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Abstract—Multireference alignment refers to the problem of
estimating a signal from its circularly translated copies in the
presence of noise. Previous papers showed that if the translations
are drawn from the uniform distribution, then the sample
complexity of the problem scales as 1/SNR3 in the low SNR
regime. In this work, we show that the sample complexity for
any aperiodic translation distribution scales as 1/ SNR2 in the
low SNR regime. This rate is achieved by a simple spectral
algorithm. We propose two additional algorithms based on non-
convex optimization and expectation-maximization. We also draw
a connection between the multireference alignment problem and
the spiked covariance model.

Index Terms—multireference alignment, spectral algorithm,
method of moments, spiked covariance model, non-convex op-
timization, expectation-maximization, cryo–EM

I. INTRODUCTION

The problem of multireference alignment (MRA) arises in
a variety of engineering and scientific applications, among
them structural biology [1], [2], [3], [4], [5], radar [6], [7],
robotics [8] and image processing [9], [10], [11]. In these
applications, one aims to estimate a signal from its translated
or rotated noisy copies. The problem also serves as a simplified
model for more general problems like single-particle cryo–
electron microscopy, in which a 3D volume is recovered from
unknown 2D projections [12], [13].

In this paper, we focus on the one-dimensional (1D) discrete
MRA problem on a circle. In this model, we acquire N
measurements from the model

y = Rrx+ ε, (I.1)

where ε is a vector of i.i.d. normal variables with zero mean
and variance σ2. The operator Rr translates a signal x ∈ RL
circularly by r elements, namely, (Rrx)[i] = x[i−r], where all
indices should be considered as modulo L. The translation r
is drawn from some unknown distribution ρ on [0, . . . , L−1].
Our goal is then to estimate the signal x, up to global cyclic
translation, from

yj = Rrjx+ εj , j = 1, . . . , N. (I.2)
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Note that while the translations rj are unknown, their esti-
mation is not the primary goal of the problem; the task is to
estimate the signal x. The translations are frequently called
latent or hidden variables. Figure I.1 illustrates the MRA
problem in different noise levels.

Previous approaches for estimating x from (I.2) can be
broadly classified into two main categories. The first ap-
proach is based on estimating the translations rj , aligning
all observations and averaging them to suppress the noise.
However, alignment is impossible in low signal–to–noise ratios
(SNRs) [14], defined here as SNR = ‖x‖2/σ2. An alternative
approach aims at estimating the signal x directly. Existing
methods bypass the need to estimate the translations by em-
ploying expectation-maximization (EM) methods or by using
features that are invariant under translation [15]. Section II
is devoted to a detailed discussion on existing results and
algorithms for MRA. In this paper, we take a different route
by trying to estimate both the signal and the distribution of
translations ρ simultaneously. When ρ is aperiodic, it turns out
this is a simpler problem than ignoring ρ estimating x alone.

In [16], [17], it was proven that when ρ is the uniform
distribution, then in the low SNR, or large σ, regime, the
number of measurements N needs to scale like 1/ SNR3 in
order to keep a constant estimation error for signals with non-
vanishing Discrete Fourier Transform (DFT). In other words,
the sample complexity of the problem scales as 1/ SNR3. In
this work, we show that any signal with non-vanishing DFT
can be estimated at sample complexity scaling like 1/ SNR2

if the translation distribution ρ is aperiodic, meaning there is
no 0 ≤ ` ≤ L− 1 where ρ[i+ `] + ρ[i] for all i. This rate is
optimal and can be provably achieved by a spectral algorithm
based on the first two moments of the data. The main result
of this paper is stated as follows:

Main Result (informal): Consider the model (I.2) and sup-
pose that x ∈ RL has a non-vanishing DFT. If ρ is aperiodic,
then x can be estimated, up to circular translation, from the
first two moments of the data. As a consequence, the sample
complexity grows like 1/ SNR2. This sample complexity can be
achieved by a spectral algorithm. Conversely, the sample com-
plexity for any periodic distribution with periodicity smaller
than L/2 scales like 1/SNR3.

From a computational perspective, the proposed framework
is based on a reliable estimation of the first two moments of the
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Fig. I.1. The figures illustrates the MRA measurements according to (I.2).
The left column presents three measurements with different translations in
the absence of noise. In this case, because the solution is defined up to
translation, each measurement is a solution. The middle and right columns
show measurements with the same translations and low and high noise levels,
respectively.

data. Hence, it requires only one pass over the measurements,
low storage resources and is computationally efficient. To
estimate the signal from the estimated moments, we propose,
in addition to the aforementioned spectral algorithm, a non-
convex least-squares (LS) algorithm. While the problem is
non-convex, it empirically converges to the underlying signal,
in the absence of noise, from a random initialization. We also
suggest an expectation-maximization (EM) algorithm.

The outline of the paper is as follows. Section II pro-
vides a detailed discussion of existing results and algorithms
for MRA. In Section III we show that if the distribution
is aperiodic, then any signal with non-vanishing DFT can
be estimated from its first and second moments, namely,
the sample complexity is upper bounded proportionally to
1/ SNR2. Section IV draws the connections between the MRA
model and the well-studied spiked covariance model [18],
[19], [20], [21], [22]. In Section V we prove that the sample
complexity is also lower bounded proportionally to 1/ SNR2.
We also show that the sample complexity of any periodic
distribution of translations with period less than L/2 scales
as 1/SNR3. This is an extension of the results of [16] which
considered the uniform distribution case. Section VI discusses
and analyzes alternative algorithmic methods based on LS and
EM. Section VII examines the performance of the proposed
algorithms by numerical simulations. Section VIII concludes
the paper and proposes potential future extensions.

Throughout the paper we use the following notation. An
estimator of a signal z ∈ RL is denoted by ẑ. We assume
throughout that all signals are defined cyclically; that is,
all indices should be considered modulo L. The indices
will range from 0 to L − 1. The DFT of z is defined by
(Fz)[k] =

∑L−1
i=0 z[i]e−2πιki/L, where ι =

√
−1. We use

Cz for a circulant matrix whose first column is z, namely,
Cz[i, j] = z[i − j]. A diagonal matrix whose diagonal is z

is denoted by Dz . We reserve E, ∗ and � for expectation,
convolution and entry-wise product, respectively. The L–
simplex is denoted by ∆L. That is to say, z ∈ ∆L implies
that z[i] ≥ 0 for all i and

∑L−1
i=0 z[i] = 1. The first and the

second moments of the data are denoted by µ := E{y} and
M := E{yyT }, respectively.

Because the observations are invariant to a circular shift of x
and ρ, we define the normalized squared error of an estimator
x̂ of x by:

min
s∈ZL

‖Rsx̂− x‖22
‖x‖22

. (I.3)

That is, we look at the relative error of the best-aligned version
of x̂ with x. This measure of error is invariant to translations
of x and ρ.

II. RELATED WORK

A. Multireference alignment via synchronization

Given the translations rj , the MRA problem (I.2) is easy.
One trivial unbiased estimator of x is given by aligning
all measurements and then averaging to suppress the noise,
namely,

x̂ =
1

N

N∑
j=1

R−1
rj yj . (II.1)

The variance of this estimator is σ2/N and therefore the
number of measurements N needs to scale like σ2 to retain
a constant estimation error. In other words, the sample com-
plexity grows like 1/SNR. One can replace (II.1) with other
estimators, such as James-Stein shrinkage [23], [24], [25],
but it will not change the asymptotic sample complexity. In
practice, we do not have access to the underlying translations.
However, if one can obtain a reliable estimation of the un-
known translations r̂j , then one can estimate x by the sample
mean as in (II.1) at sample complexity growing as 1/ SNR.
This motivates the design of synchronization methods that aim
to estimate the translations rj from the data yj .

A naïve approach for synchronization could be to fix one
observation as a template, say y1, and estimate the relative
translation of each yj , with respect to y1, by the peak of their
cross-correlation:

r̂j = arg max
`

L−1∑
i=0

y1[i]yj [i+ `].

This approach may work in the high SNR regimes, but fails as
the noise level increases (see for instance Figure I.1 in [15]).
Many alternative synchronization methods were proposed
in the literature. For instance, the angular synchronization
method aims at aligning all pairwise observations simultane-
ously [26], [27], [28], [29], [30], [31]. Other methods propose
to align through different semidefinite programs (SDPs) [32],
[33], [34], [35]. However, alignment is impossible below a
critical SNR threshold, no matter how many measurements
are acquired. For instance, for the continuous counterpart
of (I.1), it has been shown that the Crámer–Rao lower bound
is proportional to σ2 and does not depend on N . This bound
holds even if the sought signal is known [14].
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B. Multireference alignment in low SNR

This section reviews recent works on MRA in the low SNR
regime, in which alignment is impossible. The key idea is to
estimate the signal directly, without estimating the translations
beforehand. As will be emphasized throughout, all these works
did not consider the translation distribution ρ, or forced it to
be uniform.

In [16], [17], it was shown that if the translations are
uniformly distributed, namely, r ∼ Uniform[0, 1, . . . , L − 1],
then the number of measurements N needs to scale like
1/ SNR3 to retain a constant estimation error. The analysis
of the uniform distribution is of particular interest since, no
matter what ρ is, one can always enforce it to be uniform.
This can be done simply by reshuffling all measurements by
zj = Rr′jyj , where r′j are drawn from the uniform distribution.
The new set of measurements zj obeys the MRA model (I.2)
with uniform translation distribution. However, as will be
shown, this is in general a bad strategy, since the uniform
distribution has a sample complexity scaling as 1/SNR3.

