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Abstract

The matching problem between two adjacency matrices can be for-
mulated as the NP-hard quadratic assignment problem (QAP). Previous
work on semidefinite programming (SDP) relaxations to the QAP have
produced solutions that are often tight in practice, but such SDPs typi-
cally scale badly, involving matrix variables of dimension n2 where n is the
number of nodes. To achieve a speed up, we propose a further relaxation
of the SDP involving a number of positive semidefinite matrices of dimen-
sion O(n) no greater than the number of edges in one of the graphs. The
relaxation can be further strengthened by considering cliques in the graph,
instead of edges. The dual problem of this novel relaxation has a natural
three-block structure that can be solved via a convergent Augmented Di-
rection Method of Multipliers (ADMM) in a distributed manner, where
the most expensive step per iteration is computing the eigendecomposi-
tion of matrices of dimension O(n). The new SDP relaxation produces
strong bounds on quadratic assignment problems where one of the graphs
is sparse with reduced computational complexity and running times, and
can be used in the context of nuclear magnetic resonance spectroscopy
(NMR) to tackle the assignment problem.
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1 Introduction

Given two graphs, GA and GB , with adjacency matrices A and B ∈ Rn×n,
respectively, the graph matching problem is that of finding a permutation matrix
P ∈ Perm(n) such that A = PBPT or AP = PB. This problem is also
known as the graph isomorphism problem. While a breakthrough result in [4]
shows that the graph isomorphism problem has a worst-case time complexity of
exp((log n)O(1)), for most practical situations this problem can be solved very
efficiently.

The problem becomes more complicated if A and B cannot be matched
exactly. In this case, one needs to find the permutation matrix such that

||AP − PB||

is minimized, where the typical choices of the norm || · || are the entry-wise `1 or
`∞ norms and the Frobenius norm. Since the domain of the problem Perm(n)
is non-convex and combinatorially large, convex relaxation methods have been
applied to search for the global optimum efficiently. In [23] and [3], a convex
relaxation is derived by relaxing the set of permutation matrices Perm(n) to
its convex hull, i.e. the set of doubly stochastic matrices. Under the `1 or `∞
norms, the relaxed problem is a linear program (LP), while under the Frobenius
norm it is a quadratic program (QP) with linear constraints. In [1], the authors
proved that this relaxation exactly solves the original problem if the graphs are
isomorphic and friendly 1. Furthermore, it produces an approximate isomor-
phism in the case of inexact matching of strongly friendly graphs. However, the
need for a friendly graph is a rather strong condition. In particular, it is proven
that this type of relaxation almost always fails to find the correct permutation
for certain correlated Bernoulli random graphs, even for the case of exact graph
matching [20]. In practice, we have found that this relaxation quickly loses its
tightness in the presence of outlier-type noise.

On the other hand, the graph matching problem

arg min
P
||AP − PB||2F = arg min

P
Tr
(
PTATAP − 2PBPTAT + PBBTPT

)
= arg max

P
Tr
(
PBPTAT

)
can be viewed as a special case of the Quadratic Assignment Problem (QAP).
The QAP was first presented in [18] and is known to be NP-hard (further,
the ε-approximation problem is also NP-hard [24]). It encodes a number of
interesting problems, such as the traveling salesman problem (TSP) and the
max clique problem (see, for example, [19] for a review of the applications of
the QAP). The quadratic nature of the QAP invites a number of proposals to
use semidefinite programming relaxations to attack the problem. The seminal
SDP relaxation in [31] has proven remarkably tight by achieving the optimal
solution in several problem instances in the QAP library (QAPLIB, [5]). In

1A graph is called friendly if its adjacency matrix has a simple spectrum and eigenvectors
orthogonal to 1n [1].
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[15], the authors describe a very similar relaxation to tackle a shape matching
problem in computer graphics. However, this convex relaxation introduces a
semidefinite matrix variable of size n2×n2, greatly hindering its use in practice.
More recently, the alternating direction method of multipliers (ADMM) has
been applied to ease the computational burden of solving this SDP, allowing
problems with n = 30 to be solved in a few minutes [11], but it remains a
challenging problem to tackle, as it requires an eigendecomposition of a very
large matrix at each iteration.

To make solving the QAP using SDP feasible, a few other convex relaxations
have been proposed where the PSD variables have size O(n)×O(n). In particu-
lar, the relaxations in [21] and [22] achieve this by splitting B into the difference
of two PSD matrices, while those in [16] and [17] use the spectral decomposition
of PBPT . In the latter work, the symmetry of the matrix A under graph auto-
morphism can be used to achieve a significant reduction in problem size, and in
special problem instances, such as the TSP, which possesses a cyclic symmetry,
the SDP can be reduced to a linear program.

In section 2 we summarize the related works, highlighting the relaxation
in [31] that we use as a foundation for a novel edge-based convex relaxation.
Section 3 presents the details of this new relaxation, extending it beyond edges
to arbitrarily-sized cliques, and section 4 demonstrates how one can use ADMM
to solve the dual problem efficiently and in a distributed fashion.

The remainder of the paper presents various results, such as upper and
lower bounds for problems from the QAP and TSP libraries. We show that the
proposed relaxation significantly reduces the running time compared to alterna-
tive SDP relaxations of the same complexity, while still producing strong lower
and upper bounds. The assignment problem from Nuclear Magnetic Resonance
Spectroscopy (NMR) is also formulated as a QAP problem, and results on bench-
mark synthetic datasets are presented which suggest that the new relaxation is
a promising tool to tackle the problem, comparing favorably to state-of-the-art
algorithms.

1.1 Notation

Capitalized Roman letters, such as A, represent matrices, while their lower
case equivalents stand for the corresponding column-wise vectorization, i.e.
a := vec(A). The symbol ⊗ is used to denote the Kronecker product. ΠK
represents a projection into the convex space K. Perm(n) denotes the set of
permutation matrices of dimension n while DS(n) denotes the set of doubly
stochastic matrices. In is the identity matrix of dimension n, Jn is the all ones
matrix of dimension n and 1n is the all ones column vector of length n. For a
matrix Q, the notation Qij denotes the (i, j)-th block of the matrix (whose size
should be clear from context), while Q(i, j) denotes the (i, j)-th entry. Column
i of matrix P is denoted by pi, and v(i) is used to indicate the i-th entry of
vector v. Finally, we use δij to denote the Kronecker-delta.
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2 Related Work

Making use of the cyclic properties of the trace and of the vectorization identity
vec(AY B) = (BT ⊗A)vec(Y ), one can rewrite the QAP objective as follows:

Tr
(
PBPTAT

)
= Tr

(
PTAPBT

)
= vec(P )Tvec(APBT )

= vec(P )T (B ⊗A)vec(P )

= Tr
(
(B ⊗A)vec(P )vec(P )T

)
.

The problem can therefore be reformulated as

Problem 1 (Quadratic Assignment Problem)

max
Q,P

Tr ((B ⊗A)Q)

s.t. P ∈ Perm(n)

Q = vec(P )vec(P )T .

