g ∈ [−1/2, 1/2]2. While Ŝ(p)
y (g) may be calculated for

any g, it is typically calculated on the N ×N grid

MN =

{
−1

2
,−1

2
+

2

N
, . . . ,

1

2
− 2

N

}2

. (8)

This enables the use of fast Fourier transforms (FFTs) for
computing the periodogram with O(N2 logN) computational
complexity. Due to this and its ease of implementation, the
periodogram is a popular spectral estimator in cryo-EM.
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Since our goal is to estimate Sy, let us consider how well
it is estimated by the periodogram. The mean square error
(MSE) of Ŝ(p)

y at g is given by

MSE(Ŝ(p)
y (g)) = E

[
|Ŝ(p)

y (g)− Sy(g)|2
]
. (9)

To analyze the source of error, it is useful to define the bias
and variance of the periodogram. The bias is defined as

Bias(Ŝ(p)
y (g)) = E

[
Ŝ(p)
y (g)

]
− Sy(g) (10)

and measures the deviation of the expectation from the true
value, while the variance

Var(Ŝ(p)
y (g)) = E

[∣∣∣Ŝ(p)
y (g)− E

[
Ŝ(p)
y (g)

]∣∣∣2] (11)

measures the average deviation of the periodogram from its
expectation. Both contribute to the MSE through the identity

MSE(Ŝ(p)
y (g)) = Bias2(Ŝ(p)

y (g)) + Var(Ŝ(p)
y (g)). (12)

A low MSE therefore requires low bias and low variance.
The periodogram, however, fails on both counts. First, while

the periodogram is asymptotically unbiased [21], [22], its bias
remains large for small samples. Second, the variance of the
periodogram does not decrease with an increase in sample
size—it is an inconsistent estimator. In the following sections,
we will therefore consider different approaches to reducing
both the bias and variance of the periodogram.

B. Bartlett’s method

We first consider an approach for reducing variance called
Bartlett’s method [20]. In this approach, the periodogram
estimate is computed for several non-overlapping regions of
the image. These estimates are then averaged, reducing the
variance by a factor approximately equal to the number of
regions used. It may therefore be tempting to drastically reduce
the size of these regions. However, in experimental data,
averaging over regions that are too small will increase the
bias. Among other things, this would prevent us from properly
estimating the low spatial frequencies.

We thus divide our image into B non-overlapping blocks
y0, . . . ,yB−1 of size K ×K. The averaged periodogram is

Ŝ(b)
y (g) =

1

B

B−1∑
b=0

Ŝ(p)
yb

(g). (13)

If each block yb is independent of the others, we have
Var(Ŝ

(b)
y (g)) = B−1 Var(Ŝ

(p)
y (g)). Note that, since the block

size is now K ×K, we sample g on MK .

C. Welch’s method

The expected value of the periodogram estimator is known
to be a convolution between the true power spectrum of the
micrograph and a 2D Fejér kernel [21]. As the Fejér kernel
has high sidelobes, this convolution leads to frequency leakage
and therefore a high bias.

One method of lowering the bias of the periodogram esti-
mation is tapering [21]. This multiplies the data y by a data
taper w prior to computing the periodogram, resulting in a

modified periodogram. While many options for data tapers
exist, such as the Hann window [23], Babadi and Brown [18]
suggest the use of the zeroth-order discrete prolate spheroidal
sequence (DPSS) [24]. The expected value of this modified
periodogram is a convolution between the true power spectrum
of the micrograph and a kernel with smaller sidelobes than
those of the Fejér kernel [21]. This reduces the frequency
leakage, and, therefore, the bias of the estimator.

While the taper may be applied to the entire micrograph, it
is also possible to apply it to each block in Bartlett’s method
(13). The resulting approach is known as Welch’s method [25].
Welch also showed that further variance reduction is possible
using overlapping (typically half-overlapping) blocks [2], [11],
[26], [27]. This yields the modified averaged periodogram,

Ŝ(w)
y (g) =

1

B

B∑
b=1

Ŝ
(p)
yb·w(g) (14)

where yb ·w is the pointwise multiplication of yb and w.

D. Multitaper estimators

As discussed in Section III-B, one way to lower the variance
in the periodogram is to average several estimates. For this
reason, Thomson [22] suggested combining the estimates
obtained from multiple tapers. Each taper yields a different es-
timate of the power spectrum, and averaging them significantly
reduces the variance. A large number of tapers, however, re-
sults in significant smoothing of the power spectrum estimate,
so the variance reduction needs to be balanced with an increase
in bias for non-smooth power spectra. Thomson found that
higher-order DPSSs were well-suited to this task and called the
resulting power spectrum estimator the multitaper estimator.
These estimators have recently demonstrated their usefulness
for noise power spectrum estimation in cryo-EM [28], [29].