From the algorithmic point–of–view, a recent paper [15]
proposes a method that completely overcomes the need to
estimate the translations. The core idea is to estimate features
of the underlying signal that are invariant under cyclic transla-
tion. Particularly, it was proposed to estimate the mean, power
spectrum and bispectrum of the signal from the moments
of the data. Since these invariant features are third degree
polynomials in the signal, they can be estimated accurately
at sample complexity growing like 1/ SNR3. Using these
invariant features, one can recover the signal to arbitrary
accuracy as N →∞ using a variety of algorithms [15]. Since
this method requires only one pass over the data, it can be
performed in a streaming mode, can be parallelized, requires
low storage resources of O(L2) and has low computational
load. The framework proposed in this paper is also based
on estimating moments of the data and therefore enjoys the
same advantages; however, since we only require second-order
moments, we bring the sample complexity down to 1/ SNR2.

Another approach for MRA is to apply an EM algo-
rithm [36]. EM is an iterative algorithm that aims to find
the marginal maximum–likelihood estimator. It is used ubiqui-
tously in many statistical models, such as the Gaussian mixture
model [37]. For the MRA model (I.1), this algorithm takes a
simple form and consists of two steps at each iteration [15].
Given a current estimation xk−1, the first step (called the E-
step) computes a set of weights which can be understood as
the translation distribution of each measurement yj , if xk−1

was the underlying signal. These weights are computed by

w`,jk = Cjke
− 1

2σ2
‖R`xk−1−yj‖22 ,

where Cjk is a normalization factor so that
∑
` w

`,j
k = 1. Then,

the signal estimation is updated by marginalizing over the
distributions and averaging (called the M-step):

xk =
1

N

N∑
j=1

L−1∑
`=0

w`,jk R−1
` yj . (II.2)

The EM algorithm enjoys an excellent numerical performance;
however its computational load and storage requirements are

heavy since it passes through all the data at each iteration. In
Section VI-B, we modify the standard EM algorithm to take
the distribution into account.

III. PROVABLE ALGORITHM BASED ON THE FIRST TWO
MOMENTS

In this section, we provide a spectral algorithm to estimate
the signal, up to cyclic translation, from the first and second
moments of the data, if the translation distribution is aperiodic.
We prove that this algorithm estimates the signal exactly with
high probability in the limit of SNR tending to 0 with a
growing number of samples; we will describe the asymptotic
model more precisely in Section III-C. Because the method
relies on only second-order information, its sample complexity
in this case only grows like 1/ SNR2, compared to sample
complexity growing as 1/ SNR3 if the translation distribution
is periodic (with period smaller than L/2; see Section III-D).
As we prove in Section V, 1/SNR2 is indeed the sample
complexity for aperiodic distributions.

A. Moments of R`x

Before describing the algorithm, we will describe a few
basic properties of the moments of the random vectors R`x.
We will first consider the first moment of the translated signal
(without additive noise), which we denote µ = E[Rrx], where
the expectation is over the random r ∼ ρ. This is equal to the
convolution of x with ρ; that is,

µ = x ∗ ρ = Cxρ, (III.1)

where Cx is a circulant matrix with x as its first column. In
this case, the convolution theorem implies

Fµ = Fx� Fρ, (III.2)

where � and F denote entry-wise product and Fourier trans-
form, respectively. We can estimate the first moment from the
noisy observations yj = Rrjx+ εj by

µ̂ =
1

N

N∑
i=1

yi. (III.3)

Note that if L and σ are fixed, then µ̂ is a consistent estimator
of µ as N →∞.

The second moment of Rrx is defined as

M = E
[
(Rrx)(Rrx)T

]
,

where the expectation is again taken over the random ` ∼ ρ.
It can be verified that

M = CxDρC
T
x , (III.4)

where Dρ is a diagonal matrix of ρ. The unbiased second
moment of Rrx is then estimated from the observations yj
by:

M̂ =
1

N

N∑
i=1

yiy
T
i − σ2I. (III.5)
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As with the first moment, when L and σ are fixed then M̂ is
a consistent estimator of M as N →∞.

The following result shows that under a rather weak con-
dition on ρ, there exists only one signal (up to translation)
that agrees with the second moment data exactly. For this
condition, recall that a number a is relatively prime to b if
their largest common divisor is 1.

Proposition III.1. Let ρ ∈ ∆L be a distribution with
(Fρ)[k] 6= 0 for some k that is relatively prime to L. If the
DFT of x is non-vanishing, then it is uniquely determined (up
to translation) from the first two moments µ and M .

Proof. See Appendix A.

The power spectrum of the signal Px[k] := |(Fx)[k]|2,
which is the Fourier transform of the signal’s auto-correlation,
plays an important role in the analysis. Recall that the
jth entry of the auto-correlation of each measurement is
a[j] =

∑L−1
i=0 y[i]y[i + j], and therefore Px can be estimated

directly from M by averaging over the measurement’s auto-
correlations. Alternatively, it can be estimated in the Fourier
domain directly [15]:

P̂x =
1

N

N∑
j=1

Pyj − σ2L1, (III.6)

where 1 is a vector of ones. This is an unbiased estimator,
with each coordinate having variance O(σ4/N).

B. Moment inversion when ρ has a unique entry

The key observation driving the algorithm we will describe
is that when ρ has at least one distinct entry, and if x has
non-zero DFT, then x can be recovered exactly from the first
two moments µ and M and the power spectrum Px.

We first recall the factorization M = CxDρC
T
x from

equation (III.4). The circulant matrix Cx is diagonalized by
the Fourier matrix F as,

Cx = F−1DFxF.

Consequently, conjugating M by the matrix F−1D1/|Px|1/2F ,
we obtain the matrix M̃ = Cx̃DρC

T
x̃ , where x̃ is the vector

with the normalized Fourier transform

(Fx̃)[k] =
(Fx)[k]

|(Fx)[k]|
. (III.7)

Therefore, the matrix Cx̃ is both circulant and real orthonor-
mal, i.e., C−1

x̃ = CTx̃ . Consequently, the decomposition
M̃ = Cx̃DρC

T
x̃ is an eigendecomposition of M̃ , and the

eigenvectors are translations of x̃.
If ρ has at least one distinct entry, then the associated

eigenvector v will be a translation of x̃, with arbitrary scaling;
that is, v = α · Rrx̃ for some number α. Since the Fourier
coefficients are still normalized, we multiply |Px|1/2 and Fv
coordinate-wise to get

ṽ = α · F−1
(
F (Rrx̃)�|Px|1/2

)
= α ·Rrx.

Letting Sum(x) denote the sum of all elements in x, we have
α = Sum(ṽ)/Sum(x). To uncover α, note that the zeroth

Fourier coefficient of µ = x∗ρ is (Fµ)[0] = (Fx)[0]·(Fρ)[0].
But since ρ is a probability vector, (Fρ)[0] = 1, and so
Sum(µ) = (Fµ)[0] = (Fx)[0] = Sum(x). Consequently,
α = Sum(ṽ)/Sum(µ), and Rrx = ṽ/α.

Note that once we have determined x, we can also determine
ρ from µ = x ∗ ρ by deconvolution; indeed, since µ = Cxρ,
we have ρ = C−1

x µ.

Algorithm 1 Exact recovery from the first two moments

Input: Moments µ and M ; power spectrum Px.
Output: The signal x and distribution ρ.

// Normalize Fx
1.1: p← (Px)−1/2

1.2: Q← F−1DpF

1.3: M̃ ← QMQ∗

// Extract eigenvector and rescale
2.1: v ← UniqEig(M̃)

2.2: ṽ ← F−1
(

(Px)1/2 � Fv
)

2.3: x←
(
Sum(µ)/ Sum(ṽ)

)
ṽ

2.4: ρ← C−1
x µ

2.5: return x and ρ

We have proved the following result:

Proposition III.2. Suppose x has non-vanishing DFT and ρ
has at least one distinct entry. Let µ = E[Rrx] and M =
E[(Rrx)(Rrx)T ] be the first two moments, and Px the power
spectrum of x. Then Algorithm 1 returns the signal x and the
distribution ρ exactly (up to translation).

The following corollary states that Algorithm 1 is stable to
perturbations of the moments and power spectrum:

Corollary III.3. Suppose x has non-vanishing DFT and ρ
has at least one distinct entry. Suppose that µ̂, M̂ , and P̂x are
estimates of, respectively, µ, M and Px. Suppose that ‖µ̂ −
µ‖ ≤ ε, ‖M̂ −M‖F ≤ ε, and ‖P̂x−Px‖ ≤ ε, for sufficiently
small ε > 0. Then running Algorithm 1 with input data µ̂, M̂ ,
and P̂x returns an estimate x̂ of x with an error Cε, where
C = C(x, ρ, L) > 0 is a finite constant.

Proof. This follows immediately from the variant of the Davis-
Kahan theorem found in [38] (Theorem 2).

C. Estimating x from finitely many samples in low SNR

Section III-B shows that Algorithm 1 recovers x exactly
from the exact values of µ, M and Px, so long as the
DFT of x is non-vanishing and ρ has at least one distinct
entry. We also showed that Algorithm 1 is stable under small
perturbations of the moments and power spectrum, under the
same conditions. In this section, we estimate the error when
Algorithm 1 is applied to the unbiased estimators µ̂, M̂ and
P̂x from equations (III.3), (III.5) and (III.6), respectively.

We first observe that whenever ρ is aperiodic, we can
modify the observations to assume that ρ in fact has all distinct
entries. Indeed, we generate a new set of measurements zj =
Rrjyj , where rj are drawn from a new, known distribution θ.
In this case, the translations are distributed according to ρ ∗ θ.
The following lemma shows that by choosing θ as a random
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probability distribution on the simplex, we can ensure that all
entries of ρ ∗ θ are distinct with probability 1. Note that if the
DFT of θ is non-vanishing (which holds with probability 1 for
random θ), then one can recover fully ρ from ρ ∗ θ.

Lemma III.4. Let ρ be an aperiodic vector on the simplex and
let θ be a random probability density function on the simplex.
Then, all entries of ρ ∗ θ are distinct with probability 1.

Proof. See Appendix B.