Note that the constraints on P and Q are both nonconvex. One can relax
P to the set of doubly stochastic matrices. The nonconvex constraint on Q can
be replaced by Q − vec(P )vec(P )T � 0, which, by the Schur complement, is
equivalent to: [

Q vec(P )
vec(P )T 1

]
� 0.

Enforcing additional linear constraints on Q arising from the fact that each
block Qij of Q is the outer product of two columns of a permutation matrix,
one arrives at the convex relaxation proposed in [31]:

Problem 2 (SDP relaxation by Zhao et al)

max
Q,P

Tr ((B ⊗A)Q) (1)

s.t.

[
Q vec(P )

vec(P )T 1

]
� 0, (2)∑

i

Qii = In, i = 1, . . . , n, (3)

Tr (Qij) = 0, i 6= j, i, j = 1, . . . , n, (4)

Tr (QijJn) = 1, i, j = 1, . . . , n, (5)

Qii(j, j) = P (j, i), i = 1, . . . , n, (6)

P ∈ DS(n), i = 1, . . . , n, (7)

Qij ≥ 0, i, j = 1, . . . , n. (8)

Constraint 3 arises from the fact that each diagonal block of the un-relaxed Q is
the outer product of one of the columns of the permutation matrix with itself,
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such that it must have a single 1 on its diagonal. Constraints 4 and 5 arise from
the orthogonality of the columns of a permutation matrix. Constraint 6 follows
from the fact that the diagonal of Q corresponds to the squared terms of the
permutation, which are either 0 or 1, such that Qii(j, j) = P (j, i)2 = P (j, i).

Although this relaxation is remarkably strong, achieving optimality in many
problem instances in the QAP library, it is challenging to solve in practice.
Problems of size n > 15 are intractable on a regular computer using interior
point methods, and even first-order methods are extremely slow for problems of
size n > 50.

3 Edge-based SDP relaxation and its general-
ization to clique-based SDP

In many interesting applications, B is a sparse matrix withO(n) nonzero entries.
This is the case for the traveling salesman problem (TSP) and longest-path
problem. Denoting the set of edges in GB by E(GB), the QAP cost can be
decomposed as

Tr ((B ⊗A)Q) =

n∑
i=1

n∑
j=1

Tr
(
B(i, j)ATQij

)
=

∑
(i,j)∈E(GB)

Tr
(
B(i, j)ATQij

)
.

(9)
where Qij is the (i, j)-th block of Q. The edge-SDP (E-SDP for short) relaxation
we propose leverages the fact that in a graph where the adjacency matrix B
is sparse, the majority of the terms in Q do not contribute to the objective
function. Then a problem size-reduction is achieved by retaining only the blocks
of Q which are featured in the objective, leading to the following relaxation

Problem 3 (E-SDP relaxation) Given a connected graph B with O(n) edges
and an arbitrary graph A, solve

max
{Qij},P

∑
(i,j)∈E(GB)

Tr
(
B(i, j)ATQij

)

s.t.

 Qii Qij pi
QTij Qjj pj
pTi pTj 1

 � 0, ∀i, j,

Tr (Qij) = 0, i 6= j,

Tr (Qij(Jn − In)) = 1, i 6= j,

Tr (Qii) = 1,∀i,
Tr (QiiJn) = 0,∀i,
Qii(j, j) = P (j, i), ∀i, j,
P ∈ DS(n),

Qij ≥ 0, ∀i, j,

where we remind the reader that pi denotes the i-th column of matrix P .
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Semidefiniteness of Q: For a large graph B with O(n) edges, we see that
this relaxation has on the order of O(n3) variables. To achieve this reduction
in problem size we sacrifice positive semidefiniteness of Q, and instead enforce
only positive semidefiniteness of submatrices of Q, so this is a strictly weaker
relaxation.

3.1 Generalization to Clique-SDP (C-SDP)

In order to strengthen the relaxation, one can consider cliques of arbitrary
size in B, rather than edges. Let r denote such a clique in B with nodes
Vr = {Vr(1), . . . , Vr(|Vr|)}. To simplify notation down the line, and because it
is important in writing the ADMM formulation in section 4, we introduce the
variable Xr defined as follows:

Xr =


QVr(1)Vr(1) QVr(1)Vr(2) · · · QVr(1)Vr(|Vr|) pVr(1)

QVr(2)Vr(1) QVr(2)Vr(2) · · · QVr(2)Vr(|Vr|) pVr(2)

...
...

. . .
...

...
QVr(|Vr|)Vr(1) QVr(|Vr|)Vr(2) · · · QVr(|Vr|)Vr(|Vr|) pVr(|Vr|)

pTVr(1) pTVr(2) · · · pTVr(|Vr|) 1

 � 0.

(10)
With an appropriate choice of cost matrices Cr, and a variable Xr for each

clique in B, the QAP objective can be rewritten in terms of these variables as
follows:

Tr ((B ⊗A)Q) =
∑
r

Tr (CrXr) . (11)

The constraints for the edge-based case extend straightforwardly to the case
of arbitrary cliques. An additional constraint arises from the fact that cliques
share nodes, such that equality constraints need to be enforced between sub-
matrices of variables Xr corresponding to different cliques. This challenge is
illustrated with an example in section 3.2 below, but we will see in section 4
that formulating the problem in this manner greatly facilitates the development
of an efficient and distributed ADMM scheme to solve the problem.

Computational issues: In practice, it is computationally infeasible to con-
sider all cliques in the graph. Instead, it is often worthwhile to consider only
cliques of smaller size. Further, while the ADMM formulation can be used with
mixed variable sizes, it is convenient to consider cliques of fixed size. To enforce
this, one can define a maximal clique size and merge smaller cliques as needed
to form variables of the required size. This same technique can be used to form
variables of a fixed size on a dense subgraph.
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Q11 Q12 Q13 Q14 Q15

Q21 Q22 Q23 Q24 Q25

Q31 Q32 Q33 Q34 Q35

Q41 Q42 Q43 Q44 Q45

Q51 Q52 Q53 Q54 Q55





X12(1:2n,1:2n)

X45(1:2n,1:2n)

(a) E-SDP with cliques of size 2.

Q11 Q12 Q13 Q14 Q15

Q21 Q22 Q23 Q24 Q25

Q31 Q32 Q33 Q34 Q35

Q41 Q42 Q43 Q44 Q45

Q51 Q52 Q53 Q54 Q55





X123(1:3n,1:3n)

X345(1:3n,1:3n)

(b) C-SDP with cliques of size 3.

Figure 1: C-SDP variables in the path graph problem with 5 nodes.

3.2 Illustrative example using the path graph

Let B be the adjacency matrix for the path graph, given by

B =


0 1 · · · · · · 0
...

. . .
...

... 1
0 · · · · · · · · · 0


In this case, the cliques are the n − 1 edges of B. As a result, we will have

n− 1 variables of the form

Xi(i+1) =

 Qii Qi(i+1) pi
Q(i+1)i Q(i+1)(i+1) pi+1

pTi pTi+1 1

 .
If we consider an example with 5 nodes and look at the matrixQ = vec(P )vec(P )T ,

we see that the E-SDP variables include the 2n× 2n blocks along the diagonal,
as illustrated in Figure 1a.

