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Abstract

One of the difficulties in 3D reconstruction of molecules from im-
ages in single particle Cryo-Electron Microscopy (Cryo-EM), in addi-
tion to high levels of noise and unknown image orientations, is het-
erogeneity in samples: in many cases, the samples contain a mixture
of molecules, or multiple conformations of one molecule. Many algo-
rithms for the reconstruction of molecules from images in heteroge-
neous Cryo-EM experiments are based on iterative approximations of
the molecules in a non-convex optimization that is prone to reaching
suboptimal local minima. Other algorithms require an alignment in
order to perform classification, or vice versa. The recently introduced
Non-Unique Games framework provides a representation theoretic ap-
proach to studying problems of alignment over compact groups, and
offers convex relaxations for alignment problems which are formulated
as semidefinite programs (SDPs) with certificates of global optimal-
ity under certain circumstances. In this manuscript, we propose to
extend Non-Unique Games to the problem of simultaneous alignment
and classification with the goal of simultaneously classifying Cryo-EM
images and aligning them within their respective classes. Our proposed
approach can also be extended to the case of continuous heterogeneity.
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1 Introduction

A Non-Unique Game (NUG) is an optimization problem or a statistical
estimation problem, of inferring n elements of a group g1, . . . , gn ∈ G by
minimizing an expression of the form

argmin
g1,...,gn∈G

n
∑

i,j=1

fij(gig
−1
j ). (1)

where fij : G → R are penalty functions for particular pairwise relations
gig

−1
j between elements. This problem arises in Multireference Alignment

discussed in [1], and in more general settings discussed in [2]; A convex
relaxation of the problem, proposed in [2], can be solved using Semidefi-
nite Programming (SDP). One of the applications where NUGs and associ-
ated algorithms have been of particular interest is Cryo-electron microscopy
(Cryo-EM) [3, 4], where multiple noisy 2D projections (images) from un-
known directions of an unknown 3D molecule must be aligned over SO(3),
as a step in reconstructing the molecule.

Cryo-EM has been named Method of the Year 2015 by the journal Nature
Methods due to the breakthroughs that the method facilitated in mapping
the structure of molecules that are difficult to crystallize. One of the dif-
ficulties in Cryo-EM, which has been noted, for example, in the surveys
accompanying the Nature Methods announcement [5, 6, 7], is heterogene-
ity in the sample: in practice many samples contain two (or more) distinct
types of molecules (or different conformations of the same molecule). Algo-
rithms for Cryo-EM processing in the presence of heterogeneity (for example,
[8, 9, 10, 11, 12, 13]) must therefore determine both the class of each im-
age, and its alignment with respect to other images of the same class; this
often requires some initial educated guess of the structure of the molecules
in the sample, iterative estimations of the structure, alignment and classifi-
cation, or some method of performing one of the two tasks of alignment and
classification before the other task.

In this manuscript we propose to solve the classification and alignment
problems simultaneously. This approach is based on the observation that
both alignment and classification are problems over compact groups, and
that the direct product of these groups is also a compact group.

We reformulate the problem as an optimization problem over the direct
product of the groups, and reduce it to a NUG. In addition, we discuss
some of the symmetries in the problem, which are exploited to reduce the
size of the optimization problem. Furthermore, we propose an approach for
controlling the size of the classes.
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The approach can be generalized to simultaneous alignment and parametriza-
tion, in the case of continuous heterogeneity (which will be discussed in a
future paper).

This manuscript is organized as follows. Section 2 summarizes some
standard results used in this manuscript, as well as some previous work on
NUGs. Section 3 contains a more detailed description of the problem and
applications, and the derivation of the main arguments in this manuscript.
In Section 4 we propose algorithms for simultaneous alignment and classifi-
cation. Section 5 contains experimental results for the case of simultaneous
alignment and classification on SO(2). In Section 6 we summarize our con-
clusions and briefly discuss generalizations and future work.

2 Preliminaries

2.1 The Cryo-EM Problem

Electron Microscopy is an important tool for recovering the 3D structure of
molecules. Of particular interest in the context of this manuscript is Sin-
gle Particle Reconstruction (SPR), and more specifically, Cryo-EM, where
multiple noisy 2D projections, ideally of identical particles in different orien-
tations, are used in order to recover the 3D structure. The following formula
is a simplified imaging model of SPR

(PRX ) (x, y) =

∫

z
X (Rr)dz (2)

where r = (x, y, z), R is some random rotation matrix in SO(3), X is the
scattering density of the molecule, and P is the projection operator. In other
words, the model is that the molecule is rotated in a random direction, and
the image obtained is the top-view projection of the rotated molecule, inte-
grating out the z axis. Indeed, one of the defining properties of SPR and
Cryo-EM is that the orientation R of the molecule in each image is un-
known, unlike other tomography techniques, where the rotation angles are
recorded with the measurements. The analysis of Cryo-EM images is fur-
ther complicated by extremely high levels of noise, far exceeding the signal
in magnitude, which makes it difficult not only to analyze the particles in
the images, but also to locate the particles in the micrographs produced.
Sample images are presented in Figure 1. More detailed discussions of these
challenges, and various other challenges, such as the contrast transfer func-
tions (CTF) applied to the images in the imaging process, can be found, for
example, in [3].
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The reconstruction of the molecule (or, more precisely, the density X )
from the images obtained in Cryo-EM requires an estimate of the rotation
angles of the images. The Fourier Slice Theorem (see, for example, [14])
provides a way to estimate these rotations from the common lines between
the images (see, for example [15, 16, 17, 18], and Figure 2). In the context
of this manuscript, we assume that for every pair of images i and j, we have
some function fij(g) which corresponds to the “incompatibility” between the
images i and j for every relative orientation g ∈ SO(3); this function is a
measure of the discrepancy between the radial line in the Fourier transform
of image i and the radial line in the Fourier transform of image j which
would have corresponded to the common line between the plane of i and
the plane of j, if the relative orientation of the two images had been g.
Had there not been noise, we would have expected that fij(gij) = 0 for the
true relative orientation gij between image i and image j, and fij(g) > 0
for every other g (in fact, fij(g̃ij) = 0 for every g̃ij that yields the same
common lines for the pair of images as gij since various rotations can yield
the same common line. The ambiguity is resolved, up to reflections, only by
adding a third image). In practice, due to the high levels of noise, fij need
not be 0 at gij , and in fact, the value of fij may even not be minimized at
gij . However, the expected value of fij is lower for the true gij than it is for
other relative rotations. For more details about this “penalty” function in
the context of this manuscript, see [2].

