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Abstract—The Boolean multireference alignment problem con-
sists in recovering a Boolean signal from multiple shifted and
noisy observations. In this paper we obtain an expression for
the error exponent of the maximum A posteriori decoder. This
expression is used to characterize the number of measurements
needed for signal recovery in the low SNR regime, in terms of
higher order autocorrelations of the signal. The characterization
is explicit for various signal dimensions, such as prime andeven
dimensions.

I. I NTRODUCTION

The Boolean multireference alignment (BMA) problem
consists of estimating an unknown signalx ∈ ZL

2 , from noisy
cyclically shifted copiesY1, . . . , YN ∈ ZL

2 , i.e.,

Yi = RSix⊕ Zi, i ∈ {1, . . . , N}, (1)

where the errorZi ∼ Ber(p)L, the product measure ofL
Bernoulli variables with parameterp, ⊕ denotes addition mod
2, R is the index cyclic shift operator that shifts a vector one
element to the right(x1, . . . , xN ) 7→ (xN , x1, . . . , xN−1), RSi

corresponds to applyingSi times the operatorR and the shifts
Si ∼ U(ZL), the uniform distribution inZL.

The motivation to study this problem comes from the
classical multireference alignment problem, where the signal
and observations are real valued vectors, and the error is Gaus-
sian white noise. Several algorithms were recently proposed
to solve the problem, including angular synchronization [1],
semidefinite program relaxations of the maximum likelihood
decoder [2] and reconstruction using the bispectrum [3]. This
problem is also an instance of a larger class of problems,
called Non-Unique Games, which also includes the orientation
estimation problem in cryo-electron microscopy [4].

Despite these advancements in algorithmic development, not
much progress has been made in understanding the fundamen-
tal limits of signal recovery. The recent paper [5] investigated
fundamental limits of shift recovery in multireference align-
ment, but not those of signal recovery. We note that estimating
the shifts is impossible at low signal-to-noise ratio (SNR)
even if an oracle presents us with the true signal. Also, the
goal of many applications is signal recovery rather than shift
estimation. Our paper aims to fill the gap on signal recovery,
by studying the Boolean case. We show here that signal
recovery is possible at arbitrarily low SNR, if sufficientlymany
measurements are available, and quantify this tradeoff.

In BMA the search space is finite, and the maximum A
posteriori decoder (MAP) minimizes the probability of error.
Our main contribution is an expression for the error exponent
of MAP, in the low SNR regime, given in Theorems III.2 and
III.3. Our results imply how many measurements are needed,
as a function of the SNR, in order to accurately estimate the
signal.

The expression depends on the autocorrelations of the
signal, defined in (6). Our results connect the order of au-
tocorrelations needed to reconstruct the signal to the number
of measurements needed to estimate the signal. This has some
connections with previous theoretical work on uniqueness of
the bispectrum [6].

We also consider some generalizations of the original
problem in order to model some aspects of multireference
alignment that arise in applications, such as the introduction
of deletions.

II. BMA P ROBLEM

In the BMA problem, the errors are i.i.d. Bernoulli of
parameterp. If p = 1

2 , then the observationsYi ∼ Ber(12 )
L,

regardless of the original signal, and signal recovery is impos-
sible. This corresponds to the case when SNR= 0. On the
other hand,p = 0 or 1 corresponds to the noiseless case. Thus
we define

SNR :=

(

p− 1

2

)2

. (2)

In contrast to proposing an algorithm to solve the BMA
problem, our paper focuses on its sample complexity, in the
regime whenp → 1

2 and SNR→ 0.
Note that the observationsYi, i ∈ [N ], given the signal

x, are i.i.d., since both the shiftsSi and the errorsZi are
i.i.d. For that reason we will drop the indexi when it is more
convenient. We rewrite (1), denoting byx(j) the j-th entry of
x.