Several of the diagonal blocks of Q, highlighted in blue, overlap between
adjacent variables, and thus it is necessary to enforce these equality constraints.
Fortunately, the diagonal blocks of Q are diagonal themselves, such that n
equality constraints are sufficient to enforce equality between two blocks.

We draw attention to the fact that when using cliques of size greater than
2 the C-SDP variables Xr will overlap in off-diagonal blocks (as illustrated
in Figure 1b). These are problematic to handle computationally (as they are
generally dense), but, in practice, we have observed that enforcing equalities
only between diagonal blocks sacrifices little in terms of performance, while
greatly reducing the computational burden, as we shall see from the ADMM
scheme in section 4 below.
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4 Alternating Direction Method of Multipliers

In this section, we devise an ADMM that solves the E-SDP and C-SDP re-
laxations in a distributed manner. We present the updates in each ADMM
iteration for E-SDP, and this extends to C-SDP in a straightforward manner.

4.1 Rewriting constraints in E-SDP relaxation

We saw in section 3.1 how the E-SDP objective can be written in terms of the
variables Xij and cost matrices Cij .

Note on convention: Since the variables Xij are symmetric, it is equivalent
to consider Xij or Xji. Therefore, we define graph GB̃ with adjacency matrix,

B̃ defined as
B̃ = triu(B +BT ) (12)

where triu(M) extracts the upper triangular portion of matrix M . Thus, in all
that follows, the variables Xij will be defined according to the edges specified

by B̃, such that i < j.
It remains to rewrite the constraints in terms of these variables. We remind

the reader that the variables under consideration are

Xij =

 Qii Qij pi
QTij Qjj pj
pTi pTj 1

 , (i, j) ∈ E(GB̃) (13)

where all Xij ’s are non-negative and PSD. Going forward, all the constraints
will be rewritten in terms of the variables Xij and the variables Qij and pi will
no longer be used.

The first set of constraints on Xij follows directly from the constraints on Q
and P , which are the following:

Tr (Qii) = Tr (Qjj) = 1, (14)

Tr (QiiJn) = Tr (QjjJn) = 0, (15)

Tr (Qij) = 0, (16)

Tr (QijJn) = 1, (17)

diag(Qii) = pi, (18)

diag(Qjj) = pj . (19)

Letting xij := vec(Xij), all the constraints above can be written in the form:

Axij = bE (20)

where A ∈ RmE×(2n+1)2 , bE ∈ RmE , and mE is the number of equality con-
straints.

Note that the Xij ’s are not independent of each other. Firstly, for the
edges that are incident on the same node, the associated variables Xij ’s share
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a common n × n block on the diagonal. This is illustrated in the example of
a path graph in section 3.2. Therefore, equality constraints between the over-
lapping diagonal blocks of Xij ’s have to be enforced. Since Tr (Qii(Jn − In)) =
Tr (Qjj(Jn − In)) = 0 and Qii, Qjj ≥ 0, the off-diagonal terms of Qii and Qjj
are zeros and it suffices to enforce equality of the diagonals. Further, since pi
and pj equal the diagonals of Qii and Qjj , one can enforce consistency of the
overlapping blocks by looking at the last row and column of each Xij instead.
Consider the sampling matrices B1 and B2, which sample pi and pj from the
vector xij above. If (i, j), (k, i) ∈ E(GB̃), then a consistency relationship of the
form

B1xij = B2xki (21)

must hold.
Adding the conic constraints for positivity and positive semi-definiteness,

the E-SDP relaxation can be reformulated as:

Problem 4

max
{xij}

∑
(i,j)∈E(GB̃)

cTijxij

s.t. Axij = be,

B1xij = B2xki ∀(i, j), (k, i) ∈ E(GB̃), i = 1, . . . , n,

B2xkn +

n−1∑
i=1

B1xiji = 1, (i, ji), (k, n) ∈ E(GB̃)

xij � 0,

Dxij ≥ 0.

Here, with a slight abuse of notation, we have used xij � 0 to denote Xij � 0.
We have also used cij ≡ vec(Cij). The third constraint amounts to stating that
the sum of the diagonal blocks of Q equal the identity. The matrix D is of size
4n2× (2n+1)2 and it samples all elements of xij except for those corresponding
to the last row and column of Xij . The reason for this sampling is two-fold:

1. Sampling the last row and column is unnecessary, since these entries are
implicitly defined by the linear constraints covered in equations 18 and 19;

2. Using a sampling operator of this form ensures mutual orthogonality be-
tween D, B1 and B2,

B1BT2 = 0n×n, B1DT = 0n×4n2 , B2DT = 0n×4n2 , (22)

which shall prove crucial in obtaining fast ADMM updates involving a
least-squares problem with a block-diagonalized Hessian.

In order to derive a fast ADMM routine to solve Problem 4, slack variables
are introduced. Let Ni be the one-hop neighborhood of node i on graph GB̃ .
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Then the consistency relation in equation 21 can be enforced by introducing
slack variables pi, such that

B1xij = pi, ∀j ∈ Ni (23)

B2xij = pj , ∀j ∈ Ni. (24)

As a result, our problem can finally be written in the form

Problem 5

max
{xij},{pi}

∑
(i,j)∈E(GB̃)

cTijxij

s.t. yij : Axij = be,

w
(1)
ij : B1xij = pi ∀j ∈ Ni, i = 1, . . . , n,

w
(2)
ij : B2xij = pj ∀j ∈ Ni, i = 1, . . . , n,

t :
∑
i

pi = 1,

sij � 0 : xij � 0,

zij ≥ 0 : Dxij ≥ 0

where the variable in front of each colon is the dual variable tied to the corre-
sponding constraint. The constraint

∑n
i=1 pi = 1n couples theXij from different

blocks together.

Generalization to C-SDP : One can generalize the presentation above to
the clique-based SDP relaxation in a straightforward way. The one important
difference is that for general sets of nodes of size greater than two, the corre-
sponding Xr’s as defined by equation 10 might overlap in non-diagonal blocks
(if two or more nodes are shared by two cliques).

Figure 1b highlights the fact that one must enforce equalities between Xijk

and Xijl not only for Qii and Qjj , but also for Qij . However, we have observed
that enforcing only the equalities on the diagonal blocks produces solutions
which are nearly as good with a much decreased computational cost, so we
adopt this solution for the remainder of the paper

4.2 Dual problem and the ADMM updates

We now turn to the dual problem of the E-SDP relaxation presented in the form
of problem 5. In this section we show that with a proper grouping of the dual
variables the ADMM updates for solving the dual problem can be computed in
a distributed manner.

The dual of problem 5 is the following:
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Problem 6

min
yij ,w

(k)
ij ,t,sij ,zij

∑
(i,j)∈E(GB̃)

bTe yij − 1T t

s.t. sij � 0, (i, j) ∈ E(GB̃)

zij ≥ 0, (i, j) ∈ E(GB̃)

xij : −cij + sij +DT zij +AT yij+

BT1 w
(1)
ij + BT2 w

(2)
ij = 0, (i, j) ∈ E(GB̃)

gi : t−
∑
j∈Ni

w
(1)
ij −

∑
j:i∈Nj

w
(2)
ji = 0, i = 1, . . . , n.