2.2 The Heterogeneity Problem in Cryo-EM

So far, we have assumed that all the molecules being imaged in an exper-
iment are identical copies of each other, so that all the images are projec-
tions of identical copies, from different directions. However, in practice, the
molecules in a given sample may differ from one another for various reasons.
For example, the sample may contain several types of different molecules
due to some contamination or feature of the experiment. Alternatively, the
molecules which are studied may have several different conformations or
states, or some local variability (see example in Figure 3). The heterogene-
ity may be discrete (e.g. for distinct different molecules) or continuous (for
molecules with continuous variability).

When there is heterogeneity in the samples, high resolution reconstruc-
tion of the molecules requires not only an estimate of the rotation of each
image, but also classification of the images into clusters, each corresponding
to a different molecule which is to be reconstructed separately. Some of the
existing SPR analysis methods rely on some prior knowledge of the under-
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Figure 1: Left: two raw experimental images of TRPV1, available via EMDB
5778 [19]. Right: computed projections of TRPV1 which are the closest to
the images on their left.

lying molecules and on iterative processes of estimating the structure of the
molecules and matching images to those estimates (e.g. [20, 10]), and others
require some method of recovering the rotation of the images although the
images reflect mixtures of projections of different molecules (e.g. [12, 13]).
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Figure 2: Common Lines in Cryo-EM. The left most images Ii and Ij are
examples of projections of a molecule density X ; each projection is obtained
from a different direction. At the center, are the Fourier transforms Îi and
Îj of those images, overlaid with radial lines. The lower left sub-figure is a
visualization of the two slices of the 3D Fourier transform of the 3D density
X , corresponding to Îi and Îj; the two slices intersect each other, so that
there is a line in Îi that is identical to a line in Îj (assuming no noise). Indeed,
the point (xij , yij) which lies along this common line in Îi is identical to the
point (xji, yji) which lies along this common line in Îj . A more detailed
discussion of common lines is available, for example, in [15, 16, 17, 18]
.
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Figure 3: Classical (left) and hybrid (right) states of 70S E. Coli ribosome
(image source: [21]).
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Table 1: Table of Notation

A∗ the complex conjugate transpose of the matrix A
ZM the cyclic group of order M

G × A the direct product between group G and group A
g ◦ f the action of g ∈ G on a function f ∈ L2(Y): (g ◦ f)(x) =

f(g−1x)
tr(A) the trace of the matrix A
A⊗B the Kronecker (tensor) product of the matrix A and the

matrix B

2.3 Irreducible Representations of Groups

The purpose of sections 2.3, 2.4 and 2.5 is to briefly review some standard
results in group theory and harmonic analysis; more detailed discussions of
these facts can be found, for example, in [22, 23, 24].

Suppose that G is a compact group and f ∈ L2(G), then by the Peter-
Weyl Theorem [25], the generalized Fourier expansion of f is

f(g) =
∑

k

dktr
(

f̂ (k)ρk(g)
)

, (3)

where the matrices ρk(g) are the irreducible representations of G, dk is the di-
mensionality of the kth representation, and the matrices f̂ (k) are the Fourier
coefficients of f , defined by the formula

f̂ (k) =

∫

G
f(g)ρ∗k(g)dg, (4)

with dg the Haar measure on G normalized so that

∫

G
dg = 1. (5)

Remark 1. For abelian groups, such as SO(2) (shifts on a circle), dk = 1
for all k. However, in SO(3), which is of particular interest in the Cryo-EM
application, dk = 2k + 1 with k = 0, 1, 2, . . ..
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The integration of any irreducible representation with respect to the
Haar measure yields the zero matrix, except for the case of the trivial con-
stant irreducible representation ρ0:

∫

G
ρk(g)dg = 0 ∀k 6= 0. (6)

The following are well known properties of irreducible and unitary rep-
resentations of compact groups:

ρk(g1g2) = ρk(g1)ρk(g2), (7)

ρk(g
−1) = ρ∗k(g). (8)

2.4 Special Cases: SO(2) and ZM

In the special case where G = ZM (discrete cyclic group of M elements),
there is a finite set of M irreducible representations, and all the irreducible
representations are of dimensionality one (scalar rather than a matrix). The
irreducible representations {ηm}M−1

m=0 of ZM are

ηm(a) = ei2πam/M , a = 0, 1, . . . ,m− 1. (9)

The Fourier coefficients of a function over ZM are simply the discrete Fourier
transform (DFT) of the function (with the appropriate normalization (5)).

In the special case where G = SO(2), there is an infinite set of irreducible
representations, and all the irreducible representations are of dimensionality
one. The irreducible representations {ηk}

∞
k=−∞ of SO(2) are

ηk(a) = eiak , a ∈ [0, 2π). (10)

Remark 2. For the sake of brevity, and with a small abuse of notation, we
will use elements of the groups ZM and SO(2) and integers and angles inter-
changeably. For example, in (10), the variable “a” can denote an element of
SO(2) or an angle. Therefore, a1a

−1
2 would mean the same as a1 − a2, with

the former in group notation and the latter in angle notation; a = e (where
e is the identity element) in group notation means the same as a = 0 in
angle notations. The appropriate interpretation, group element or integers
and angles, is obvious from the context or does not matter.
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2.5 Direct Products of Groups

The direct product G ×A of two compact groups G and A is also a compact
group, which has the elements {(g, a) : g ∈ G, a ∈ A}. In this manuscript,
we are particularly interested in the case A = ZM .