Y (j) = x(S + j)⊕ Z(j), j ∈ ZL, (3)

where ’+’ is addition modL.
Our paper also considers the sample complexity of the

following variations of the basic BMA problem:

• BMA Problem with consecutive deletions:In this case the
measurementsY1, . . . , YN are inZK

2 , with K ≤ L, and

Y (j) = x(S + j)⊕ Z(j), j ∈ ZK . (4)
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WhenK = L we obtain the original BMA problem.
• BMA Problem with known deletions:Let V ⊂ ZL be an

ordered set of non-deletions, i.e. the set of deletions is
ZL\V . Now the measurementsY1, . . . , YN are in ZK

2 ,
with K = |V |, and:

Y (j) = x(S + Vj)⊕ Z(j), ∀j ∈ ZK , (5)

whereVj denotes thej-th element ofV . WhenV = [K]
we recover the BMA problem with consecutive deletions.

• BMA Problem (and variations) with non uniform rota-
tions:Similar to the previous problems, but now the shifts
follow some distributionξ in ZL.

These variations are motivated by problems similar to
multireference alignment. The case of possible deletions is
intended to model instances where the observations are only
partial, whereas the extension to non-uniform shifts attempts
to represent a non-symmetric version of the problem.

III. R ESULTS

We start by introducing the following notion of autocorre-
lation of a signal that is central to our main results.

Definition III.1. The(ξ,k)-autocorrelation ofx, with respect
to a distributionξ in ZL and k = (k1, k2, . . . , kd) ∈ Zd

L is
defined as

Aξ,k(x) :=
L∑

s=1

ξ(s)x(k1 + s) · · ·x(kd + s). (6)

We refer tod = |k| as the order of the auto-correlation. When
ξ ∼ U(ZL), we simply writek-autocorrelation andAk. Notice
Ak is shift invariant, that isAk(x) = Ak(R

sx), and in this
case we may assumek1 = 0.

We define the minimum autocorrelation order necessary to
distinguishx1 and x2 underξ andV as

tξ,V (x1, x2) := inf{d : Aξ,k(x1) 6= Aξ,k(x2),k ∈ V d}, (7)

where V d denotes the vectors inZd
2 with entries in V .

The minimum autocorrelation order necessary to describe all
signals inX is defined as

tξ,V (X ) := max
x1,x2∈X
x1 6=x2

tξ,V (x1, x2). (8)

Given a prior distribution on the signalsPX , with support
X , denote byX the random variable with distributionPX .
Given an algorithm for BMA the probability of error is defined
as

P (X̂ 6= X) =
∑

xi∈X

P (X̂ 6= xi)PX(xi), (9)

whereX̂ is the answer given by the algorithm. In the BMA
problem the search space is finite, thus MAP minimizes the
probability of error (9). We obtain results that do not depend
on the prior distribution, they depend only on its support.

Theorem III.2. Consider the BMA problem with known
deletionsZL\V and shift distributionξ. Let X ⊂ ZL

2 be the
support of the prior distribution of the signals andµx the

conditional distribution inZK
2 of the observationsY given

the signalx, whereK = |V |. The probability of error of the
MAP estimator, denoted byPe, has the following asymptotic
behavior

lim
N→∞

1

N
logPe = min

x1,x2∈X
x1 6=x2

C(µx1 , µx2), (10)

with

C(µx1 , µx2) =

24t−3

t!
SNRt

∑

k∈V t

(

Aξ,k(x1)−Aξ,k(x2)
)2

+O(SNRt+1),

(11)

and t = tξ,V (x1, x2).

The theorem implies that the exponent on SNR istξ,V (X ).
In the original problem, with uniform shifts and no deletions,
the recovery of the original signal is possible only up to a
shift, i.e. we can only recoverRkx, wherex is the original
signal, andk is some shift inZL. For that reason, we consider
X to have exactly one element of each class of all the shifts
of a signal, i.e., there are no two elements inX where one is
a shift of the other (for example, ifL is prime, then there are
2L − 2 such elements).

Corollary III.3. Consider the original problem, withV = [L],
ξ ∼ U(ZL) and X as defined above. By inspection one can
obtain the error exponent forL ≤ 5. For L ≥ 6, we either
have

lim
N→∞

1

N
logPe =

{
210

L
SNR3 +O(SNR4)

O(SNR4)
(12)

Also, the first case occurs whenL is prime, and the second
whenL ≥ 12 and is even. The other values ofL remain open.