Using this lemma, we will assume from now on that all
entries of ρ are distinct.

We study the low-SNR regime when σ → ∞. Concretely,
we suppose we have a sequence of noise levels σ1 ≤ σ2 ≤ . . . ,
such that σn → ∞. We also suppose we have a sequence
of sample sizes N1 ≤ N2 ≤ . . . . For each n, we draw
observations y1, . . . , yNn at noise level σn.

The following theorem shows that if Nn grows like σ4
n, the

MSE of the estimator x̂ can be controlled.

Theorem III.5. Let µ̂n, M̂n and P̂x,n denote the sample
moments and power spectrum from y1, . . . , yNn , as defined by
equations (III.3), (III.5) and (III.6). Let x̂n denote the estimate
of x from Algorithm 1 applied to µ̂n,M̂n and P̂x,n. Then for
all sufficiently small t > 0:

P
[

min
s∈ZL

‖Rsx̂n − x‖2 ≥ t
]
≤ C1 exp

{
−C2

Nn
σ4
n

t

}
, (III.8)

where C1 = C1(x, ρ, L) and C2 = C2(x, ρ, L) are finite,
positive constants.

Proof. This follows from the fact that the residuals µ̂n − µ,
M̂n−M and P̂x,n−Px are subexponential; the Bernstein-type
inequality for subexponential random variables found in [39];
and Corollary III.3.

From Theorem III.5, we see that if Nn ≥ cnσ
4
n for some

sequence cn → ∞, then the error of x̂n converges to 0 in
probability as n→∞. Furthermore, if Nn ≥ K log(n)σ4

n for
a sufficiently large constant K, then the error of x̂n converges
to 0 almost surely as n→∞.

Algorithm 2 describes the entire pipeline for estimating
x from the noisy measurements yj = Rrjx + εj , including
randomly shifting the observations, estimating the moments,
and using Algorithm 1 to estimate x from the estimated
moments.

D. Non-uniqueness for periodic ρ

We have shown that the first and the second moments suffice
to determine the signal if the distribution is aperiodic. In this
section we provide a complementary result, showing that if
the distribution is periodic, then having the first two moments
is not enough to uniquely determine the signal. In particular,
given a distribution ρ with period `, a signal x2 (with non-
vanishing DFT) has the same first two moments as x1 if it
satisfies:

(Fx2)[k] =

{
(Fx1)[k], k = tL` , t = 0, . . . , `− 1,
−(Fx1)[k], otherwise.

(III.9)

Algorithm 2 Estimating x and ρ from noisy data

Input: yj , j = 1, . . . , N of (I.2) and noise variance σ2

Output: An estimated signal x̂ and estimated distribution ρ̂
// Reshuffling observations (optional)

1.1: draw a random distribution θ ∈ ∆L

1.2: for each j = 1, . . . , N : yj ← Rrjyj for rj ∼ θ
// Moment estimation

2.1: µ̂← 1
N

∑N
j=1 yj

2.2: M̂ ← 1
N

∑N
j=1 yjy

T
j − σ2I

2.3: P̂x ← 1
N

∑N
j=1 |Fyj |2 − σ2L1

// Eigendecomposition and normalization
3.1: call Algorithm 1 with µ̂, M̂ and P̂x.
3.2: return x̂ and ρ̂

This construction is demonstrated in Figure III.1.

Proposition III.6. Let ` < L/2 be a divisor of L > 1. Suppose
that ρ is periodic, with period `. Then, for a given real signal
x1 with non-vanishing DFT, there exists a different real signal
x2 (which is not a translation of x1) such that both signals
have the same first and second moments. Therefore, if the
distribution is periodic, then any signal with non-vanishing
DFT is not uniquely determined from its first and second
moments.

Proof. See Appendix C.

In Section V we establish this result from an information-
theoretic perspective by showing that the sample complexity
for periodic distribution grows like 1/SNR3.

The uniform distribution is merely a special case of periodic
distributions with minimal period ` = 1. When ` > 1, one
can interpret the periodicity as having a uniform distribution
over the different cosets of ZL with respect to the subgroup
generated by a translation in ` coordinates. These cosets are
exactly the analogue of the sparsity pattern of Fρ attained by
jumps of L/`. This also explains why uniformity is the only
pathological case for a prime L. Therefore, if one can choose
how to sample the signal, a prime number of samples should
be considered.

As it turns out, there is one special case where the first two
moments are enough to determine x uniquely up to cyclic
translation, even when ρ is periodic. This special case occurs
when L is even and ρ is L/2-periodic. This result is formulated
in the following claim:

Claim III.7. Suppose that x has non-vanishing DFT, L is even
and ρ is L/2-periodic. Then, x is uniquely determined from
its first two moments, up to global translation.

Proof. See Appendix D.

IV. CONNECTION WITH THE SPIKED COVARIANCE MODEL

In this section, we point out a connection between the
spectral algorithm presented in Section III and the spiked co-
variance model well-known in statistics [18], [19], [20], [21],
[22]. Though somewhat informal, this analysis will provide
insight into how the complexity of recovering x depends on
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Fig. III.1. This example demonstrates the constriction of (III.9) and Proposition III.6. The figures present two different real signals of length 15 and a
5-periodic distribution. The Fourier transforms of the signals obey (III.9). The two signals have the same first two moments under the periodic distribution.

the dimension L when the distribution ρ has a fixed support
size.

In the spiked model, we observe a matrix

Y = X +G ∈ RL×N (IV.1)

where X is a rank r matrix and G = (gij) with gij
iid∼

N (0, σ2). This model is typically studied in the high-
dimensional regime, in which L grows proportionally to N ;
that is, L = L(N) and L/N → γ > 0 as N → ∞. In
this setting, there is a precise understanding of the limiting
behavior of the data matrix Y and the low-rank matrix
X = [X1, . . . , XN ].

In [21] (see also [19]), it is shown that when the low-rank
matrix X is random (for instance, its columns may be drawn
from a suitable low-rank, mean-zero distribution), then the
limiting cosine c of the angles between the top eigenvector
of XXT and the top eigenvector of Y Y T is given by the
formula:

c2 =

 1−σ4γ/λ2

1+σ2γ/λ if λ > σ2√γ,
0 otherwise,

(IV.2)

where λ is the top eigenvalue of XXT /N .
The key phenomenon is the phase transition at

λcritical = σ2√γ. (IV.3)

It is only when λ is greater than this critical value that
we are guaranteed a non-trivial correlation between the top
eigenvector of the observed matrix Y Y T /N and the top
eigenvector of XXT /N .

We can view the observation model in the one-dimensional
MRA model (I.1) as a special instance of the spiked model,
by taking the ith column of X to be Xi = Rrix. As N →∞,
we can write

1

N
XXT = CxDρC

T
x . (IV.4)

Consequently, under the assumption that the DFT of x does
not vanish, the rank of X is the size of the support of ρ. When
the support size of ρ is fixed at r, the MRA problem is an
instance of the spiked model.

Let us assume that the |(Fx)[k]| = 1 for all k. This
can be done by estimating the power spectrum first and
then normalizing all Fourier coefficients. In this case, Cx
is an orthogonal matrix. In other words, x ⊥ R`x for
every ` 6= 0; consequently, the R`x are precisely the top

r eigenvectors of XXT /N , with corresponding eigenvalues
‖x‖2ρ[`]. Then, (IV.2) tells us exactly how well we expect
the spectral algorithm to perform in recovering x; indeed,
the theory predicts a non-zero angle between x and the top
eigenvector of Y Y T /N whenever:

N ≥ Lσ4

‖x‖4(max ρ)2
=

L

(max ρ)2

1

SNR2 . (IV.5)

Below this threshold, the output will be essentially random.
We see that if the distribution is well-localized, then max ρ =
Ω(1) (with respect to the growing value of L) and then the
sample complexity grows like L

SNR2 . On the other hand, if
the distribution is almost uniform, then max ρ = O(1/L) as
L→∞, and thus the sample complexity will be L3

SNR2 .
To illustrate the relationship between the spiked model and

MRA, we ran the following experiment. We generated a signal
x ∈ R400 with i.i.d. normal entries and normalized it so
that ‖x‖2 = 10. For noise levels σ between 0.1 and 10,
we drew N samples of x with noise at level σ, where N
is chosen at 100 plus the critical threshold given by (IV.5) for
σ = λ1/2γ−1/4 = 5.5313 according to (IV.3). For σ large
enough, N will not be large enough for the spectral method
to produce an estimate better than random. The distribution of
translations ρ was taken to be ρ[i] ∝ i2, for i = 1, . . . , 5, and
zero elsewhere. Each experiment was repeated 200 times. The
plots in Figure IV.1 display the average values over these 200
runs.

For each draw, we compute the top eigenvalue of the clean
data matrix (IV.4), denoted by λ, and the associated eigenvec-
tor, which is a translated copy of x. We also compute the top
eigenvector of the data matrix Y Y T /N . The angle between the
two eigenvectors is predicted by (IV.2). In Figure IV.1(a), we
plot the predicted cosine against the true cosine. Clearly, we
never attain the predicted value of zero in finite samples, but
we see a precipitous decline when the noise level σ exceeds
its threshold value (the vertical dashed line).

We also measure the relative mean squared error defined by
equation (I.3), where x̂ is the top eigenvector multiplied by
‖x‖. In Figure IV.1(b), we plot this error as a function of σ.
For reference, we also plot the ordinary error predicted by the
spiked model (as derived from the predicted cosine between
the vectors), without minimizing over shifts. Of course, min-
imizing over shifts will decrease the error; however, we still
see the same qualitative behavior predicted from the spiked
model, namely an increase in error as σ grows, until the critical
threshold of σ is reached, after which the error plateaus.