Using δK(x) to denote a function that takes the value +∞ for x /∈ K and 0
otherwise, the augmented Lagrangian is

L =
∑

(i,j)∈E(GB̃)

(
δS+

n
(sij) + δKp(zij)− bTe yij

)
− 1T t+

ρ

2

∑
(i,j)∈E(GB̃)

∣∣∣∣∣∣∣∣−cij + sij +DT zij +AT yij + BT1 w
(1)
ij + BT2 w

(2)
ij +

xij
ρ

∣∣∣∣∣∣∣∣2
2

+

ρ

2

n∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣t−

∑
j∈Ni

w
(1)
ij −

∑
j:i∈Nj

w
(2)
ji +

gi
ρ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(25)

where xij and gi are now the dual variables of the dual problem, and ρ is some
constant greater than 0.

In [26], a convergent ADMM is proposed to solve optimization problems
with a 3-block structure where one of the blocks only involves linear operators.
In our problem, we let the three blocks be defined by the groups of variables

(sij , t), (yij) and (zij , w
(k)
ij ). Then the algorithm proceeds as follows:

Algorithm 1 Conic-ADMM3c [26]

Require: ρ > 0 and τ = 1
for l = 1, . . . ,MAXIT do

(sij , t)
l+1 ← argminsij ,t L(sij , t, y

l
ij , z

l
ij , w

(k),l
ij ;xlij , g

l
i; ρ)

(yij)
l+1/2 ← argminyij L(sl+1

ij , tl+1, yij , z
l
ij , w

(k),l
ij ;xlij , g

l
i; ρ)

(zij , w
(k)
ij )l+1 ← argmin

zij ,w
(k)
ij
L(sl+1

ij , tl+1, y
l+1/2
ij , zij , w

(k)
ij ;xlij , g

l
i; ρ)

(yij)
l+1 ← argminyij L(sl+1

ij , tl+1, yij , z
l+1
ij , w

(k),l+1
ij ;xlij , g

l
i; ρ)

xl+1
ij ← xlij + τ argminxij L(sl+1

ij , tl+1, yl+1
ij , zl+1

ij , w
(k),l+1
ij ;xij , g

l
i; ρ)

gl+1
i ← gi + τ argmingi L(sl+1

ij , tl+1, yl+1
ij , zl+1

ij , w
(k),l+1
ij ;xl+1

ij , gi; ρ)
end for

In the remainder of this section, we will derive each of the updates in turn and
illustrate how this choice of variable groupings allows for easy parallelization.
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Update for (sij , t): The updates for sij and for t are independent. The
update for t is given by the solution to a least-squares problem:

argmin
t
L =

1

n

 n∑
i=1

∑
j∈Ni

w
(1)
ij +

n∑
i=1

∑
j:i∈Nj

w
(2)
ji −

1

nρ

∑
i

gi

+
1

nρ
1. (26)

The new sij is obtained from

argmin
sij

L = ΠS+
n

(cij −DT zij −AT yij − BT1 w
(1)
ij − B

T
2 w

(2)
ij − ρ

−1xij), (27)

where ΠS+
n

is a projection to the positive semidefinite cone.

Update for (yij): The update for yij is the solution to a least-squares prob-
lem, given by

argmin
yij

L = (AAT )−1(A(cij−sij−DT zij−BT1 w
(1)
ij −B

T
2 w

(2)
ij −ρ

−1xij)+ρ−1be).

(28)
By construction, A is the matrix that encodes the linear constraints. Note

that A is of size mE × O(n2) and has linearly independent rows. Since mE is
of order O(n), AAT is a full-rank matrix of dimension O(n).

Update for (zij , w
(k)
ij ): The updates for zij and for the w

(k)
ij ’s decouple due to

the fact that the sampling matrices D and B1 and B2 have mutually orthogonal
rows, as they sample different entries of Xij . To see this, we write the relevant
minimization problem as follows

min
w

(k)
ij ,zij

∑
(i,j)∈E(GB̃)

δKp(zij)

+
ρ

2

∑
(i,j)∈E(GB̃)

∣∣∣∣∣∣∣∣−cij + sij +DT zij +AT yij + BT1 w
(1)
ij + BT2 w

(2)
ij +

xij
ρ

∣∣∣∣∣∣∣∣2
2

+
ρ

2

n∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣t−

∑
j∈Ni

w
(1)
ij −

∑
j:i∈Nj

w
(2)
ji +

gi
ρ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

.

Recalling that Ni is the set of one-hop neighbors of node i, define

KNi =


BT1 BT2 DT

. . .
. . .

. . .

BT1 BT2 DT
I · · · I I · · · I
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which has |Ni| copies of BT1 , BT2 and DT , 2|Ni| copies of the identity, and is zero
everywhere else. Then the problem becomes

min
w

(k)
ij ,zij

∑
(i,j)∈E(GB̃)

δKp(zij) +

n∑
i=1

ρ

2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣KNivec
(
Vwz(i)

)
+


viNi(1)

...
viNi(|Ni|)
−t− ρ−1gi


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

2

(29)

where

Vwz(i) =
[
w

(1)
iNi(1) · · · w

(1)
iNi(|Ni|) w

(2)
iNi(1) · · · w

(2)
iNi(|N(i)|) ziNi(1) · · · ziNi(|Ni|)

]
and

vij = −cij + sij +AT yij +
xij
ρ
.

KTNiKNi has a block-diagonal structure, owing to the mutual orthogonality of
the following blocks

BT1
. . .

BT1
I · · · I

 ,

BT2

. . .

BT2
I · · · I

 ,

DT

. . .

DT

 ,
as specified in 22.

The form of 29 also shows that the problem can be solved independently for
each neighborhood. The optimal value for zij is then

zij = ΠKp

(
D
(
cij − sij −AT yij −

xij
ρ

))
, (30)

where ΠKp is a projection to the positive cone.

For w
(k)
ij , let

BNi =


BT1 BT2

. . .
. . .

BT1 BT2
I · · · I I · · · I

 .
Then

vec
([

w
(1)
iNi(1) · · · w

(1)
iNi(|Ni|) w

(2)
iNi(1) · · · w

(2)
iNi(|Ni|)

])
=

(BTNiBNi)
−1BTNi




viNi(1)

...
viNi(|Ni|)
−t− ρ−1gi


 .

13



Note that the matrices BTNiBNi for i = 1, . . . , n take the generic form

BTNiBNi = (α− β)I|Ni|n + βJ|Ni| ⊗ In

where α and β are constants. Therefore, their inverse is given by the n|Ni| ×
n|Ni| matrix

(BTNiBNi)
−1 =

1

α− β
I|Ni|n −

β

(α− β)(α− β + |Ni|β)
J|Ni| ⊗ In.