IV. PROOF TECHNIQUES

Proof of Theorem III.2: The proof consists of two main
parts. The next theorem gives a formula to the error exponent
and claim IV.2 makes the connection with autocorrelations.

Theorem IV.1. Consider the BMA problem with known dele-
tions ZL\V and shift distributionξ. Let X ⊂ ZL

2 be the
space of possible signals andµx := PY |X(·|x) the conditional
distribution in ZK

2 of the observations given the signalx.
The probability of error of the MAP estimator(Pe) has the
following asymptotic behavior

lim
N→∞

1

N
logPe = min

x1 6=x2∈X
C(µx1 , µx2), (13)

with

C(µx1 , µx2) =

(
1
2 − p

)2s

8(s!)2

∑

y∈Z
K
2

(

µ
(s)
x1

(
y; 12

)
− µ

(s)
x2

(
y; 1

2

))2

µx1

(
y; 1

2

)

+O

(
1

2
− p

)2s+2

, (14)



whereµ(m)
x (y; p) denotes them-th derivative ofµx(y; p) in p,

i.e. the derivative of the conditional distribution iny givenx
in order of the Bernoulli parameterp, and

s(x1, x2) := inf

{

m : µ(m)
x1

(

y;
1

2

)

6= µ(m)
x2

(

y;
1

2

)

, y ∈ ZK
2

}

.

This theorem follows from Theorems1 and 2 in [7].
Theorem1 is a corollary of Sanov Theorem [8], which leads
to (13). However the expression obtained by Theorem1 is
rather complex and not very interpretable. In Theorem2 [7]
we Taylor expand (13) and obtain a useful characterization in
instances where the SNR is small. We use this expression to
obtain (14).

Claim IV.2. If µ(m)
x1

(
y; 12

)
= µ

(m)
x2

(
y; 12

)
for all m < n and

y ∈ ZK
2 , then the following expressions are equal:

∑

y∈Z
K
2

(

µ
(n)
x1

(
y; 12

)
− µ

(n)
x2

(
y; 12

))2

µx1

(
y; 12

) (15)

and

24nn!
∑

k∈V L

(

Aξ,k(x1)−Aξ,k(x2)
)2

. (16)

In fact, since the expressions(15) and(16) are both sum of
squares, the claim implies thattξ,V (x1, x2) = s(x1, x2), what
concludes the proof of theorem III.2.

Proof of Claim IV.2: Denote byx(V ) the vector inZK
2

(K = |V |) that consists of the values ofx with indices inV ,
i.e. the j-th element ofx(V ) is x(Vj). Also, givens ∈ ZL

denote bys+ V the ordered set corresponding to the sum of
each element inV with s mod L. Equation (5) can then be
rewritten, as

Y = x(S + V )⊕ Z

Then sinceZ ∼ Ber(p)L, we have

µx(y; p|S = s) = (1 − p)K−w(y⊕x(s+V ))pw(y⊕x(s+V )),

wherew denotes the Hamming weight, and sinceS ∼ ξ

µx(y; p) =

L∑

s=1

ξ(s)(1 − p)K−w(y⊕x(s+V ))pw(y⊕x(s+V )).

(17)
In the statement of the theorem we havex ∈ ZL

2 , however it
is convenient for the proof to consider the entries ofx to be
−1, 1, changed by the rule:a 7→ 1− 2a. We will call

u := 1− 2x ∈ ΣL
2 (18)

the corresponding element ofx with ±1 values, whereΣ2 :=
{−1, 1}, andv := 1−2y. In analogy to the Hamming weight,
we define

W (u) :=

L∑

s=1

u(s) = L− 2w(x). (19)

With this we rewrite (17)

µu(v; p) =

L∑

s=1

ξ(s)(1 − p)
K
2 +

W (v⊕u(s+V ))
2 p

K
2 −

W (v⊕u(s+V ))
2 ,

(20)
whereµu(v; p) := µx(y; p). For simplicity of notation denote

Wv,u,s := W (v ⊕ u(s+ V )).