Combining all the above methods for variance and bias
reduction, we arrive at the multitaper estimator

Ŝ(mt)
y (g) =

1

LB

B−1∑
b=0

L−1∑
`=0

Ŝ
(p)
yb·w`(g), (15)

where w` is the `th out L DPSSs for grids of size K ×K.
Fig. 3 presents a comparison between Ŝ(p)

y , Ŝ(b)
y , Ŝ(w)

y , and
Ŝ
(mt)
y . The CTF oscillations are best resolved by the multitaper

estimator Ŝ(mt)
y .

IV. BACKGROUND SUBTRACTION

In this section we present a method for removing the back-
ground spectrum and further reducing the variability of the
estimator Ŝ(mt)

y . We do this by first estimating the radial profile
of the background spectrum and removing this estimation
from Ŝ

(mt)
y . Further, we show that the set of squared CTFs

is contained in the span of a steerable basis and project our
estimate onto that basis.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Power spectrum estimation of a β-galactosidase micrograph from
the EMPIAR-10017 dataset [30] (top row) and an 80S ribosome from the
EMPIAR-10028 dataset [31]. Intensities are plotted on a logarithmic scale.
Blocks of size 512× 512 were used. (a) Periodogram. (b) Bartlett’s method.
(c) Welch’s method. (d) Multitaper estimator (L = 9). (e) Periodogram. (f)
Bartlett’s method. (g) Welch’s method. (h) Multitaper estimator (L = 9).
The zero-crossings of the CTF are most easily identifiable in the multitaper
estimates.

A. Estimating the noise power spectrum

We saw in (6) that the micrograph power spectrum can be
expressed as the sum of two spectra: the clean, filtered power
spectrum |Hφ(g)|2 Sx(g) and the noise power spectrum Se.
The background-subtracted power spectrum is therefore

Sy(g)− Se(g) = |Hφ(g)|2 Sx(g). (16)

An estimate of Sy −Se is used by many methods to estimate
the CTF parameters φ [11], [13]. Their success therefore
depends on accurate estimation of the background Se.

The background is influenced by many factors and accu-
rately modeling these factors is an open challenge. Many
background estimation methods instead treat the background
as a radially symmetric and slowly varying function [2].

The background estimation problem can be formulated as a
curve fitting problem [2]. We note that the background should
coincide with Ŝ(mt)

y at the zero-crossings of Hφ. Furthermore,
the background should be strictly smaller than Ŝ(mt)

y at spatial
frequencies where Hφ does not have a zero-crossing (since Sx

is strictly positive). We therefore estimate the background by
minimizing the difference between Ŝ(mt)

y and Se.
While the radial profile of the background is monotonically

decreasing in most settings, this is not the case when a Gatan
K2 direct detector is used in counting mode with a high dose
rate. Rather, the background will be monotonically decreasing
in the lower frequencies and monotonically increasing in
higher frequencies [32]. Since a monotonically decreasing
function, as well as a function that is at first monotonically
decreasing and later monotonically increasing, must be con-
vex, we model the background as the non-negative, convex
function that is closest to, and no larger than, Ŝ(mt)

y .
We propose estimating the background Se through LP.

Specifically, we minimize the `1 norm of the background-
subtracted power spectrum estimate subject to several linear
constraints. The first constraint ensures that the background-
subtracted power spectrum estimate is non-negative, while the

0 50 100 150 200
0

50

100

(a)

0 50 100 150 200
0

10

20

30

(b)

Fig. 4. Background estimation for a β-galactosidase micrograph from the
EMPIAR-10017 dataset [30]. On the left is the 1D radial profile of the
multitaper power spectrum estimate Ŝ(mt)

y (r) and the estimated background
Ŝ

(lp)
e (r). On the right is the background-subtracted power spectrum.

remaining constraints ensure that Ŝe is a non-negative and
convex.