The product of two elements of G ×A is defined in terms of elements in
G and A by the following formula

(gi, ai)(gj , aj) = (gigj, aiaj) . (11)

It follows that
(gi, ai)(gj , aj)

−1 =
(

gig
−1
j , aia

−1
j

)

. (12)

If ηm(a) is an irreducible representation of A and ρk(g) is an irreducible
representation of G, then ψk,m((g, a)), defined by the formula

ψk,m((g, a)) = ρm(g) ⊗ ηm(a), (13)

is an irreducible representation of G × A. The irreducible representations
ψk,m((g, a)) of G ×ZM are summarized in Table 2; in Table 3 we substitute
η0(a) = 1 and ρ0(g) = 1 for the trivial irreducible representations of A
and G respectively. By Remark 1, the irreducible representations of abelian
groups, like the irreducible representations ηm of ZM , are one dimensional,
so in this special case, the tensor product ⊗ can be replaced with the trivial
product between the scalar valued function ηm(a) and the (possibly) matrix
valued function ρk(g), as summarized in Table 4.

ψk,m ((g, a)) m=0 m=1 · · ·
η0(a) η1(a) · · ·

k = 0 ρ0(g) ρ0(g) ⊗ η0(a) ρ0(g) ⊗ η1(a) · · ·
k = 1 ρ1(g) ρ1(g) ⊗ η0(a) ρ1(g) ⊗ η1(a) · · ·
k = 2 ρ2(g) ρ2(g) ⊗ η0(a) ρ2(g) ⊗ η1(a) · · ·
k = 3 ρ3(g) ρ3(g) ⊗ η0(a) ρ3(g) ⊗ η1(a) · · ·
...

...
...

. . .

Table 2: Irreducible representations of G × A
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ψk,m ((g, a)) η0(a) = 1 η1(a) · · ·

ρ0(g) = 1 1 η1(a) · · ·
ρ1(g) ρ1(g) ρ1(g) ⊗ η1(a) · · ·
ρ2(g) ρ2(g) ρ2(g) ⊗ η1(a) · · ·
ρ3(g) ρ3(g) ρ3(g) ⊗ η1(a) · · ·
...

...
...

. . .

Table 3: Product irreducible representations, after substituting the trivial
irreducible representations

ψk,m ((g, a)) η0(a) = 1 η1(a) · · · ηM−1(a)

ρ0(g) = 1 1 η1(a) · · · ηM−1(a)
ρ1(g) ρ1(g) ρ1(g)η1(a) · · · ρ1(g)ηM−1(a)
ρ2(g) ρ2(g) ρ2(g)η1(a) · · · ρ2(g)ηM−1(a)
ρ3(g) ρ3(g) ρ3(g)η1(a) · · · ρ3(g)ηM−1(a)
...

...
...

. . .
...

Table 4: Product irreducible representations in the special case of G × ZM ,
after plugging in the trivial irreducible representations

11



2.6 Non-Unique Games (NUG)

Let G be a compact group, and for every 1 ≤ i, j ≤ n let fij ∈ L2(G);
Non-Unique Games (NUG) are problems of the form (1).

Remark 3. The solutions to Non-Unique Games are not unique, in the
sense that if g1, . . . , gn is a solution, then, g1g, . . . , gng is also a solution for

any g ∈ G, because fij
(

gig(gjg)
−1

)

= fij

(

gig
−1
j

)

. The solution is therefore

unique at most up to a global group element; the relative pairwise ratios
gig

−1
j may be unique.

2.6.1 Fourier Expansion of a NUG, and a Matrix Form

Using the Fourier expansion (see (3)) of fij,

fij(gig
−1
j ) =

∞
∑

k=0

dktr
(

f̂ijρk(gig
−1
j )

)

, (14)

we rephrase (1) in the Fourier expansion form:

argmin
g1,...,gn∈G

n
∑

i,j=1

∞
∑

k=0

dktr
(

f̂
(k)
ij ρk(gig

−1
j )

)

. (15)

For example, in the case of ZM , the Fourier coefficients of fij are given by
its DFT, and the NUG becomes

argmin
a1,...,an∈Z

n
∑

i,j=1

M−1
∑

m=0

f̂
(k)
ij ei2πm(ai−aj)/M . (16)

Plugging (7) into (15) yields

argmin
g1,...,gn∈G

n
∑

i,j=1

∞
∑

k=0

dktr
(

f̂
(k)
ij ρk(gi)ρ

∗
k(gj)

)

. (17)

The same expression can be rewritten in a block matrix form:

argmin
g1,...,gn∈G

∞
∑

k=0

tr
(

F̂ (k)X(k)
)

, (18)

where,

X(k) =







ρk(g1)
...

ρk(gn)













ρk(g1)
...

ρk(gn)







∗

, F̂ (k) = dk







f̂
(k)
11 · · · f̂

(k)
n1

...
. . .

...

f̂
(k)
1n · · · f̂

(k)
nn






. (19)
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Indeed, the i, j block of the matrix X(k), which we denote by X
(k)
ij , is

X
(k)
ij = ρk(gi)ρ

∗
k(gj) = ρk(gig

−1
j ). (20)

Therefore, recovering the matrices X
(k)
ij which take the above form is equiv-

alent to recovering the ratio gig
−1
j between pairs, which allows us to recover

g1, . . . , gn up to a global element. In other words, we have “lifted” the prob-
lem from the original variables g1, . . . , gn to the block matrices, where each
block is associated with the ratio gig

−1
j between a pair.

2.6.2 Convex Relaxation of NUG

We would like to convexify the NUG problem in order to use convex op-
timization theory and algorithms; in this section we consider the convex
relaxation of (18) and (19):

argmin
{X(k)}∞

k=0

∞
∑

k=0

tr
(

F̂ (k)X(k)
)

(21)

where the solution matrices X(0),X(1), . . . are in the convex hull of the ma-
trices defined in (19).

The following SDP relaxation has been proposed in [2]:

argmin
X(0),X(1),...

∑∞
k=0 tr

(

F̂ (k)X(k)
)

subject to X(k) � 0 ∀k

X
(k)
ii = Idk×dk ∀k, i

∑∞
k=0 dktr

(

ρ∗k(g)X
(k)
ij

)

≥ 0 ∀1 ≤ i, j ≤ n , ∀g ∈ G

X
(0)
ij = 1 ∀1 ≤ i, j ≤ n

(22)

Where,

X(k) =







X11 · · · X1n
...

. . .
...

Xn1 · · · Xnn






. (23)

The constraints in (22) are designed to restrict X(k) in (22) to the convex
hull of the matrices in (19).