7

0 2 4 6 8 10

σ

0

0.2

0.4

0.6

0.8

1

C
o
s
in
e

Cosine

Predicted cosine

(a) Empirical cosines between the top eigenvectors of the matrices
1
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XXT and 1
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Y Y T as a function of the noise level compared to

asymptotic cosines predicted by spiked model; see (IV.2).
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(b) Empirical MSE compared to the asymptotic MSE predicted by
spiked model. The MSE is defined in (I.3).

Fig. IV.1. Experiments related to the connection between the spike model and the MRA problem as discussed in Section IV. The dashed line is the predicted
threshold value of σ = λ1/2γ−1/4 = 5.5313.

V. INFORMATION THEORETIC LIMIT

In this section, we provide lower bounds for the mean square
error (MSE) of an estimator of the signal in terms of the SNR
and the number of observations N . In particular, we show
that the MSE is bounded below by order of 1/ SNR2 under
mild conditions on the signal. As described in Section III,
Algorithm 2 achieves this sample complexity. In addition, if
the distribution is periodic then the MSE is lower bounded by
1/ SNR3. The framework proposed in [15] and described in
Section II achieves this sample complexity for any distribution.

Recall that we can estimate the signal only up to cyclic
translation. We define the best alignment of x̂ with x by

φx(x̂) = argmin
z∈{Rsx̂}s∈ZL

‖z − x‖. (V.1)

Accordingly, we define the relative MSE to be

relative MSE =
1

‖x‖2
E
[
‖φx(x̂)− x‖2

]
. (V.2)

The expectation is taken over x̂, which is a function of the
observations, which are themselves random. In the bounds
we present, we assume that the estimator is asymptotically
unbiased, i.e., E[φx(x̂)] → x as N → ∞. While this
assumption is unnecessary to obtain meaningful results, it
simplifies the analysis by removing the dependence of the
estimator on the expectation, as shown by Theorem V.4.

We now present the main results of this section as follows:

Theorem V.1. Assume that x is not a constant vector. If x̂ is
an asymptotically unbiased estimator of x, then

MSE ≥ 1

8N

1

SNR2 −O
(

1

N SNR1.5

)
. (V.3)

Moreover, if ρ is periodic, with a period ` < L
2 , then

MSE ≥ 1

54N

L− 2`

2`

1

SNR3 −O
(

1

N SNR2.5

)
. (V.4)

Note that previous work [16] derived the sample complexity
for the uniform distribution of translations. Theorem V.1
extends it to any distribution. In addition, we extend [16] by
estimating the constant that multiplies σ6.

In the rest of this section, we develop the main tools required
to prove Theorem V.1. Specifically, we start by introducing an
auxiliary notation and definitions. Then, in Section V-B we
use an adaptation of the Chapman-Robbins lower bound [40],
which is a generalization of the Cramér-Rao bound [41], to de-
rive a lower bound on the MSE in terms of the χ2 divergence.
Finally, in Section V-C, we express the χ2 divergence in terms
of the Taylor expansion of the posterior probability density and
generalized auto-correlations. This characterization connects
the generalized notion of auto-correlations of the signal (which
also depends on the distribution) with the sample complexity
(as a function of the SNR). This point is analogous to the
Boolean case, treated in [42]. The main proof of Theorem V.1
is given in Appendix H.

A. Notations and Definitions

Similarly to Section IV, let Y ∈ RL×N be the collection of
all measurements as columns in a matrix. We also denote by
fx,ρ the probability density of the posterior distribution of Y ,

fx,ρ(Y ) =

N∏
i=1

fx,ρ(yi), (V.5)

and the expectation of a function g of the measurements under
the measure fx,ρ by

Ex,ρ
[
g (Y )

]
:=

∫
RL×N

g (Y ) fx,ρ (Y ) dY.

For ease of notation, hereinafter we write E
[
g (Y )

]
when

the signal and distribution are implicit. We also recall the
following bias-variance trade-off of the MSE:

MSE =
tr(Cov[φx(x̂)])

‖x‖2
+
‖E
[
φx(x̂)

]
− x‖2

‖x‖2
. (V.6)
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with

Cov[φx(x̂)] = E
[
φx(x̂)φx(x̂)T

]
− E[φx(x̂)]E

[
φx(x̂)

]T
.

(V.7)
We conclude this part with two definitions. First, we define

the generalized notion of auto-correlations of a signal x.

Definition V.2. The d-autocorrelation of the pair (x, ρ) is a
tensor of order d, defined by

Adx,ρ := Er
[
(Rrx)⊗d

]
,

where r ∼ ρ.

This generalized notion of auto-correlation also appears in
previous works [16], [42]. This notion is a generalization of the
first two moments defined in (III.1) and (III.4), respectively,
according to

A1
x,ρ = µ and A2

x,ρ = M − σ2I.

Our last definition is of the χ2 divergence between two dis-
tributions which, in a sense, measures the difference between
two probability distributions.

Definition V.3. The χ2 divergence between the distributions
fx̃,ρ̃ and fx,ρ is defined by

χ2
N (fx̃,ρ̃||fx,ρ) := Ex,ρ

(fx̃,ρ̃(Y )

fx,ρ(Y )
− 1

)2
 .

Due to equation (V.5), the relation between the χ2 divergence
for N observations and only one observation is given by

χ2
N (fx̃,ρ̃||fx,ρ) = (χ2

1(fx̃,ρ̃||fx,ρ) + 1)N − 1.

To ease notation, hereinafter we use χ2 for χ2
1.

B. Chapman-Robbins lower bound for an orbit

The classical Chapman-Robbins gives a lower bound on
an error metric of the form E[‖x̂ − x‖2], i.e., it does not
take into consideration a translation-invariant error metric as
appears naturally in the MRA problem. Hence, we modified
the Chapman-Robbins bound to accommodate error of the
form (V.2). We point out that Cov[φx(x̂)] is related to the
MSE by (V.6).

Theorem V.4 (Chapman-Robbins). For any x̃ ∈ RL and ρ̃ ∈
∆L, we have

Cov[φx(x̂)] � zzT

χ2
N (fx̃,ρ̃||fx,ρ)

,

where z = Ex̃,ρ̃[φx(x̂)]− Ex,ρ[φx(x̂)].

Proof. See Appendix E.

C. Fisher information and auto-correlations

Instead of considering the posterior probability density of
Y , we will consider Ỹ = Y/σ. This change of variable does
not change the χ2 divergence. We then have

Ỹj = γRrjx+Gj , (V.8)

where γ = 1/σ, rj ∼ ρ and Gj ∼ N (0, I). We can now take
the Taylor expansion of the probability density around γ = 0,
that is,

fx,ρ(y; γ) = fG(y)

∞∑
j=0

αjx,ρ(y)
γj

j!
, (V.9)

where fG(y) = fx,ρ(y; 0) is the probability density of Gj
(since when γ = 0, Ỹj = Gj) and α0

x,ρ(y) = 1 since

αjx,ρ(y) :=
1

fG(y)

∂jfx,ρ
∂γj

(y; 0). (V.10)

We now use the Taylor expansion (V.9) to give an expres-
sion of the χ2 divergence.

Lemma V.5. The divergence χ2(fx̃,ρ̃||fx,ρ) can be expressed
in terms of auto-correlations as:

χ2(fx̃,ρ̃||fx,ρ)

=
σ−2d

(d!)2
EG
[(
αdx̃,ρ̃(G)− αdx,ρ(G)

)2
]

+O(σ−2d−1),

(V.11)

=
σ−2d

d!
‖Adx̃,ρ̃ −Adx,ρ‖2 +O(σ−2d−1), (V.12)

where d = inf
{
n : ‖Anx̃,ρ̃ −Anx,ρ‖2 > 0

}
.

Proof. See Appendix F

Equation (V.11) is not specific to MRA: one can always
obtain this expression as long we are considering the low SNR
regime and the observations are independent of the signal in
the limit of SNR tending to 0. The particularization to MRA
happens in (V.12), due to (V.8) and (V.10).

Using Theorem V.4 together with Lemma V.5 we can
obtain lower bounds in terms of the auto-correlations. For
example, to obtain (V.3), one could provide x̃ and ρ̃ which
have A1

x̃,ρ̃ = A1
x,ρ and bound ‖A2

x̃,ρ̃ − A2
x,ρ‖ from above.

Moreover, to obtain (V.4) when ρ is periodic one could provide
x̃ and ρ̃ which have Adx̃,ρ̃ = Adx,ρ for d = 1, 2, similarly to
Proposition III.6, and bound ‖A3

x̃,ρ̃ −A3
x,ρ‖ from above.

Nevertheless, to prove Theorem V.1, we use intermediate
results which explore the limit (x̃, ρ̃) → (x, ρ), and provide
tighter bounds. An informal explanation for the tighter bounds
is that it is easier to confuse x and ρ with signals and
distributions that are closer, rather than farther. However, since
considering the limit introduces some technical details, we
analyze it in Appendix G.

VI. ADDITIONAL ALGORITHMS

While the spectral algorithm (Algorithm 2) is asymptot-
ically optimal as σ, N → ∞ and for signals with non-
vanishing DFT, it may not perform well in small sample size
or low DFT values. Therefore, in this section, we present
two additional algorithms based on non-convex least-squares
minimization and a modification of the EM algorithm pre-
sented in Section II that takes the distribution into account. In
Appendix J, we also describe and analyze a convex relaxation
approach based on semidefinite programming.
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A. Non-convex least-squares minimization

The following method aims to find a signal in RL and a
distribution in ∆L that fit the observed data as well as possible
in the LS sense. We formulate the problem as a smooth,
non-convex, optimization problem with the constraint that the
distribution lies on a simplex. Given estimators M̂ and µ̂ of the
first two moments M = E[(R`x)(R`x)T ] and µ = E[R`x],
the problem reads

min
x̃∈RL,ρ̃∈∆L

‖M̂ − Cx̃Dρ̃C
T
x̃ ‖2F + λ‖µ̂− Cx̃ρ̃‖22, (VI.1)

where λ > 0 is a predefined parameter. It can be verified
that, by omitting signal-dependent terms, the variance of the
elements of the first moment estimator is proportional to σ2.
It can be also shown that the variance of the elements of the
second moment is proportional to 3Lσ4 and Lσ2 in the low
and the high SNR regimes, respectively (again, by omitting
signal-dependent terms). Therefore, we set λ = 1

L(1+3σ2) in
our implementation.

