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Abstract—The Boolean multireference alignment problem con- In BMA the search space is finite, and the maximum A

sists in recovering a Boolean signal from multiple shifted ad  posteriori decoder (MAP) minimizes the probability of arro
noisy observations. In this paper we obtain an expression f0 o, main contribution is an expression for the error exponen
the error exponent of the maximum A posteriori decoder. This f MAP. in the low SNR . . in Th s T2 and
expression is used to characterize the number of measuremisn 0 » Inthe OV_V regime, given in theore -<an
needed for signal recovery in the low SNR regime, in terms of [ML3] Our results imply how many measurements are needed,
higher order autocorrelations of the signal. The characteization as a function of the SNR, in order to accurately estimate the
is explicit for various signal dimensions, such as prime anéven sjgnal.

dimensions. The expression depends on the autocorrelations of the
signal, defined in[{6). Our results connect the order of au-
tocorrelations needed to reconstruct the signal to the eumb

The Boolean multireference alignment (BMA) problen®f measurements needed to estimate the signal. This has some
consists of estimating an unknown signak Z%, from noisy connections with previous theoretical work on uniquendss o

I. INTRODUCTION

cyclically shifted copies,...,Yy € ZE, ie., the bispectrum_[6]. o N
We also consider some generalizations of the original
Y;=R%z® Z;,ie{l,...,N}, (1) problem in order to model some aspects of multireference

alignment that arise in applications, such as the intradoct
where the errorZ; ~ Ber(p)’, the product measure of of deletions.

Bernoulli variables with parametetr ¢ denotes addition mod
2, R is the index cyclic shift operator that shifts a vector one Il. BMA PROBLEM

elementto the rightes, ..., n) — (an,21,...,2x-1), R In the BMA problem, the errors are i.i.d. Bernoulli of

corresponds to applying; times the operatoR and the shifts parametep. If p = 1, then the observationg; ~ Ber(3)",

Si ~U(Zr,), the uniform distribution irZ,. regardless of the original signal, and signal recovery isds
The motivation to study this problem comes from theible. This corresponds to the case when SNR. On the

classical multireference alignment problem, where th@aig other handp = 0 or 1 corresponds to the noiseless case. Thus

and observations are real valued vectors, and the erronis-Gaye define

sian white noise. Several algorithms were recently progpose SNR.— < - 1)2 .

to solve the problem, including angular synchronizatio [1 =P 3

semidefinite program relaxations of the maximum likelihood . )
prog In contrast to proposing an algorithm to solve the BMA

decoder[[2] and reconstruction using the bispectrium [3]s Th roblem. our paper focuses on its samole complexity. in the
problem is also an instance of a larger class of probIenPs, : ' P pl P piexity,
. ) - . .regime wherp — = and SNR— 0.
called Non-Unique Games, which also includes the oriemtati Note that the ozbser ations, i N1 given the sianal
estimation problem in cryo-electron microscopy [4]. vatl . @ € [N], giv '9
xX

) . . . are i.i.d., since both the shiftS; and the errorsZ; are
Despite these advancements in algorithmic development, o : S -
. ; i.I.d. For that reason we will drop the indéxvhen it is more
much progress has been made in understanding the fundamen

tal limits of signal recovery. The recent papler [5] inveatay convenient. We rewritd (1), denoting by;) the j-th entry of
fundamental limits of shift recovery in multireferenceggili ) , N
ment, but not those of signal recovery. We note that estimgati Y (i) ==(S+J)®Z(j), j € Zu, 3)

the shifts is impossible at low signal-to-noise ratio (SNRyhere '+’ is addition modL.