Since we assume the background is radially symmetric, we
consider its radial profile. To this end, we calculate the radial
average of Ŝ

(mt)
y (g), which we denote, by a slight abuse

of notation, Ŝ(mt)
y (r). The radial averaging is performed by

projecting Ŝ
(mt)
y (g) on the circularly symmetric (i.e., purely

radial) elements of a steerable basis (see Section IV-B).
The resulting linear program, whose result we denote by

Ŝ
(lp)
e , is then

minimize
Ŝe

∑
r=0, 1

K ,...,
m
K

Ŝ
(mt)
y (r)− Ŝe (r)

subject to Ŝe(r) ≤ Ŝ(mt)
y (r), r = 0, . . . , mK

Ŝe (r + 1) + Ŝe (r − 1) ≥ 2Ŝe (r) , r = 1, . . . , mK
Ŝe (r) ≥ 0, r = 0, . . . , mK ,

(17)
where Ŝe =

[
Ŝ(0), . . . , Ŝ(m/K))

]T
, and m/K = 3/8 is the

spatial frequency above which Ŝ(mt)
y (r) is typically dominated

by noise.
We present the result of our linear program in Fig. 4.

Expanding the 1D background spectrum to a 2D function, we
again abuse notation slightly and set Ŝ(lp)

e (g) = Ŝ
(lp)
e (r) for

all g ∈ [−1/2, 1/2]2. We denote the background-subtracted
power spectrum estimate Ŝ

(mt)
y (g) − Ŝ

(lp)
e (g) by Ŝ

(lp)
z (g)

where z = hφ ∗ x.
A different LP that can be used for background estima-

tion was suggested in [27]. However, contrary to our non-
parametric approach which assumes convexity alone, [27]
suggests a LP based on parametric estimation.

B. Expansion over a steerable basis

In this section, we show that any function of the form (3)-
(5) is contained in a low-dimensional subspace spanned by
a set of steerable basis functions, such as a Fourier–Bessel
basis [33], [34] or prolate spheroidal wave functions (PSWFs)
[35], [36]. We will use this property to further reduce the
variability of the power spectrum estimator by projecting the
background-subtracted power spectrum estimate Ŝ(lp)

z (g) onto
this subspace.

A steerable basis consists of functions fk,q(r) ejkα, where
k ∈ Z and q = 0, . . . , pk − 1 for some pk ≥ 0. The radial
part fk,q(r) depends on the specific choice of basis (e.g.,
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in a Fourier–Bessel basis, it is a scaled Bessel function of
order q) and does not enter explicitly into our analysis. We
shall therefore leave it unspecified. A given function in polar
coordinates may be decomposed in the basis as

x(r, α) =

∞∑
k=−∞

∞∑
q=0

ak,q fk,q(r) ejkα, (18)

where ak,q ∈ C is the coefficient corresponding to angular
frequency k and radial frequency q.

To determine the steerable basis expansion of the CTF (3),
we consider its Taylor expansion around ∆f1 −∆f2 = 0,

Hφ(g) =

P∑
n=0
n even

(−1)
n
2 +1

n!
sin(χ0

φ(r))Cn,φ(g)

+

P∑
n=1
n odd

(−1)
n+1
2

n!
cos(χ0

φ(r))Cn,φ(g) +RP (g), (19)

where RP (g) is the remainder term,

Cn,φ(g) =

(
1

2
πλ (∆f1 −∆f2) cos (2(α− αf ))

r2

p2

)n
,

and

χ0
φ(r) =

1

2
πλr2(∆f1 + ∆f2)− 1

2
πλ3r4Cs + w

is the non-astigmatic phase function.
The remainder term is bounded by a function of(

∆f1 −∆f2
∆f1 + ∆f2

)(P+1)

and is therefore small when astigmatism is small, which is the
case for experimental cryo-EM data. We therefore conclude
that

Hφ(g) ≈ − sin(χ0
φ(r))− cos(χ0

φ(r))C1,φ(g) (20)

is a good approximation of the CTF.
Since cos(α) = 1

2 (e−jα + e−jα), we rewrite (20) as

Hφ(g) ≈ − sin(χ0
φ(r))

− 1

4p2
cos(χ0

φ(r))πλ(∆f1 −∆f2)e−j2αf r2 ej2α

− 1

4p2
cos(χ0

φ(r))πλ(∆f1 −∆f2)ej2αf r2 e−j2α. (21)

Comparing (21) and (18), we see that only terms correspond-
ing to k = −2, 0, and 2 are present.

Concretely, we compute the coefficients ak,q of the ex-

pansion of
√
Ŝ
(lp)
z over the steerable basis functions with

radial frequencies to k = 0,±2. The coefficients are computed
through an inner product on a K ×K grid:

ak,q =
1

K2

∑
g∈MK

√
Ŝ
(lp)
z (g)fk,q(r)e

jkα, (22)

where r and α are the polar coordinates of g. Evaluating (18)
for these ak,q and squaring the result then gives a new power
spectrum estimate, which we denote as Ŝz.