Remark 4. When the expansion of the irreducible representations on G is
infinite, it must be truncated in practice. The implementation of the non-

negativity constraint
∑

k dktr
(

ρ∗(k) (g)X
(k)
ij

)

≥ 0 is not trivial. The problem

13



is discussed in [2], where G is sampled and a non-negative kernel is applied.
In some cases, Sum-of-Squares (SOS) constraints can also be used. The
constraint, and possible improvements of it, are the subject of ongoing work.

3 NUG Formulation for Simultaneous Classifica-

tion and Alignment

3.1 Motivating Example: Classification and Alignment over
SO(2)

In this section we present the problem of multireference alignment on SO(2),
and a heterogeneity problem associated with it. This problem turns out to
be simpler than the Cryo-EM problem in some fundamental ways which
we will discuss in Section 5, in the sense that there are tools available for
approaching this problem that are not available in Cryo-EM; however, in
the context of the NUG formulation, the problem has many of the features
of the Cryo-EM problem.

Suppose that we have some periodic function ψ : [0, 2π) → C over SO(2),
and suppose that we are given multiple copies of this function, each shifted
by some arbitrary angle. An example of such shifted copies is given in Figure
4. If we want to recover the original function (up to cyclic shifts), we may
choose an arbitrary copy, because all the copies are identical to the original
function up to shifts.

Next, suppose that we have noisy shifted copies of the function (Figure
5(a)). If we wish to approximate the original function (up to shifts), we
would align the noisy copies (Figure 5(b)) and then average them to cancel
out the noise (Figure 5(c)). Of course, in order to do this we must somehow
recover the correct shifts of all the copies together (up to some global shift).
In the following sections, we will use a penalty function for different possible
pairwise alignment; for each pair of copies, we can define a “compatibility
penalty” for different possible alignments, for example (with slight abuse of
notation), via the formula

fi,j (g) = ‖ϕi − g ◦ ϕj‖
2
2 =

1

2π

∫ 2π

0
|ϕi(θ)− ϕj(θ − g)|2dθ. (24)

An example of such compatibility penalty function is given in Figure 6.
When the shifts are unknown, the problem of aligning the signals is a NUG
(see [2, 1]).

In the heterogeneity problem we have a mixture of prototype signals;
in this simplified example, let us assume that we have a mixture of noisy

14



shifted versions of two classes of functions ψ1 and ψ2, so that each sample
is a shifted noisy version of either ψ1 or ψ2 as illustrated in the example in
Figure 7(a). If we knew both the class and shift of each sample, we could
divide the samples into two classes, and align them within each class (Figure
7(b),(c)), so that we could average within each class and approximate the
two original signals (Figure 7(d),(e)).

We know neither the shift nor the class of the samples; we study the
extension of NUG to this case of alignment in the presence of heterogeneity.

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4
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0
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1

Figure 4: Shifted copies of a function on SO(2)
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(a) Shifted noisy copies
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(b) Aligned noisy copies
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(c) Averaged aligned copies
(blue) vs. original function
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Figure 5: Noisy shifted copies of a function on SO(2)
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(a) Two shifted copies
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(b) “Alignment penalty” fij(g)

Figure 6: Penalty function for alignment of signals
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(b) copies of class 1, (d) averaged class 1
aligned vs. original ψ1
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(a) mixture of signals (c) copies of class 2, (e) averaged class 2
aligned vs. original ψ2

Figure 7: Classification and alignment over SO(2)
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3.2 Problem Formulation

We would like to find the optimal way to divide the samples into M classes,
so that we can best align them within each class. More formally, we would
like to optimize the rotations and classification together:

argmin
g1,...,gn∈G

a1,...,an∈0,..,M−1

M−1
∑

m=0

∑

i,j:
ai=m
aj=m

fij(gig
−1
j ). (25)

Remark 5. In this formulation, it is typically assumed that the penalty
fij is non-negative, and typically larger when i and j do not belong to the
same class, so that there is an incentive to distribute the samples among M
clusters, and align them within each cluster.

We will also discuss the problem of controlling the distribution to differ-
ent clusters; for example, we will discuss the case where all the clusters are
required to be of equal size:

|{i : ai = m}| = n/M. (26)

3.3 Ambiguity and Averaging

In some cases, there is a degree of ambiguity in a solution of a NUG (in
addition to the inherent global ambiguity discussed in Remark 3). Suppose
that g1, g2, . . . , gn is a solution of the NUG in (18) with the correspond-
ing matrices X(0),X(1), . . ., and suppose that there exists another solution
g̃1, g̃2, . . . , g̃n with corresponding matrices X̃(0), X̃(1), . . . that achieves the
same optimization objective. We would be particularly interested in the
case where g̃1, g̃2, . . . , g̃n cannot be obtained by applying some group ele-
ment to g1, g2, . . . , gn (the case discussed in Remark 3), so that in general
X(k) 6= X̃(k). In the convex formulation of the problem in (21), if both
X(0),X(1), . . . and X̃(0), X̃(1), . . . are solutions, then so is every convex com-

bination X
(0)
,X

(1)
, . . . of those solutions, even if there is no “physical” solu-

tion g1, g2, . . . , gn which corresponds to X
(0)
,X

(1)
, . . .. In some cases, where

the form of the ambiguity is known, we can use this property to enforce a
solution of a certain form. An example is provided in the next section.

3.4 Reducing k-clustering to a NUG

In this section we discuss the NUG formulation of the problem of clustering
vertices in a graph in k communities, to which we refer as k-clustering or
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k-classification. In particular, we discuss the max-k-cut problem and the bal-
anced version of the problem (where each cluster contains an equal number
of vertices). The SDP relaxation of max-k-cut has been studied in [26, 27]
and the closely related min-k-cut problem has been studied as a NUG in
[2]. We present a slightly different formulation and derivation which we find
useful for our discussion. Since “k” is often reserved for denoting indices of
irreducible representations, we denote the number of clusters by M .