As will be shown empirically in Section VII, given the exact
first two moments of the data, the non-convex problem (VI.1)
converges to the sought signal from a random initialization.

B. An expectation-maximization algorithm for estimating x
and ρ simultaneously

In Section II, we reviewed the EM algorithm for MRA from
[15], which is invariant to the distribution of translations. In
this section, we modify the algorithm to take the distribution
into account.

The forward model of the MRA model (I.1) reads:

p(y, r|x, ρ) =

N∏
j=1

1

(2πσ2)L/2
e
− 1

2σ2

∥∥∥Rrjx−yj∥∥∥2

ρ[rj ].

The log-likelihood function is then given, up to a constant, by

logL(x, ρ|y, r) =

N∑
j=1

{
log ρ[rj ]−

1

2σ2

∥∥Rrjx− yj∥∥2
}
.

The goal of the EM algorithm is to compute the maximum
marginal likelihood L(x, ρ|y) =

∑
r L(x, ρ|y, r). The algo-

rithm proceeds as follows. Start with some initial guesses x0

and ρ0 for the signal and distribution. Given xk and ρk, the
next guess is given as follows:

(xk+1, ρk+1) = arg max
x,ρ

Q(x, ρ|xk, ρk),

where

Q(x, ρ|xk, ρk) := Er|y,xk,ρk [logL(x, ρ|y, r)]

Therefore, (by omitting the constant term)

Q(x, ρ|xk, ρk)

=

N∑
j=1

Er|y,xk,ρk

[
log ρk[rj ]−

1

2σ2
‖Rrjxk − yj‖2

]

=

N∑
j=1

L−1∑
`=0

w`,jk

{
log ρk[`]− 1

2σ2
‖R`xk − yj‖2

}
,

where the values w`,jk are defined by the formula:

w`,jk = P[rj = `|y, xk, ρk] = Cjke
− 1

2σ2
‖Rrxk−yj‖2ρk[`],

where Cjk is a normalization factor so that
∑
` w

`,j
k = 1.

To maximize Q over x and ρ is simple, since the first term
depends only on ρ and the second term depends only on x.
Specifically, it is easy to see that the maximum over x is given
by a weighted average of the translated observations:

xk+1 =
1

N

N∑
j=1

L−1∑
`=0

w`,jk R−1
r yj . (VI.2)

This step is almost identical (up to the values of the weights)
to the standard EM update step (II.2).

The maximimizing value of ρ also has a closed formula.
First, observe we can write:

ρk+1 = arg max
ρ∈∆L

L−1∑
`=0

Wk[`] log(ρk[`])

where Wk[`] =
∑N
j=1 w

`,j
k . To maximize a positive weighted

combination of logarithms over the simplex, we use the
following lemma:

Lemma VI.1. If w[`] > 0 are positive weights, then the
maximizer of

∑
` w[`] log(q[`]) over all q ∈ ∆L is

q∗[`] = w[`]/
∑
`′

w[`′].

Proof. See Appendix I.

From this lemma, the maximizing ρ is given by the formula:

ρk+1[`] =
Wk[`]∑L−1

`′=0Wk[`′]
. (VI.3)

To conclude, the modified EM updates the signal and the
distribution estimations by (VI.2) and (VI.3), respectively.
However, compared to the methods which are based on
moments estimation like Algorithm 2 or the LS, it passes
through the data at each iteration. Therefore, for large sample
size, its computational cost may be substantially heavier.

VII. NUMERICAL EXPERIMENTS

In this section, we present numerical results for the algo-
rithms described in Section VI and Algorithm 2. To measure
the accuracy of an estimator x̂, we define the recovery relative
error as

relative error = min
`∈ZL

‖Rrx̂− x‖2
‖x‖2

.

The code of this section, including Matlab implementations
and examples, is available online1.

1https://github.com/nirsharon/aperiodicMRA

https://github.com/nirsharon/aperiodicMRA
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A. Influence of the number of samples

In the first example, we use a Haar-like signal of length
L = 24, depicted in Figure VII.1(a). Next, we generate its
noisy, translated copies according to the MRA model (I.2),
with noise variance of σ = 1. One example of a data sample
corrupted with such noise is illustrated in Figure VII.1(b).

We use the least squares (LS) method of Section VI-A
to estimate the signal. This process is repeated three times
for different number of samples, N = 103, N = 105, and
N = 107. The estimates are presented in Figure VII.1(c)–
VII.1(e). As expected, the quality of the estimation improves
significantly as N grows.

B. Comparison of EM algorithms

In [15], it is shown that in most cases, an expectation-
maximization (EM) method as described in Section II-B,
achieves the smallest estimation error compared to the com-
petitor algorithms. The EM algorithm described in that paper
is invariant to the distribution ρ. In particular, it treats the
data as if it were drawn from the uniform distribution, which
requires sample complexity that grows like 1/ SNR3 rather
than 1/SNR2. By contrast, the EM algorithm we propose in
Section VI-B estimates the distribution ρ, in addition to the
signal x.

To demonstrate the importance of including the distribution
into the model of the estimator, we consider a family of
distributions

ρ[t] ∝ exp(−t2/s2), s > 0. (VII.1)

The parameter s controls the concentration of ρ, or alterna-
tively its uniformity; the larger s is, the more uniform ρ is. In
general, we expect our algorithms to provide better estimations
when ρ is more concentrated; see Section IV.

We compared the standard EM with the EM algorithm
described in Section VI-B (Adapted EM). The experiments
were conducted as follows. We fixed a random signal of
length L = 25 with i.i.d. normal entries and unit norm, and a
series of distributions of the form (VII.1) with the parameter
s varying between 3 and 9. Then, for each distribution we
generated N = 2, 000 samples drawn with a fixed level of
noise σ = 1. We repeated the test independently 20 times and
averaged the errors. In Figure VII.2, we plot the relative errors
of the methods as a function of the uniformity parameter s. As
expected, the standard EM is invariant to s. On the other hand,
the adapted version of the EM exploits the varying distribution
and performs better under more concentrated distributions.
As the distribution becomes more uniform, the two methods
exhibit similar error rates.

C. Comparison of the different methods

This paper presents three main approaches for solving the
MRA: the spectral method described in Algorithm 2, the least
squares (LS) optimization of Section VI-A, and the adapted
expectation-maximization (adapted EM) of Section VI-B. In
this comparison, we examined the estimation error of these
three methods with different noise levels. In detail, we use

a random signal of length L = 25 with i.i.d. normal entries
with unit norm, and a random distribution. We fix the number
of samples to be N = 10, 000. Then, we increase the level
of noise σ from 0.001 to 1. In Figure VII.3 we plot the
average error. As can be seen, the LS and the adapted EM
are more robust to noise than the spectral method. In addition,
the gap between these two methods becomes small as the SNR
decreases.

D. Numerical error rates for the LS method
The LS method uses the first two moments as its input data.

Since the error in approximating the second moment matrix
scales like O(σ2/

√
N), we expect the error of the solution

to grow at no less than the same rate. In Figure VII.4 we
plot the average error over 50 experiments as a function of
σ. When σ > 1, the curve in a log scale is a line with
slope close to 2, which is the expected rate. However, when
σ < 1, the curve is a line with slope close to 1; namely,
the error behaves approximately like O(σ/

√
N), rather than

O(σ2/
√
N). The moderate slope for high SNR suggests that

in this regime the recovery problem is easier; for example, we
know that alignment is possible in high SNR, as described in
Section II-A.

VIII. DISCUSSION

In this paper, we have shown that the sample complexity
for MRA with an aperiodic distribution of translations grows
like 1/SNR2. This sample complexity can be achieved by a
simple spectral algorithm. We also examined empirically the
LS and EM algorithms. Additionally, we extended previous
works by showing that the sample complexity for any periodic
distribution scales as 1/SNR3.

We drew connections between the MRA problem and the
spiked covariance model. This connection implies that the
sample complexity is inversely proportional to the square of
the maximal value of the distribution. Therefore, the more
uniform the distribution is, the higher the sample complexity
of the problem.

One of the motivations for considering the MRA model
arises from the imaging technique called single particle
cryo–electron microscopy (cryo–EM), allowing to visualize
molecules at near-atomic resolution [12], [13]. In cryo–EM,
noisy two-dimensional tomographic projections of the three-
dimensional underlying molecule, taken at unknown viewing
direction, are collected. The distribution of viewing directions
in cryo–EM is typically non-uniform, as many molecules
exhibit some preferred orientation [43].

The MRA model (I.1) can be thought of as a simplified
model for the cryo–EM problem, where cyclic translations
replace actions of elements of the group SO(3). The tomo-
graphic projection does not appear in (I.1). Our technique
for MRA, based on the low-order moments of the data, is
similar to the framework proposed by Zvi Kam in [44] for
cryo–EM. In particular, Kam suggested a method to estimate
a molecule directly from the statistics of the projections,
rather than estimating the viewing directions. Our work is one
step towards understanding the sample complexity of Kam’s
method in particular, and the cryo–EM problem in general.
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Fig. VII.1. An example of the estimation quality of a Haar-like signal with different number of samples (N ), using the LS method. In these tests, σ = 1.
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APPENDIX

A. Proof of Proposition III.1

In the proof, we aim to show that under the stated con-
ditions, there exists only one pair x ∈ RL (up to global
translation) and ρ ∈ ∆L that satisfies the data constraints.

Suppose CxDαC
T
x = CyDβC

T
y for vectors x, y, α, β ∈ RL.