Let

Hi =
1

α− β
I|Ni| −

β

(α− β)(α− β + |Ni|β)
J|Ni| (31)

which is a |Ni| × |Ni| matrix. Then, (BTNiBNi)
−1v = vHi and the update for

w
(k)
ij ’s is finally given by

vec
([

w
(1)
iNi(1) · · · w

(1)
iNi(|Ni|) w

(2)
iNi(1) · · · w

(2)
iNi(|Ni|)

])
= BTNi




viNi(1)

...
viNi(|Ni|)
−t− ρ−1gi


Hi.

(32)
The updates for xij and gi, taken directly from [26], are the following:

xk+1
ij = xkij + τρ

(
−cij + sij +DT zij +AT yij + BT1 w

(1)
ij + BT2 w

(2)
ij

)
(33)

and

gk+1
i = gki + τρ

t−∑
j∈Ni

w
(1)
ij −

∑
j:i∈Nj

w
(2)
ji

 . (34)

This concludes the ADMM formulation for Problem 6 using two-cliques (i.e.
edges). The problem for larger cliques is very similar, with additional variables

w
(k)
ij for k > 2.

The most costly update in the ADMM is a projection of a matrix of dimen-
sion O(n) to the positive semidefinite cone. The updates can be parallelized
(across the nodes, for e.g.), only requiring one gather operation per iteration for

the w
(k)
ij updates.

4.3 Convergent ADMM vs. direct extension

A convergent 3-block ADMM algorithm was not available until the paper by
Sun et al [26], yet it is common practice to use a direct extension of the 2-block
ADMM algorithm, i.e. updating blocks in 1-2-3 order. In [7], the authors show
that this straightforward extension is not necessarily convergent.

Indeed, in this work, we have observed that a direct extension can fail to
converge in a rather dramatic manner. As an example, Figures 2a and 2b depict
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Figure 2: Convergence criterion 35 as a function of the number of iterations for
problems from the TSPLIB and QAPLIB for both the Conic-ADMM3c algo-
rithm of [26] (in blue) and the direct extension of 2-block ADMM to a multi-
block setting (red and yellow). Updating blocks in order 1-2-3 fails to converge.
Updating in order 1-3-2 yields a convergence curve similar to the one obtained
by using the algorithm in [26].

convergence curves for the gr21 problem (TSPLIB) and the chr20a problem
(QAPLIB), respectively, ran to 2000 iterations for both Conic-ADMM3c and
direct extension. When directly extending 2-block ADMM to 3-block ADMM

with blocks (sij , t), (yij), and (zij , w
(k)
ij ), performing the updates in this order

(1-2-3) fails to converge (although we observe convergence when updating in
order 1-3-2).

Throughout our results, we make use of the convergence criterion η, defined
analogously to the one in [26]

η = max(ηP , ηD, ηK, ηK∗, ηP , ηP∗, ηC1, ηC2) (35)

with

ηP = ||AX−Be||F
1+
√
n||be||

ηD =
||−C+ATY+S+DTZ+BT1 W

(1)+BT2 W
(2)||F

1+
√
n||be||

ηK =
||ΠSn

+
(−X)||F

1+||X||F ηK∗ =
||ΠSn

+
(−S)||F

1+||S||F

ηP =
||X−ΠKp (X)||F

1+||X||F ηP∗ =
||Z−ΠKp (Z)||F

1+||Z||F

ηC1 = |〈X,S〉|
1+||X||F+||S||F ηC2 = |〈X,DTZ〉|

1+||X||F+||DTZ||F

where each column of X is one of the variables xij (an analogous statement
holds for S and Z).

5 Results

We tested C-SDP2 on a variety of sparse graph matching and QAP-type prob-
lems. In particular, we used C-SDP to obtain lower and upper bounds on

2The code used in this work is available at https://github.com/fsbravo/csdp.git.
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problems from both the QAP and TSP libraries, and to tackle the assignment
problem in Nuclear Magnetic Resonance Spectroscopy (NMR).

5.1 QAP and TSP bounds

SDP relaxations like the one in [31] and C-SDP can yield both a lower bound
and an upper bound for QAP-type problems. The latter is given by the ob-
jective value of the semidefinite program, while the former is obtained from
Tr
(
PTAPBT

)
after projecting the doubly-stochastic matrix to the set of per-

mutations. In what follows we present both lower and upper bounds for various
QAP and TSP problems.

We compare our results against two other methods: the eigenspace relaxation
[16], [17], and the convex-concave approach, PATH [30]. To the best of our
knowledge, the eigenspace relaxation is the only SDP relaxation for the QAP
which can handle larger graphs, although an interior point approach is slow for
graphs with more than 50 nodes. In particular, we compare our lower bounds
to the ones produced by this relaxation. Although the eigenspace relaxation
also produces a doubly-stochastic matrix, there is no obvious way of recovering
the original permutation matrix from this variable (direct projection to the set
of permutation matrices, or a Birkhoff-von Neuman decomposition [9] of the
doubly stochastic matrix did not produce meaningful results). We compare our
upper bounds against PATH (which produces a permutation matrix).

For both lower and upper bounds, we compute the gap:

µ =
| v∗ − v |

v∗
× 100% (36)

where v is the value of the bounds obtained from the relaxation and v∗ is the
optimal value for the non-convex problem. The gap can be greater than 100%
in the case of the upper bound.

5.1.1 QAP library problems.

Figure 3 shows lower bounds on problems in the QAP library for both C-SDP
with cliques of size 4 and Eigenspace (full results are shown in table 3 in the
Appendix). We see that for the ’chr’ family of problems [8] C-SDP tends to be
significantly better than Eigenspace. However, for the ’esc’ problem family [12],
the results are divided. Eigenspace performs better than C-SDP in 10 of these
problems. In 7 of these, the adjacency matrix, B, has more than 20% non-zero
entries. This illustrates a general observed trend, where C-SDP performs best
in problems with very sparse B.

Figure 4 shows upper bounds on the same problems (full results shown in
Table 4). This time, a comparison is made with the convex-concave approach,
PATH. Generally, we observe that C-SDP produces strong lower bounds on
these QAP problems (mostly within 20% of the optimum). Remarkably, C-
SDP achieves the optimum in 7 of the problems. PATH outperforms C-SDP in
terms of upper bounds in only 6 of the 32 problems.
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Figure 3: Lower bounds for selected problems in the QAP library. Lower bounds
from C-SDP with 4 nodes per variable (blue) and for Eigenspace (yellow) are
shown. C-SDP generally shows a smaller gap than Eigenspace for the ’chr’
problem family. For the ’esc’ problem family, the results are mixed. However,
note that out of the 10 problems in which C-SDP underperforms, 7 of these
have B with more than 20% non-zero entries.

5.1.2 TSP library problems.

Figures 5 and 6 show lower and upper bounds for problems in the TSP library.
Again, we verify that C-SDP tends to produce strong lower bounds. Both C-
SDP and PATH fail at producing good upper bounds on this class of problems.
Tables 5 and 6 show the detailed results for lower and upper bounds, respec-
tively.

5.2 Application: NMR assignment

Nuclear Magnetic Resonance Spectroscopy (NMR) is the go-to tool for struc-
tural determination of proteins in solution, [29]. Structural reconstruction in
NMR requires accurate geometrical constraints which are derived from the anal-
ysis of NMR spectra.