The claim is now proved by induction onn. By properties of
Jacobi polynomials [9] we have

(

p
K
2 − b

2 (1 − p)
K
2 + b

2

)(m)

|p= 1
2

= (−2)m−KPm(b),

wherePm is a polynomial with the following property

Pm(b) = bm +Qm(b), (21)

whereQm has degree at mostm−1, andQ0 ≡ Q1 ≡ 0. Thus

µ(m)
u

(

v;
1

2

)

= (−2)m−K

L∑

s=1

ξ(s)Pm(Wv,u,s). (22)

Then whenm = 1

∑

v∈ΣK
2

(

µ
(1)
u1

(
v; 1

2

)
− µ

(1)
u2

(
v; 1

2

))2

µu1

(
v; 1

2

)

= 22−K
∑

v∈ΣK
2

[
L∑

s=1

ξ(s) (Wv,u1,s −Wv,u2,s)

]2

.

Now, by the induction hypothesis ifµ(k)
u1

(
v; 1

2

)
= µ

(k)
u2

(
v; 1

2

)

for all k ≤ n− 1, v ∈ ΣK
2

L∑

s=1

ξ(s)Qn(Wv,u1,s) =

L∑

s=1

ξ(s)Qn(Wv,u2,s),

for all v ∈ ΣK
2 sinceQn has degree at mostn − 1. Thus by

(21) and (22)

∑

v∈ΣK
2

(

µ
(n)
u1

(
v; 1

2

)
− µ

(n)
u2

(
v; 1

2

))2

µu1

(
v; 1

2

) =

22n−K
∑

v∈ΣK
2

[
L∑

s=1

ξ(s)
(
Wn

v,u1,s
−Wn

v,u2,s

)

]2

(23)

Now splitting the square of the sum on the RHS into a product
of two sums and expanding, we obtain terms of the form

L∑

s1=1

L∑

s2=1

ξ(s1)ξ(s2)(−1)α+β
∑

v∈ΣK
2

Wn
v,uα,s1

Wn
v,uβ ,s2

, (24)

whereα andβ are1 or 2. By Lemma IV.3 we get
∑

v∈ΣK
2

Wn
v,uα,s1

Wn
v,uβ ,s2

=

2K
∑

A∈M[2n]

A is even

CA

|A|
∏

i=1





K∑

k=1

|ai|∏

j=1

uaij
(k)



 , (25)



Whereuaij
is uα(s1 + V ) if aij ≤ n, and isuβ(s2 + V )

otherwise. So, since|ai| is even, asA is an even partition,
and the entries ofuaij

are±1,

K∑

k=1

|ai|∏

j=1

uaij
(k) =

∑

k∈V

uα(s1 + k)uβ(s2 + k)

if |ai ∩ [n]| is odd, and it isK otherwise. Then

∑

v∈ΣK
2

Wn
v,uα,s1

Wn
v,uβ ,s2

=

Rn

(
∑

k∈V

uα(s1 + k)uβ(s2 + k)

)

,

whereRn is a polynomial with degreen (with coefficients
possibly depending onK andn), andR1(b) = 2kb. It cannot
have degreen+ 1 since|A| ≤ n, since it is an even partition
of [2n]. For it to be a power of ordern, we need|A| = n, so
|ai| = 2 for i = 1, . . . , n, thusCA = 1, by the Lemma. Also
|ai ∩ [n]| must be odd for alli, thus |ai ∩ [n]| = 1. There
are exactlyn! partitions with this property, so the leading
coefficient ofRn is 2Kn!. We also have

L∑

s1=1

L∑

s2=1

ξ(s1)ξ(s2)

(
∑

k∈V

uα(s1 + k)uβ(s2 + k)

)n

=

L∑

s1=1

L∑

s2=1

ξ(s1)ξ(s2)
∑

k∈V n

n∏

i=1

uα(s1 + ki)uβ(s2 + ki)

=
∑

k∈V n

Aξ,k(uα)Aξ,k(uβ), (26)

Mimicing the argument used in (23), the equation will be true
for n = 1, sinceR1(b) = 2kb, and by the induction hypothesis
only the leading coefficient ofRn is of interest, since the other
terms will cancel with each other.