even if an oracle presents us with the true signal. Also, theQur paper also considers the sample complexity of the
goal of many applications is signal recovery rather thaft shfollowing variations of the basic BMA problem:

estimation. Our paper aims to fill the gap on signal recovery, BMA Problem with consecutive deletions:this case the

by studying the Boolean case. We show here that signal measurements; Yy are inZE with K < L, and
recovery is possible at arbitrarily low SNR, if sufficienthyany Y 2 -

measurements are available, and quantify this tradeoff. Y(§i)=z(S+j)®Z(y), j € Zk. 4
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When K = L we obtain the original BMA problem. conditional distribution inZZX of the observationg” given

o BMA Problem with known deletionket V' C Z;, be an the signalz, where K = |V|. The probability of error of the
ordered set of non-deletions, i.e. the set of deletions AP estimator, denoted b¥., has the following asymptotic
Z1\V. Now the measurements,,...,Yy are inZX, behavior

. - : .
with K = [V, and Jim LiogP = min Clunyia) (10)
. . . —00 T1,T2€
Y(j) =2(S+V;) @ Z(j), Vj € Lk, (5) 12Ty

whereV; denotes thg-th element oft’. WhenV = [K] with
we recover the BMA problem with consecutive deletions.

« BMA Problem (and variations) with non uniform rota- s, frz) =

tions: Similar to the previous problems, but now the shifts2 " SNR Z (Af K(z1) — Ag k(xQ))Q + O(SNRHY),
follow some distributior¢ in Z;. t! A ’
These variations are motivated by problems similar to (11)

multireference alignment. The case of possible deletiens j,q+ — tev(
intended to model instances where the observations are onlyl_ " o )
partial, whereas the extension to non-uniform shifts gpism | he theorem implies that the exponent on SNRis (X).

1'1,1'2)-

to represent a non-symmetric version of the problem. In the original problem, with uniform shifts and no deletion
the recovery of the original signal is possible only up to a
ll. RESULTS shift, i.e. we can only recoveR*z, wherez is the original
We start by introducing the following notion of autocorresignal, andk is some shift inZ;,. For that reason, we consider
lation of a signal that is central to our main results. X to have exactly one element of each class of all the shifts

of a signal, i.e., there are no two elementsiinvhere one is
a shift of the other (for example, i is prime, then there are
2L — 2 such elements).

Definition 1ll.1. The (¢, k)-autocorrelation ofz, with respect
to a distribution¢ in Z, andk = (k1,ka,...,ka) € Z$ is
defined as
L Corollary 1ll.3.  Consider the original problem, with = [L],
Ao (z) = (ks +8) - 2(ky + ). g) &~ U(Zr) and X' as defined above. By inspection one can
ex(@) ;5( Ja(ky ) (ka ) © obtain the error exponent fof. < 5. For L. > 6, we either

We refer tod = |k| as the order of the auto-correlation. Whenhave

10
& ~U(Zy), we simply writék-autocorrelation andAy. Notice I 1 . QTSN@ +O(SNR')
. e . - - s . . im —log P, =

Ay is shift invariant, that isAx(xz) = Ax(R*x), and in this N—=oo N O(SNRY)
case we may assunig = 0.

We define the minimum autocorrelation order necessary
distinguishz; and z, under§ and V' as

IV. PROOFTECHNIQUES

— 3 . d
te,v (1, 22) i= inf{d : Ag x(71) # Aek(z2), k € V), (7) Proof of Theorer II.R: The proof consists of two main
where V¢ denotes the vectors iZg with entries in V. parts. The next theorem gives a formula to the error exponent
The minimum autocorrelation order necessary to descrilbe and clain{TV2 makes the connection with autocorrelations.
signals inX is defined as

(12)

Also, the first case occurs whdnis prime, and the second
whenL > 12 and is even. The other values bfremain open.