Prior to an NMR experiment, the amino acid sequence (and hence also the
atomic composition of the protein) is known. In an experiment, the resonance
frequencies of all atoms in the protein are simultaneously measured. In order
to use the experimental measurements as constraints on the atoms, measured
resonance frequencies have to be assigned to the atoms in the protein, giving
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Figure 4: Upper bounds for selected problems in the QAP library. Upper bounds
from C-SDP with 4 nodes per variable (blue) and for PATH (yellow) are shown.
C-SDP generally shows a smaller gap than PATH.

rise to the resonance assignment problem. The assignment procedure is typically
performed in two steps: 1) Grouping the resonance frequencies from each amino
acid into spin systems; 2) Assignment of spin systems to the amino acids. One
can view spin systems as a vector of resonance frequencies associated with atoms
from an amino acid. By assigning each spin system to the correct amino acid,
one can then infer the frequencies of the atoms that compose that amino acid.

In the following, we formulate the resonance assignment problem as a QAP
(the use of the QAP for NMR assignment is not new [6], [10], although to the
best of our knowledge, our formulation of the costs and constraints is novel).
More precisely, when placed in the correct order, each spin system shares fre-
quency values with its preceding neighbor, up to experimental noise, since some
of the atoms of a single amino acid are featured on two adjacent spin systems.
This is illustrated in Figure 7.

Such a feature can be used to define a distance matrix between each pair of
spin systems,

Aij =
(si(C

α
i )− sj(Cαj−1))2

σ2
α

+
(si(C

β
i )− sj(Cβj−1))2

σ2
β

. (37)

Note that Aij is small if i immediately precedes j. One wishes to find the
permutation that minimizes this distance along a path of length n − 1, which
should correspond to the best ordering of the spin systems, thus allowing for
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Figure 5: Lower bounds for selected problems from the TSP library (n ≤ 150).
Lower bounds from C-SDP with 4 nodes per variable (blue) and for Eigenspace
(yellow) are shown. C-SDP consistently shows smaller gaps than Eigenspace,
although Eigenspace can be used to quickly generate a lower bound, since it
simplifies to a linear program due to the simple spectrum of B.

their assignment to the corresponding amino acids. Alternatively, we choose
instead to kernalize this distance matrix by defining

Ā = exp

(
− A

||A||F

)
(38)

where the exponential is applied elementwise [13]. The goal is then to maximize
the kernel distance along a path of length n − 1, amounting to the following
problem

Problem 7 (NMR assignment)

max
P

Tr
(
ĀPBTPT

)
s.t. P ∈ Perm(n)

where B is the adjacency matrix for the path graph, given by

B =


0 1 · · · · · · 0
...

. . .
...

... 1
0 · · · · · · · · · 0
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Figure 6: Upper bounds for selected problems in the TSP library (n ≤ 150).
Upper bounds from C-SDP with 4 nodes per variable (blue) and for PATH
(yellow) are shown. C-SDP generally shows a smaller gap than PATH.

This is a QAP, and the sparsity of B allows the use of C-SDP to obtain a
doubly stochastic matrix D. The matrix D can in turn be projected to the set
of permutation matrices to yield a valid assignment of spin systems to amino
acids.

Additional information about valid assignments can be included through a
term Tr

(
WTP

)
in the QAP cost. In particular, one verifies in practice that the

resonance frequencies of the N , HN , Cα, and Cβ atoms depend strongly on the
type of amino acid, as illustrated in Figure 8. Here we use a hypothesis test
perspective to construct W . The resonance frequency distributions, conditional
on the type of amino acid, were modeled as independent Normal distributions,
with mean, µ, and standard deviation, σ, taken from statistics collected in the
Biological Magnetic Resonance Data Bank (BMRB, [27]). Let spin system si
be defined as the frequencies of the atoms corresponding to that spin system:

si =



fNi

fHNi
fCαi
fCβi
fCαi−1

fCβi−1


. (39)
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Figure 7: Example sequence of consecutive spin systems built from three NMR
spectra for bmr4391 (no noise). Each spin system contains frequency informa-
tion for Cα and Cβ in its own amino acid and the preceding amino acid.

Then for spin system si and amino acid j one can compute

zij =

4∑
k=1

(si(k)− µj(k))2

σ2
k

∼ χ2
3

which follows a chi-square distribution with 3 degrees of freedom under the
distributional assumptions. The test value zij can be used to determine a p-
value under the null hypothesis that spin system i corresponds to residue j.
Such p-values can be used either as hard constraints on the permutation matrix
P (by setting P (i, j) = 0 if zij is below a set threshold) or as soft constraints
by including an additional term Tr

(
WTP

)
in the cost where W is

W = exp

(
− Z

||Z||F

)
,

with Z ≡ [zij ]. The latter approach is adopted in this work.
Writing the QAP in the form of Problem 1

min
Q

Tr (CQ)

s.t. Q = vec(P )vec(P )T

P ∈ Perm(n)

we wish to solve this problem where C is given by

C = −B ⊗ exp

(
− A

||A||F

)
− 1

γ
diag

(
exp

(
−γ Z

||Z||F

))
.

Note that the change in the objective consisted only of adding weight terms to
the diagonal, using γ as a parameter controlling the importance of the statistical
information from empirically observed frequencies. A value of γ = 0.1 was used
throughout all simulations.

C-SDP was tested on synthetic datasets for benchmarking with cliques of
size 2. The dataset was originally described in [28] and consists of a number
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Figure 8: Chemical shift (frequency) distribution of Cα and Cβ atoms per
residue type. The central dots correspond to the mean, and the upper and
lower dots are placed two standard deviations away from the mean.

of proteins for which spin systems are created from the existing assignments in
BMRB [27]. We consider only those proteins with 100 amino acids or fewer.
Each spin system is constructed by taking the assigned frequencies from the
datafile for the base N -HN pair, and the Cα and Cβ atoms (with the exception
of Glycine and Proline). The Cα and Cβ values from the preceding residue
are then added at the end of this vector, and perturbed with additive white
gaussian noise with σ = (0.08, 0.16) (low-noise) or σ = (0.16, 0.32) (high-noise).

Comparison: We compare results with other fully automated assignment
tools: MARS [14], CISA [28], and IPASS [2]. In order to compare with a
different convex relaxation of the graph matching problem, we consider the
doubly-stochastic relaxation (DS), in which we solve the convex problem

min
D

||AD −DB||F

s.t. Tr
(
KTD

)
= 0

D ∈ DS(n)

where K is the matrix defined by the entries

K(i, j) =

{
1 if zij < ε
0 otherwise,

for some user-defined threshold ε, thus imposing hard constraints on assignments
that are statistically unlikely. The value of ε was progressively reduced from
ε = 10−2 until a satisfiable set of constraints was produced.

Evaluation: Let Nm be the number of spin systems assigned in the BMRB
file, Na be the number assigned by the algorithm, and Nc be the number of
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correctly assigned spin systems. We then define precision≡ Nc/Nm, and recall≡
Nc/Na. These values are presented in tables 1 and 2, below.