∑

v∈ΣK
2

[
L∑

s=1

ξ(s)
(
Wn

v,u1,s
−Wn

v,u2,s

)

]2

=

2kn!
∑

k∈V n

(Aξ,k(u1)−Aξ,k(u2))
2 (27)

Now through some algebraic manipulation, and using again
the argument of the leading coefficient, if|k| = n, then

∑

k∈V n

(Aξ,k(u1)−Aξ,k(u2))
2
=

22n
∑

k∈V n

(Aξ,k(x1)−Aξ,k(x2))
2 (28)

This together with (23) and (27) concludes the proof.

Lemma IV.3. For any partitionA = {a1, . . . , a|A|} of the set
{1, 2, . . . ,m}, denote byaij thej-th entry ofai andM[m] the

set of all such partitions. Ifu1, . . . , um ∈ ΣK
2

∑

v∈ΣK
2

W (u1 ⊕ v) · · ·W (um ⊕ v) =

2K
∑

A∈M[m]

A is even

CA

|A|
∏

i=1





K∑

k=1

|ai|∏

j=1

uaij
(k)



 , (29)

where A is even if all |ai| are even fori ∈ {1, . . . , |A|}.
Moreover,CA is a constant that depends only on the partition
A and is always1 if |ai| = 2 for all i ∈ {1, . . . , |A|}.

Proof: Recall (19). We haveW (u ⊕ v) =
K∑

k=1

u(k)v(k)

and
∑

v∈ΣK
2

W (u1 ⊕ v) · · ·W (um ⊕ v)

=

K∑

k1=1

· · ·
K∑

km=1

u1(k1) · · ·um(km)
∑

v∈ΣK
2

v(k1) · · · v(km)

(30)

Supposek1 6= ki for i = 2, . . . ,m. Then
∑

v∈ΣK
2

v(k1)v(k2) · · · v(km)

=
∑

v∈ΣK
2

v(k1)=1

v(k1)v(k2) · · · v(km) +
∑

v∈ΣK
2

v(k1)=−1

v(k1)v(k2) · · · v(km)

which is0. This also occurs ifk1 = k2 = · · · = kj 6= ki, i > j

andj is odd. For this not to occur, the classes ofki’s that are
equal to each other are required to have all an even number
of elements, and in that case, the sum is2K . By grouping the
ki’s, (30) becomes

2K
∑

A∈M[m]

A is even

K∑

k1,...,k|A|=1
all distinct

|A|
∏

i=1

|ai|∏

j=1

uaij
(ki), (31)

Using a combinatorial argument we can rewrite the (31)
without the ’all-distinct’ condition, at the cost of a constant
CA, which is 1 when |ai| = 2 for i ∈ {1, . . . , |A|}.

2K
∑

A∈M[m]

A is even

CA

K∑

k1,...,k|A|=1

|A|
∏

i=1

|ai|∏

j=1

uaij
(ki) =

= 2K
∑

A∈M[m]

A is even

CA

|A|
∏

i=1





K∑

k=1

|ai|∏

j=1

uaij
(k)





Proof of Corollary III.3: We first prove equation (12).
Recall (6), and denote by

Bm(x1, x2) :=
∑

k∈Z
m
L

(

Ak(x1)−Ak(x2)
)2



and
Bm(L) := min

x1 6=x2∈X
Bm(x1, x2)

Note that Bm(x1, x2) = 0 if m < tξ,V (x1, x2) by (7).
For convenience letB(x1, x2) := Btξ,V (x1,x2)(x1, x2) and
B(L) := Btξ,V (X )(L) . Using this notation we rewrite (10)
and (11)

lim
N→∞

1

N
logPe = B(L)

24tL−3

tL!
SNRtL +O

(
SNRtL+1

)

Now equation (12) is equivalent to havingtξ,V (X ) ≥ 3 and
B3(L) either 12

L
or 0. Turns out, forL ≥ 6, if we take

x∗
1 = (1, 1, 0, 1, 0, . . . , 0

︸ ︷︷ ︸

L−4 zeros

) andx∗
2 = (1, 0, 1, 1, 0, . . . , 0

︸ ︷︷ ︸

L−4 zeros

),

then tξ,V (X ) ≥ tξ,V (x
∗
1, x

∗
2) = 3 andB3(L) ≤ B(x∗

1, x
∗
2) =

12
L

. Also we cannot have12
L

> B3(L) > 0. This implies there
existsx1 andx2 in X such that12

L
> B(x1, x2) > 0. Since it

is positive, there isk∗ ∈ Z3
L such thatAk∗(x1) 6= Ak∗(x2).