(a) (b) (c)

Fig. 5. Power spectral density estimates. (a) Background-subtracted estimate
Ŝ

(lp)
z . (b) Projection onto steerable basis functions for k = 0,±2. (c) Zero-

crossings of panel b, determined as specified in Section V-B.

In Fig. 5, we present the results of our power spectrum
estimation method on a micrograph from the EMPIAR-10028
dataset [31]. This includes multitaper estimate Ŝ(mt)

y as well
as the background-subtracted estimate Ŝ(lp)

z and the projection
onto the steerable basis with k = 0,±2. The result is smooth
enough that many of the zero-crossings of the power spectrum
can be easily resolved.

V. CTF PARAMETER ESTIMATION

In the previous sections we have introduced our method for
estimating the background-subtracted power spectrum. In this
section we will discuss two methods that use this estimate to
recover the defocus and astigmatism of the micrograph.

A. CTF estimation through correlation

The power spectrum Sx is a slowly-varying function
of radial frequency. It follows that the oscillations in
|Hφ(g)|2 Sx(g) are due to those of |Hφ(g)|2. As a conse-
quence, the square root of the background-subtracted power
spectrum |Hφ(g)|S1/2

x (g) is proportional to the absolute value
of the CTF (we note that using the square root instead of the
actual power spectrum estimate reduces the influence of large
values). It follows that the correlation test is a useful tool
in estimating CTF parameters. Indeed, many CTF estimation
methods therefore estimate the defocus parameters φ through
correlation with a simulated CTF magnitude [13]–[15].

The Pearson correlation of |Hφ(g)| and Ŝ1/2
z (g) is

Pcc(φ) =

∑
g∈R |Hφ(g)| Ŝ1/2

z (g)(∑
g∈R |Hφ(g)|2

∑
g∈R Ŝz(g)

)1/2 , (23)

where R is the set of frequencies over which correlation is
computed, and will be defined below. To optimize Pcc(φ),
we first need an initial guess for the parameters φ. For this,
we follow [15] and first consider non-astigmatic CTFs where
∆f1 = ∆f2, which renders the value of αf irrelevant. We
thus calculate Pcc(φ) for φ = (∆f,∆f, 0) with ∆f on a 1D
grid from ∆fmin to ∆fmax with a step of ∆fstep. Since Hφ is
considered (at this stage) to be radially symmetric, we define
the set of frequencies over which correlation is computed as

R =

{
m1,m1 +

2

N
, . . . ,

3

8

}
× {0}, (24)

where m1 is the first maximum of the radial profile of Ŝ(lp)
z .

That is, we only consider frequencies g along a 1D radial



7

profile and, furthermore, ignore the very low and very high
frequencies (since the very low frequencies may dominate
the cross-correlation result and the very high frequencies are
strongly effected by the envelope function). The ∆f which
maximizes Pcc(φ) on this grid is denoted ∆f?.

To estimate the astigmatism of the CTF, we compute the
principal directions of the second-order moments of Ŝ1/2

z .
Specifically, we form the 2× 2 matrix M given by

M1,1 =
∑

g∈MK
g21 Ŝ

1/2
z (g),

M1,2 = M2,1 =
∑

g∈MK
g1g2 Ŝ

1/2
z (g),

M2,2 =
∑

g∈MK
g22 Ŝ

1/2
z (g).

(25)

The eigenvalues µ1 and µ2 of M estimate the size of the major
and minor axes in Ŝ1/2

z . We therefore expect the ratio µ1/µ2

to approximate ∆f1/∆f2. Combining this with the estimated
mean defocus ∆f?, we get

1

2
(∆f1 + ∆f2) = ∆f? (26)

∆f1
∆f2

=
µ1

µ2
, (27)

which has the solution

∆f1,? =
2µ1

µ1 + µ2
∆f?, ∆f2,? =

2µ2

µ1 + µ2
∆f?. (28)

In order to improve our estimation of the defocus pa-
rameters, we run gradient descent on Pcc(φ). As we no
longer approximate the image as non-astigmatic, we define
the set of frequencies over which correlation is computed
as R = MK . We now initialize our gradient descent at
φ = (∆f1,?,∆f2,?, αf ), where αf is set as detailed in [15]
to an arbitrarily selected 0 ≤ a < π/6 (e.g. a = π/12) and
(a + π/6), (a − π/6), (a + π/3), (a − π/3) or (a − π/2).
One run of gradient descent is performed for each value of
αf and the result with the highest value of Pcc(φ) is kept.
The resulting φ is our defocus estimate for the micrograph.

We note that, as is done in [13]–[15], we discard information
in the lower and higher frequencies of Ŝz. These frequencies
can be determined by the user. As default values we use those
suggested in [13].