Table 1: Accuracy of assignment (precision/recall) of various assignment pack-
ages as well as the constrained relaxed graph matching (DS) and C-SDP on
synthetic spin systems with noise level = (0.08,0.16). Results for MARS [14]
and CISA taken from [28]. Results for IPASS taken from [2].

Protein ID Length MARS CISA IPASS DS C-SDP
bmr4391 66 100/76 97/97 93/90 85.2/85.2 99.1/99.1
bmr4752 68 100/97 96/94 100/94 98.5/98.5 100/100
bmr4144 78 100/91 100/99 98/85 96.4/96.4 99.7/99.7
bmr4579 86 99/98 98/98 100/98 99.9/99.9 100/100
bmr4316 89 100/100 100/99 99/98 95.8/95.8 98.8/98.8

Table 2: Accuracy of assignment (precision/recall) of various assignment pack-
ages as well as the constrained relaxed graph matching (DS) and C-SDP on
synthetic spin systems with noise level = (0.16,0.32). Results for MARS [14]
and CISA taken from [28]. Results for IPASS taken from [2].

Protein ID Length MARS CISA IPASS DS C-SDP
bmr4391 66 100/75 91/91 93/90 85.5/85.5 100/100
bmr4752 68 100/97 90/88 100/94 87.8/87.8 99.4/99.4
bmr4144 78 100/69 100/99 98/85 85.6/85.6 96.4/96.4
bmr4579 86 96/90 80/80 100/98 89.6/89.6 99.6/99.6
bmr4316 89 99/91 83/83 99/98 95.1/95.1 97.8/97.8

C-SDP outperforms other methods in terms of both precision and recall, on
average. The doubly stochastic relaxation also compares well in the low-noise
scenario, but performs poorly in the high-noise setting.

Note that since C-SDP always produces a full permutation matrix, it assigns
all spin systems, such that Na = Nm, where Nm is assumed to be the number of
assignable spin systems in the protein. As a result, precision and recall values
for C-SDP are equal. The number of spin systems may be smaller than the
number of amino acids, as some amino acids such as Proline do not contribute
spin systems, in which case token spin systems are used in their stead.

6 Conclusion

This work presented a new semidefinite programming (SDP) relaxation, C-SDP,
for the quadratic assignment problem (QAP) in which one of the matrices is
sparse. A convergent ADMM formulation was developed, which exploits the
natural three-block structure of the dual problem, allowing a highly paralleliz-
able solution where the most expensive step per iteration is a projection of a
matrix of size O(n) to the positive semidefinite cone.
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The performance of C-SDP was evaluated on problems from the QAP and
TSP libraries, where we found it produces better lower bounds than comparable
SDP relaxations [17] as well as competitive upper bounds (after projecting the
solution to the set of permutation matrices), compared to a popular local method
[30].

An application to the NMR assignment problem was also described, which
can be formulated as a sparse QAP. Preliminary results on proteins from a
standard synthetic dataset showed that C-SDP results in a better assignment
compared to popular fully automated assignment tools in recent literature.
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Appendix - Full Tabulated Results

Table 3: Comparison between lower bounds given by the C-SDP and Eigenspace
relaxations on selected problems from the QAP library with (relatively) sparse
B. C-SDP instances were ran for 1000 ADMM iterations on 20 processors.

Problem Optimal
C-SDP
(k=2)

Gap (%)

C-SDP
(k=3)

Gap (%)

C-SDP
(k=4)

Gap (%)

Eigen-
space

Gap (%)

chr12a 9552 9.7 2.7 0.6 10.2
chr12b 9742 26.3 19.3 12.8 18.1
chr12c 11156 10.2 3.2 2.1 11.3
chr15a 9896 13.1 7.0 5.2 20.6
chr15b 7990 35.7 25.2 15.7 32.8
chr15c 9504 0.1 0.0 0.0 5.5
chr18a 11098 12.6 4.6 5.2 15.5
chr18b 1534 0.0 0.0 0.7 0.0
chr20a 2192 1.6 1.6 1.5 1.6
chr20b 2298 2.8 0.3 0.3 2.5
chr20c 14142 37.0 31.9 28.0 22.3
chr22a 6156 2.6 1.3 0.9 2.7
chr22b 6194 1.4 0.5 0.2 2.4
chr25a 3796 13.8 7.5 5.6 14.3
esc16a 68 100.0 80.4 69.2 17.1
esc16b 292 100.0 88.4 85.7 2.7
esc16c 160 100.0 79.4 69.8 16.1
esc16d 16 100.0 72.1 71.4 77.9
esc16e 28 100.0 78.2 55.0 37.1
esc16g 26 100.0 67.3 48.0 30.6
esc16h 996 66.3 57.0 53.3 7.0
esc16i 14 100.0 19.1 31.6 100.0
esc16j 8 100.0 53.0 37.6 89.2
esc32a 130 100.0 74.6 62.1 56.8
esc32b 168 100.0 76.1 69.5 39.0
esc32c 642 100.0 91.0 88.0 10.0
esc32d 200 100.0 88.0 81.3 24.0
esc32e 2 100.0 66.6 66.5 100.0
esc32g 6 100.0 41.0 16.7 100.0
esc32h 438 100.0 88.2 84.0 13.0
esc64a 116 99.9 86.0 81.7 -
esc128 64 99.6 75.8 71.0 -
ste36a 96772 46.9 42.1 40.2 -
ste36b 58537 70.1 67.0 65.1 -
ste36c 108159 37.7 35.2 34.2 -
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Table 4: Comparison between upper bounds given by C-SDP and PATH re-
laxations on elected problems from the QAP library with (relatively) sparse B.
C-SDP instances were ran for 1000 ADMM iterations on 20 processors.

Problem Optimal
C-SDP
(k=2)

Gap (%)

C-SDP
(k=3)

Gap (%)

C-SDP
(k=4)

Gap (%)

PATH

Gap (%)

chr12a 9552 34.5 6.0 0.0 42.7
chr12b 9742 38.9 25.4 11.9 38.1
chr12c 11156 5.8 2.3 2.3 18.6
chr15a 9896 2.1 2.1 2.1 52.0
chr15b 7990 26.3 34.5 29.2 158.6
chr15c 9504 0.0 0.0 0.0 63.3
chr18a 11098 69.8 0.2 0.2 76.3
chr18b 1534 8.9 22.9 29.5 99.3
chr20a 2192 122.5 76.1 43.8 95.4
chr20b 2298 62.9 9.3 9.3 82.2
chr20c 14142 173.0 100.1 111.5 88.9
chr22a 6156 17.2 7.6 3.0 38.3
chr22b 6194 7.3 2.3 1.0 40.4
chr25a 3796 107.0 49.2 25.2 69.9
esc16a 68 8.8 11.8 11.8 11.8
esc16b 292 0.0 0.7 0.0 2.7
esc16c 160 5.0 7.5 8.7 6.3
esc16d 16 12.5 50.0 25.0 75.0
esc16e 28 14.3 7.1 14.3 21.4
esc16g 26 7.7 0.0 15.4 15.4
esc16h 996 1.6 0.0 1.6 16.9
esc16i 14 0.0 0.0 0.0 57.1
esc16j 8 0.0 0.0 0.0 75.0
esc32a 130 115.4 124.6 113.8 93.8
esc32b 168 109.5 114.3 111.9 88.1
esc32c 642 12.8 15.9 13.7 7.8
esc32d 200 38.0 36.0 39.0 21.0
esc32e 2 0.0 0.0 0.0 600.0
esc32g 6 0.0 0.0 0.0 366.7
esc32h 438 24.7 26.9 22.8 18.3
esc64a 116 60.3 53.4 60.3 106.9
esc128 64 250.0 206.3 175.0 221.9
ste36a 96772 70.2 74.7 74.2 76.3
ste36b 58537 188.8 204.3 211.9 158.6
ste36c 108159 66.0 62.8 63.7 83.2
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Table 5: Comparison between lower bounds given by the C-SDP and Eigenspace
relaxations on problems from the TSP library (with n ≤ 150). C-SDP instances
were ran for 1000 ADMM iterations on 20 processors.