Theorem IV.1. Consider the BMA problem with known dele-

tev(X) = ma;ecxtg_y(azl,azg). (8) tions Z;\V and shift distribution¢. Let X < ZF be the
e space of possible signals apg := Py x(-|z) the conditional

- : - ; ; distribution in ZX of the observations given the signal
Given a prior distribution on the signalByx, with support o2 ;
X, denote byX the random variable with distributiofy . The probability of error of the MAP estimatdi,) has the

Given an algorithm for BMA the probability of error is del‘ineofO”OWing asymp';otic behavior
as X R lim —logP. = min (g, t,), 13
P(X#X)= Y P(X #z)Px(x).  (9) G L

where X is the answer given by the algorithm. In the BMA Cpia, » fhay)
problem the search space is finite, thus MAP minimizes the
probability of error [9). We obtain results that do not deghen (% _p)QS (
on the prior distribution, they depend only on its support. 8(s!)2 Z

2
) (i 1) = 1) (s %))

ZK
Theorem 111.2. Consider the BMA problem with known ver

2s+2
deletionsZ,\V and shift distribution¢. Let X ¢ ZZ be the +0 (1 _p> . (14)
support of the prior distribution of the signals and. the 2



Whereug’”) (y; p) denotes then-th derivative ofu, (y;p) in p, With this we rewrite [(1I7)

i.e. the derivative of the conditional distribution ingivenz L w . w .
in order of the Bernoulli parametep, and vip) = 3 E(s)(1 - p)E IS g Wt
s=1
. 1 1 (20)
— ., (m) L (m) . K
s(@1, @2) = inf {m M (y, 2) 7 He (y, 2) Ve } “whereyu, (v; p) := ps(y; p). For simplicity of notation denote
This theorem follows from Theorems and 2 in [7]. Wou,s =W @u(s +V)).

Theoreml is a corollary of Sanov Theorernl[8], which leadsrhe claim is now proved by induction an By properties of
to (I3). However the expression obtained by Theoreis  jacobi polynomials [9] we have

rather complex and not very interpretable. In Theor2if7] . N (m)
we Taylor expand{13) and obtain a useful characterization i (p7_§(1 —p)7+§) L= (=2)"" 5P, (b),
instances where the SNR is small. We use this expression to [p=3
obtain [12). where P,,, is a polynomial with the following property
Claim IV.2. If HECT) (y; %) = ;LQ(ET) (y; %) for all m < n and P (b) = 0™ 4+ Qm(b), (21)
y € Z3, then the following expressions are equal: whereQ,,, has degree at most—1, andQ, = Q1 = 0. Thus
() (o 1y _ ) 1y 1 L
5 (1 (%) — 2 (i) a (1:3) = O P (22
.1 s=1
ezl fa (Y3 2) Then whenm =1
and D) (1) _ D (. 1))
2 pod (vi3) = s (03 3)
20l 3 (Aex(er) - Aex(ea)) . Y ( - )
kev<L venK Hruy (v, 5)
2
In fact, since the expressioffEil) and (I6]) are both sum of o K L
squares, the claim implies thaty (1, z2) = s(z1, x2), what =2 Z Zg(s) Wour,s = Wouzs) |-
concludes the proof of theordm TIl.2. [ | vezg Ls=1

Proof of Claim[IV.2: Denote byz (V') the vector inZ3"  Now, by the induction hypothesis j#(" (v; 1) = (&) (v; 1)
(K = |V]) that consists of the values efwith indices inV, forall k <n—1, v e £&
i.e. thej-th element ofz(V) is z(V;). Also, givens € Z,, L L
denote bys + V the ordered set corresponding to the sum of W _ W
each element it/ with s mod L. Equation [(5) can then be ;5(8)62"( vane) = 28 (Woa,0)
rewritten, as

s=1
for all v € X since,, has degree at most— 1. Thus by
YZ,T(S-FV)EBZ @)and@)

H L
Then sinceZ ~ Ber(p)”, we have (/h(ff) (v:1) - ugfé) (v %))2
pa(y;plS = 5) = (1 — p) K- WErEHDprlu@rl+), U;Zé( sy (V5 3)
wherew denotes the Hamming weight, and singe- £ L 2
L 22n—K Z [Z 5(8) (ijl,ul,s - ijl,ug,s)‘| (23)
pa(yip) = Y &(s)(1 — p)K T wrlV) pulyelstv)), e
s=1 Now splitting the square of the sum on the RHS into a product