B. CTF estimation through zero-crossings

We have seen in the previous sections that the true
background-subtracted power spectrum is |Hφ(g)|2Sx(g). Un-
der the assumption that Sx(g) is slowly-varying, it follows
that at any frequency where the background-subtracted power
spectrum reaches a minimal value of zero, the CTF must reach
a zero-crossing.

Furthermore, even if the aforementioned assumption did not
hold true, we could still infer the frequencies where the CTF
reaches a zero-crossing. This is due to the fact that the zero-
crossings of the CTF are known to create concentric, nearly
elliptical rings, centered around the origin (see Section II).
Therefore, this can be used a cue to differentiate between any
minima of |Hφ(g)|2 Sx(g) that stem from the zero-crossings
of Hφ and any minima that stem from Sx.

The power spectrum estimates in prior methods for CTF es-
timation were not accurate enough that several zero-crossings
of Hφ could be found. However, as we show in Fig. 5(c),
due to the error reduction described in Sections III and IV,
our estimation of the background-subtracted power spectrum
enables easy detection of several elliptical rings where Ŝz

reaches its minima. To do this, we define any pixel with a
value smaller than that of at least six out of its eight neighbors
as a zero-crossing. Once the minima of Ŝz are found, we
discard any frequency that is not on a closed ring. Furthermore,
we verify that the spatial frequencies of pixels residing on
closed rings representing the minima of Ŝz form ellipses
approximately centered at the origin. We are then left with
frequencies of several zero-crossings of the CTF.

Since we have Hφ(g) = − sin(χφ(g)), we reach a zero-
crossing of the CTF when χφ(g) is an integer multiple of
π. Formally, the set of spatial frequencies on the `th ring of
zero-crossings, denoted by G`, satisfies

χφ(g`) = π`. (29)

Empirically, we are typically able to identify at least three
rings, that is, three different values of `.

Combining (29) for all g in Ĝ` and combining these for
different values of `, we obtain an overdetermined system
of equations. Solving it yields an estimate for the defocus
vector φ. To solve the system, we use the trust-region-dogleg
method implemented in MATLAB (a variant of [37]).

We note that typically both methods suggested in this
section achieve similar results. However, while the zero-
crossings-based method has lower computational complexity,
the correlation-based method is more robust to noise. There-
fore, for micrographs with very low SNR we recommend using
the correlation-based method, while for cleaner micrographs
we suggest using the zero-crossings method.

VI. EXPERIMENTAL RESULTS

We present experimental results for the ASPIRE-CTF
framework presented in this paper. We apply our framework
to datasets that are publicly available from the EMPIAR
database [38] or the CTF challenge [19]. Unless otherwise
stated, in the experiments below we use L = 4 tapers and
project the power spectrum onto the steerable PSWF basis.

A. Estimating CTF from movie frames
The CTF may be estimated either from motion-corrected

micrographs or, alternatively, directly from the frames. This
is done by estimating Ŝ(mt) individually from each frame and
averaging the estimates (see Fig. 1). A benefit of estimating the
CTF directly from the frames is that this practice enables us
to correct for motion and estimate the CTF concurrently, thus
speeding up the pipeline. Furthermore, any errors added by
motion-correction will have no effect on the CTF estimation.

In this section, we compare the CTF estimates produced
from motion-corrected micrographs to the estimation produced
directly from the frames. We do this over several publicly
available datasets, namely, EMPIAR-10002 [39], EMPIAR-
10028 [31], EMPIAR-10242 [40], and EMPIAR-10249 [41].
A summary of these datasets appears in Table I.
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Dataset Molecule Pixel size (Å) Spherical Voltage (kV) Microscope Detector
aberration

EMPIAR-10002 80S ribosome 1.77 2.0 300 Polara Falcon I
EMPIAR-10028 80S ribosome 1.34 2.0 300 Polara Falcon II
EMPIAR-10242 2N3R tau filaments 1.04 2.7 300 Titan Krios Gatan K2 Summit
EMPIAR-10249 HLA dehydrogenase 0.56 2.7 200 Talos Arctica Gatan K2 Summit

TABLE I
DESCRIPTION OF THE EMPIAR-10002, EMPIAR-10028, EMPIAR-10242 AND EMPIAR-10249 DATASETS.

0 2000 4000
0
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4000
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0 20 40 60
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- /2

0

/2
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Fig. 6. Defocus estimation on sample micrographs of the EMPIAR-10028,
EMPIAR-10002, EMPIAR-10042 and EMPIAR-10049 datasets. We compare
the estimation of each parameter when using the average power spectrum of
the frames to the estimation when using the power spectrum of the motion-
corrected micrograph. (a) Average defocus (in nm). (b) Astigmatism (in nm).
(c) Angle αf (in radians).