But by definition (6), sinceξ(s) = 1
L

, LAk∗(x) is an integer
for x ∈ ZL

2 , andL2(Ak∗(x1)−Ak∗(x2))
2 ∈ Z.

Now by the definition we also haveAσ(k∗)(x) = Ak∗(x),
whereσ permutes the entries ofk∗. Also, for s ∈ ZL, let
s+ k

∗ := (s+ k∗1 , s+ k∗2 , s+ k∗3), thenAs+k∗(x) = Ak∗(x).
There is6 permutations andL possible values fors ∈ ZL,
so B(x1, x2) is an integer multiple of6

L
. (we can also have

not trivial s and σ such thats + k
∗ = σ(k∗) but that case

also has the property mentioned). However we cannot have
B(x1, x2) = 6

L
. That means there exists only onek∗ ∈ Z3

L

(with permutations and shifts) such thatAk∗(x1) 6= Ak∗(x2).
Then
∑

k∈Z
3
L

Ak(x1)−Ak(x2) = 6L(Ak∗(x1)−Ak∗(x2)) 6= 0 (32)

On the other hand

∑

k∈Z
3
L

Ak(x1) =
1

L

L∑

s=1

∑

k∈Z
3
L

x(k1 + s)x(k2 + s)x(k3 + s)

= L3A0(x1)
3,

whereA0 denotesk-autocorrelation withk = 0. SincetL > 1,
A0(x1) = A0(x2), so equation (32) must be0, and equation
(12) follows by contradiction. Now ifL ≥ 12 is even, choose

x∗
1 = (1, 1, 0, 1, . . . , 1

︸ ︷︷ ︸
L
2 −3 ones

, 0, 0, 1, 0, . . . , 0
︸ ︷︷ ︸
L
2 −3 zeros

)

and x∗
2 the vector obtained by reversing the entries ofx∗

1.
Since one is the reverse of the other, they have same1 and
2 order autocorrelations. Recall (18) and (6) and notice that
in this case bothAk(u1) andAk(u2) are0 when |k| is odd,
since half of the signal is the symmetric of the other half,
i.e. u1({1, . . . , L

2 }) = −u1({L
2 +1, . . . , L}). Now because of

(28) we haveAk(x1) = Ak(x2) when |k| = 3, so tL ≥ 4,
andB3(L) = 0.

Finally, letL ≥ 6 be prime. We prove by contradiction that
tL = 3 andB3(L) =

12
L

. If this is not true, then it existsx∗
1

andx∗
2 such thattx∗

1 ,x
∗
2
> 3, so

Ak(x
∗
1) = Ak(x

∗
2), k ∈ Zn

L, n ≤ 3 (33)

By Theorem 2 of paper [6], if the Fourier coefficients ofx∗
1

andx∗
2 are non-zero, then equation (33) implies one is a shift

of the other. Denote by{r1j }j∈ZL
and {r2j}j∈ZL

the Fourier
coefficients ofx∗

1 andx∗
2, respectively, which are given by

rαj =
1√
L

L∑

s=1

xα(s)ω
−js
L , α ∈ {1, 2}, j ∈ ZL, (34)

=
1√
L

∑

s:xα(s)=1

ω
−js
L , (35)

whereωL is theL’th root of unity. rα0 = 0 implies x∗
α only

has zeros, andrαj is 0 only if w−j
L is a root of the polynomial

∑

s:xα(s)=1

bs (36)

However, sinceL is prime, the minimal polynomial ofw−j
L

in Q[x], for L > j > 0, is 1 + x + · · · + xL−1 [10], so this
polynomial must divide (36). Thusx∗

1 andx∗
2 must be the all

zeros and all ones signals, but this signals also do not satisfy
(33).
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