Then, applying the Fourier transform to each side, we get:

DFxCFαD
∗
Fx = DFyCFβD

∗
Fy.

Now suppose that Fx never vanishes. Then

CFα = DFy/FxCFβD
∗
Fy/Fx = CFβ � rr∗,

where r = Fy/Fx. This equation implies

(Fα)[k − `] = (Fβ)[k − `]r[k]r[`], ∀k, `. (A.1)

Now, since α and β are probability distributions, they satisfy
(Fα)[0] = (Fβ)[0] 6= 0. Then when k = `, equation (A.1)
becomes 1 = |r[k]|2, so that r[k] has unit modulus entries.

Suppose now that (Fα)[M ] 6= 0 for some M that is
relatively prime to L. From (A.1), (Fβ)[M ] 6= 0 too. Let
ω̃ = (Fα)[M ]/(Fβ)[M ]. Then r[`+M ] = ω̃ · r[`] for every
`. Since M is relatively prime to L, there is some integer K
so that K ·M = 1 mod L. Therefore, r[`+ 1] = ω̃K · r[`].

Let ω = ω̃K so that r[` + 1] = ω · r[`]. We can then get
r[`] = ω` · r[0]. In particular, r[0] = r[L] = ωL · r[0], and
so ωL = 1; that is, ω is an Lth root of unity. But also, by
definition of r[`] = (Fy)[`]/(Fx)[`], so we have

(Fy)[`] = ω` · r[0] · (Fx)[`].

Thus, y is just a shifted and rescaled version of x, which is
the desired result.

B. Proof of Lemma III.4

For any 0 ≤ i ≤ L− 1, we can write

(ρ ∗ θ)[i] = eTi Cρθ,

with ei the unit vector with one in its ith entry. Consequently,
equality of two distinct entries i and j implies

(ei − ej)TCρθ = 0. (B.1)
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However, for a random choice of θ, if (B.1) holds with non-
zero probability, then

(ei − ej)TCρ = 0,

or,

CTρ ei = CTρ ej .

The latter implies that ρ shifted by i equals ρ shifted by j,
i.e., ρ[k − i] = ρ[k − j], or

ρ[k] = ρ[k + i− j], ∀k.

Therefore, ρ is periodic.

C. Proof of Proposition III.6

We prove the proposition by construction. Let x1 be a signal
with a non-vanishing DFT Fx1. Define a second signal x2

so that

(Fx2)[k] =

{
(Fx1)[k], k = tL` , t = 0, . . . , `− 1,
−(Fx1)[k], otherwise.

(C.1)
Clearly, as L > 1, x1 6= x2. In addition, since x1 is real, the
construction ensures that x2 is real as well.

The ` periodicity of ρ means a sparsity pattern for Fρ.
Particularly, Fρ is zero everywhere besides

(Fρ)
[
kL/`

]
6= 0 ⇐⇒ kL/` is integer, (C.2)

for k = 0, . . . , `− 1. It is easy to verify that

(Fx1)[k](Fρ)[k] = (Fx2)[k](Fρ)[k], k = 0, . . . , L− 1.

Therefore, x1 and x2 share the same first moment.
For the second moments, we will show the equality

Cx1DρC
T
x1

= Cx2DρC
T
x2
.

Applying the Fourier matrix, due to the realness of ρ, the latter
is equivalent to

DFx1
CFρDFx1

= DFx2
CFρDFx2

,

or, for all i, j = 0, . . . , L− 1,

(Fx1)[i](Fρ)[i− j](Fx1)[j] = (Fx2)[i](Fρ)[i− j](Fx2)[j].

By the sparsity pattern of (C.2), this equality should hold only
in:

(Fx1)[i] (Fx1)
[
i+ tL/`

]
= (Fx2)[i] (Fx2)

[
i+ tL/`

]
,

for all t = 0, . . . , ` and i = 0, . . . , L − 1. By the construc-
tion (C.1), this equation holds true.

D. Proof of Claim III.7

Throughout the proof, we assume that each period has no
repeated values. This property is guaranteed by reshuffling the
measurements with random θ ∈ ∆L; see Lemma III.4. Addi-
tionally, we assume without loss of generality that |Fx|[k] = 1
for all k.

Observe that both x and RL/2x are eigenvectors of M̂ =
CxDρC

T
x (we assume exact knowledge of the moments)

with the same eigenvalue. Also, x and RL/2x are orthogonal
as columns in the orthogonal matrix Cx. Then, if u is an
eigenvector, we can write for some scalars α, β ∈ RL:

u = αx+ βRL/2x,

and therefore,

RL/2u = αRL/2x+ βx,

as RL/2 = R−1
L/2. Then, one can verify that the inner product

of u and RL/2u is 2αβ‖x‖2. Since the signals are orthogonal,
their inner product is zero. This means that α or β must be
zero. This in turn implies that u was either x or RL/2x in
the first place. So x is the unique eigenvector of M̂ that is
orthogonal to its translation by L/2. This completes the proof.

E. Proof of Theorem V.4

The proof mimics the original proof by Chapman and
Robbins. Recalling equation (V.7) and the definition of positive
semidefinite matrices, the statement is equivalent to

Ex,ρ[(wT (φx(x̂)− Ex,ρ[φx(x̂)])))2]

≥ (wT (Ex̃,ρ̃[φx(x̂)]− Ex,ρ[φx(x̂)]))2

χ2
N (fx̃,ρ̃||fx,ρ)

, (E.1)

for all w, x̃ ∈ RL and ρ̃ ∈ ∆L. Let

Z =
fx̃,ρ̃(Y )

fx,ρ(Y )
.

This random variable has the properties Ex,ρ[g(Y )Z] =
Ex̃,ρ̃[g(Y )] and Ex,ρ[(Z − 1)2] = χ2

N (fx̃,ρ̃||fx,ρ). Thus

wT (Ex̃,ρ̃[φx(x̂)]− Ex,ρ[φx(x̂)])

= Ex̃,ρ̃[wTφx(x̂)]− Ex,ρ[wTφx(x̂)]

= Ex,ρ[wTφx(x̂)(Z − 1)]

= Ex,ρ[wT (φx(x̂)− Ex,ρ[φx(x̂)])(Z − 1)],

and by Cauchy-Schwarz

(wT (Ex̃,ρ̃[φx(x̂)]− Ex,ρ[φx(x̂)]))2

≤ Ex,ρ[(wT (φx(x̂)− Ex,ρ[φx(x̂)]))2]χ2
N (fx̃,ρ̃||fx,ρ).
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F. Proof of Proposition V.5

Equation (V.11) follows from some algebraic manipulations.

χ2(fx̃,ρ̃||fx,ρ)

=

∫
RL

(
fx̃,ρ̃(y; γ)

fx,ρ(y; γ)
− 1

)2

fx,ρ(y; γ) dy

=

∫
RL

(
∞∑
i=0

(αix̃,ρ̃(y)− αix,ρ(y))γ
i

i!

)2

∞∑
i=0

αix,ρ(y)γ
i

i!

fZ(y) dy

=

∫
RL

(
∞∑
i=d

(αix̃,ρ̃(y)− αix,ρ(y))γ
i

i!

)2

1 +
∞∑
i=1

αix,ρ(y)γ
i

i!

fZ(y) dy

=
γ2d

(d!)2

∫
RL

(
αdx̃,ρ̃(y)− αdx,ρ(y)

)2

fZ(y) dy +O(γ2d+1)

=
γ2d

(d!)2
E
[(
αdx̃,ρ̃(Z)− αdx,ρ(Z)

)2
]

+O(γ2d+1),

where the third equation follows from αnx̃,ρ̃(z) = αnx,ρ(z)
almost surely for all n < d, by the definition of d. (V.11)
now follows from γ = 1/σ.

We now prove (V.12). We can write fx,ρ explicitly by

fx,ρ(y; γ) =
1

√
2π

L

L−1∑
`=0

ρ[`] exp

(
−‖y − γRrx‖

2

2

)
= ES [fG(y − γRSx)]. (F.1)

We show that

EG
[
αdx̃,ρ̃(G)αdx,ρ(G)

]
= d!

〈
Adx̃,ρ̃, A

d
x,ρ

〉
,

implies (V.12). Let S and S̃ be two independent random
variables such that S ∼ ρ and S̃ ∼ ρ. We have〈

Adx̃,ρ̃, A
d
x,ρ

〉
=
〈
ES̃(RS̃ x̃)⊗d],ES [(RSx)⊗d]

〉
= ES̃,S

[〈
(RS̃ x̃)⊗d, (RSx)⊗d

〉]
= ES̃,S

[〈
RS̃ x̃, RSx

〉d]
.

On the other hand, by equations (V.10) and (F.1):

EG
[
αdx̃,ρ̃(G)αdx,ρ(G)

]
= EG

[
∂d

∂γ̃d

(
fx̃,ρ̃(G; γ̃)

fG(G)

)
γ̃=0

∂d

∂γd

(
fx,ρ(G; γ)

fG(G)

)
γ=0

]

=
∂2d

∂γ̃d∂γd
EG
[
fx̃,ρ̃(G; γ̃)

fG(G)

fx,ρ(G; γ)

fG(G)

]
γ̃,γ=0

=
∂2d

∂γ̃d∂γd
EG,S̃,S

[
fG(G− γ̃RS x̃)

fG(G)

fG(G− γRSx)

fG(G)

]
γ̃,γ=0

.

We have

EG
[
fG(G− γ̃RS x̃)

fG(G)

fG(G− γRSx)

fG(G)

]
=

1
√
2π

L

∫
RL

exp

(
−
‖z − γ̃RS̃ x̃‖

2 + ‖z − γRSx‖2 − ‖z‖2

2

)
dz

=
1

√
2π

L

∫
RL

exp

(
−
‖z − γ̃RS̃ x̃− γRSx‖2

2
+ γγ̃

〈
RS̃ x̃, RSx

〉)
dz

= exp
(
γγ̃
〈
RS̃ x̃, RSx

〉)
.