While the EMPIAR-10028 and EMPIAR-10242 datasets
contain both movies and motion-corrected micrographs,
EMPIAR-10002 and EMPIAR-10249 contain movies alone.
We therefore use MotionCor2 [42] to produce the motion-
corrected micrograph for these two datasets. We present in
Fig. 6 a comparison of the astigmatism (∆f1−∆f2), average
defocus (∆f1/2 + ∆f2/2), and astigmatism angle (αf ) as
estimated from a motion-corrected micrograph with an esti-
mate produced from the raw movie frames. We note that, as
expected, the parameters estimated from each of these methods
are nearly identical.

B. CTF Challenge

The CTF challenge [19] consists of nearly 200 micrographs
of GroEL, 60S ribosome, apoferritin and TMV virus. These
micrographs are taken from eight experimental datasets and
one synthetic dataset, each referred to by a number ranging
from 001 to 009. In the following, we restrict our attention to
the experimental datasets, that is, sets 001 through 008.

The advantage of the CTF challenge is that each dataset is
acquired using a different combination of microscope and cam-
era, allowing for a qualitative comparison of CTF estimation
methods for a variety of experimental setups. Notably, datasets
003 and 004 use a Gatan K2 direct detector in counting mode
with a high electron dose, causing Se to increase at high
frequencies [32]. Additionally, dataset 008 has an especially
low signal-to-noise ratio (SNR), rendering CTF estimation
difficult. A summary of these datasets is presented in [19].

The estimate of each micrograph’s power spectrum is com-
puted as detailed in Section III-D. Specifically, we divide the
micrograph into half-overlapping blocks of size K×K, where
K = 512, and use L = 4 tapers in the estimation. We then
estimate the background spectrum as detailed in Section IV-A
and expand the background-subtracted power spectrum over
the PSWF basis in order to reduce variability in the power

spectrum estimate (Section IV-B). We use the correlation-
based method (Section V-A) to estimate defocus parameters,
and denote the resulting vector of defocus parameters as
φ
(512)
a .
In some cases, a power spectrum of size 512×512 may not

capture the oscillations of the power spectrum with sufficient
accuracy [13]. We therefore compute a second estimate of the
power spectrum using half-overlapping blocks of size 1024×
1024. As this reduces the number of blocks, the variance of
the estimator will grow. We therefore use L = 16 data tapers
in this case. We use this estimate of the power spectrum to
estimate a vector of defocus parameters which we denote by
φ
(1024)
a .
We compare our results to the estimates produced by

CTFFIND4 (version 4.1.13) and Gctf (version 1.06). We
denote the vector of estimated defocus parameters produced
by CTFFIND4 when using block of size 512 × 512 and
1024 × 1024 as φ(512)c and φ

(1024)
c , respectively. We further

denote the vector of estimated defocus parameters produced
by Gctf when using block of size 512×512 and 1024×1024 as
φ
(512)
g and φ

(1024)
g , respectively. For each estimation method

we select the vector of estimated defocus parameters that leads
to highest correlation with the estimated power spectrum, that
is

φ∗j = arg max
φj∈{φ(512)

j ,φ
(1024)
j }

(
1

st

st∑
m=1

Pmcc (φj)

)
, (30)

where j ∈ {a, c, g}, st is the number of micrographs in the tth
dataset and Pmcc is the correlation for the mth micrograph in
the dataset, computed as in (23). We note that the correlation
is computed with the power spectrum estimate suggested in
[14]. That is, we compute the Pearson correlation coefficient
between the background subtracted power spectrum computed
as in [14] and using blocks of size 512×512 with H

φ
(512)
j

, and
between the background subtracted power spectrum computed
using blocks of size 1024×1024 with H

φ
(1024)
j

. In this manner,
we choose the block size that best captures the oscillations of
each dataset.