(17) of two sums and expanding, we obtain terms of the form
In the statement of the theorem we have Z%, however it

is convenient for the proof to consider the entriescafo be L&
Z Z 5(81)5(82)(_1)a+ﬁ Z Wi?,ua,len

—1,1, changed by the rulet — 1 — 2a. We will call Vi 50 (28)
s1=1s5=1 veEg
u:=1-2x € Xt (18) wherea andj arel or 2. By Lemma[IV.3 we get
the corresponding element ofwith £1 values, wherel; := Z Wi s Worg sz =
{-1,1}, andv := 1 —2y. In analogy to the Hamming weight, vexk
we define Al [ K ai
2N Cu ][ DI tars(B) |, (25)
W(u) = u(s) = L — 2w(x). (19) A€My, i=1 \k=1j=1
A is even

s=1



Where ug,; is uq(s1 + V) if a;; < n, and isug(sz + V) set of all such partitions. I, ..., u, € rK
otherwise. So, sincéu;| is even, asA is an even partition,

and the entries ofi,,, are+1, S W @v) - W(um Gv) =
vexsk
K lail Al [ K ai
Z H Uai; (k) = Z ’U,a(Sl + k)u,@(SQ + k) 2K Z Ca H Z H Uay (k) , (29)
k=1j=1 keV A€M i=1 \k=1j=1
if |a; N [n]| is odd, and it isK otherwise. Then e even
i la: O [ ' ' where A is even if all|a;| are even fori € {1,...,|A]|}.
. . Moreover,C' 4 is a constant that depends only on the partition
Z Woia s Wous,ss = A and is alwaysl if |a;] =2 forall i € {1,...,]A4]|}.
vesk K
Proof: Recall [19). We havéV (u @ v) = . u(k)v(k)
R, Z Ua(s1 + k)ug(se + k) |, k=1
keV and

where R,, is a polynomial with degree: (with coefficients Z W(ur ®v) - W(um ®v)
possibly depending o andn), and R, (b) = 2¥b. It cannot vexnk

have degree: + 1 since|A| < n, since it is an even partition K K

of [2n]. For it to be a power of ordet, we need A| = n, so = Z Z w1 (k1) - um (km) Z v(ky) - v(km)
la;| =2 fori=1,...,n, thusCs = 1, by the Lemma. Also ki=1  kp=1 vexsk

la; N [n]| must be odd for alk, thus |a; N [n]| = 1. There (30)

are exactlyn! partitions with this property,

so the leadin .
coefficient of R,, is 25 n!. We also have gSupposelcl # ki fori=2,...,m. Then

L L " Z v(kD)v(ka) - v(km)
Z Z £(s1)€(s2) <Z U (s1 + k)ug(s2 + k)) vERK

s1=1a5=1 fev = > vlk)vlke) vlkm)+ D> v(k)v(ks) - v(km)
L L n vexnk venk
=3 es1)(s2) D> [ talsr + ki)us(sz + ki) v(k1)=1 v(ky)=—1
s1=ls2=1 kevmi=1 which is0. This also occurs ity = ko = -+ =k; # ki, i > j
= Ae x(ug)Ae x(ug), (26) andj is odd. For this not to occur, the classeskg$ that are
kevn equal to each other are required to have all an even number

I . , _ of elements, and in that case, the suna%s By grouping the
Mimicing the argument used ifL(3), the equation will be trug . (30) becomes

for n = 1, sinceR; (b) = 2*b, and by the induction hypothesis

only the leading coefficient aR,, is of interest, since the other K 1A] Jail
terms will cancel with each other. 2y S TTT wass ki), (31)
AEM) k1. kjaj=11=1 j=1
I 2 Ais even all distinct
Z Zg(s) (Wn —Wn ) — Using a combinatorial argument we can rewrite the] (31)
v,U1,8 v,u2,8 . , .. , .
venk Ls=1 ' ’ without the all-distinct’ condition, at the cost of a coast
2