Given an undirected weighted graph (V,E), the max-k-cut problem is
to divide the vertices of a graph into M clusters, cutting the most edges
between clusters

argmax
a1,...,an∈0,...,M−1

n
∑

i,j=1

(1− δ(ai − aj))wij, (27)

with wij the weight of the edge between vertices i and j. In other words,
the problem is to divide the graph into M clusters retaining the minimal
sum of edge weights:

argmin
a1,...,an∈0,...,M−1

n
∑

i,j=1

fij(ai − aj), (28)

where fij(a) = wijδ(a). We can view the weight of each edge as a measure
of incompatibility or “distance,” and attempt to classify the vertices into
clusters which are the least incompatible; i.e. the goal is to minimize the
sum of intra-cluster weights retained, by finding a clustering that removes
as many inter-cluster edges as possible.

The following SDP relaxation has been proposed in [26, 27],

min
Y

tr (WY )

Subject to Y � 0
Yii = 1 ∀i
Yij ≥ − 1

M−1 ∀i, j

(29)

where W is the matrix of edge weights. In a solution that corresponds to a
“physical” solution (a valid classification, rather than, for example, a convex
combination of classifications), Yij = 1 if i and j are in the same cluster, and
Yij = − 1

M−1 otherwise. A derivation for the related min-k-cut problem, in
the context of NUG, is provided in [2]. We discuss an additional derivation
which we will generalize in the following sections.

We consider the group ZM of cyclic shifts. A function on this group can
be written explicitly as a vector of length M , indexed 0, 1, . . . ,M − 1. We
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define the function fij by the following formula

fij = (wij , 0, 0, . . .)
⊺, (30)

where wij is the weight of the edge between i and j. We denote by ai the
class assignment of the i element, so that

fij(ai − aj) =

{

0 : ai 6= aj

wij : ai = aj
, (31)

or, in group notation

fij(aia
−1
j ) =

{

0 : aia
−1
j 6= e

wij : aia
−1
j = e

, (32)

where e is the identity element. This fij is precisely the penalty function fij
in (28).

The discrete Fourier transform (DFT) of fij (with the appropriate choice
of norm) is

f̂ij =
1

M
(wij , wij , wij , . . .)

⊺. (33)

These coefficients coincide with the coefficients of the expansion of fij in the
irreducible representation of ZM :

fij(a) =

M−1
∑

m=0

f̂ij(m)ei2aπm/M . (34)

Rewriting the clustering problem (28) as a NUG over ZM yields

argmin
a1,...,an∈ZM

n
∑

i,j=1

fij

(

aia
−1
j

)

, (35)

and substituting (33) and (35) into the block matrix formulation in (18)
yields

argmin
X(0),...,X(M−1)

∑M−1
m=0 tr

(

F̂ (m)X(m)
)

(36)

subject to X(m) having the structure in (19). The scalar irreducible repre-
sentations here are ηm(a) = ei2πam/k, so that for every m = 0, 1, . . . ,M − 1,

the matrix X(m) is an n × n matrix with X
(m)
ij in position i, j. The ma-

trix F̂ (m) is a matrix of the coefficients f̂ij(m) in the DFT of fij; by (33),
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f̂
(m)
ij = wij/M , for all m. For some solution of the NUG, we have for every

pair i, j, with aia
−1
j = aij

X
(m)
ij = ei2πaijm/M , (37)

where we again use aij as the group elements and the angle.
After writing the problem in the block matrix form, we turn our atten-

tion to the convex version of this formulation (see (21)). In particular, we
discuss the ambiguity in the solution, which results in convex combinations
of equivalent solutions, as discussed in Section 3.3. The penalty function
fij(aia

−1
j ) depends only on whether or not i and j are in the same class, so

it is invariant to permutations. In other words, for any permutation σ,

n
∑

i,j=1

fij

(

aia
−1
j

)

=
n
∑

i,j=1

fij

(

σ(ai) (σ(aj))
−1

)

. (38)

It follows that we can average all the different permutations, as discussed
in Section 3.3. If i and j are assigned to the same class in the solution, then
ai = aj so aij = aia

−1
j = e (or in integer notation ai − aj = 0) and by (37)

X
(0)
ij = X

(1)
ij = . . . = X

(M−1)
ij = 1. (39)

However, if i and j are not assigned to the same class in the solution, we
can average all the solutions for all permutations σ

X
(m)
ij = ei2π(σ(ai)(σ(aj ))

−1)m/M = ei2π(σ(ai)−σ(aj ))m/M . (40)

A simple computation yields the averaged (equally weighted convex combi-
nation) solution for all m > 0:

X
(m)
ij =

1

M − 1

M−1
∑

a=1

ei2πam/M = −
1

M − 1
. (41)

In other words, X(0) is the all ones matrix, and the matrices for all m > 0
are equal:

X(1) = X(2) = . . . = X(M−1), (42)

with the element X
(m)
ij of these matrices with m > 0:

X
(m)
ij =

{

1 , if i and j are in the same class,

− 1
M−1 , otherwise.

(43)

20



Since X
(0)
ij = 1 is fixed, it can be ignored in the penalty term of (36), so the

optimization is reduced to

argmin
X(1),...,X(M−1)

M−1
∑

m=1

tr
(

F̂ (m)X(m)
)

. (44)

Using (42) and (33), the optimization is further reduced to

argmin
X(1)

(

(M − 1)tr
(

F̂ (1)X(1)
))

, (45)

which is scaled to
argmin

X(1)

(

tr
(

F̂ (1)X(1)
))

. (46)

Setting X(1) = Y , we have the optimization term in (29), with the other
conditions in (29) following from the derivation above.

3.5 Controlling Cluster Size or Distributions

The purpose of this section is to extend the NUG framework by adding
constraints on the distribution of solutions over the group.

In some cases it is useful to restrict the clusters in a graph cut problem
to be of equal size (for example, see discussion of min-k-cut in [28]), i.e.

|{i : ai = m}| = n/M. (47)

The NUG formulation does not have a mechanism to enforce such a con-
straint. We first consider the extension of the NUG in (29) for the max-k-cut
problem to the case of balanced cluster size. We add the constraint that for
m > 0,

∑

j

X
(m)
ij = 0 ∀i (48)

(for m = 0, the matrix X(0) is the trivial all ones matrix). Indeed, for any
valid balanced solution, every vertex i has n/M vertices (including itself)

in the same cluster, and for these vertices X
(m)
ij = 1; every vertex also has

n
M (M − 1) vertices in different classes, for these vertices X

(m)
ij = − 1

M−1 .
Therefore, the sum of these elements is 0. This solution resembles the algo-
rithm proposed in [28].