In order to compare the consistency of these 3 methods, we
present the differences between φa, φc and φg in Tables II-III.
That is, for each micrograph m we compute

εj,k(∆f1) = (φj(1)− φk(1))/φj(1)

εj,k(∆f2) = (φj(2)− φk(2))/φj(2)

εj,k(αf ) = (φj(3)− φk(3))/φj(3)

(31)

where j and k are two estimation methods (ASPIRE-CTF,
CTFFIND4 or Gctf). We report the mean and variance of ε.
We note that either εa,g or εa,c are often smaller than εc,g , thus
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Dataset Molecule εa,g(∆f1) εa,c(∆f1) εc,g(∆f1) εa,g(∆f2) εa,c(∆f2) εc,g(∆f2) εa,g(αf ) εa,c(αf ) εc,g(αf )
001 GroEL 0.0157 0.2370 0.2364 0.0155 0.1282 0.6081 1.6599 2.1429 1.3848
002 GroEL 1.3236 1.6500 0.1515 1.4876 0.9746 0.2374 3.6137 5.3979 1.9592
003 60S ribosome 0.0029 0.0049 0.0029 0.0030 0.0032 0.0017 6.1042 6.6618 2.9159
004 60S ribosome 0.0051 0.0130 0.0098 0.0057 0.0406 0.2990 4.2653 2.3667 2.6050
005 apoferritin 0.0036 0.1744 0.8809 0.0036 0.1997 1.5230 0.6597 0.8927 0.7413
006 apoferritin 0.0099 0.2094 0.6392 0.0069 0.3409 1.5217 0.2670 1.3014 1.6142
007 TMV virus 0.0224 0.2144 0.5163 0.0265 0.2674 1.1320 0.4254 0.9891 0.8985
008 TMV virus 0.1961 0.6043 0.3988 0.2163 0.3016 0.5707 3.0253 1.8514 2.8394

TABLE II
COMPARISON BETWEEN PARAMETERS ESTIMATED BY ASPIRE-CTF, CTFFIND4 AND GCTF. WE PRESENT THE MEAN (OVER EACH DATASET) OF

NORMALIZED DIFFERENCES BETWEEN EACH TWO CTF ESTIMATION METHODS AS DETAILED IN (31)

Dataset Molecule εa,g(∆f1) εa,c(∆f1) εc,g(∆f1) εa,g(∆f2) εa,c(∆f2) εc,g(∆f2) εa,g(αf ) εa,c(αf ) εc,g(αf )
001 GroEL 0.0144 0.4710 0.5276 0.0267 0.2489 1.9206 3.1585 2.0435 2.2632
002 GroEL 2.9445 2.2763 0.2655 3.3142 1.9597 0.5196 9.2965 15.0486 2.7796
003 60S ribosome 0.0022 0.0031 0.0036 0.0031 0.0047 0.0020 20.8434 22.3327 15.8681
004 60S ribosome 0.0028 0.0328 0.0387 0.0039 0.1778 1.4504 9.4786 3.5234 3.9324
005 apoferritin 0.0037 0.3265 1.8456 0.0029 0.3591 3.1834 0.9381 0.7127 0.6918
006 apoferritin 0.0126 0.2902 1.9539 0.0064 0.3330 2.7270 0.3485 1.1711 2.7480
007 TMV virus 0.0192 0.2698 0.8581 0.0172 0.3335 2.0805 0.6437 0.9296 0.9966
008 TMV virus 0.8337 0.7936 0.8543 0.8947 0.4088 0.9907 4.7943 2.6911 6.1583

TABLE III
COMPARISON BETWEEN PARAMETERS ESTIMATED BY ASPIRE-CTF, CTFFIND4 AND GCTF. WE PRESENT THE STANDARD DEVIATION (OVER EACH

DATASET) OF NORMALIZED DIFFERENCES BETWEEN EACH TWO CTF ESTIMATION METHODS AS DETAILED IN (31)

Fig. 7. Visual comparison between the power spectra computed by ASPIRE-
CTF (top row), Gctf (bottom left) and CTFFIND4 (bottom right) on a sample
micrograph of dataset 008. On the top row we present Ŝ(lp)

z (right) and Ŝz

(left).

showing the ASPIRE-CTF estimate to be in the consensus of
the three estimation vectors.

Fig. 7 contains a visual comparison between the power
spectrum computed by our suggested framework and the
power spectra computed by Gctf and CTFFIND4. We present
the comparison over a micrograph from the eighth set of
the CTF challenge as this set is known to be difficult. We
note that the oscillations of the ASPIRE-CTF power spectrum
are highly noticeable. In comparison, the variability of the
power spectra computed by Gctf and CTFFIND4 make visual
detection of oscillations challenging.

C. Runtime

We compute runtime of ASPIRE-CTF and CTFFIND4 over
dataset 001 of the CTF challenge. For both methods, we
partition the micrograph into blocks of size 512× 512. When
running ASPIRE-CTF we employ L = 4 data tapers. Further-
more, we use the exhaustive search option for CTFFIND4, and
perform an exhaustive 1D search in ASPIRE-CTF. While the
CTF estimation results are comparable, there is a significant
speedup when using ASPIRE-CTF. Runtime for ASPIRE-CTF
is 22.5 seconds on average per micrograph, while runtime for
CTFFIND4 is 541 seconds.