The proof of (V.12) now follows

∂2d

∂γ̃d∂γd
ES̃,S

[
exp

(
γγ̃
〈
RS̃ x̃, RSx

〉)]
γ̃,γ=0

= d!ES̃,S
[〈
RS̃ x̃, RSx

〉d]
.

G. Analog results for derivatives

This section provides analog results to the ones presented
in section V, but involving the limit (x̃, ρ̃) → (x, ρ). Instead
of the χ2 divergence and the autocorrelations, these results
use the Fisher information matrix and directional derivatives
of the auto correlations, respectively.

For the rest of the section, let v = (z, θ) ∈ R2L such
that 1T θ = 0 and θ[i] ≥ 0 whenever ρ[i] = 0. The Fisher
information matrix is the 2L× 2L matrix defined by

ΓNx,ρ := Cov[∇ log fx,ρ].

The Fisher information matrix is also the Hessian of the χ2

divergence, i.e.,

lim
h→0

χ2
N (fx+hz,ρ+hθ||fx,ρ)

h2
= vTΓNx,ρv. (G.1)

The Fisher information matrix of N observations is related to
the one observation version by

ΓNx,ρ = NΓx,ρ. (G.2)

We define the Jacobian Jx,ρ as the L× 2L matrix such that

Jx,ρv = lim
h→0

Ex+hz,ρ+hθ[φx(x̂)]− Ex,ρ[φx(x̂)]

h
. (G.3)

We also define the directional derivative of Adx,ρ along v as
the d-dimensional tensor

∇vAdx,ρ := lim
h→0

Adx+hz,ρ+hθ −Adx,ρ
h

.

The next corollary is an analog of the Cramér-Rao bound
for estimation of an orbit in MRA.

Corollary G.1. For any v = (z, θ) ∈ R2L, such that 1T θ = 0
and θ[i] ≥ 0, whenever ρ[i] = 0, we have

Cov[φx(x̂)] �
Jx,ρvv

TJTx,ρ
NvTΓx,ρv

.

Proof. If θ is under the hypothesis of the theorem, then there
exists h0 > 0 such that for all 0 ≤ h ≤ h0, ρ + hθ ∈ ∆L.
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Letting (x̃, ρ̃) = hv+(x, ρ) in Theorem V.4 we obtain for any
w ∈ RL

wT Cov[φx(x̂)]w

≥ lim
h→0

(wT (Ex+hz,ρ+hθ[φx(x̂)]− Ex,ρ[φx(x̂)]))2

χ2
N (fx+hz,ρ+hθ||fx,ρ)

=
(wTJx,ρv)2

NvTΓx,ρv
,

by equations (G.1), (G.2) and (G.3), and the corollary follows.

We now use (V.9) to give an expression of the Fisher
information.

Lemma G.2. For any v = (z, θ) ∈ R2L,

vTΓx,ρv =
σ−2d

(d!)2
EG
[(
vT∇αdx,ρ(G)

)2
]

+O(σ−2d−1),

(G.4)

where d = inf

{
n : EG

[(
vT∇αnx,ρ(G)

)2
]
> 0

}
.

Proof. In this case we cannot just take the limit (x̃, ρ̃) →
(x, ρ), since O(σ−2d−1) might blow up. Instead we proceed
by doing similar algebraic manipulations.

vTΓx,ρv = vT Cov[∇ log fx,ρ]v

= Ex,ρ

(vT∇fx,ρ(y; γ)

fx,ρ(y; γ)

)2


=

∫
RL

(
vT∇fx,ρ(y; γ)

fx,ρ(y; γ)

)2

fx,ρ(y; γ) dy

=

∫
RL

(
∞∑
i=0

vT∇αix,ρ(y)γ
i

i!

)2

∞∑
i=0

αix,ρ(y)γ
i

i!

fG(y) dy

=

∫
RL

(
∞∑
i=d

vT∇αix,ρ(y)γ
i

i!

)2

1 +
∞∑
i=i

αix,ρ(y)γ
i

i!

fG(y) dy

=
γ2d

(d!)2

∫
RL

(
vT∇αdx,ρ(y)

)2

fG(y) dy +O(γ2d+1)

=
γ2d

(d!)2
EG
[(
vT∇αdx,ρ(G)

)2
]

+O(γ2d+1),

where the second and fifth lines follow from

Ex,ρ

[
∇fx,ρ(y; γ)

fx,ρ(y; γ)

]
= 0 and vT∇αnx,ρ(z) = 0,

almost surely for n < d, respectively. The result follows since
γ = 1/σ.

We now use expression (V.8) to calculate (G.4).

Lemma G.3.

EG
[(
vT∇αdx,ρ(G)

)2
]

= d!‖∇vAdx,ρ‖2.

Proof. We let (x̃, ρ̃) = (x, ρ)+hv in (V.12) and take the limit
h→ 0 to get

E
[(
vT∇αdx,ρ(G)

)2
]

= lim
h→0

E
[(
αdx+hz,ρ+hθ(G)− αdx,ρ(G)

)2
]

h2

= d! lim
h→0

‖Adx+hz,ρ+hθ −Adx,ρ‖2

h2

= d!‖∇vAdx,ρ‖2.

Next, from Corollary G.1 and Lemmas V.5 and G.3 we
obtain

Lemma G.4. For any v = (z, θ) ∈ R2L, such that 1T θ = 0
and θ[i] ≥ 0 whenever ρ[i] = 0, we have

Cov[φx(x̂)] � 1

d!

σ2d

N

Jx,ρvv
TJTx,ρ

‖∇vAdx,ρ‖2
−O(σ2d−1),

where d = inf
{
n : ‖∇vAnx,ρ‖2 > 0

}
.

H. Proof of Theorem V.1

Before proving Theorem V.1, we need the following lemma.

Lemma H.1. The entries with index k = (k1, k2, . . . , kd) ∈
ZdL of Adx,ρ and ∇vAdx,ρ can be explicitly written as

Adx,ρ[k] :=

L∑
`=0

ρ[`]

d∏
i=1

x[ki − `], (H.1)

and

(∇vAdx,ρ)[k] =

L−1∑
`=0

ρ[`]

d∑
i=1

z[ki − `]
x[ki − `]

+ θ[`]

 d∏
i=1

x[ki− `],

(H.2)
where we use the notation x[ki − `]/x[ki − `] = 1 when
x[ki − `] = 0. Moreover, denote the d-dimensional Fourier
Transform by Fd. We have

‖Adx̃,ρ̃ −Adx,ρ‖2 =
1

Ld
‖FdAdx̃,ρ̃ − FdAdx,ρ‖2, (H.3)

and
‖∇vAdx,ρ‖2 =

1

Ld
‖Fd∇vAdx,ρ‖2. (H.4)

Also, for any a = (a1, a2, . . . , ad) ∈ ZdL we have

FdA
d
x,ρ[a] = Fρ

 d∑
j=1

aj

 d∏
j=1

Fx[aj ], (H.5)

and

Fd(∇vAdx,ρ)[a] = (H.6) d∑
j=1

Fz[aj ]

Fx[aj ]
+
Fθ
[∑d

j=1 aj

]
Fρ
[∑d

j=1 aj

]
FdA

d
x,ρ[a],

(H.7)
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again using the notation Fx[aj ]/Fx[aj ] = 1 even if
Fx[aj ] = 0.

Proof. We first prove equation (H.1). By equation (V.2), we
have

Adx,ρ[k] = ES

 d∏
i=1

(RSx)[ki]


= ES

 d∏
i=1

x[ki − S]


=

L∑
`=0

ρ[`]

d∏
i=1

x[ki − `].

Equation (H.2) follows from the formula of the derivative of
the product:

ρ[`]

d∏
i=1

x[ki − `]

′

=

ρ′[`] + ρ[`]

d∑
i=1

x′[ki − `]
x[ki − `]

 d∏
i=1

x[ki − `].

We finally prove (H.5), the proof of (H.6) is analogous.

FdA
d
x,ρ[a] =

∑
k∈ZdL

Adx,ρ[k] exp

(
−2πι

L
〈k,a〉

)

=
∑
k∈ZdL

L−1∑
`=0

ρ[`]

d∏
j=1

x[kj − `] exp

(
−2πι

L
kjaj

)

=
∑
k∈ZdL

L−1∑
`=0

ρ[`]

d∏
j=1

x[kj ] exp

(
−2πι

L
aj(kj + `)

)

=
∑
k∈ZdL

L−1∑
`=0

ρ[`]

d∏
j=1

x[kj ] exp

(
−2πι

L
(kjaj + `aj)

)

=

L−1∑
`=0

ρ[`] exp

−2πι

L

` d∑
j=1

aj


 d∏
j=1

Fx[aj ]

= Fρ

 d∑
j=1

aj

 d∏
j=1

Fx[aj ].

We are now ready to prove Theorem V.1, starting by (V.3).
Since x̂ is asymptotically unbiased, Ex,ρ[φx(x̂)] → x and
Jx,ρ → [IL 0L×L] as N → ∞. By (V.6) and Corollary G.1

we have

lim
N→∞

N ·MSE

≥ lim
N→∞

N tr(Cov[φx(x̂)])

‖x‖2
(H.8)

≥ lim
N→∞

σ2d

d!

‖Jx,ρv‖2

‖x‖2
1

‖∇vAdx,ρ‖2
−O

(
σ2d−1

)
=
σ2d

d!