This idea is a special case of a more general framework that enforces con-
stant distribution over the group by enforcing (48). The strict constraint on
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the distribution can be relaxed to an approximation, and therefore extended
beyond discrete groups by relaxing the condition to one of the following con-
straints

‖
∑

j

X
(m)
ij (q)‖2 ≤ w(m) ∀i, (49)

‖
∑

ij

X
(m)
ij (q)‖2 ≤ w(m), (50)

∑

i

‖
∑

j

X
(m)
ij (q)‖2 ≤ w(m), (51)

or by adding a similar constraint as a regularizer in the optimization (with

the obvious extension where the irreducible representation X
(m)
ij is a matrix).

This approach, which views the irreducible representations and their sum as
an approximation of the Haar measure of the group (or appropriate variation
when a prior is available), will be discussed in more detail in a future paper.

3.6 The Direct Product of Alignment and Classification (Prod-
uct NUG)

We revisit (25) and rewrite the summation in the optimization:

M−1
∑

m=0

∑

i,j:
ai=m
aj=m

fij(gig
−1
j ) =

n
∑

i,j=1

δ(ai, aj)fij(gig
−1
j ), (52)

where

δ(ai, aj) =

{

1 : ai = aj

0 : otherwise
. (53)

With a small abuse of notation, we rewrite the class labels a1, . . . , an as
elements in ZM ; the expression ai = aj can also be written as aia

−1
j = e

(where e is the identity element of ZM ), so, we can also write (53) as:

δ(ai, aj) = δ(aia
−1
j ) =

{

1 : aia
−1
j = e

0 : otherwise.
(54)

We introduce the function f̃ij : G × ZM → R, defined as

f̃ij ((g, a)) = fij (g) δ(a). (55)
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Using the identity (12), we obtain

f̃ij
(

(gi, ai)(gj , aj)
−1

)

= f̃ij

((

gig
−1
j , aia

−1
j

))

, (56)

and observe that f̃ij
(

(gi, ai)(gj , ai)
−1

)

is now simply a function over the
compact group G × ZM . Therefore, the expression in (25) is reduced to the
NUG

argmin
(g1,a1),...,(gn,an)∈G×ZM

∑

i,j

f̃ij
(

(gi, ai)(gj , aj)
−1

)

. (57)

The block matrix formulation (18) of this product NUG is

argmin
(g1,a1),...,(gn,an)∈G×ZM

∞
∑

k=0

M−1
∑

m=0

tr
(

F̂ (k,m)X(k,m))
)

(58)

Where,

X(k,m) =







ψk,m ((g1, a1))
...

ψk,m ((gn, an))













ψk,m ((g1, a1))
...

ψk,m ((gn, an))







∗

,

F̂ (k,m) = dkm







f̂11(k,m) · · · f̂n1(k,m)
...

. . .
...

f̂1n(k,m) · · · f̂nn(k,m)






,

(59)

with f̂ij(k,m) the Fourier coefficient of f̃ij corresponding to the irreducible
representation ψk,m, and dkm the dimensionality of that irreducible rep-
resentation. The irreducible representations ψk,m of G × ZM are enumer-
ated in Table 4; they are referenced by two indices, k = 0, 1, . . . and m =
0, 1, . . . ,M − 1.

As in the general discussion of NUG, we are interested in the convex
relaxation of (58):

argmin
{X(k,m)}k,m

M−1
∑

m=0

∞
∑

k=0

tr
(

F̂ (k,m)X(k,m)
)

(60)

where the solution matrices X(k,m) are in the convex hull of the matrices
defined in (59).
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The relaxation of the form (22) is

maximize
X(k,m)

∑M−1
m=0

∑∞
k=0 tr

(

F̂ (k,m)X(k,m)
)

subject to X(k,m) � 0 ∀k,m

X
(k,m)
ii = 1 ∀k,m, i

∑

k,m tr
(

ψ∗
k,m ((g, a))X

(k,m)
ij ≥ 0

)

∀i, j , ∀(g, a) ∈ G × ZM

X
(0,0)
ij = 1 ∀i, j

X
(k,m)
ij ≥ − 1

M−1 ∀m > 0, ∀i, j.

(61)
In the following sections, we turn our attention to the ambiguities and

symmetries in X(k,m) of the convexified formulation (60).

3.7 The 0 Order Representation of Alignment, and the Clus-
tering Label Ambiguity

As discussed in Section 3.3, when there is ambiguity in the solution of the
NUG, it is manifested as convex combinations of solutions in the covexified
formulation (60). As discussed in Section 3.4, there is ambiguity in the
assignment of class labels which leads to symmetries in the NUG for the
clustering problem.

We observe that the irreducible representations ψ0,m of G×ZM , enumer-
ated in the first row in Table 4, are simply the irreducible representations
of ZM which appear in the max-k-cut problem, as are the coefficients of the
expansion of fij. Therefore, the same argument used in Section 3.4 can be
used here to identify the desired form of the first row in the solution of the
convex simultaneous alignment and classification problem (60). In fact, the
same argument applies to all rows, which can be averaged in the same way;

the form of the averaged solution of each block X
(k,m)
ij is summarized in

Table 5, for the two cases: either i and j are in the same class (a), or they
are in different classes (b).

3.8 Inter-Class Invariance

In addition to the class label ambiguity, there is another type of ambiguity
which emerges in the simultaneous clustering and alignment product NUG.
We observe that the solution is invariant to a G group action on one class
(without applying the same action to the other classes, so this is not a group
action of G × A).
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X(k,m) m = 0 m = 1 · · · m = M − 1

k = 0 1 1 · · · 1

k = 1 X
(1,0)
ij

X
(1,0)
ij

· · · X
(1,0)
i,j

k = 2 X
(2,0)
i,j

X
(2,0)
i,j

· · · X
(2,0)
i,j

.

.

.

.

.

.
.
.
.

.

.

.

(a) ai = aj

X(k,m) m = 0 m = 1 · · · m = M − 1

k = 0 1 − 1
M−1

· · · − 1
M−1

k = 1 X
(1,0)
ij

−
X

(1,0)
ij

M−1
· · · −

X
(1,0)
ij

M−1

k = 2 X
(2,0)
i,j

−
X

(2,0)
i,j

M−1
· · · −

X
(2,0)
i,j

M−1

.