Problem Optimal
C-SDP
(k=2)
Gap (%)

C-SDP
(k=3)
Gap (%)

C-SDP
(k=4)
Gap (%)

Eigen-
space
Gap (%)

att48 10628 20.6 10.9 11.2 29.6
bayg29 1610 10.7 6.5 6.0 22.5
bays29 2020 12.8 6.9 7.2 28.1
berlin52 7542 16.5 9.9 8.4 29.7
bier127 118282 19.5 10.4 10.1 35.2
brazil58 25395 34.6 24.1 24.0 42.4
burma14 3323 16.1 10.7 9.7 37.7
ch130 6110 26.9 12.9 13.1 38.8
ch150 6528 11.3 1.1 3.5 26.3
dantzig42 699 23.6 14.9 15.0 35.1
eil101 629 6.9 1.6 1.7 16.9
eil51 426 10.9 4.6 5.4 18.1
eil76 538 8.8 3.6 4.3 18.2
fri26 937 12.2 9.4 7.8 27.6
gr120 6942 15.1 7.1 7.1 27.2
gr137 69853 14.9 8.0 9.2 31.0
gr17 2085 21.6 20.2 15.6 39.7
gr21 2707 10.8 4.0 5.0 26.7
gr24 1272 17.3 8.7 7.9 27.4
gr48 5046 18.0 10.4 10.8 27.5
gr96 55209 15.0 8.4 7.7 31.0
hk48 11461 13.9 7.5 7.2 23.6
kroA100 21282 19.4 12.7 12.1 33.2
kroA150 26524 16.6 5.2 5.3 34.0
kroB100 22141 23.7 12.9 11.4 35.3
kroB150 26130 18.6 4.4 4.3 34.1
kroC100 20749 19.3 10.9 10.8 32.4
kroD100 21294 22.2 12.1 11.7 34.9
kroE100 22068 23.9 12.5 11.2 34.4
lin105 14379 35.2 17.3 16.5 47.4
pr107 44303 40.2 38.9 37.4 51.5
pr124 59030 25.3 14.0 16.2 40.3
pr136 96772 2.1 2.6 2.7 23.3
pr144 58537 54.7 40.7 43.1 68.2
pr76 108159 28.3 15.3 14.2 39.5
rat99 1211 10.4 2.8 3.8 19.7
rd100 7910 16.9 10.7 9.8 30.3
st70 675 22.1 13.6 11.9 34.8
swiss42 1273 20.6 10.7 10.4 27.9
ulysses16 6859 25.2 17.1 17.0 43.1
ulysses22 7013 28.5 19.7 18.7 45.2
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Table 6: Comparison between upper bounds given by C-SDP and PATH relax-
ations on problems from the TSP library (with n ≤ 150). C-SDP instances were
ran for 1000 ADMM iterations on 20 processors.

Problem Optimal
C-SDP
(k=2)

Gap (%)

C-SDP
(k=3)

Gap (%)

C-SDP
(k=4)

Gap (%)

PATH

Gap (%)

att48 10628 213.0 236.5 233.6 329.8
bayg29 1610 114.3 115.8 114.3 210.1
bays29 2020 107.6 118.3 115.4 164.8
berlin52 7542 175.0 127.2 127.2 280.6
bier127 118282 216.4 193.8 193.8 234.2
brazil58 25395 248.0 200.8 200.8 337.0
burma14 3323 24.6 28.4 32.3 95.5
ch130 6110 352.4 380.6 380.6 621.3
ch150 6528 346.9 318.2 318.2 689.3
dantzig42 699 193.1 174.0 174.0 82.0
eil101 629 227.3 235.3 235.3 437.7
eil51 426 203.6 205.4 205.5 244.4
eil76 538 282.9 183.0 183.0 328.2
fri26 937 91.6 39.4 39.4 41.6
gr120 6942 445.2 261.6 261.6 617.6
gr137 69853 264.6 220.3 220.3 38.9
gr17 2085 46.8 32.4 44.9 86.9
gr21 2707 94.5 69.7 66.3 185.7
gr24 1272 89.2 86.2 73.9 129.4
gr48 5046 210.2 187.4 187.4 270.4
gr96 55209 228.9 201.7 201.7 46.0
hk48 11461 222.4 207.7 207.7 281.6
kroA100 21282 469.6 469.0 469.0 720.2
kroA150 26524 411.0 467.4 467.4 945.8
kroB100 22141 411.9 313.6 313.6 624.2
kroB150 26130 417.3 353.7 353.7 844.7
kroC100 20749 507.4 445.1 445.1 763.0
kroD100 21294 504.2 349.8 349.8 654.4
kroE100 22068 489.5 346.3 346.3 684.2
lin105 14379 303.1 234.8 234.8 248.4
pr107 44303 181.5 207.9 207.9 41.6
pr124 59030 293.8 180.2 180.2 67.6
pr136 96772 325.5 164.7 164.7 196.6
pr144 58537 255.0 283.7 283.7 59.8
pr76 108159 192.2 194.0 194.0 39.4
rat99 1211 236.4 161.5 161.5 444.1
rd100 7910 438.4 375.3 375.3 506.5
st70 675 300.9 320.0 317.9 387.9
swiss42 1273 163.2 190.4 190.8 194.0
ulysses16 6859 23.6 20.2 23.2 82.7
ulysses22 7013 64.5 57.0 59.7 126.3
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Figure 9: Comparison of run times between C-SDP and Eigenspace (linear
program) relexations on problems from the TSP library (with n ≤ 150). C-SDP
instances were ran for 1000 ADMM iterations on 20 processors. Eigenspace
instances were solved using SeDuMi [25]. As the Eigenspace relaxation simplifies
to a linear program in the case of TSP, solving the problem using an interior
point solver is stil competitive with the ADMM approach used in C-SDP.
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Figure 10: Comparison of run times between C-SDP and Eigenspace relexations
on problems from the QAP library (with n ≤ 150). C-SDP instances were
ran for 1000 ADMM iterations on 20 processors. Eigenspace instances were
solved using SeDuMi [25]. In the case of problems from the QAP library, the
Eigenspace relaxation no longer simplifies, resulting in longer runtimes.
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