C4, which is1 when|a;| =2 forie {1,...,|A|}.
Pt 5 (Aek(un) — Aewlu))?  (@27) " o Al

kevn K |A] Jail
2K C Uq, ; ki =
Now through some algebraic manipulation, and using again Ae% Akl % :“1;[1]1;[1 ”( )
the argument of the leading coefficient, | = n, then Als even e
Al [ K ail
_ oK
D (Aexclur) — Agc(us))® = =25 3 Call (D ITwess®)
kevn AE]W[M] =1 k=1j=1
om 2 A is even
22" Y (Aek(mr) — Agk(r2)” (28) .

kevr Proof of Corollary[1ll.3: We first prove equatior (12).

This together with[{23) and(27) concludes the proof. m Recall [6), and denote by

2
Lemma IV.3. For any partitionA = {ay, ..., a4} Of the set B (z1,22) := Z (Ak(xl) - Ak(IQ))
{1,2,...,m}, denote byi;; the j-th entry ofa; and My, the kezm



and Finally, let L > 6 be prime. We prove by contradiction that

Bn(L) := min By, (z1,22) tr, =3 and B3(L) = % If this is not true, then it exists}
T1FT2E€X andz} such thatt,s .z > 3, so
Note thath(xl,xg) = 0if m < tey(zr,z2) by (@). Ax(a?) = Ax(a3), keZl n<3 (33)
For convenience leB3(z1,72) = By, | (a,2,)(T1,72) and _ _ _ .
B(L) := B, ,(x)(L) . Using this notation we rewritd (1.0) By Theorem 2 of paper [6], if the Four|gr cqefﬂment_s:ﬂ;f _
and [11) ’ andz} are non-zero, then equatidn {33) implies one is a shift
P of the other. Denote byr;} cz, and{r?};ez, the Fourier
lim ilogP = B(L) " SNR* + O (SNRtLH) coefficients ofz] andz}, respectively, which are given by
N—oo N © tr! ) I
Now equation[(IR) is equivalent to havingy (X') > 3 and = 7T Y wa(s)w;”®, a€{l,2},j€Zr, (34)
Bs(L) either 22 or 0. Turns out, forL > 6, if we take ) s=1
_ —js
2t =(1,1,0,1,0,...,0) andz} = (1,0,1,1,0,...,0), - Vi > W’ (35)
N—— —— s:za(s)=1
L zeros L zeros wherew, is the L'th root of unity. r§ = 0 implies 2, only
thente v (X) > tev(z],23) = 3 and B3(L) < B(z7,z3) = has zeros, and} is 0 only if w;” is a root of the polynomial
12 Also we cannot havéZ > Bs(L) > 0. This implies there
; ; 12 ; ; Z b® (36)
existsz; andx, in X' such thaty? > B(xy,22) > 0. Since it
is positive, there ik* € Z? such thatAg-(z1) # Ak (z2). si@a(s)=1
But by definition KQB)' since(s) = 7, LAk (z) is an integer However, sincel is prime, the minimal polynomial ofu;”
for x € Z3, and L (Ax+ (#1) — Ax- (22))” € Z. in Q[z], for L > j > 0,is 1 + 2 + --- + 2*~! [10], so this

Now by the definition we also havé, -)(z) = Ax-(2), polynomial must divide[(36). Thus; andz; must be the all
where o permutes the entries dt*. Also, for s € Z., let zeros and all ones signals, but this signals also do nofisatis
s+k* = (s+ki,s+k3,s+kj), thend, - (v) = Ax- (7). @3J). ]
There is6 permutations and. possible values fos € Z;,
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