.

.

.

.

.
.
.
.

.

.

.

(b) ai 6= aj

Table 5: The desired form of blocks X
(k,m)
ij of X(k,m), corresponding to (a)

same, and (b) distinct classes

Lemma 1. Let a1, . . . , an ∈ ZM , g1, . . . , gn ∈ G and g̃1, . . . , g̃n ∈ G. Suppose
that a ∈ ZM and g ∈ G are some arbitrary class and rotation, and suppose
that

g̃i =

{

gig : ai = a

gi : otherwise.
(62)

Then, the objective value in (25) is the same for g1, . . . , gn ∈ G and g̃1, . . . , g̃n ∈
G:

M−1
∑

m=0

∑

i,j:
ai=m
aj=m

fij(gig
−1
j ) =

M−1
∑

m=0

∑

i,j:
ai=m
aj=m

fij(g̃ig̃
−1
j ). (63)

In other words, if a1, . . . , an, g1, . . . , gn is a solution of (25), then so is
a1, . . . , an, g̃1, . . . , g̃n.

Proof. For any m 6= a, g̃i = gi, so that
∑

i,j:
ai=m
aj=m

fij(g̃ig̃
−1
j ) =

∑

i,j:
ai=m
aj=m

fij(gig
−1
j ). (64)

For m = a, we have

fij(g̃ig̃
−1
j ) = fij((gig)(gjg)

−1) = fij(gigg
−1g−1

j ) = fij(gig
−1
j ) (65)

so that (64) holds for m = a as well.

It follows that when ai 6= aj , we may average over all the possible inter-
class alignment. By (6), using the Haar measure for the possible alignments
yields 0 for all elements with k 6= 0. The form of the averaged solution of

each block X
(k,m)
ij is summarized in Table 6, for the two cases: either i and

j are in the same cluster, or they are in different clusters.
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X(k,m) m = 0 m = 1 · · · m = M − 1

k = 0 1 1 · · · 1

k = 1 X
(1,0)
ij

X
(1,0)
ij

· · · X
(1,0)
i,j

k = 2 X
(2,0)
i,j

X
(2,0)
i,j

· · · X
(2,0)
i,j

.

.

.

.

.

.
.
.
.

.

.

.

(a) ai = aj

X(k,m) m = 0 m = 1 · · · m = M − 1

k = 0 1 − 1
M−1

· · · − 1
M−1

k = 1 0 0 · · · 0
k = 2 0 0 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

(b) ai 6= aj

Table 6: The desired form of blocks X
(k,m)
ij of X(k,m), after averaging inter-

class rotations (Lemma 1)

4 Algorithms

Substituting the results of Section 3.6 into (22) we obtain the following SDP:

argmin
{X(k,m)}k,m

∑∞
k=0

∑M−1
m=0 tr

(

F̂ (k,m)X(k,m)
)

subject to X(k,m) � 0 ∀k,m

X
(k,m)
ii = Idk×dk ∀k,m, i

∑∞
k=0

∑M−1
m=0 dktr

(

ψ∗
k,m((g, a))X

(k)
ij

)

≥ 0 ∀i, j

∀g, a ∈ G × ZM

X
(0,0)
ij = 1 ∀i, j

(66)
The coefficient in the matrix F̂ (k,m) can be obtained from the original

alignment problem, when no clustering is required; suppose that the coeffi-
cients in that problem are F̂ (k), then for all k and m, the coefficients F̂ (k,m)

are

F̂ (k,m) =
1

M
F̂ (k). (67)

We observe that due to the structure discussed in Section 3.7 and Section
3.8, regardless of whether ai = aj or ai 6= aj ,

X(0,m) = X(0,1) ∀m 6= 0

X(k,m) = X(k,0) ∀k 6= 0 , ∀m.
(68)
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Taking these observations into account, (66) is reduced to

argmin
X(k,m)

∑M−1
m=0

∑∞
k=0 tr

(

F̂ (k,m)X(k,m)
)

subject to X(0,m) = X(0,1) ∀m 6= 0

X(k,m) = X(k,0) ∀k 6= 0 , ∀m

X
(0,m)
ij ≥ − 1

M−1 ∀m > 0 , ∀i, j

X(k,m) � 0 ∀k,m

X
(k,m)
ii = 1 ∀k, i

∑

k,m tr
(

ψ∗
k,m ((g, a))X

(k,m)
ij

)

≥ 0 ∀i, j , ∀(g, a) ∈ G × ZM

X
(0,0)
ij = 1 ∀i, j.

(69)
In fact, the requirement for non-negativity over G × ZM is redundant,

due to the following lemma.

Lemma 2. Suppose that a 6= e (where e is the identity element of ZM ). If
the other constraints in (69) are satisfied, then for all i, j,

∑

k,m

tr
(

ρ∗k,m ((g, a))X
(k,m)
ij

)

≥ 0 (70)

for all g ∈ G and all a 6= e.

Proof. Due to the other constraints in (69), for all k > 0, we have X(k,0) =
X(k,1) = . . . = X(k,m), so that for all k > 0

M−1
∑

m=0

tr
(

ψ∗
k,m ((g, a))X

(k,m)
ij

)

= tr
(

ρ∗k (g)X
(k,0)
ij

)

M−1
∑

m=0

ηm(a) = 0 (71)

where the last step is due to the fact that
∑M−1

m=0 ηm(a) = 0 for a that are
not the identity.

For k = 0, we have X
(0,0)
ij = 1 and − 1

M−1 ≤ X(0,m) ≤ 1, so that

M−1
∑

m=0

tr
(

ψ∗
0,m ((g, a))X

(0,m)
ij

)

= 1+

M−1
∑

m=1

ηm (a)X
(0,m)
ij ≥ 1−(M−1)/(M−1) = 0

(72)
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Using this lemma, (69) is reduced to

argmin
X(k,m)

∑M−1
m=0

∑∞
k=0 tr

(

F̂ (k,m)X(k,m)
)

subject to X(0,m) = X(0,1) ∀m 6= 0

X(k,m) = X(k,0) ∀k 6= 0

X
(0,m)
ij ≥ − 1

M−1 ∀m > 0 , ∀i, j

X(k,m) � 0 ∀k,m

X
(k,m)
ii = 1 ∀k, i

∑

k,m tr
(

ρ∗k,m ((g, e))X
(k,m)
ij

)

≥ 0 ∀i, j , ∀g ∈ G

X
(0,0)
ij = 1 ∀i, j

(73)

where e is the identity element of ZM .