‖z‖2

‖x‖2
1

‖∇vAdx,ρ‖2
−O

(
σ2d−1

)
. (H.9)

We will choose z = x− 1T x
L 1, and θ = 1

L1−ρ. This choice of
θ is under the theorem assumptions, since 1T θ = 0 and θ[i] =
1
L ≥ 0 whenever ρ[i] = 0. By the linearity of the Fourier
transform, this definition is equivalent to Fz = Fx−Fx[0]δ0
and Fθ = Fρ[0]δ0 −Fρ = δ0 −Fρ. Since the d-dimensional
Fourier Transform is unitary, we can write using Lemma H.1

‖∇vAdx,ρ‖2 =
1

Ld

∑
a∈ZdL

|Fd∇vAdx,ρ[a]|2. (H.10)

For d = 1, 2 we have

F1∇vA1
x,ρ[a] = Fρ[a]Fz[a] + Fθ[a]Fx[a],

and

F2∇vA2
x,ρ[a1, a2] =Fρ [a1 + a2]Fz[a1]Fx[a2]

+ Fρ [a1 + a2]Fx[a1]Fz[a2]

+ Fθ [a1 + a2]Fx[a1]Fx[a2]. (H.11)

Now by our choice of z and θ we have Fρ[a]Fz[a] =
−Fθ[a]Fx[a] for all a ∈ ZL, so ‖∇vA1

x,ρ‖ = 0. On the other
hand, by some algebra manipulation of (H.11) we obtain

‖∇vA2
x,ρ‖2

=
1

L2

3‖Fz‖44 +
∑
a∈Z2

L

|Fρ[a1 + a2]Fz[a1]Fz[a2]|2


≤ 4

L2
‖Fz‖4

≤ 4‖z‖2‖x‖2,

where we used |Fρ[a1 + a2]| ≤ 1 and ‖Fz‖4 ≤ ‖Fz‖ ≤
‖Fx‖, and the result follows.

We now proceed to prove (V.4). Suppose that ρ is periodic
with period ` < L

2 , and let b = L
` , so that b > 2. Then

Fρ[k] = 0 if b does not divide k. For a positive integer i ≤
d b−2

2 e, define zi ∈ RL such that

Fzi[k] =


Fx[k]ι if b|k − i,

−Fx[k]ι if b|k + i,

0 otherwise,

where b|k means that b divides k. Assume zi 6= 0, let θi =
0L and vi = (zi, θi). Since x̂ is asymptotically unbiased and
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{zi}1≤i≤d b−2
2 e

is a set of orthogonal vectors, we have by (H.8)
and Corollary G.1:

lim
N→∞

N ·MSE

≥ lim
N→∞

N tr(Cov[φx(x̂)])

‖x‖2

≥ lim
N→∞

1

‖x‖2

d b−2
2 e∑
i=1

NzTi Cov[φx(x̂)]zi
‖zi‖2

≥ 1

‖x‖2

d b−2
2 e∑
i=1

σ2di

di!

‖zi‖2

‖∇viA
di
x,ρ‖2

−O
(
σ2di−1

)
,

where di = inf
{
n : ‖∇viAnx,ρ‖2 > 0

}
. Recalling equa-

tion (H.10), we have now for d = 1, 2, 3, since θi = 0,

F1∇viA1
x,ρ[a] = Fρ[a]Fzi[a], (H.12)

F2∇viA2
x,ρ[a1, a2] = Fρ [a1 + a2] (Fzi[a1]Fx[a2]

+ Fx[a1]Fzi[a2]), (H.13)

and

F3∇viA3
x,ρ[a1, a2, a3] =Fρ [a1 + a2 + a3]

(Fzi[a1]Fx[a2]Fx[a3]

+ Fx[a1]Fzi[a2]Fx[a3]

+ Fx[a1]Fx[a2]Fzi[a3]).
(H.14)

Since Fρ[a] 6= 0 ⇒ b|a ⇒ Fzi[a] = 0, (H.12) = 0 ∀a ∈
ZL . Also Fρ[a1 + a2] 6= 0 implies b|a1 + a2. Let ãj =
mod (aj , b) for j = 1 and 2. Since b|a1 + a2, ã1 + ã2 = b,
so assume with out loss of generality that ã1 ≤ e

2 . If ã1 6= i,
then Fz[a1] = Fz[a2] = 0. On the other hand, if ã1 = i, then

Fz[a1]Fx[a2] + Fx[a1]Fz[a2]

= ιFx[a1]Fx[a2]− ιFx[a1]Fx[a2]

= 0,

so (H.13)= 0 ∀a ∈ Z2
L. Finally since |Fρ[·]| ≤ 1 we have

‖∇viA3
x,ρ‖2 ≤

9

L3

∑
a∈Z3

L

|Fzi[a1]Fx[a2]Fx[a3]|2

= 9‖zi‖2‖x‖4,

and the result follows. Finally, if zi = 0, we can alternatively
choose

F z̃i[k] =


ι if b|k − i,

−ι if b|k + i,

0 otherwise.

We still have (H.12) = 0 ∀a ∈ ZL and (H.13) = 0 for all
a ∈ Z2

L except if ã1 = i. But zi = 0 implies Fx[a] = 0 if
mod (a, b) = ±i, so (H.13) = 0 also if ã1 = i.

I. Proof of Lemma VI.1

It is easy to check that the condition q[`] > 0 is automati-
cally enforced whenever w[`] > 0 (otherwise the objective is
−∞). So the simplex constraint is equivalent to

∑L−1
`=0 q[`] =

1. The Lagrangian for this problem is the function:

(q, ν) =

L−1∑
`=0

w[`] log(q[`]) + ν

1−
L−1∑
`=0

q[`]

 ,

and the KKT conditions imply q∗[`] = w[`]
ν∗ . Since q is on the

simplex, we conclude that ν∗ =
∑L−1
`′=0 w[`′].

J. Convex relaxation with semidefinite program

In this section, we propose an additional algorithm for non-
uniform MRA based on a semidefinite programming (SDP)
relaxation.

Since the power spectrum of the signal can be estimated
from the data at sample complexity scaling as 1/SNR2

according to (III.6), we assume in this section, without loss
of generality, that |Fx|[k] = 1 for all k. Note, that as in
Algorithm 2, the normalization is done on the second moment
matrix, not the individual observations, in order to retain the
noise statistics.

The SDP relaxation is based on considering the second
moment matrix in the Fourier domain, namely,

M ′ = F
(
M − σ2LI

)
F−1 = DFxC

T
FρD

∗
Fx. (J.1)

The last expression can be also written as

M ′ = CTFρ � (FxFx∗),

or

M ′ �X = CF ρ̀, (J.2)

where X = (Fx)(Fx)∗. and ρ̀ := F−1(Fρ).
The formulation of (J.2) suggests to pose the recovery

problem as,

min
ρ̃,X̃

∥∥∥M̂ � X̃ − CF ρ̃∥∥∥2

F

subject to diag(X̃) = 1, rank(X̃) = 1,

X̃[1, 0] = 1, X̃ � 0, ρ̃[0] = 1,

ρ̃[k] = ρ̃[−k], ∀k.

(J.3)

The constraint X̃[1, 0] = 1 follows the assumption that
(Fx)[0] = (Fx)[1] = 1. While we can easily estimate (Fx)[0]
and therefore fix it, the assumption of fixed (Fx)[1] = 1 is
more delicate. Recall that the solution for the MRA problem
is always up to cyclic translation. In the Fourier domain, it
means that the first entry of the Fourier transform of the signal
is determined up to an arbitrary modulation by e2πi`/L for
some ` ∈ Z. If L → ∞, this allows us to fix this coefficient
arbitrarily.
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Similarly to the well-known SDP relaxation of the Max-Cut
problem [45], the non-convex problem (J.3) can be relaxed to
a convex program by omitting the rank constraint as follows,

min
ρ̃,X̃

∥∥∥M̂ ′ � X̃ − CF ρ̃∥∥∥2

F

subject to diag(X̃) = 1, X̃[1, 0] = 1,

X̃ � 0, ρ̃[0] = 1, ρ̃[k] = ρ̃[−k], ∀k.

(J.4)

This relaxation is convex and can be solved in polynomial
time using off–the–shelf software, such as CVX [46].

The SDP relaxation (J.4) recovers the Fourier phases of
the signal and the distribution exactly for N → ∞ and fixed
noise level, since in this regime we can estimate the first two
moments arbitrarily well.

Theorem J.1. Assume that |Fx|[k] = 1 for all k and that
Fρ is non-vanishing. In addition, assume that (Fx)[0] =
(Fx)[1] = 1. Then, if N → ∞ and σ is fixed, the solution
of (J.4) is given by X̃ = (Fx)(Fx)∗ and ρ̃ = F ρ̀.

Proof. Since σ is fixed and N →∞, one can estimate M ′ as
in (J.1) exactly. Then, since (J.4) admits at least one solution
(the underlying signal and distribution), the objective is zero
at the solution and we get the relation:

Cρ̃ = M ′ � X̃ = CF ρ̀ � (FxFx∗)� X̃, (J.5)

where we use ρ̀ := F−1(F ρ̃). Let u = ρ̃/F ρ̀. Since X̃ � 0
we conclude that Cu � 0 and hence Fu ≥ 0 (the Fourier
transform of u is non-negative). By the constraints of (J.4), we
also have u[0] = 1. By examining the (1, 0)th entry of (J.5),
we also conclude that

(Fx)[1](Fx)[0](F ρ̀)[1]X̃[1, 0] = ρ̃[1]⇒ u[1] = X̃[1, 0] = 1,

where the last equality holds because of the constraints of (J.4).
Until now, we have shown that the vector u satisfies u[0] =

u[1] = 1, it is conjugate-symmetric and its Fourier transform is
non-negative. Therefore, by Lemma IV.2 of [15], we conclude
that u[n] = 1 for all n, or ρ̃ = F ρ̀. Next, we substitute ρ̃ = F ρ̀
in (J.5) and get

1 = (FxFx∗)� X̃,

where the equality holds entry-wise. Since all entries of x̂
are normalized, we conclude that X̃ = (Fx)(Fx)∗. This
concludes the proof.
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