These experiments are run on a 2.6 GHz Intel Core i7 CPU
with four cores and 16 GB of memory. We do not compare
to the runtime of Gctf as it must be run on a GPU.

D. Consistency in low SNR

To test consistency of results with changing SNR, we turn
to the EMPIAR-10249 dataset [41]. This dataset consists of
movies with 44 frames per movie. Usually, all these frames,
except for a few frames at the beginning and a few at the
end, are motion-corrected and summed to create a micrograph.
This is due to the fact that a micrograph created from as many
motion-corrected frames as possible will have the best SNR.

We disregard the first frame and use MotionCor2 [42]
to create 9 motion-corrected micrographs. These consist of
summing 5, 8, 13, 18, 23, 28, 33, 38, and 43 motion-corrected
frames, respectively. This gives us a sequence of micrographs
with increasing SNR.

We estimated the CTF parameters independently from each
micrograph in the manner detailed in Section VI-B. Fig.
8 shows the astigmatism |∆f1 − ∆f2| vs. mean defocus
(∆f1 + ∆f2)/2 of the CTF estimation for each method and
over each micrograph. We see that while the average defocus
values remain similar for all three methods, Gctf incurs a larger
error in the astigmatism when 23 frames are used. On the other
hand, our method and CTFFIND4 achieve consistent estimates
regardless of the amount of frames averaged.

VII. CONCLUSION

In this paper we have presented a novel approach for
power spectrum estimation of cryo-EM experimental data.
Our approach uses the multitaper estimator, which often leads
to reduced mean square error over Bartlett’s and Welch’s
methods. Additionally, we presented a method for error reduc-
tion that is driven directly by the mathematical model of the
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Fig. 8. Estimated astigmatism vs. defocus of the CTF parameters. The circular
markers present the defocus and astigmatism estimated from a micrograph
with 43 summed frames.

contrast transfer function. We did this by projecting the power
spectrum estimate onto a steerable basis and discarding any
basis function where the CTF must be negligible. We showed
that the combination of these two contributions leads to greatly
reduced variability in our estimator.

We presented experimental results on twelve datasets, and
showed that our method is well suited to both motion-corrected
micrographs and raw movies data.

ACKNOWLEDGMENTS

The authors thank B. Landa and I. Sason for help optimizing
the PSWF code. The authors are also indebted to B. Landa
and Y. Shkolnisky for helpful comments and discussions. The
Flatiron Institute is a division of the Simons Foundation.

REFERENCES

[1] Y. Cheng, R. M. Glaeser, and E. Nogales, “How cryo-EM became so
hot,” Cell, vol. 171, no. 6, pp. 1229–1231, 2017.

[2] J. Frank, Three-Dimensional Electron Microscopy of Macromolecular
Assemblies. Academic Press, 1996.

[3] H. P. Erickson and A. Klug, “Measurement and compensation of defo-
cusing and aberrations by Fourier processing of electron micrographs,”
Phil. Trans. R. Soc. Lond. B, vol. 261, pp. 105–118, 1971.

[4] A. Heimowitz, J. Andén, and A. Singer, “APPLE picker: Automatic
particle picking, a low-effort cryo-EM framework,” J. Struct. Biol., vol.
204, no. 2, pp. 215–227, 2018.

[5] T. Bhamre, T. Zhang, and A. Singer, “Denoising and covariance estima-
tion of single particle cryo-EM images,” J. Struct. Biol., vol. 195, no. 1,
pp. 72–81, 2016.

[6] S. H. W. Scheres, “RELION: Implementation of a Bayesian approach to
cryo-EM structure determination,” J. Struct. Biol., vol. 180, no. 3, pp.
519–530, 2012.

[7] A. Punjani, J. L. Rubinstein, D. J. Fleet, and M. A. Brubaker,
“cryoSPARC: algorithms for rapid unsupervised cryo-EM structure
determination,” Nat. Methods, vol. 14, no. 3, p. 290, 2017.

[8] G. Tang, L. Peng, P. R. Baldwin, D. S. Mann, W. Jiang, I. Rees
et al., “EMAN2: An extensible image processing suite for electron
microscopy,” J. Struct. Biol., vol. 157, no. 1, pp. 38–46, 2007.

[9] T. Grant, A. Rohou, and N. Grigorieff, “cisTEM, user-friendly software
for single-particle image processing,” eLife, vol. 7, p. e35383, 2018.
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