4.1 Controlling Class Size

When the size of the classes is known to be equal, the constraint (48) of Sec-
tion 3.5 is added to the SDP. Considering all the symmetries, the constraint
takes the form

∑

j

X
(0,1)
ij = 0 ∀i. (74)

4.2 Variable and Constraints Accounting

The purpose of this section is to discuss the number of free variables remain-
ing in the formulation (73), and the number of constraints. We note that the
only remaining matrix variables are X(0,1) and X(1,0),X(2,0),X(3,0), . . .. The
matrix X(0,0) is the trivial all ones matrix, and every other matrix is set to be
equal to the appropriate matrix of those listed above (see (68)). We observe
that the matrixX(0,1) has exactly the same form as the matrix Y in the max-
cut classification SDP, and the constrains on it are similar. The matrices
X(1,0),X(2,0),X(3,0).. have the same form as the matrices X(1),X(2),X(3), . . .
in the alignment problem, and also have similar constraints. In other words,
loosely speaking the number of variables and constraints in the product
NUG discussed here is similar to the sum of those in the separate classifi-
cation problem and those in the alignment problem, which is much smaller
than the number of variables and constraints of the formulation (66) which
we obtained before considering the symmetries.
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5 Experimental Results

In this section we present experiments with the simplified case of alignment
and clustering of noisy functions on SO(2) (also discussed in Section 3.1). We
generated 4 complex valued prototype functions over SO(2), the functions
are low-bandwidth, represented by 11 coefficients in the Fourier domain.
For each prototype function we generated 15 copies, each copy was shifted
randomly on SO(2), and random noise was added to each of the shifted
copies, yielding a dataset {si}

n
i=1 of n = 60 signals. The problem is now to

align and cluster the signals in the dataset.
This problem is simpler than the Cryo-EM problem, but it contains the

key components and allows us to construct a benchmark. We observe that
the auto-correlation and bispectrum [29] of signals are invariant to rotations;
therefore, in the absence of noise, we can compute the auto-correlation or
bispectrum of each signal in our dataset, and use these as “signatures” to
cluster the signals. In the presence of noise, these signatures are distorted,
leading to possible errors in clustering. We experimented with both auto-
correlation and bispectrum; since the results were very similar in the two
cases, and since bispectrum has certain theoretical advantages, we present
the results for bispectrum here.

We implemented the SDP in (73) with balanced classes (74) in Matlab,
using CVX [30, 31]. For every pair of signals si and sj we compute fij:

fij(g) = ‖si − g ◦ sj‖, (75)

where g ◦ sj is the signal sj rotated by g. The rotation is implemented by
multiplication by the appropriate phase in the Fourier domain. We con-
struct the n×n matrices of coefficients F̂ (k) (the matrices for multireference
alignment without classification); the elements in the i, j position in the k
matrix is the k element in the DFT of fji.

f̂
(·)
ij = F (fji) . (76)

The non-negativity constraint is implemented using the Fejer kernel (see
[2]).

In order to study the performance of the algorithm, we focused on the
classification aspect, which can be compared to clustering obtained through
the use of bispectrum “signatures.” We computed the bispectrum of each
signal in the dataset and also solved the SDP for the product NUG of this
dataset. For simplicity, we used the simple k-means to cluster the signals:
first by the bispectral signature of each signal, and then by the columns of
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Figure 8: Classification error vs. noise level, 4 balanced clusters

the matrix X(0,1) obtained by the SDP. For simplicity, we did not enforce
equal cluster sizes in the k-means. We measured the fraction of signals
that were misclassified (the clusters are recovered only up to permutation:
even if the k-means find the correct clusters, the class “labels” are assigned
arbitrarily. We computed the minimum error over all permutations of class
labels).

We repeated the experiment 20 times for every noise level. The results
are presented in Figure 8. The experiment demonstrates that the product
NUG achieves considerably better classification results in the presence of
noise.

Remark 6. In the Cryo-EM problem, the images which we wish to align
are different projections of the molecule X . While bispectrum and auto-
correlation have been used to find images from the same plane (see [32]),
these signatures are not invariant to projections. Therefore, in the Cryo-
EM problem, these signatures cannot be used for classification, so they do
not provide an alternative for the product NUG discussed here.

In other words, although the product NUG achieves better results than
invariant signature based clustering in these experiments, its true importance
is in cases where such alternative methods cannot be used.

6 Summary and Future Work

The problem of simultaneous alignment and classification has been formu-
lated as a Non-Unique Game, and an algorithm has been presented for solv-
ing the a convex relaxation of the problem. The algorithm has been demon-
strated for the case of simultaneous alignment and classification of mixed
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signals on SO(2); and it is currently being adapted for the heterogeneity
problem of Cryo-EM. It should be noted that SDPs like the one proposed
here are difficult to scale using off-the-shelf solvers to very large problems,
such as alignment of hundreds of thousands of images produced in modern
Cryo-EM experiments. Nevertheless, special purpose solvers provide more
scalability, the SDPs offer certificates of global optimality of solutions found
using other approaches in some circumstances, they provide a benchmark
for approximate optimizations, and they can be applied to reduced datasets
(e.g. class averages of images).

The approach discussed here can be generalized to the case of continuous
heterogeneity, where the molecules are not classified to distinct classes, but
rather lie on continuum of states that can be parametrized (alternatively,
the states are distinct, but related to some degree). In this case, we follow
similar ideas to those in this manuscript, however there are some additional
details that require considerations in the choice of underlying groups and
the structure of fij; this case will be discussed in more detail in a future
paper.

As discussed in Section 3.5, there are several variations of the control
over the size of clusters. Furthermore, the same ideas can be used to control
the distribution of the recovered rotation angles (for example, when the
images can be assumed to come from approximately uniform distribution
over SO(3)).
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